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Abstract—The Reward Biased Maximum Likelihood Estimate
(RBMLE) method was proposed about four decades ago for the
adaptive control of unknown Markov Decision Processes, and
later studied for more general Controlled Markovian Systems and
Linear Quadratic Gaussian systems. It showed that if one could
bias the Maximum Likelihood Estimate in favor of parameters
with larger rewards then one could obtain long-term average
optimality. It provided a reason for preferring parameters with
larger rewards based on the fact that generally one can only
identify the behavior of a system under closed-loop, and therefore
any limiting parameter estimate has to necessarily have lower
reward than the true parameter. It thereby provided a reason
for what his now called “optimism in the face of uncertainty”.
It similarly preceded the definition of “regret”, and it is only
in the last three years that it has been analyzed for its regret
performance, both analytically, and in comparative simulation
testing. This paper provides an account of the RBMLE method
for reinforcement learning.

Index Terms—Reinforcement Learning, LQG Systems, MDPs,
Multi-armed bandits.

I. INTRODUCTION

The problem of controlling an unknown dynamical system
so as to maximize a reward criterion has been of much interest
in adaptive control and learning [1, 2, 3, 4, 5, 6, 7]. Consider
a stochastic dynamical system with state and controls at time
t denoted by xt ∈ X and ut ∈ U respectively, and with the
state evolution described by

xt+1 = fθ(xt, ut, wt+1)), t = 1, 2, . . . , (1)

where wt is independent and identically distributed (iid)
“noise” at time t, or by its conditional distributions

P(xt+1 ∈ B|{xs}ts=1, {us}ts=1) = Pθ(xt, ut, B), (2)

for all Borel sets B; see [8]. The system dynamics is param-
eterized by θ. The true value of the parameter, denoted by θ⋆

is not known to the system operator, who knows only that it
belongs to a compact set Θ. The operator would nevertheless
like to choose controls {ut} based on running observations
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of the state {xt} so as to maximize the expected long-term
average reward

lim inf
T→∞

1

T
E

T∑
t=1

r(xt, ut). (3)

If θ⋆ were known, then, under some conditions, one could
derive an optimal stationary control policy ϕ⋆

θ⋆ : X 7→ U [8].
Since however θ⋆ is not known, the controls {ut} have to
serve the following two purposes:

1) Performance optimization: Maximize rewards.
2) Exploring the system behaviour: Collect “enough” in-

formation about θ so that one could generate optimal
controls at future times.

The dual objectives listed above are typically conflicting, and
hence one needs to perform a trade-off between these two.

II. THE CERTAINTY EQUIVALENCE APPROACH

The classical approach to dealing with an unknown system
has been to make an estimate θ̂t of the unknown parameter
θ⋆ at each time t, based on the past observations of the state,
and then to apply a control input ut that would be optimal
if indeed θ̂t were the true parameter. This approach is called
“certainty equivalence” (CE), and is based on an approach of
separating the estimation and control tasks.

For simplicity of exposition, let us start with the con-
text of a Markov Decision Process (MDP), where the sets
X,U,Θ are all finite. The dynamics are described by con-
trolled transition probabilities, Pθ(i, u, j) = P(xt+1 =
j|xt = i, ut = u, θ is the true parameter). Given a trace
{x0, u0, x1, u1, . . . , xt}, let

ℓ(θ; t) :=

t∑
s=1

logPθ(xs−1, us−1, xs), (4)

denote the log-likelihood of the parameter θ based on the
information available at time t. The maximum likelihood
estimate (MLE) of the unknown system parameter, denoted
θ̂t satisfies

θ̂t ∈ argmax ℓ(θ; t). (5)

The CE approach applies the control ut = ϕ⋆
θ̂t
(xt) at time t.

It was shown in [9] that the MLE converges to the true
parameter θ⋆, and consequently CE yields the optimal average



reward, if the following distinguishability condition is satis-
fied: For any two parameters θ1, θ2 ∈ Θ, with θ1 ̸= θ2,

Pθ1(x, u, ·) ̸= Pθ2(x, u, ·). (6)

The condition (6) is however very restrictive; it is not even
satisfied in Multi-Armed Bandits (MAB) [10].

In general, [11] showed that the MLE converges to a
(random) value θ̂(∞) which only satisfies the property,

Pθ̂(∞)(x, ϕ
⋆
θ̂(∞)

(x), ·) = Pθ⋆(x, ϕ⋆
θ̂(∞)

(x), ·), (7)

called “closed-loop identification”. It says that under the
limiting controller ϕ⋆

θ̂(∞)
, the behaviour of the true system

with parameter θ⋆ is the same as the behavior of the system
with parameter θ̂(∞). It does not imply that ϕ⋆

θ̂(∞)
is optimal

for θ⋆. The inability to determine θ⋆ under an adaptive control
law is called the “closed-loop identifiability problem”.

III. THE REWARD-BIASED MLE METHOD FOR
LONG-TERM AVERAGE OPTIMALITY

The “Reward-Biased MLE” (RBMLE) method [12] was
designed to overcome the closed-loop identifiability problem
and converge to an optimal controller. The first observation
motivating its design was that the optimal reward for the
system described by θ̂(∞) is less than that for the true
parameter θ⋆. To see this, let J(ϕ, θ) denote the average reward
(3) when the stationary policy ϕ is applied to the system
θ, and let J⋆(θ) := supϕ J(ϕ, θ) = J(ϕ⋆

θ, θ) denote the
corresponding optimal average reward. It follows from (7) that

J(ϕ⋆
θ̂(∞)

, θ⋆) = J(ϕ⋆
θ̂(∞)

, θ̂(∞)) = J⋆(θ̂(∞)). (8)

Since ϕ⋆
θ̂(∞)

need not be optimal for θ⋆, we also have

J⋆(θ⋆) ≥ J(ϕ⋆
θ̂(∞)

, θ⋆). (9)

Upon combining these two inequalities, we infer

J⋆(θ⋆) ≥ J⋆(θ̂(∞)). (10)

Thus MLE converges to a parameter for which the optimal
reward is less than the true optimal average reward.

[12] therefore proposed adding a counter-bias, a term pro-
portional to J⋆(θ), to the log-likelihood, favoring parameters
with larger rewards. The resulting RBMLE is

θRB(t) ∈ argmax
θ∈Θ

α(t)g(J⋆(θ)) + ℓ(θ; t) (11)

where g is any strictly monotonic increasing positive func-
tion and α(t) is a weighting factor. RBMLE implements
ϕ⋆
θRB(t)(xt) at time t. [12] showed that if α(t) satisfies

lim
t→∞

α(t) = ∞ and lim
t→∞

α(t)
t = 0 then θRB(t) converges

in a Cesaro sense to θ⋆, and that the average reward obtained
is consequently equal to the optimal value J⋆(θ⋆).

RBMLE was extended to a variety of settings where the
long-term average optimality was established:

• Finite state, finite action MDPs where the transition
probabilities were not restricted to a finite set in [13].

• More general state spaces with finite parameter set [14].

• Linear, Quadratic, Gaussian (LQG) systems with a finite
parameter set in [14].

• Bernoulli bandit problems [15], where it results in an
index policy with an explicit simple index.

• Countable state space, with compact action and parameter
sets in [16].

• Controlled diffusions in [17] and [18].

IV. REGRET AND THE UPPER CONFIDENCE BOUND
METHOD

In [19], a more stringent criterion of “regret” was introduced
to assess the performance of a policy ϕ:

Rϕ(T ) := TJ⋆(θ⋆)− Eϕ,θ⋆

T∑
t=1

r(xt, ut). (12)

A long-term average optimal policy satisfies Rϕθ⋆
(T ) :=

o(T ). However, there could be several policies having a regret
of order o(T ), and it is of interest to determine the minimal
achievable regret, as well as an optimal policy.

The pioneering work of [19] resolved both these issues,
which we illustrate below in a simplified context of Bernoulli
bandits. Consider N Bernoulli bandits, with probabilities of
success θ1 > θ2 ≥ θ3 >≥ θ4 . . . ≥ θN . When Arm i is
played it yields a reward of 1 with probability θi, and 0 with
probability 1−θi. Clearly the best arm is Arm 1. In the absence
of knowing the best arm, [19] showed that for any policy ϕ,

lim inf
T→+∞

1

log T
Rϕ(T ) ≥

N∑
i=2

(θmax − θi)

KL(θmax, θi)
, (13)

where KL(p, q) is the Kullback-Leibler divergence.
Moreover, [19] also designed a policy that attained the

lower-bound (13). It consists of constructing a confidence
interval [0,UCBi(t)] for each θi at each time t, based on
the history of past plays. Then it plays that arm i for which
UCBi(t) is largest. The value of the probability associated
with the confidence intervals above is 1 − O(1/t). (Several
details are omitted and can be found in [19]). This policy is
now called an “Upper Confidence Bound” (UCB) policy.

The UCB approach has been used to design near regret-
optimal policies for several reinforcement learning problems,
including multi-armed bandits [20], contextual bandits where
there is a context vector determining a bandit’s success [21],
MDPs [22, 23], Bayesian Optimization [24], LQG systems
[25] and constrained MDPs [26, 27].

V. OPTIMISM IN THE FACE OF UNCERTAINTY

The UCB is described as “Optimism in the Face of Uncer-
tainty” (OFU), since it uses the largest of the plausible values
to chooses an arm to play [20, 21, 22, 23, 25].

The RBMLE approach provides a rationale for such opti-
mism. Specifically, any reasonable estimator should be able to
at least identify the closed-loop transition behavior, yielding
(7). This necessarily results in the chain of equalities (8) vis-
a-vis the average rewards. Moreover, by its very definition, the
Certainty Equivalence approach satisfies (9). As a consequence



one has a one-sided bias (10). This motivates the “optimistic”
approach to overcome this bias.

Indeed, the RBMLE approach could also be called op-
timistic in the face of uncertainty, except that it does so
differently from UCB by directly giving increased weight to
parameters with larger rewards in the estimation criterion.

VI. REGRET PERFORMANCE OF RBMLE

RBMLE was developed before the advent of regret in [19],
when the focus in control was on the long-term average
criterion. After the initial wave of activity, there was no
further work examining its performance with respect to the
subsequently defined criterion of regret. Since 2019 there has
been a resurgence of activity to theoretically establish its regret
performance, as well as its performance in simulation testing
against other extensively tested algorithms such as UCB.

Another contender that has also been well studied is the
Thompson Sampling approach. This was actually the very
first work on bandits [28], though that terminology was not
used. It predates even the work of Robbins [29], who was
apparently unaware of it. In the context of bandits, it adopted
a Bayesian approach with a prior probability distribution of
success probability of arms, that is updated to a posterior
distribution based on an arm’s history of failures and suc-
cesses. It advocated choosing an arm to play with a probability
equal to the posterior probability that it is the best arm. This
prescription has performed well in a variety of other contexts
[30, 31, 32, 33].

A. Multi-Armed Bandits

The first work in which the regret performance of RBMLE
was examined was [34], in the context of multi-armed bandits.
Suppose that there are N “arms” [35] and the agent has to
“pull” an arm at each time t. Upon pulling arm i, it receives
a random reward rt with distribution Di, and mean θi.

Because many real-world problems such as clinical trials,
website optimization, recommendation systems [21], resource
allocation in networks [36, 37], etc., can be posed as MABs,
this problem has been extensively studied [10, 35]. Since the
work [19], efforts have been directed towards deriving versions
of UCB such as UCBT [20] and KLUCB [38], with provable
finite time bounds of the order of O(log(T )). A method based
on Thompson Sampling [30] has also been shown to attain
O(log(T )) regret. A heuristic called “Information-Directed
Sampling” (IDS) [39] shows excellent empirical performance.

The regret of RBMLE algorithm when it is applied to MAB
was studied in [34]. It considered the case where the reward
distribution Di(θ) is a single parameter exponential family
of distributions. RBMLE can then be simplified to an index
policy, where each arm is characterized at each time by a
single number called its index, with the arm having the highest
index being chosen for playing, as shown in Table I1. It was

1Ni(t) := number of plays of arm i, pi(t) := empirical mean for arm i

at time t, p̃i(t) := min
{
pi(t) +

α(t)
Ni(t)

, 1
}

, and H is the binary Bernoulli
entropy.

Fig. 1. Bernoulli Bandits with T = 105 and Number of arms = 10.

Fig. 2. Average computation time per decision vs. averaged cumulative regret.

shown that the expected regret of RBMLE is upper bounded
by C log T , where C is a problem-dependant constant.

Distribution RBMLE Index
Bernoulli Ni(t) (H(pi(t))−H(p̃i(t)))

Gaussian pi(t) +
α(t)

2Ni(t)

Exponential Ni(t) log
Ni(t)pi(t)

Ni(t)pi(t)+α(t)
TABLE I

RBMLE INDEX FOR COMMON DISTRIBUTIONS

Also, the empirical performance of RBMLE was studied
against a number of leading contenders in [34]. As shown in
Figure 1, it is very competitive against existing state-of-the-art
algorithms. Another important consideration is the scalability
of an algorithm with respect to the number of arms, with
respect to computational complexity. Due to the simple form
of its index, RBMLE has low computational complexity as
shown in Figure 2, which gives it an advantage over IDS [39].



Fig. 3. Linear Contextual Bandits with time varying context vectors, K = 10
and T = 3× 104 (Cumulative regret averaged over 50 trials).

B. Contextual Bandits

In many practical scenarios, the rewards of various arms are
dependent upon each other. Thus, gaining information about
a single arm also helps the agent to infer something about a
subset of the remaining arms. At each time t an adversary
generates a “context vector” xt = {xt,i ∈ Rd : i ∈ [1,K]}.
There exists a unknown parameter θ⋆ at time t such that the
conditional mean reward given the past is θ⋆

T

xt+ηt, where ηt
is the noise in the reward observation at time t. The choice of
an optimal arm at t is given by a⋆t ∈ argmax θ⋆

T

xt,i. Since
θ⋆ is unknown, the goal is to decide which arm to play at
time t so as to minimize the expected psuedo-regret R(T ) =∑T

t=1 θ
⋆T

x⋆
t − θ⋆

T

xt, where x⋆
t = x

a⋆
t

t .
[40] used the RBMLE approach to solve the contextual

bandit problem. The resulting algorithm, dubbed LinRBMLE,
was shown to be an index-based policy that achieves a regret
of O(

√
T log T ). Notably, this regret compares well with

Thompson Sampling (LinTS) [? ], GPUCB with linear kernel
[41] and SupLinUCB [42].

In Figure 3 and 4, the performance of LinRBMLE as
compared with other popular algorithms in [40] is shown.
Similar to the case of stochastic MAB setup, LinRBMLE
involves a scalable and efficient computational procedure that
also yields a competitive empirical regret.

C. Discrete Markov Decision Processes

Consider an MDP with finite state space X and finite
action space U . In the general setting setting described in
Section I, the parameter θ is equal to p(·, ·, ·). It lies in
Θ = Simplex|U |(|X|), where Simplex(n) is the probability
simplex in n dimensions. This is called an undiscounted
reinforcement learning of a discrete MDP [7, 10].

UCB based algorithms such as UCRL [22] and UCRL2 [43]
have been shown to achieve O(log T ) regret, as have Thomp-
son Sampling methods such as [44]. The finite-time regret

Fig. 4. Average computation time per decision vs. averaged cumulative regret.

Fig. 5. Comparision of RBMLE with UCRL2 and Thompson Sampling for
a randomly generated MDP with 20 states and 20 actions.

analysis of RBMLE remained has recently been resolved
in [45], which showed that RBMLE enjoys an instance-
dependent O(log T ) regret.

Figure 5 presents the results of a comparative simulation
study of RBMLE with UCRL2 [23] and Thompson Sampling
(TSDE) [46] conducted in [45]. The average regret of RBMLE
can be seen to be significantly lower than UCLR2 and TSDE.

Extended value iteration [23] is used in to compute the
RBMLE estimate (11) in [45], though with no guarantee
of convergence to the global maximum. Developing efficient
computational methods for (11) in MDP setting is an important
open problem.

D. Linear Quadratic Gaussian (and sub-Gaussian) Systems

Consider a linear system

xt+1 = A⋆xt +B⋆ut + wt+1, (14)

where the noise wt is sub-Gaussian [10]. The instantaneous
reward incurred at time t is

r(x, u) := −(xTQx+ uTRu), (15)

where Q ≥ 0 and R > 0 are known matrices. When the
system parameter θ⋆ = (A⋆, B⋆) is unknown, this is popularly



known as the adaptive LQG (the “G” is strictly only applicable
when the noise is Gaussian) control problem or reinforcement
learning of an LQG system. The RBMLE approach was
analyzed in [47, 48, 49, 50] where the long-term optimality
of RBMLE was established in the Gaussian case.

[25] proposed an algorithm called OFU that is based on the
UCB approach. At each time t it chooses a parameter estimate
with maximum average reward within a “confidence set”,

Ct(δ) := {θ = (A,B) : Vt(θ) ≤ γt(δ)} , (16)

where Vt(θ) :=
∑t−1

s=0 (xs+1 −Axs −Bus)
2 is the squared

fitting error of θ = (A,B). It was shown that it achieves
O(

√
T ) regret.

In recent work, [51] has proposed an algorithm, Augmented
RBMLE-UCB, which combines the fundamental idea behind
RBMLE as well as OFU. The Augmented RBMLE algorithm
in [51] chooses a parameter estimate

θt ∈ arg max
θ∈Θ∩Ct(δ)

{−Vt(θ) + α(t)J⋆(θ)} . (17)

[51] show that this modified RBMLE has a similar O(
√
T )

regret bound.

VII. CONCLUDING REMARKS

We have provided an overview of the RBMLE algorithm
that was developed more than four decades ago in [12] to over-
come the fundamental challenge of closed-loop identifiability
in adaptive control. Its optimality with respect to the long-
term average reward criterion was established for a variety
of systems. However it was not analyzed for its performance
with respect to the the more stringent criterion of “regret” that
was subsequently proposed in [19]. Recently there has been
a resurgence of work examining its regret performance both
theoretically as well in simulation studies against the leading
state-of-the-art algorithms, including UCB and its variants,
Thompson sampling-based strategies, and heuristics. RBMLE
generally has state-of-the-science theoretically established re-
gret, and appears to be very competitive with respect to regret
performance in simulations. The reasoning behind the design
of RBMLE provides a justification for the use of optimism in
reinforcement learning. It provides a systematic approach to
the design of reinforcement learning strategies.
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