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Category selectivity is a fundamental principle of organization of perceptual brain regions. Human occipitotemporal cortex is

subdivided into areas that respond preferentially to faces, bodies, artifacts, and scenes. However, observers need to combine

information about objects from different categories to form a coherent understanding of the world. How is this multicategory

information encoded in the brain? Studying the multivariate interactions between brain regions of male and female human

subjects with fMRI and artificial neural networks, we found that the angular gyrus shows joint statistical dependence with

multiple category-selective regions. Adjacent regions show effects for the combination of scenes and each other category, sug-

gesting that scenes provide a context to combine information about the world. Additional analyses revealed a cortical map of

areas that encode information across different subsets of categories, indicating that multicategory information is not encoded

in a single centralized location, but in multiple distinct brain regions.
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Significance Statement

Many cognitive tasks require combining information about entities from different categories. However, visual information

about different categorical objects is processed by separate, specialized brain regions. How is the joint representation from

multiple category-selective regions implemented in the brain? Using fMRI movie data and state-of-the-art multivariate statis-

tical dependence based on artificial neural networks, we identified the angular gyrus encoding responses across face-, body-,

artifact-, and scene-selective regions. Further, we showed a cortical map of areas that encode information across different sub-

sets of categories. These findings suggest that multicategory information is not encoded in a single centralized location, but at

multiple cortical sites which might contribute to distinct cognitive functions, offering insights to understand integration in a

variety of domains.

Introduction
A variety of cognitive tasks require integrating information about
entities from different categories. Mechanisms that integrate in-
formation about people and artifacts are already at work in early
stages of development: infants are more willing to help individu-
als who intended to give them a desirable toy over those who did
not (Dunfield and Kuhlmeier, 2010), and children observing
repeated interactions between a person and an inanimate object

infer that the person has feelings of ownership toward that object
(Cleroux and Friedman, 2020). In apparent contrast with these
observations, visual information about animate and inanimate
entities is processed by separate, specialized brain regions (Hecaen
and Angelergues, 1962; Sergent et al., 1992; Kanwisher et al., 1997;
Epstein and Kanwisher, 1998; Downing et al., 2001; Martin and
Chao, 2001): using fMRI, researchers have identified regions
responding selectively to faces (Puce et al., 1996; Kanwisher et
al., 1997; Gauthier et al., 2000); bodies (Downing et al., 2001;
Beauchamp et al., 2003; Schwarzlose et al., 2005); artifacts
(Chao et al., 1999; Mahon et al., 2007); and scenes (Epstein
and Kanwisher, 1998; Epstein and Baker, 2019).

Investigating the computations through which representa-
tions from different category-selective regions are integrated is
challenging. Key aspects of these computations might occur at
temporal and spatial scales that are beyond the resolution of
noninvasive neuroimaging. However, if a brain region integrates
information across multiple categories, its responses should be
better predicted by the responses across multiple brain regions
selective for distinct object categories, than by responses in
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regions that are all selective for a same category. We refer to this
difference in prediction accuracy as “multicategory dependence”
(MCD). Identifying regions that show MCD could serve as a
stepping stone to understand integration.

Different hypotheses make distinct predictions about which
brain regions might show MCD. According to the “Hub and
Spokes” hypothesis (Patterson et al., 2007, 2016; Lambon Ralph
et al., 2017), MCD should be observed in the anterior temporal
lobe (ATL): a putative semantic hub integrating information in
all modalities, for all semantic categories (Patterson et al., 2007).
In support of this view, patients with semantic dementia, associ-
ated with neurodegeneration that affects the ATL, can present
with deficits affecting multiple object categories (Hodges et al.,
1992). Furthermore, transcranial magnetic stimulation to the
ATL has been reported to delay the naming of both living and
nonlinving objects (Pobric et al., 2010).

Other studies suggest additional regions that might show
MCD. Price et al. (2016) found that transcranial direct current
stimulation to the angular gyrus (AG) leads to faster comprehen-
sion of semantically meaningful word combinations (“tiny rad-
ish”), but not of meaningless combinations (“fast blueberry”),
and proposed that this region might be involved in semantic inte-
gration. If indeed AG is broadly involved in semantic integration,
we might expect its responses to showMCD as well. More recently,
a study found stronger responses in the precuneus to sentences
including words from multiple categories than to sentences includ-
ing only words form a single category (Rabini et al., 2021).

These results are not necessarily in conflict. Several proc-
esses need to combine representations across different object
categories, such as the acquisition of semantic knowledge,
the retrieval of episodic memory, social cognition, and deci-
sion-making. Therefore, MCD might be observed in multiple
regions, each specialized for a different task. In addition, dis-
tinct areas might show MCD for lexical stimuli and for visual
stimuli.

While most previous studies focused on lexical stimuli, in this
study, we investigated MCD while participants watched quasi-
naturalistic videos (Hanke et al., 2016). We used multivariate
pattern dependence (MVPD) (Anzellotti et al., 2017b; Anzellotti
and Coutanche, 2018) based on artificial neural networks (Fang
et al., 2022) to identify brain areas in which responses are better
predicted by the multivariate response patterns across multiple
regions that respond preferentially to different categories,
than by the response patterns in regions that are all selective
for a same category. In convergence with prior work using
lexical stimuli (Price et al., 2016), we found evidence for
MCD in the AG. Additional tests revealed a cortical map of
areas showing MCD for different subsets of categories: MCD
does not occur at a single centralized location, but at multi-
ple distinct sites.

Materials and Methods
Data. The BOLD fMRI responses (3� 3 � 3 mm) to the movie

Forrest Gump were obtained from the publicly available studyforrest
dataset (http://studyforrest.org). Fifteen right-handed participants took
part in the study (6 females; age range 21-39 years, mean 29.4 years). The
data (acquired with a T2*-weighted EPI sequence) were collected on a
whole-body 3 Tesla Philips Achieva dStream MRI scanner equipped
with a 32 channel head coil. In addition to the fMRI responses to the
movie, the dataset includes an independent functional localizer that was
used to identify higher visual areas, such as the fusiform face area (FFA),
the extrastriate body area (EBA), and the parahippocampal place area
(PPA) (for more details, see Hanke et al., 2016).

During the category localizer, participants were shown 24 unique
grayscale images from each of six stimulus categories: human faces,
human bodies without heads, small artifacts, houses, outdoor scenes,
and phase scrambled images. They were presented with four block-
design runs and a one-back matching task. Then, to collect fMRI
responses to the movie, the movie stimulus Forrest Gump was cut
into eight segments, ;15min long each. All eight movie segments
were presented individually to participants in chronological order in
8 separate functional runs.

Preprocessing. Data were first preprocessed using fMRIPrep (https://
fmriprep.readthedocs.io/en/latest/index.html), which is a robust and
convenient pipeline for preprocessing of diverse fMRI data. Anatomical
images were skull-stripped with ANTs (http://stnava.github.io/ANTs/),
and FSL FAST was used for tissue segmentation. Functional images were
corrected for head movement with FSL MCFLIRT (https://fsl.fmrib.ox.
ac.uk/fsl/fslwiki/MCFLIRT), and were subsequently coregistered to their
anatomic scan with FSL FLIRT. The raw data of 1 participant could not
pass the fMRIPrep processing pipeline. For the remaining 14 subjects,
we denoised the data with CompCor (Behzadi et al., 2007) using 5 prin-
cipal components extracted from the union of CSF and white matter.

ROI definition. Four sets of category-selective brain regions were
identified using the first block-design run in the category localizer ses-
sion (Fig. 1a): face-selective regions (occipital face area [OFA], FFA, and
face-selective posterior superior temporal sulcus [face STS]), body-selec-
tive regions (EBA, fusiform body area [FBA], and body-selective poste-
rior STS [body STS]), artifact-selective regions (medial fusiform gyrus
[mFus] and middle temporal gyrus [MTG]), and scene-selective regions
(transverse occipital sulcus [TOS], PPA, and retrosplenial cortex [RSC]).
Data were modeled with a standard GLM using FSL FEAT (Woolrich et
al., 2001), and each seed ROI was defined as a 9 mm radius sphere
centered in the peak for its corresponding contrast (i.e., face-selective
contrast): faces . bodies, artifacts, scenes, and scrambled images; body-
selective contrast: bodies . faces, artifacts, scenes, and scrambled images;
artifact-selective contrast: artifacts . faces, bodies, scenes, and scrambled
images; scene-selective contrast: scenes . faces, bodies, artifacts, and
scrambled images). The house condition from the category localizer
was not used for consistency with the other analyses because it was
not one of the categories tested in our main analyses. We combined
data from both left and right hemisphere for each ROI and then
selected the 80 voxels which showed the highest Z value for the contrast
between the preferred category and other categories. Finally, the face-,
body-, scene-selective regions were identified with 240 voxels each, and
the artifact-selective regions consist of 160 voxels.

Additionally, we created a group-average gray matter mask using the
gray matter probability maps generated during preprocessing, with a
total of 53,539 voxels. This mask was used as the target of prediction
ROI in the MVPD analyses (see below).

MVPD network (MVPN). Most research on the interactions
between brain regions has focused on the mean responses across
voxels in different regions. However, fine-grained patterns of re-
sponse encode important information that could be lost by spatial-
averaging. Over the past two decades, multivariate pattern analysis
(Haxby et al., 2001; Norman et al., 2006) of fMRI data has led to
progress in the investigation of neural coding at a level of specificity
that could not be achieved with univariate analyses (Kriegeskorte et
al., 2007; Soon et al., 2008; Nestor et al., 2011; Koster-Hale et al.,
2013; Anzellotti et al., 2014). Despite this, relatively few attempts
have been made to leverage the potential of multivariate analyses to
study brain connectivity (for a recent review, see Anzellotti and
Coutanche, 2018). A recent study (Anzellotti et al., 2017b) has
developed a technique that investigates the interactions between
brain regions in terms of the multivariate relationship between their
response patterns (MVPD). MVPD has been shown to offer greater
sensitivity than univariate connectivity methods (Anzellotti et al.,
2017b), and uses independent training and testing data, thus offer-
ing improved robustness to noise.

The original MVPD formulation (Anzellotti et al., 2017b) used prin-
cipal component analysis to reduce the dimensionality of fMRI response
patterns, and subsequently used linear regression as a model of the
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statistical dependence between brain regions. A more recent version of
MVPD used simple artificial neural networks (Anzellotti et al., 2017a)
but was limited to a small number of nodes in the hidden layer, and still
relied on principal component analysis for dimensionality reduction.
Artificial neural networks can themselves perform dimensionality reduc-
tion if needed (Fyfe, 1997). In addition, using state-of-the-art software
packages for artificial neural networks paves the way for the training of
more complex network architectures thanks to the use of general pur-
pose graphic processing units.

To take advantage of these benefits, in this work we extended MVPD
to larger artificial neural networks (MVPN), and we implemented it in
PyTorch to train the networks on four Tesla V100 graphic processing
units. The networks received as inputs multivariate patterns of response
in one or more sets of category-selective regions, and were trained to
predict the patterns of response in the whole brain.

More formally, let us consider an fMRI scan with m experimental
runs. We denote the multivariate time courses in the predictor region by
X1; :::;Xm. Each matrix Xi is of size nX � Ti, where nX is the number of
voxels in the predictor region, and Ti is the number of time points in the
experimental run i. Analogously, Y1; :::;Ym denote the multivariate time
courses in the region that is the target of prediction, where each matrix
Yi is of size nY � Ti, and nY is the number of voxels in the target region.

MVPN was trained with a leave-one-run-out procedure to learn a
function f such that

Ytrain ¼ f ðXtrainÞ1Etrain;

where Xtrain and Ytrain denote data in the predictor region and data
in the target region, respectively, during the training runs. Etrain is
the error term. Specifically, for each choice of an experimental run i,
data in the remaining runs were concatenated as the training set as
follows

Dni ¼ fðX1;Y1Þ; :::; ðXi�1;Yi�1Þ; ðXi11;Yi11Þ; :::; ðXm;YmÞg;

while dataDi ¼ fðXi;YiÞg in the left-out run i were used as a testing set.
As a measurement of the multivariate statistical dependence, we cal-

culated the proportion of variance explained between the predictor
region and every other voxel in a group-level gray matter mask created
from the gray matter probability maps generated during preprocessing.
For each voxel j in the target region, variance explained in run i was cal-
culated as follows:

varExpliðjÞ ¼ max 0; 1�
varðYiðjÞ � fjðXiÞÞ

varðYiðjÞÞ

( )

;

where Xi is the time course in the predictor region for run i, and fjðXiÞ is
the prediction by MVPN for voxel j. The values varExpliðjÞ obtained for

the different runs i ¼ 1; :::;m were averaged, yielding varExplðjÞ.
Exploring MCD sites. To identify brain regions with MCD, we used

the 8 experimental runs during which participants watched the movie

Forrest Gump. The runs were used as separate folds for cross validation.

In a first analysis, we used MVPN to calculate the variance explained in

each gray matter voxel using each of the four category-selective regions

(face, body, artifact, and scene) individually. In a second analysis, we

combined all category-selective regions jointly as inputs of MVPN to

predict the fMRI responses of each voxel in the gray matter mask.
If a target region only encodes information from one category of

objects, using the responses from regions selective for multiple categories
as predictors should not improve over using only the responses in the
regions from the one category yielding the best predictions. Instead, if
the responses in a target brain region are predicted significantly better
by a model including all category-selective regions combined, than by
the best of the category-selective regions in isolation, we can conclude
that multiple category-selective regions have unique contributions to the
overall statistical dependence with that target region. We refer to this
approach as the “combined-minus-max” approach.

To make things more precise, for each voxel j, we can denote with
varExplall(j) the variance explained by MVPN using as input the responses
in all category-selective regions (Fig. 1b), and with varExplmax(j) the var-
iance explained by MVPN using as input the responses in regions corre-
sponding to the single best-predicting category. We then calculated for
each voxel the difference as follows:

DvarExplðjÞ ¼ varExplallðjÞ � varExplmaxðjÞ;

and used it as a metric to evaluate whether a voxel exhibits MCD by
jointly encoding information across multiple regions selective for differ-
ent categories. For each subject, we calculated the difference D varExpl
for each voxel in the gray matter mask, and we computed statistical sig-
nificance across participants with statistical nonparametric mapping
using the SnPM extension for SPM (http://warwick.ac.uk/snpm), obtain-
ing pseudo-t statistics. Regions consisting of voxels with statistically sig-
nificant pseudo-t values were defined as candidate MCD sites.

Figure 1. a, Category-selective ROIs of one example participant shown on an inflated cortical surface. Red represents face-selective regions (OFA, FFA, and face STS). Blue represents body-

selective regions (EBA, FBA, and body STS). Yellow represents artifact-selective regions (mFus and MTG). Green represents scene-selective regions (TOS, PPA, and RSC). b, Illustration of an artifi-

cial neural network using the response patterns from all category-selective regions combined as input to predict neural activities across the whole brain. The hidden layer is displayed with five

nodes for visualization purposes, whereas the networks used for the analyses in this article have hidden layers with 100 nodes.
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Using the combined-minus-max approach alone, however, we can-
not rule out the possibility that the better predictive accuracy of the com-
bined MVPN model in candidate MCD sites is simply because of the
increased number of voxels: control analyses are needed. To test whether
combined-minus-max effects are driven by differences in the number of
voxels, we further conducted two control analyses. In the first control
analysis (Control 1), we used voxels extracted from the primary visual
cortex (V1) as predictors. Specifically, we first identified the V1 region
using the calcarine cortex mask across both left and right hemispheres
from WFU_PickAtlas (https://www.nitrc.org/projects/wfu_pickatlas/).
Next, we randomly selected 880 nonoverlapping voxels from V1 and
randomly divided them into four nonoverlapping groups, such that
these groups have the same number of voxels as our four sets of cate-
gory-selective regions. We then used responses from these groups of
voxels in V1 to run a control analysis matched in the number of voxels
to the original combined-minus-max analysis. Specifically, we ran
MVPN analyses using as inputs the responses from each of the four V1
groups in isolation, and then using responses in all groups combined.
Next, we performed a combined-minus-max analysis and computed the
statistical significance of D varExpl across participants. If a region we
previously identified as an MCD site also shows statistical significance in
the control analysis, the observed results might be driven by the number
of voxels rather than by MCD, and therefore the region is removed from
the set of candidate MCD sites.

In the second control analysis (Control 2), we followed an analo-
gous procedure, except that voxels used as predictors were extracted
from face-selective regions instead of V1. Specifically, we defined
each face ROI (FFA, face STS, OFA) within an 18-mm-radius sphere
centered in the peak for the face contrast using the first localizer run.
For each subject, we combined data from the two hemispheres and
took the union of all three face ROIs. Next, to include only voxels
with preferential responses to faces, we excluded voxels from the
union where the Z value for the face contrast is not the highest com-
pared with the ones for all other three contrasts (i.e., body, artifact,
scene). We then selected the 880 voxels that yielded the highest Z
value, and randomly divided them into four nonoverlapping groups
in which the number of voxels matches that in the original four sets
of category-selective regions. We then used responses from these
groups of voxels as predictors in the second control analysis, follow-
ing the same procedure used for the original data and for the first
control analysis.

It is important to note that there is some overlap between adjacent
category-selective ROIs (e.g., face-selective FFA and body-selective
FBA); indeed, this overlap has been reported in several previous studies
(Schwarzlose et al., 2005; Peelen et al., 2006). However, the overlap
actually makes our analysis more stringent when seeking for MCD sites.
Suppose that one voxel in the face-selective ROI overlaps with the body-
selective ROI and encodes information about both face and body. When
face is selected as the best-predicting category, the “max model” using
face-selective ROIs as single predictors is more powerful than it is sup-
posed to be since it also carries some body information. As a conse-
quence, the difference D varExpl would be smaller, making regions
jointly encoding information about face and body fail to survive our
combined-minus-max analysis. The more voxels with overlapping cate-
gory selectivity, the harder it would be to find MCD sites. In contrast,
the nonoverlapping selection of the control V1 voxels makes it easier to
find regions showing combined-minus-max effects in the control analy-
sis, thus excluding voxels showing significant results in the control anal-
ysis further increases the rigor of our findings.

Neural network architectures. To make sure that the results do not
depend on choosing a very specific neural network architecture, we
trained MVPN using three different neural network architectures, and
identified regions that showed significant effects in the combined-
minus-max analysis in all architectures. All network architectures were
linear, because previous studies did not find an advantage for using non-
linear neural networks in MVPD (Poskanzer et al., 2021). All architec-
tures used 100 hidden nodes in each hidden layer. The first architecture
was a one-layer feedforward network. Since previous studies have shown
that deeper networks can approximate the same classes of functions as

shallower networks using fewer parameters (Mhaskar et al., 2017), we
then tested a second, deeper architecture: a five-layer feedforward net-
work. Finally, a challenge encountered in training deep neural networks
is the vanishing-gradient problem (Hochreiter, 1998): as the gradient of
the loss function is back-propagated across multiple layers, the weight
updates can become progressively smaller, affecting learning in early
layers of the network. For this reason, we also tested a 5-Layer DenseNet
(Huang et al., 2017). The DenseNet architecture includes connections
that bypass multiple layers, enabling more direct backpropagation of the
loss function to early layers.

All architectures were trained over 5000 epochs using stochastic gra-
dient descent on a mean squared error loss, with a learning rate of 0.001
and a momentum of 0.9. We used a batch size of 32, and batch normal-
ization was applied to the inputs of each layer. The original code imple-
mented in PyTorch is available at https://github.com/sccnlab/PyMVPD.
More details are provided in the PyMVPD toolbox (Fang et al., 2022).

Pairwise and three-way MCD analysis. Multicategory dependence
might not only occur across all four object categories. Instead, it is possi-
ble to find MCD effects in other brain areas when considering a pair or a
triplet of category-selective regions. To investigate MCD in more depth,
we implemented the combined-minus-max approach on different pairs
and triplets of categories, and conducted the following pairwise and
three-way MCD analysis.

In the pairwise MCD analysis, we used responses in each pair of
category-selective regions (face and body, face and artifact, face
and scene, body and artifact, body and scene, artifact and scene) as
MVPN inputs to calculate the variance explained in each gray mat-
ter voxel. We then calculated D varExplpair for each voxel by sub-
tracting the variance explained predicted by responses in one pair
of category-selective regions from the variance explained predicted
by responses in regions selective for the better-predicting category
within that pair. We used the average D varExplpair across different
runs as a metric to identify candidate brain areas that jointly
encode information from two category-selective regions in each
pair. A control analysis was then performed following the same
approach described previously (in the section, Exploring MCD
sites): we repeated the combined-minus-max analysis with ran-
domly selected subsets of V1 voxels to exclude regions that were
simply better predicted by the combined model because of the
greater number of voxels.

In the three-way MCD analysis, responses in each triplet of category-
selective regions (face and body and artifact, face and body and scene,
face and artifact and scene, body and artifact and scene) were used as
inputs to our MVPN model. The D varExpltriplet for each voxel was cal-
culated by subtracting the variance explained predicted by responses in
one triplet of category-selective regions from the variance explained pre-
dicted by responses in regions selective for the best-predicting category
within that triplet. We took the average D varExpltriplet across runs as a
metric to identify candidate areas that jointly encode information from
three category-selective regions in each triplet. Finally, a control analysis
was performed (following the approach described above) to rule out
voxel-driven regions that did not contribute to the three-way MCD.

Representational similarity analysis. We used representational simi-
larity analysis (Kriegeskorte et al., 2008b; Diedrichsen and Kriegeskorte,
2017) to study the representational geometry of MCD sites and to inves-
tigate how they differ from the representational geometry in category-
selective regions. Representational similarity analysis is a multivariate
method that calculates the pairwise dissimilarities between multivariate
activation patterns in a brain region, yielding a representational dissimi-
larity matrix (RDM). In this study, we used the correlation distance (one
minus the Pearson correlation) as dissimilarity metric. Before calculating
the correlation distance, for each subject the average response pattern
across all categories was subtracted from the data (Friston et al., 2019).

Since we used the first run of the category localizer to identify cate-
gory-selective ROIs, we used the remaining three runs of the localizer
for the following analyses. For the four sets of category-selective ROIs
(e.g., face ROIs) and each category-selective ROI separately (e.g., FFA),
response patterns in each of the regions in the set were concatenated,
yielding four RDMs for each of the 14 participants. For each of the
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candidate MCD sites, we first defined a 9 mm radius sphere (123 voxels)
centered in the peak of its SnPM t contrast map obtained from the com-
bined-minus-max analysis using the best-performing MVPNmodel (i.e.,
5-Layer Dense MVPN). Next, we selected 50 voxels with the highest
t values for each candidate MCD site and calculated the RDMs on the
new set of voxels. RDMs were then averaged across participants, and the
SEM was calculated as a measure of the intersubject variability of corre-
lation distance for each pair of stimuli. We used radar charts to visualize
the within-region and between-region differences in dissimilarity. Because
RDMs are symmetric about a diagonal of zeros, we only extracted the
upper (or equivalently the lower) triangle of the matrices for radar chart
visualization. We also performed a set of statistical analyses to quantita-
tively compare the RDM patterns between the MCD site and the category-
selective ROIs.

Results
Identification of MCD sites
To identify candidate sites that jointly encode information from
regions selective for different object categories, we calculated an
MCD index for each voxel in the brain (mathematical details are
reported in Materials and Methods). The index was computed as
the difference between the proportion of variance explained by a
model using all category-selective regions as predictors (henceforth
the “combined model”), and the proportion of variance explained
by a model using regions selective for the single best predicting cate-
gory as predictor (henceforth, the “max model,” Fig. 2a). To ensure
the robustness of the results across different neural network archi-
tectures, we computed this index using 1-Layer, 5-Layer, and
5-Layer Dense MVPN architectures. The results showed that the 5-
Layer Dense network outperformed the 1-Layer network and the
5-Layer network without dense connections in terms of the com-
bined variance explained in each candidateMCD site. For each neu-
ral network architecture, we used a group-level analysis to identify
voxels in which the MCD index was significantly.0 (p, 0.05 cor-
rected with SnPM). Then, we selected voxels where the MCD index
was significantly.0 for all three network architectures as candidate
sites for MCD.

The nature of this analysis is such that the number of voxels
used as predictors in the combined model is greater than the
number of voxels used as predictors in the max models.
Therefore, we performed two control analyses using the best-pre-
dicting 5-Layer Dense MVPN model to rule out the possibility

that positive values of the MCD index might be driven by differ-
ences in the number of input voxels. In the control analyses, we
repeated the same procedure we used to identify candidate sites for
MCD, but we replaced the category-selective regions with control
subregions consisting of voxels randomly sampled from primary
visual cortex (V1) in Control 1 and from face-selective regions in
Control 2. Importantly, the control subregions were matched in
number of voxels to the category-selective regions. To make the
control more stringent, we adopted a less conservative threshold for
the MCD index. Specifically, we identified voxels whose pseudo-t
values (computed with a nonparametric test using SnPM) in the
control analyses were significantly .0 without applying multiple
comparison correction (pseudo-t(13)=1.77, p, 0.05, one-sided);
any MCD effects in these voxels were discarded as possible artifacts
of the number of voxels.

In a region within left AG (Fig. 2b, peak MNI coordinates:�57,
�69, 21), the MCD index was significantly .0 for all neural net-
work architectures tested (lowest pseudo-t(13)=5.20, p, 0.05). At
the same time, this region did not show significant effects in the
control (indeed, in this region all pseudo-t values in Control 1 anal-
ysis were negative: highest pseudo-t(13) = �1.27; and all pseudo-t
values in Control 2 are below the significance threshold: highest
pseudo-t(13)=0.07; for a complete report of the pseudo-t values for
all voxels in two control analyses, see Table 1). The location of this
region within AG was confirmed with Neurosynth (Yarkoni et al.,
2011). The AG has been previously found to integrate information
across multiple sensory modalities (Bonnici et al., 2016). Our results
indicate that it also jointly encodes information across multiple
object categories. Three other regions (two in the vermis, one in
occipital gyrus) showed significant effects in the MCD analysis, but
also in the Control 1 or Control 2 analysis; thus, they were removed
from subsequent analyses (for details, see Table 1).

Representational geometry of the MCD site: AG
Having identified an MCD site in the left AG, we asked whether
this region inherits its representational similarity structure from
category-selective regions, showing more similar responses to
pairs of objects that are both animate or both inanimate. To
address this question, we used response patterns to different
object categories during the functional localizer to calculate

Figure 2. a, The MVPN combined-minus-max approach to detect MCD sites jointly encoding information from multiple category-selective regions. b, Statistical t maps of the 5-Layer Dense

MVPN model computed from D varExpl across subjects. D varExpl is the voxelwise difference between the variance explained predicted by the combined model using the response patterns

from all category-selective regions as input, and the variance explained predicted by the model using the response patterns from regions selective for the single best-predicting category as

input. The SnPM threshold corrected at p, 0.05 FWE is 5.11. t maps are thresholded within the range [2, 6] for visualization purposes. Aqua represents the identified MCD site within left AG.
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RDMs (Kriegeskorte et al., 2008b) for the MCD site and for
each set of category-selective regions (Fig. 3).

First, we replicated the finding that representations in inferior
temporal cortex are organized by animacy (Kriegeskorte et al.,

2008a; Bracci et al., 2019). We found that in face-, body-, and ar-
tifact-selective ROIs, object pairs that were both animate (faces
and bodies) or both inanimate (artifacts and scenes) elicited
more similar responses than object pairs with different animacy

Table 1. Candidate MCD sites that jointly encode information across all four category-selective ROIsa

Candidate MCD sites MNI coordinates 5-Layer Dense (t) 1-Layer (t) 5-Layer (t) Control 1 (t) Control 2 (t) No. of voxels in each site

AG (�57, �69, 21) 5.72 7.51 6.57 �1.27 �0.20 8

(�57, �69, 24) 5.20 7.30 6.81 �1.81 0.02

(�57, �66, 18) 5.28 6.07 5.25 �1.69 �0.43

(�57, �66, 21) 5.53 7.16 6.09 �2.86 �0.59

(�54, �72, 21) 5.58 7.69 6.48 �1.62 0.07

(�54, �69, 21) 5.61 8.03 7.31 �2.54 �0.38

(�54, �69, 24) 5.30 8.24 8.06 �2.79 �0.04

(�54, �66, 24) 5.16 7.81 7.17 �3.68 0.05

Vermis 1 (�3, �75, �9) 5.37 7.98 7.98 5.59 2.98 7

(�3, �72, �12) 5.41 7.43 6.36 3.67 2.95

(�3, �72, �5) 5.85 8.07 7.75 5.97 2.32

(�3, �69, �5) 5.40 7.89 6.59 5.40 2.02

(0, �75, �12) 5.26 7.85 7.30 5.11 3.81

(0, �75, �9) 5.52 8.18 8.19 5.76 3.23

(0, �72, �12) 5.72 7.90 6.64 3.86 3.28

Vermis 2 (3, �72, �5) 5.11 7.17 6.15 5.11 1.08 1

Occipital gyrus (24, �102, 8) 5.26 6.14 5.35 3.83 1.97 4

(24, �99, 8) 5.47 7.46 6.64 3.75 1.20

(24, �99, 11) 5.52 6.89 6.33 3.90 1.38

(27, �99, 8) 5.62 6.85 6.05 3.49 1.87
aWe selected candidate MCD sites from brain regions with significant t values (p, 0.05, FWE-corrected) computed from the combine-minus-max analysis across all three network architectures: 1-Layer MVPN, 5-Layer MVPN,

and 5-Layer Dense MVPN. The location of each site is expressed in MNI coordinates. For each voxel in the candidate MCD sites, we also computed the corresponding t value in two control analyses using the best-performing

5-Layer Dense MVPN. Control 1 used voxels sampled from V1 as predictors, and Control 2 used voxels sampled from face-selective regions as predictors.

Figure 3. Using RDMs and radar charts to discriminate between MCD site and category-selective ROIs. a, RDMs (top) and radar charts (bottom) for average brain activities across subjects in

the MCD site: the left AG. b, RDMs (top) and radar charts (bottom) for average brain activities across subjects in four category-selective ROIs: face-selective ROIs, body-selective ROIs, artifact-

selective ROIs, and scene-selective ROIs. c–f, RDMs for average brain activities across subjects in three face-selective ROIs: FFA, face STS, and OFA; in three body-selective ROIs: FBA, body STS,

and EBA; in two artifact-selective ROIs: mFus and MTG; and in three scene-selective ROIs: PPA, RSC, and TOS. In each radar chart, the middle boundary represents the average representational

dissimilarity across subjects, the inner boundary represents the average representational dissimilarity minus the SEM, and the outer boundary represents the average representational dissimilar-

ity plus SEM.
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(faces and scenes, faces and artifacts, or
bodies and scenes) (Fig. 3b). This similar-
ity structure leads to asymmetrical radar
charts for the category-selective ROIs (Fig.
3b). In scene-selective ROIs, response pat-
terns to scenes showed high dissimilarity
from the responses to all other object cate-
gories, while the dissimilarty between pairs
of nonscene categories was low (Fig. 3b).
However, these effects were not observed
in the left AG MCD site (Fig. 3a). By
contrast, in the MCD site, all pairs of
categories showed comparable dissimi-
larity (Fig. 3a).

Next, we performed a Region �
Category-pair ANOVA to analyze how
different regions and category pairs influ-
ence the RDM patterns. Specifically, we
created a representational dissimilarity
vector (RDV) by extracting values of the
upper triangle of each RDM and per-
formed the two-way ANOVA between
RDVs in different regions. The results
revealed that there was a statistically sig-
nificant interaction between the effects
of Region and Category-pair (F(20,390)=
12.11, p= 3.32e-30, 0.05). Simple main
effects analysis showed that Category-
pair had a statistically significant effect on RDVs (F(5,390)=51.93,
p=3.24e-42, 0.05), whereas the effect of Region did not show
statistical significance (F(4,390)=1.28, p=0.27).

To further quantify the dissimilarity patterns for differ-
ent category-pairs in the AG MCD site and the four cate-
gory-selective regions, we conducted a one-way ANOVA on
the RDVs for each region across all subjects. The results
showed that there is no significant difference in the RDV val-
ues within the AG MCD site (F(5,78) = 1.47, p = 0.21. 0.05),
but significant differences across RDV values in all category-
selective regions (face ROIs: F(5,78) = 27.55, p = 5.86e-16,
0.05; body ROIs: F(5,78)=19.78, p=1.12e-12, 0.05; artifact ROIs:
F(5,78)=12.17, p = 1.00e-08, 0.05; scene ROIs: F(5,78) = 63.47,
p = 4.50e-26, 0.05). The post hoc one-sided t tests with
Bonferroni correction for multiple comparisons further showed
that, in all four category-selective regions, body-scene pair is
significantly more dissimilar than body-artifact pair (face
ROIs: p = 0.027; body ROIs: p = 0.000; artifact ROIs: p =
0.000; scene ROIs: p = 1.887e-13) and face-body pair (face
ROIs: p=0.000; body ROIs: p=1.692e-07; artifact ROIs: p=
3.534e-06; scene ROIs: p=2.834e-10). We then performed a one-
sided t test to compare the SD of RDV values in the AGMCD site
to the average SD of RDV values in four category-selective regions.
The results showed that the AG MCD site has a significantly
lower SD of RDV values (t(13) = �1.89, p= 0.03, 0.05), which
demonstrates that the more symmetrical radar chart we
observed in Figure 3a for the AG MCD site is significantly
different from those observed for the category-selective
regions.

In addition, we calculated RDMs for each category-selective
region separately and plotted radar charts using the upper trian-
gle of the matrices. Similarly, the asymmetrical radar charts still
show the animate-inanimate distinction in each of the regions
selective for faces, bodies, and artifacts (Fig. 3c–e). In each of the
scene-selective regions, response patterns between nonscene

category pairs are more similar than those between pairs
including the scene category (Fig. 3f). We then compared the
RDMs from each category-selective region to the RDMs in the
AG MCD site for each subject using Kendall’s tau correlation
between the matrices upper triangle (because they are symmet-
rical). The results showed that RDMs of all category-selective
regions are weakly positively correlated with that of the AG
MCD site, except for FBA and body STS. Among these category-
selective regions, MTG and TOS have the highest Kendall’s tau
values with AG, indicating that their representational geometry
is most similar to the representational geometry in AG.

Pairwise and three-way MCD
Combining information about faces and bodies could facili-
tate the recognition of individuals and their actions, while
combining information about artifacts and scenes could help
to search for objects in their habitual contexts. Several dis-
tinct cortical sites might encode information about multiple
object categories jointly, in the service of distinct cognitive
functions. Can we identify brain regions that show MCD for
specific subsets of categories? To address this question sys-
tematically, we calculated the MCD index for all pairs and
triplets of categories. The resulting SnPM pseudo-t contrast
maps were thresholded at p, 0.05 (FWE-corrected). For
each pair and triplet of categories, we also ran control analy-
ses using subregions of V1 matched in terms of the number
of voxels, following the same procedure we used in the analy-
sis with all four categories (for details, see Materials and
Methods).

We plotted the outlines of sites showing significant MCD of
pairs of categories on an inflated cortical surface (Fig. 4). This
analysis revealed that the left AG MCD site identified in the first
portion of this study is surrounded by a cortical map of regions
showing significant pairwise MCD for different pairs of catego-
ries. This cortical map includes regions showing MCD effects
between scenes and each of the other three categories separately,

Figure 4. Cortical map of pairwise MCD. The outlines of brain areas with significant pairwise MCD effects (p, 0.05, FWE-

corrected) but not in the control analysis (p, 0.05, uncorrected) are colored in red (face & body), blue (face & artifact), green

(face & scene), yellow (body & scene), lime (body & artifact), and purple (artifact & scene). Aqua represents the left AG MCD

site identified across all four categories. The four orange boxes on the top panel represent the enlarged patterns of pairwise

MCD in the dorsal ATL, AG, left MTG, and the ventral occipitotemporal cortex. In the main figure, the AG MCD site is set as the

foreground, covering other regions with pairwise MCD effects. In orange box b, the AG MCD site is set as the background so as

to show the overlaps between the different pairwise MCD sites. a–d, close-up views of selected regions.
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suggesting that scenes might provide a context to combine infor-
mation about the world (Fig. 4; face and scene, in green; body
and scene, in yellow; artifact and scene, in purple).

In addition to this cortical map of MCD in the left AG, the
analysis revealed other cortical areas displaying evidence for
MCD between pairs of categories (a magnified view of these
areas is shown in Fig. 4, top). First, a region in dorsal ATL
showed evidence of overlapping face-body, face-scene, and
body-scene MCD (shown in Fig. 4, leftmost magnification box).
Second, pairwise MCD effects were observed in the left MTG
(shown in Fig. 4, third magnification box from the left). Last,
pairwise MCD effects of responses selective for faces and bodies,
faces and artifacts, faces and scenes, and bodies and scenes were
observed in a portion of the ventral occipitotemporal cortex
(shown in Fig. 4, fourth magnification box from the left).
Overlap between face-body and face-scene MCD effects was
observed in the precuneus (Fig. 4). Overall, MCD effects showed
a substantial degree of bilateral symmetry.

Consistent with the overlap in pairwise MCD results, we also
found significant three-way MCD effects in ATL, MTG, and ven-
tral occipitotemporal cortex (Fig. 5a). To quantify the contribu-
tion of different categories to predicting responses in these
regions, we computed the variance explained by the best-predict-
ing 5-Layer Dense MVPN model using all combinations of indi-
vidual, pairwise, and three-way sets of categories (Fig. 5b–f).
While in three-way MCD sites the combination of three catego-
ries better predicts fMRI responses than the best single category
among those three, it is still possible that the other category out-
side the triplet can predict the responses better than the three
categories in the triplet combined. We marked regions show-
ing such “triplet subordinate” phenomenon with asterisks,
including region FAS (Fig. 5b), ABF (Fig. 5c), and FBS 3 (Fig.
5f). Compared with other “triplet dominant” regions (FBS 1
and FBS 2 in Fig. 5d,e), these triplet subordinate regions

achieved higher variance explained on average across subjects
by response patterns from the fourth left-out category (the
“dominant category”) than by any individual category within
the triplet or their combinations. One possible interpretation
for this unintuitive finding is that such regions might predom-
inantly represent one specific category, but might also repre-
sent associated information from the subordinate categories.
To illustrate this idea more clearly, imagine seeing young
students and teachers (faces and bodies), blackboards, and
textbooks (artifacts): you could infer that this is probably a
classroom. The ABF “triplet subordinate” region might pre-
dominantly represent scenes, but might also encode informa-
tion about objects from multiple nonscene categories that
are typically associated with those scenes. In sum, the pair-
wise and three-way analyses show that, in addition to the
MCD site in AG, partial MCD effects can be observed at mul-
tiple other sites, including ATL and MTG.

Discussion
This study aimed to identify cortical sites that jointly encode
responses across multiple category-selective brain regions. Using
multivariate analyses of the interactions between brain regions,
we identified an MCD site in the left AG, surrounded by a corti-
cal map of regions showing pairwise and three-way MCD effects.
Combining information from multiple object categories is
needed for a variety of cognitive functions: what might be the
functional role of the multicategory representations we identified
in AG? The AG is a multimodal integration area (Bonnici et al.,
2016) that has been implicated in a variety of cognitive proc-
esses. Specifically, the AG has been implicated in semantic
memory (Geschwind, 1972; Binder et al., 2009), episodic
memory (Wagner et al., 2005; Berryhill et al., 2007), and bot-
tom-up attention (Corbetta and Shulman, 2002). More

Figure 5. a, Cortical sites showing three-way MCD. b–f, Predictive accuracy across three-way MCD regions using response patterns from different sets of category-selective regions as inputs

(e.g., F, face-selective regions; FB, face- and body-selective regions; ABF, artifact-, body-, and face-selective regions) with the 5-Layer Dense MVPN model. Error bars indicate SEM. *Regions

showing the triplet subordinate phenomenon.
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recently, it has been proposed that AG might play a key role
for the representation of event semantics (Binder and Desai,
2011) and schemas (Wagner et al., 2015), and that it might
serve as a temporary buffer that integrates spatiotemporal in-
formation (Humphreys et al., 2021).

Previous studies reported evidence of a role of AG in combi-
natorial semantics, showing that AG responds more to meaning-
ful word combinations than to nonmeaningful ones, and that the
degree of atrophy in AG is inversely related to combinatorial per-
formance in patients with semantic dementia (Price et al., 2015).
In addition, transcranial direct current stimulation of the left AG
selectively affects the speed of comprehension of semantically
meaningful word combinations (Price et al., 2016). These obser-
vations are consistent with the sensitivity of AG to combinatorial
spatial and nonspatial patterns (Wagner et al., 2015). AG was
also found to respond differentially during the integration of
multiple cues when making judgments about ambiguous words
(Lanzoni et al., 2020), even when the cues were from different
categories (facial expressions and locations). Our results directly
demonstrate the statistical dependence of AG responses on
responses across regions selective for multiple different catego-
ries during the observation of complex, quasi-naturalistic videos
(Fig. 2b).

In addition, the results reveal a cortical map of regions in and
around AG whose responses depend on different pairs of cate-
gory-selective networks (Fig. 4). This cortical map is character-
ized by regions jointly encoding scene-selective responses with
responses selective for one other category (scenes and artifacts,
scenes and bodies, scenes and faces), suggesting that scenes
might provide a context to combine representations of objects
from multiple different categories into complex situations and
events. This proposal is consistent with the hypothesis that AG
might be involved in event representations (Binder and Desai,
2011); and that it might serve as a temporary buffer (Humphreys
et al., 2021), as the locations and interactions of multiple objects
and their functional significance within an event (i.e., whether
they play a causal role) can vary from situation to situation.

In addition to the AG, the ATL has been implicated in the
integration of information across multiple modalities and catego-
ries (Patterson et al., 2007). In addition, multivariate analyses of
fMRI data suggest that ATL represents conceptual knowledge
about objects (Peelen and Caramazza, 2012), and integrates mul-
tiple features of an object (Coutanche and Thompson-Schill,
2015). In the present study, we identified a region in dorsal ATL
showing pairwise MCD effects of faces and bodies, faces and
scenes, and bodies and scenes. However, we did not find signifi-
cant MCD effects in ATL in the analysis with all four categories.

In addition to AG and ATL, we observed MCD effects in
the left MTG between artifacts and scenes, artifacts and
bodies, and artifacts and faces. Unlike AG, this region did
not show MCD effects in the analysis with all four catego-
ries. Left MTG has been previously implicated in the repre-
sentation of artifacts (Beauchamp et al., 2003; Beauchamp
and Martin, 2007; Mahon et al., 2007). In addition, overlap
between responses to hands and tools has been reported in
the vicinity of this area (Bracci et al., 2012). The findings in
the present study suggest that left MTG might encode rep-
resentations not only of artifacts in isolation, but also of
their interactions with the human body, including the face
(i.e., flatware, glasses, hats). MCD between some pairs of
categories was also observed in a portion of ventral occipito-
temporal cortex (Fig. 4). This observation converges with recent
reports of a heteromodal semantic hub in the fusiform gyrus

(Forseth et al., 2018; Qin et al., 2021) to suggest that some
integration might already occur in posterior temporal cortex,
but additional studies are needed to clarify the functional
implications of this finding.

In addition to AG and ATL, another brain region often impli-
cated in semantic integration is the precuneus (Binder et al.,
2009). Indeed, a recent study used linguistic stimuli to study inte-
gration between words for objects from different categories, and
found that precuneus, but not AG, shows stronger responses to
sentences, including the names of entities from multiple different
categories than to sentences, including only entities from a same
category (Rabini et al., 2021). While in our study participants
watched complex, quesi-naturalistic stimuli (as opposed to proc-
essing sentences), our results are consistent with and comple-
mentary to the findings of Rabini et al. (2021). The hypothesis
that AG encodes complex spatiotemporal relations between enti-
ties predicts that it would integrate information across multiple
categories when entities from different categories are present
within a situation, but also when only entities from one category
are present. In the study by Rabini et al. (2021), both types of
sentences described events featuring spatiotemporal interactions
between multiple entities. Therefore, the hypothesized role of
AG would not predict a difference in the overall amount of
response between the two sentence types.

It is possible that precuneus might also contribute to multi-
category information representation. Indeed, we did find MCD
effects in the precuneus when using two of the three artificial
neural network architectures (i.e., the 1-Layer and the 5-Layer
network). However, the MCD effects were not observed when
using the 5-Layer Densely connected architecture. Additional
studies will be needed to test the robustness of MCD effects in
the precuneus during the perception of complex dynamic vid-
eos, and to rule out that these effects are specific to language
processing.

More work remains to be done to fully understand how
information from multiple category-selective brain regions is
encoded. In this study, we investigated MCD by searching
for MCD sites whose responses are better predicted by the
multivariate response patterns across multiple regions that
respond preferentially to different categories, than by the
response patterns in regions that are all selective for a same
category. We identified a cortical map of brain regions whose
responses are better predicted by the joint responses across
multiple category-selective regions. However, several ques-
tions remain open. Additional research will be needed to
investigate what kind of computations occurs within these
sites, and to determine whether they use information about
objects from different categories to compute representations
of their relationships and interactions. Furthermore, differ-
ent MCD sites might support distinct cognitive functions.
Finally, the methods used in this study are correlational:
future investigations could evaluate the causal relationship
between responses in category-selective regions and MCD
sites using techniques, such as combined transcranial mag-
netic stimulation-fMRI.

In conclusion, we identified a region in the left AG whose
responses are better predicted by the joint patterns of activity
across multiple category-selective networks. This region is sur-
rounded by a cortical map of areas showing MCD effects for spe-
cific pairs of object categories, including in particular pairwise
effects for scenes and every other category tested. In addition, we
found evidence for MCD between some subsets of categories in
the dorsal ATL and in left MTG. Together, these results show
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that multicategory information is not encoded in a single central-
ized site. Instead, MCD occurs in multiple cortical areas, which
might in turn support distinct cognitive functions.
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