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Abstract—The exploration-exploitation trade-off, also known
as the ‘“dual control problem” or the ‘“closed-loop identifiability
problem” is a fundamental challenge in reinforcement learn-
ing. One of the initial approaches proposed for this problem
consisted of adding a bias term that favored models with
larger rewards to the likelihood function. This “Reward-Biased”
approach was shown to be asymptotically optimal in a variety
of contexts including Multi-Armed Bandits (MABs), Markov
Decision Processes (MDPs), Linear Quadratic Gaussian (LQG)
systems, nonlinear systems, and controlled diffusions. Recent
results on regret guarantees and empirical experiments highlight
the performance advantage of the Reward-Biased Method. This
paper provides an account of recent developments on the finite
time analysis of RBMLE along with insights on the reason for
its competitive advantage, and identifies some open problems.

Index Terms—Reinforcement Learning, Adaptive Control, Op-
timism, MDPs, Contextual Bandits, Stochastic Bandits, Linear
Quadratic control.

I. INTRODUCTION

Reinforcement learning (RL)/adaptive control focuses on
controlling an unknown stochastic system in order to maxi-
mize a reward criterion [1]-[9]. Consider a stochastic dynam-
ical system with state s; € S and controls a; € A at time t.
The stochastic system is parameterized by M™* which governs
its state transitions:

St+1 = .fM* (st,at,wt+1), t= 1,2, ey

where w;, is noise. For example, a linear system can be param-
eterized by M* = [A*, B*] where s;411 = A*s;+B*ai+wit1.
The stochastic system returns a reward r; at time t. The
learner’s goal is to maximize a suitably defined scalar measure
J of its reward stream, such as the expected reward over a
finite time interval, or the average or discounted reward.
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Fig. 1. General Framework for Reinforcement Learning
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If M* is known, the learner could choose the policy 7* in
II, the set of all non-anticipative policies, which maximizes
its objective function. In this paper, we restrict our discussion
to the long-term average reward J (7, M*), although it can be
extended to other objectives such as discounted reward, or the
“episodic” case involving repeated finite intervals of time.

When M* is not known, the learner is faced with a
fundamental challenge in reinforcement learning, variously
called the dual control problem [10], the closed-loop iden-
tifiability problem [11], or the exploration-exploitation trade-
off [12]. The learner is faced between the following tactically
conflicting choices:

1) Exploration: Collect more information to learn M*

accurately in order to learn the optimal controller 7*.

2) Exploitation: Choose the best controller based on infor-

mation already gathered.

A wide variety of solutions to this exploration-exploitation
trade-off have been proposed in the RL/adaptive control lit-
erature. One of the earliest approaches, proposed in [13],
consisted of adding a bias term that favored model parameters
with larger expected reward to the log-likelihood function, and
then using a certainty equivalent control law. It was shown
that this optimistic approach yields a long-term average cost
reward that is optimal for the unknown system. This result was
established under various conditions in a variety of contexts in-
cluding Multi-Armed Bandits (MABs) [14], Markov Decision
Processes (MDPs) [15], Linear Quadratic Gaussian (LQG)
systems [16], nonlinear systems, and controlled diffusions.
This method is called the “Reward-Biased Method” (RBM).
A detailed historical account on the development of the RBM
class of algorithms can be found in [14]-[17].

Another notable approach, also based on optimism, the
“upper confidence bound (UCB)” approach, was proposed in
the seminal work [18]. Rather than using a point estimate
it considered the most optimistic parameter in a confidence
interval or set. It also introduced the notion of “regret”, a finer
measure than long-term average reward. Since then, the UCB
approach has been adapted for various RL settings including
MDPs [8], [9], LQG [19], MABs [12], linear contextual
bandits [20], linear MDPs [21], and constrained MDPs [22].

With the advent of reinforcement learning, the focus has
intensified on finer objectives such as finite-time performance,



and on issues of computational complexity. The finite time
“regret” is defined as
T
R(T) =TJ(x*,M*) = r.
t=1
After a gap of many years, the Reward-Biased Method has
been re-examined vis-a-vis the issues of more contemporane-
ous interest, its regret guarantees and empirical performance,
in the context of various reinforcement learning scenarios:
e Markov Decision Processes [15]
o Linear Quadratic System [16]
o Linear Contextual Bandits [23]
¢ Stochastic multi-armed bandits [14].
It has been shown to achieve order-optimal regret in these
cases. In this paper, we provide an account of these recent
developments on RBM. We highlight some potential future
research directions of interest and the associated challenges.

II. A GENERAL REINFORCEMENT LEARNING
FRAMEWORK

We consider a general model-based reinforcement learning
framework. The stochastic system M™* has the following state
evolution:

St4+1 = fl\/[* (staatawt+l)a t= 1a27 ceey

where s; is the observed state, a; is the control action at time
t, and w; is the system noise. The stochastic system returns a
reward r; at time t.

The learner is assumed to have the knowledge of:

1) a compact set M such that M* € M,

2) a decision space II such that 7* € II.

At time t, the learner chooses a model estimate M; from
the set M and policy 7 from the policy space II.

Such a formulation captures a wide range of reinforcement
learning setups including Tabular MDPs, structured bandits
and linear control systems. Similar general framework known
as Decision making with structured observations (DMSO) has
been proposed in [24].

III. THE REWARD-BIASED METHOD

We consider the average-reward reinforcement learning
setting with periodic estimate updates. The Reward-Biased
estimate is computed at the beginning of each episode. The
length of episode k is denoted by FEj. There are several
variants of the RBM. Generally, the RBM estimate M; of M*
at time ¢ takes the form:

M; € arg max {a(t)J*(M) — D(M, F)}- (D

where, F; = {{su}\,_1,{a.}\} is the collection of states
and control inputs observed till ¢. «(t) is a positive bias-term
that grows with ¢, and D(-,-) > 0 is a fitting criterion that
measures how closely the model M fits the observed data F;.
The certainty-equivalence control policy implemented by the
learner is

M,).
m € argmax J(m, My)

Algorithm 1 RBM for Reinforcement Learning
Input: M, 11, S, A
Initialize: ¢t = 1.
for k=1,2,...

M; € arg max {a(t)J*(M) — D(M, F+)}
T € arg max J (7, My)

while ¢, < E}, do
Implement the control input a; = m¢(s;)
Observe the reward r,; and state s;y1
Set Mt+1 = M; and T4l = T
Update t - t+1

end while do

end for

A. Design of a(t) and D(-,)

The empirical performance and the regret bounds are de-
pendant on the choice of the bias term «(t) and the fitting
criterion D(-,-).

e [25] showed that if «(t) is chosen such that

lim a(t) — oo and lim olt) — 0,

t—o00 t—oo t
then the RBMLE algorithm achieves the long-term aver-
age optimality of the reward for tabular MDPs. A finer
regret analysis can suggest how to choose the bias term
a(t) to reduce regret.

o The fitting criterion D(-,-) captures how well the model
M fits the observed data. The initial Reward-Biased
Maximum Likelihood Estimate (RBMLE) in [25] chose
the log-likelihood ratio for D. A fine regret analysis can
suggest a preferable choice of D.

The optimal choices of «(t) and D(-,-) for various RL
scenarios are discussed in next section.

IV. FINITE TIME ANALYSIS OF RBMLE

In this section, we summarize the recent results on finite
time performance of RBMLE in various reinforcement learn-
ing contexts.

A. Tabular MDPs

Tabular MDPs with finite states and finite actions have been
studied in reinforcement learning, e.g., [8], [9]. Here the goal
of the learner is to minimize the regret.

M* ={p*(s,s',a): Vs, €S and ac A}.

In the case where M™ is known, the optimal average reward
and optimal policy can be obtained from dynamic program-
ming [4]. In the RL setup, when M™ is unknown, the RBMLE
algorithm for a tabular MDP chooses M; as follows:

M, € argAI}leaj)\(A{ao logt J*(M)— D(M,F)}. (2



TABLE I
RBMLE FOR TABULAR MDP: NOTATION

S {17 2, S}
A {17 2, A}
M ASXSXA
II Set of stationary policies
Tt r(st,ar) € [0,1]
at mi(st)

D(M, Ft) | log-likelihood of M at time ¢

Since an optimal policy for an MDP is a stationary policy,
the RBMLE optimization can be reduced to an index-based
algorithm, where each policy is associated with an index and
the algorithm simply chooses the policy with highest value of
index.

Theorem 1 (Theorem 9, [15]): The regret of the RBMLE
algorithm for Tabular MDPs is upper bounded as:

E[R(T)] < ClogT

where, C' is an instance-dependent constant.

Remark 1: Choice of D: The RBMLE is analyzed with
D(-,-) chosen based on the log-likelihood of M; this leads
to a sub-optimal pre-constant in the regret bound provided
in Theorem 1. The regret analysis show that the pre-constant
can be improved by choosing D(, -) based on the L;-distance
between M and the maximum likelihood estimate Mt.

Empirical Performance: Figures 2 and 3 compare the
empirical regret performance of RBMLE with its UCB and
Thompson Sampling [26]-[28] counterparts, namely UCRL2
[9] and TSDE [29], respectively. The regret of RBMLE is seen
to be lower than that of UCRL2 and TSDE.
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Fig. 2. Regret Performance of RBMLE, UCLR2 and TSDE for randomly
generated MDPs with 20 states and 20 actions (Figure 1, [15]).

B. Linear Quadratic Control [16]

The adaptive control of a linear system with a quadratic cost
is one of the most extensively studied problems in adaptive
control [30], [31]. (A special case where the weight on control
is zero, called the self-tuning regulator, is predominant in the
control literature [32], [33]). Consider the following linear
system:

si41 = A%s; + B ay + wig1,

3)
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Fig. 3. Regret Performance of RBMLE, UCLR2 and TSDE for a randomly
generated MDP with 50 states and 50 actions(Figure 1, [15]).

where the noise w; is i.i.d. and component-wise sub-
Gaussian [34]. The reward at time ¢ is r(s,a) == —(s7Qs +
a’Ra), where Q@ > 0 and R > 0 are known matrices.
When the system parameter M * is known, the optimal average
reward and optimal controller can be found using Riccati
equations [4]. When the system parameter M* = [A*, B*]

TABLE II
RBMLE FOR LINEAR QUADRATIC SYSTEM: NOTATION
S R™
A R™
we Sub-gaussian, A martingale difference sequence wrt {F}}
M [A, B]: A€ R™X™ [ € R™X1 [A, B] is stabilizable
11 K ¢ RxXm
Tt —(s?Qst + a?Rat)
at Kist
D(M, Fy) regularized least-squared error at time ¢

is unknown, the long-term average optimality of RBMLE was
established in [30], [31], [35], [36]. The RBMLE estimate is

M; € arg max {a(t)J"(M) - Vi(M)}.

where V(M) := Zz;é (2o41 — Az — Buy,)? is the squared
fitting error of M = [A, B]. Reference [19] has proposed an
algorithm called OFU (Optimism in the Face of Uncertainty)
that is based on the UCB approach. At each time ¢, it chooses
a parameter estimate with maximum average reward within a
“confidence set”,

Ci(6) == {M = [A, B] : Vi(M) <%(9)}. )

In a recent work, [16] has proposed an algorithm, called
Augmented RBMLE-UCB (ARBMLE), that brings the fun-
damental ideas behind RBMLE and OFU together. The
ARBMLE algorithm [16] is a constrained version of RBMLE,

M, € arg  max
MEMNC,(6)

{ao VE D) V(D). )



Theorem 2 (Theorem 4.1, [16]): For any 6 € (0,1) and
T > 0, with a probability at least (1 — ) the regret of the
ARBMLE Algorithm is upper-bounded by

R(T)=0 (,/Tlog ;) .

Empirical Performance: The empirical regrets of RBMLE
as well as ARBMLE are compared with several proposed
RL algorithms including OFULQ [37], Thompson Sampling
(TS) [38], Input Perturbations (IE) [39], Randomized Certainty
Equivalence (RCE) [40], and Stabl [41]. Figures 4 and Fig 5
show the regret performance of these algorithms for a linear
model of an Unmanned Aerial Vehicle (UAV) [16]. It is note-
worthy that RBMLE and ARBMLE exhibit the “almost” same
empirical performance, suggesting that the confidence interval
only adds a loose constraint for ARBMLE. This suggests
that the constraint that M € NCy(d) in (5) can be deleted.
However, we have been unable to prove the regret bounds
without this constraint. This remains an open challenge.

Both RBMLE and ARBMLE outperform OFULQ, StabL
and TS. The empirical performance of RBMLE/ARBMLE is
marginally better than IP and RCE.
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Fig. 4. Regret of ARBMLE, TS, OFULQ, StabL (Figure 1-c, [16]).
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Fig. 5. Regret of RBMLE, ARBMLE, IP, RCE (Figure 2-c, [16]).

Remark 2: Theorem 2 provides regret guarantees only for
the ARBMLE algorithm. Providing a regret guarantee for
the RBMLE algorithm for LQ control still remains an open
problem. As noted earlier, simulation results show the exact

same empirical performance for the RBMLE and ARBMLE
algorithms. Based on these simulations, one expects a similar
regret bound for RBMLE.

C. Linear Contextual Bandits [23]

Linear contextual bandits have found applications in adver-
tisement recommendations, and clinical trials [27]. At each

TABLE III
RBMLE FOR LINER CONTEXTUAL BANDITS: NOTATION

S %]
A {1,2,---, A}
Tt M*Tst —+ we
wi Sub-Gaussian noise at time ¢
at ate{1727"'7A}

D(M, F¢) | log-likelihood of M at time ¢
A regularization parameter

time ¢ a “context vector” s; = {s;; € R? : i € [1, A]} is
observed. There exists an unknown parameter M* such that
the conditional mean reward given the past is

]E[T‘t|]:t] = M*TSt.

Since M™* is not known, the learner aims to minimize the
“pseudo regret” which is defined as:

T
Rpseudo(T) =Y M* 57 — M* " 5.
t=1

The RBMLE algorithm for linear contextual bandits, called as
LinRBMLE is an index-based policy. The index of arm a at
time ¢ is given by:

Lo =max{a(t)sio — AlIM[[* + D(M, F2)}  (6)

The LinRBMLE algorithm then simply chooses the arm with
highest index.

Theorem 3 ( Theorem 1, [23]): The regret of LinRBMLE
algorithm for linear contextual bandits is

Rpsuedo(T) = O(d\/f IOg T)

Empirical Performance: In Figures IV-C and IV-C, the
performance of LinRBMLE is compared with other popular
algorithms including LinUCB [20], LinTS [27], BUCB [42],
GPUCB [43], GPUCB Tuned [44], KG, KG* [45]. The
computation time for each arm pull as well as the regret
are shown. It can be seen that LinRBMLE performs better
than all algorithms except GPUCBT. LinRBMLE involves a
scalable and efficient computational procedure that also yields
a competitive empirical regret.

D. Stochastic Multi-armed Bandits [14]

Stochastic Multi-armed Bandits (MABs) represent perhaps
the most simplified and most extensively studied RL setting.
A large variety of learning algorithms have been proposed for
stochastic MABs. Suppose there are K arms with unknown
reward distribution with mean . for arm £.
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The RBMLE algorithm for stochastic bandits can be simpli-
fied to an index based policy. The algorithm chooses the arm
with highest index value. The RBMLE indices for common
reward distributions are provided in Table V.

where, N;(t) is the number of plays of arm 1 till ¢, H(p) is
the binary entropy, and p;(¢) is MLE estimate of ;.
Theorem 4: (Proposition 4, [14]) The regret of RBMLE for a

TABLE IV
RBMLE FOR MULTI-ARMED BANDITS: NOTATION
S 7]
A {1,2,---, A}
Tt Sub-Gaussian with mean fiq,
at at € A

TABLE V
RBMLE INDEX FOR COMMON DISTRIBUTIONS FOR MABS (TABLE 1,
[14D

Distribution RBMLE Index
Bernoulli N;(t) (H(pi(t)) — H(pi(t)))

Exponential N;(t) log %
Gaussian pi(t) + 2%:&)

finite family of multi-armed bandita with sub-Gaussian reward
distributions is given by:

E[R(T)] < CylogT + Cs

where C1, Cy are problem-dependant constants.

Empirical Performance: In Figure 8, the empirical per-
formance of RBMLE and other leading bandit algorithm is
compared. RBMLE outperforms these state-of-the-art bandit
algorithms. In Fig 9, the average computational time per pull
is plotted against the average regret. Due to the simple form of
its index (shown in Table V), RBMLE has low computational
complexity. This gives RBMLE an edge over algorithms like
IDS and VIDS [46].
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Fig. 8. Regret Performance of various algorithms for stochastic MABs

(Figure 1, [14]).

V. DISCUSSION

The RBMLE algorithms overall appear to show a promis-
ing empirical performance when compared to state-of-the-art
algorithms in various RL scenarios including MDPs [15], LQ
control [16], and Stochastic Bandits [14] as well as Linear
bandits [23]. This motivates further study of RBMLE. We now
outline some insights gleaned from the study and performance
of RBMLE, as well as several outstanding problems.
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A. RBMLE vs UCB: Some insights about UCB

RBMLE and UCB algorithms are both based on “optimism
under uncertainty”. UCB can be regarded as Primal problem,
while RBMLE can be regarded as a Lagrangian with a very
specific choice of Lagrange multiplier. The UCB algorithm

chooses MU CP as the solution of the following optimization
problem:

max J*(M)

MeM

such that: V3(M) < Cy(9). (7)
On the other hand, the RBMLE algorithm can be written as:

1
(M) — —=Vi(M)}.
max {J*(M) a(t)Vt( )} (8)

If one takes (7) as the Primal optimization problem, then (8)
is simply the Lagrangian of (7),
*
max {J*(M) = AVy(M)},

where RBMLE specifically chooses A = ﬁ as its Lagrange
multiplier. However, UCB chooses a different Lagrange mul-
tiplier corresponding to whatever is the optimal solution for
the Dual of (7).

To compare the Lagrange multipliers chosen by UCB and
RBMLE, one can compare their degrees of optimism. Fig.
10 plots their estimation errors. RBMLE’s estimation error
is smaller than that of UCB. While the UCB solution lies on
the boundary of the confidence ellipsoid, the RBMLE solution
typically lies strictly in the interior of the confidence ellipsoid,
much closer to the true model. Thus, while UCB chooses
the most optimistic model within the confidence ellipsoid, the
degree of optimism in RBMLE is controlled by the bias-term
a(t), and it chooses a lesser degree of optimism by choosing a
larger Lagrange multiplier. Since RBMLE provides a superior

performance this suggests that perhaps the optimism of UCB
needs to be reduced to obtain better performance.
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Fig. 10. ||My — M*||2 for RBMLE and UCB (OFULQ) for a linear system.

B. Computational Complexity

The RBMLE algorithm can be reduced to a simple index
based policy in the special cases of stochastic multi-armed
bandits and the contextual bandits. However due to the non-
convex nature of the average reward function in the cases
of MDPs and LQG, an efficient computational procedure for
RBMLE remains elusive.

C. Other Reinforcement Learning Settings

The Reward Biased approach is a general model-based RL
approach. Similar to the Upper Confidence Bound approach
that has been widely adopted in a variety of RL settings,
RBMLE can also be adapted to a wide-range of reinforce-
ment learning setups including Constrained MDPs [22], linear
MDPs [21], Lipschitz Bandits [47], etc.

The RBMLE has been exclusively studied in the long-term
average reward criteria until now. Analysis of RBMLE for
other popular reward scenarios such as discounted reward and
episodic rewards would be an interesting extension.

D. Instant Independent Regret Bounds

All the regret results presented in [14]-[16], [23] are instant-
dependant regret bounds. Since [9], there has been significant
interest in worst-case regret guarantees especially in MDPs
setups. The worst-case regret analysis of RBMLE is an open
problem.
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