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Abstract

Recent NLP literature has seen growing interest in improv-
ing model interpretability. Along this direction, we propose
a trainable neural network layer that learns a global interac-
tion graph between words and then selects more informative
words using the learned word interactions. Our layer, we call
WIGRAPH, can plug into any neural network-based NLP text
classifiers right after its word embedding layer. Across multi-
ple SOTA NLP models and various NLP datasets, we demon-
strate that adding the WIGRAPH layer substantially improves
NLP models’ interpretability and enhances models’ prediction
performance at the same time.

1 Introduction

Deep neural networks (DNNs) have achieved remarkable
results in the field of natural language processing (NLP)
(Zhang, Zhao, and LeCun 2015; Miwa and Bansal 2016;
Wu et al. 2016; Wolf et al. 2020). Trustworthy real-world
deployment of NLP models requires models to be not only
accurate but also interpretable (Xie et al. 2020). Literature has
included a growing focus on providing posthoc explanations
or rationales for NLP models’ predictions (Ribeiro, Singh,
and Guestrin 2016; Lundberg and Lee 2017; Murdoch, Liu,
and Yu 2018; Singh, Murdoch, and Yu 2018; Chen, Zheng,
and Ji 2020). However, explaining DNNs using a posthoc
manner cannot improve a model’s intrinsic interpretability.

As shown in (Chen and Ji 2020), two NLP models may
have the same prediction behavior but different interpretation
ability. This concept of "intrinsic interpretability" motivates a
compelling research direction to improve the interpretability
of NLP models. A few recent studies used user-specified
priors as domain knowledge to guide model training (Cam-
buru et al. 2018; Du et al. 2019; Chen and Ji 2019; Erion
et al. 2019; Molnar, Casalicchio, and Bischl 2019), hence
improving model interpretability. Such information priors,
however, may not be available in many tasks. Several other
studies proposed to develop inherently interpretable mod-
els (Alvarez-Melis and Jaakkola 2018a; Rudin 2019), but
these require intensive engineering efforts. More recently,
Chen and Ji (2020) proposed to add a variational word mask,
VMASK, to improve the interpretability of NLP neural clas-
sifiers.
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The aforementioned literature on improving NLP mod-
els’ intrinsic interpretability have mostly focused on high-
lighting important words. Strategies like VMASK just select
important words unilaterally, without accounting for how
one word influences other words regarding interpretability.
Studies have shown that word interactions are critical in ex-
plaining how NLP models make decisions (Halford, Wilson,
and Phillips 2010). For instance, for a sentiment classifica-
tion task, when without a context, it is hard to conclude if the
word ‘different’ by itself is vital for sentiment? However, if
we find ‘different’ highly relates to the word ‘refreshingly’, it
will likely contribute substantially to the model’s sentiment
prediction (see Table 1 ).

Along this direction, we propose a novel neural network
layer, we call WIGRAPH, to improve NLP models’ intrin-
sic interpretability. WIGRAPH is a plug-and-play layer and
uses a graph-oriented neural network design: (1) It includes
a stochastic edge discovery module that can discover signifi-
cant interaction relations between words for a target predic-
tion task; (2) It then uses a neural message passing module to
update word representations by using information from their
interacting words; and (3) It designs a variational information
bottleneck based loss objective to suppress irrelevant word in-
teractions (regarding target predictions). We call such a loss:
VIB-WI loss. To improve a target text classifier’s intrinsic
interpretability, we propose to add the proposed WIGRAPH
layer right after the word embedding layer and fine-tune such
an augmented model using a combination of the original
objective and VIB-WI loss objective.

In summary, this paper makes the following contributions:

* We design WIGRAPH to augment neural text classifiers
to improve these models’ intrinsic interpretability. WI-
GRAPH does not require external user priors or domain
knowledge. WIGRAPH can plug-and-play into any neural
NLP models’ architectures, right after the word embed-
ding layer.

* We provide extensive empirical results showing that
adding WIGRAPH layer into SOTA neural text classifiers
results in better explanations (locally, globally as well as
regarding interactions) and better model predictions at the

'These attribution interpretations were generated by LIME
(Ribeiro, Singh, and Guestrin 2016) and use BERT-base model
on SST-2 dataset to explain two models’ predictions.



Model Explanation

BASE still , this thing feels flimsy and ephemeral

WIGRAPH still , this thing feels flimsy and ephemeral

BASE so young , so smart , such talent , such a
wise

WIGRAPH S0 young , so smart , such talent , such a
wise

BASE it is risky , intelligent , romantic and
rapturous from start to finish

WIGRAPH it is risky , intelligent , romantic and
rapturous from start to finish

BASE take care of my cat offers a refreshingly
different slice of asian cinema

WIGRAPH take care of my cat offers a refreshingly

different slice of asian cinema

Table 1: Top ranked important words are shown in pink for
BASE and blue for WIGRAPH augmented BASE model. We
can tell that word attributions from WIGRAPH augmented
model are easier to understand, and highlight more relevant
sentiment words. This indicates WIGRAPH augmented model
has better intrinsic interpretibility than BASE.

same time.

2 Method: A Novel WIGRAPH Layer

Our main hypothesis is: a novel layer that can extract crucial
global word interactions will improve neural text classifiers’
interpretability. This is because we envision plugging such
a layer will enhance a target model’s decision-making pro-
cess by providing explicit guidance on what words are more
important using the information on those words they inter-
act with. We aim for three properties in such a layer design:
(1) plug-and-play; (2) model agnostic; and (3) no loss of
prediction performance.

We denote vectors using lowercase bold symbols. We as-
sume text inputs include a maximum length of L tokens. We
denote the whole word vocabulary as set V. We use V' to
denote its size (the total number of unique words in this vo-
cabulary V). Besides, we use f to describe a neural text classi-
fication model. f classifies an input text intoy € {1,...,C},
where C' is the number of classes. For an input sentence, we
denote its ¢-th word as w; and its embedding representation
as vector x;: Vi € {1,..., L}. Therefore, the embeddings of
an input text make a matrix form X = [x1,...,xz]7 (this
means X € RE*4 where L is the length of input and d is the
dimension of each x;.).

2.1 To Discover Word Interaction Graph: A

Now we explain the first component of the proposed WI-
GRAPH layer. This module aims to discover how words glob-
ally interact for a predictive task. Our primary strategy to
describe how words relate is to treat words as nodes and their

13529

interaction as edges in an interaction graph. We follow such
an idea and choose to learn an undirected word interaction
graph using a stochastic neural network module. We repre-
sent this unknown graph as A = {A;;}y«v. A includes
the edges representing word interactions. We assume each
A;; € {0,1} is one binary random variable. A is stochastic
whose A; specifies the presence or absence of an interaction
between word ¢ and word j in vocabulary V. A;; € {0,1}
is sampled from Sigmoid(~y;;), following Bernoulli distribu-
tion with parameter Sigmoid(~y;;). In Section 2.2, we show
how A can help us understand how certain words are more
important than others owing to the learned word interactions.
Learning the word interaction graph A means to learn the
parameter matrix v = {;; }v xv. In Section 2.4, we show
how ~ (and therefore A) is learned through the variational
information bottleneck framework(Alemi et al. 2016).

2.2 Message Passing On Word Interaction Graph
Using Graph Convolution: E/

In our second module, we represent the ¢-th word x; of an
input text x as a node on the A graph. We use a modified
version of graph convolutional operation (Kipf and Welling
2016) to update each x; with its neighboring words x;. Here
J € N (i), and N (i) denotes those neighbor nodes of x; on
the graph A and in x. Specifically, we denote the resulting
word representation vector as €}. Each x; is revised using
a graph based summation from its neighbors’ embedding

Xj,j S N(Z)

/
ei:Xi—i—o(

Eq. (1) is motivated by the design of Graph convolutional net-
works (GCNs) that were recently introduced to learn useful
node representations that encode both node-level features and
relationships between connected nodes (Kipf and Welling
2016). Different from the ReLLU activation function used in
vanilla GCNs, we use GeLU as the o(-) , the non-linear acti-
vation function proposed in (Hendrycks and Gimpel 2016).

We want to point out that Eq. (1) is different from a typical
GCN operation from (Kipf and Welling 2016). First, we only
conduct one hop of neighbor aggregation in Eq. (1). A typical
GCN module does multi-hops. Second, we drop W* € R%x4
used for ¢-th hop of GCN update in (Kipf and Welling 2016).
This is because we assume that the BASE text classifier
model f has taken into account this prior and our WIGRAPH
layer will not bias to prefer short range interactions. The third
difference is the most important distinction that differentiates
ours apart from (Kipf and Welling 2016). The graph has been
given apriori to typical GCNs. However, in our work, we
need to learn the graph A (see Section 2.4 on how to learn
A).

We can compute the simultaneous update of all words in
input text x together by concatenating all €. This gives us
one matrix E € REX? where L is the length of input and
d is the embedding dimension of each x;. The simultaneous
update can be written as:

E =o(A'X).
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Figure 1: WIGRAPH layer (components inside the gray box): during inference, embeddings of words (for example, Hawaii and
state) are aggregated based on their interactions using a modified Graph Convolutional operation. Here graph A was learnt from
training along with the prediction task. A WIGRAPH layer is inserted into a neural text classifier right after the word embedding

input layer.

where A’ = D=2 (A, + I)D~2, that is the normalized
adjacency matrix and D is the diagonal degree matrix of
(Ax + I). Note: Ay denotes those edges from A that are
local for the current sample text x. In summary, our second
module computes:

E = gGC(Xv A)

2.3 To Build And Use WIGRAPH Layer: X — Z

Our design of WIGRAPH layer is that it can take the em-
bedding matrix of a text example as input (X € RZ*9), and
output a revised matrix representing each word with revised
embedding (Z € RE*?). WIGRAPH layer aids the selection
of more informative words based on their interactions for
current predictive task. The proposed layer does not need
significant efforts on engineering network architectures and
does not require pre-collected importance attributions or ex-
planations.

Our main goal is to improve the intrinsic interpretability
of neural text classifiers with a simple model augmentation.
Therefore, for a given neural text classifier, we propose to
simply insert a WIGRAPH layer right after the word embed-
ding input layer and before the subsequent network layers of
that target model.

There exist many possible ways to build WIGRAPH layer
from our first two modules (Section (2.1) and Section (2.2)).
The simplest way is that we can just pass E’ as Z.

Z=F 3
Figure 1 visualizes how this vanilla version of WIGRAPH
layer updates word representations with the X — E' — Z

data flow during inference. During training, it needs to learn
the graph A.

2.4 Model Training With VIB-WI Loss

Now we propose to train WIGRAPH jointly with other lay-
ers using a new objective that we name as variational infor-
mation bottleneck loss for word interaction (VIB-WI loss).
VIB-WI loss aims to restrict the information of globally irrel-
evant word interactions flowing to subsequent network layers,
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hence forcing the model to focus on important interactions
to make predictions. Following the Information Bottleneck
framework (Alemi et al. 2016), we aim to learn A and all
subsequent layers’ weights {W}, to make Z maximally in-
formative of the prediction label Y, while being maximally
compressive of X (see Figure 1). That is

mazra qwill(Z;Y) — BI1(Z; X)} @)
Here I(-; ) denotes the mutual information, and 5 € R isa
coefficient balancing the two mutual information terms.

Given a specific example (x™,y™), we can further sim-
plify the lower bound of first term I(Z;Y) in Eq. (4) as:

I(z;y™) = Eqzjxm)log(p(y™[x™; A, {W}))  (5)

Similarly for the second term I(Z; X) in Eq. (4) and for a
given example (x™,y™), we can simplify its upper bound
as:

I(z;x™) < KL(q(A[x™)||pao(A)) (6)

Due to the difficulty in calculating two mutual information
terms in Eq. (4), we follow (Schulz et al. 2020; Alemi et al.
2016) to use a variational approximation ¢(X,Y, Z) to ap-
proximate the true distribution p(X, Y, Z). Details on how to
derive Eq. (5) and Eq. (6) are in Section (5). Now combining
Eq. (5) and Eq. (6) into Eq. (4), we get the revised objective
as:

mazr A r,{wiiEqzixm)log(p(y™[x™; A,R,{W}))
—Bg K L(q(A[x™)||pao(A)) }

Eq. (7) is the proposed VIB objective for a given observation
(x™,y™).
Detailed Model Specification: During training, for the
stochastic interaction graph A, we learn its trainable param-
eter matrix v € RIVI*IVI that is also optimized along with
the model parameters during training. Further, we use the
mean field approximation (Blei, Kucukelbir, and McAuliffe
2017), that is, ¢(Ax|x) = [Ti_; [T71 a(Aa, o, [xi,x)).
Equation 7 requires prespecified prior distributions pgg.
We use a Bernoulli distribution prior (a non-informative
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prior) for each word-pair interaction gy[Ag, ., |Xi,X;].
paO(Ar) = Hf:l H]l'/zl paO(Axl',x]') and paO(Aa:,;,mj) =
Bernoulli(0.5). This leads to:

KL(g(Ax[X")|[pao(A)) = —Hq(AxX™) (8

Here, H, denotes the entropy of the term A, |x™ under the ¢
distribution. Besides, we add a sparsity regularization on Ay
to encourage learning of sparse interactions. Now, we have
the following loss function for (x™, y™):

—(Exp(y[x™; A, {W}) + B, Hq(Ax[x"™))

)
+/85parse| |Ax| |1

During training, A is discrete and is drawn from Bernoulli
distributions that are parametrized with matrix v € RIVI*IV1,
We, therefore, use the Gumbel-Softmax(Jang, Gu, and Poole
2016) trick to differentiate through the sampling step and
propagate the gradients to the respective parameters .

2.5 Variation: WIGRAPH-A-R

We also try another possible design of WIGRAPH that in-
cludes one more separate module that learns an attribution
word mask R on top of E’. Aiming for better word selection,
R is designed as a stochastic layer we need to learn and
R € {0,1}". Each entry in R (e.g., R; € {0,1}) follows a
Bernoulli distribution with parameter ¢ (to be learned).

During inference, for an input text x, we get a binary vector
Ryx from R that is of size L. Its i-th entry Ry, € {0,1} is
a binary random variable associated with the word token at
the ¢-th position. We use the following operation (a masking
operation!) to generate the final representation of the i-th
word from a WIGRAPH layer:

z; = Ry, €] (10)

We can compute the simultaneous update of all words
in input text x together by concatenating all z; denoted as
matrix Z € RE*? The simultaneous update can then be
written as:

Z = diag (Rx)p, 1 ET x4 an

During training, we need to learn both A and R. Now the
loss function VIB-WTI loss turns to:

—(Exp(y[x™; A, R, {W}) + B; Hy(Rx[x™)+
ﬂqu(Ax|Xm)) + BsparseHAle

Due to page limit, we put detailed derivations of above and
specification of R in Section (5). We call the vanilla version
of WIGRAPH as WIGRAPH-A and the version with the word
mask R as WIGRAPH-A-R.

3 Connecting To Related Work

Our design orients from one basic notion that we treat inter-
pretability as an intrinsic property of neural network models.
We expect a neural text classifier will be more interpretable,
when focusing on important word interactions to make pre-
dictions. Our work connects to multiple related topics:
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Self-Explaining Models Recent literature has seen grow-
ing interests in treating interpretability as an inherent property
of NLP deep models. (Alvarez-Melis and Jaakkola 2018b;
Rudin 2019) proposed to design self-interpretable models by
requiring human annotations in model engineering. (Chen
and Ji 2020) proposed VMASK layer for improving NLP
models’ interpretability. This layer automatically learns task-
specific word importance and guides a model to make predic-
tions based on important words. However, this method does
not consider interactions between words.

Explanations as Feedback Anoter category of work uses
explanations as feedback for improving model prediction
performance as well as to encourage explanation faithfulness.
(Camburu et al. 2018; Chen and Ji 2019; Erion et al. 2019;
Molnar, Casalicchio, and Bischl 2019) focuses on aligning
human judgments with generated explanations and further
incorporating it into the training of the model. These methods
require human annotations that are expensive to obtain and
also have the risk of not aligning well with the separately
trained model’s decision making process. (Ross, Hughes,
and Doshi-Velez 2017; Ross and Doshi-Velez 2017; Rieger
et al. 2020) use explanations as feedback into the model
to improve prediction performance. However, these heavily
rely on ground-truth explanations and domain knowledge.
Differently, our proposed method augments a model with a
special layer that improves both prediction performance and
interpretability (see Section (4)).

Graph Neural Networks Graph Neural Networks (GNN5s)
generalize neural networks from regular grids, like images to
irregular structures like graphs. There exists a wide variety
of GNN architectures like (Kipf and Welling 2016; Scarselli
et al. 2008; Velickovi¢ et al. 2017; Santoro et al. 2017). They
share the same underlying concept of message passing be-
tween connected nodes in the graph. However, little attention
has been paid to address cases when the underlying graph
is unknown. In contrast, in WIGRAPH, we do not know the
global interaction graph apriori. It is learnt along with the
prediction model as part of the training.

Post-Hoc Explanation NLP literature includes a number
of methods that focus on disentangling the rationales of a
trained NLP model’s decision by finding which words con-
tributed most to a prediction, including the popularly used
LIME(Ribeiro, Singh, and Guestrin 2016) and SampleShap-
ley (Kononenko et al. 2010) methods. Recent studies have
proposed to generate post-hoc explanations beyond word-
level features by detecting feature interactions, including
for instance, contextual decomposition by (Murdoch, Liu,
and Yu 2018). Other work adopted Shapley interaction index
to compute feature interactions (Lundberg, Erion, and Lee
2018). In contrast to these post-hoc interpretation systems,
our method focuses on designing a strategy to improve the
inherent interpretability of NLP models.

Information Bottleneck Based Methods The information
bottleneck method was first proposed by (Tishby, Pereira,
and Bialek 2000; Tishby and Zaslavsky 2015). (Alemi et al.
2016) introduced a variational approximation to the informa-
tion bottleneck that enables usage for deep neural networks.



BASE Models IMDB SST-1 SST-2 AG News TREC Subj
BASE 88.39 43.84 83.74 91.03 90.40 90.20
LSTM VMASK 90.07 44.12 84.35 92.19 90.80 91.20
WIGRAPH 90.12 ,173 46.47 563 86.21 563 9116 13 9220 150 91.40 .12
BASE 91.88 51.63 92.15 92.05 97.40 96.40
BERT VMASK 93.04 51.36 92.26 94.24 97.00 96.40
WIGRAPH 92.48 +0.60 52.49 +0.86 92.59 44 92.72 +0.67 97.40 . o 96.60 .-,
BASE 89.87 55.20 94.73 93.46 96.2 96.00
RoBERTa VMASK 90.02 54.21 93.47 93.47 96.0 96.50
WIGRAPH 90.10 -3 55.52 .03 9475 000 93.52 006  96.60.( 96.40 . 1
BASE 86.96 51.31 90.50 93.34 97.20 96.20
distilBERT VMASK 87.00 48.01 89.02 93.81 95.20 95.00
WIGRAPH 88.32 .13 50.81 90.77 .o»» 93.85.051 9740 ., 96.30 .o

Table 2: Prediction Accuracy (%). Models augmented with WIGRAPH layer predict better than BASE.

Dataset Train/Dev/Test C \'% L
sstl 8544/1101/2210 5 17838 50
sst2 6920/872/1821 2 16190 50
imdb 20K/5K/25K 2 29571 250
AG News 114K/6K/7.6K 4 21838 50
TREC 5000/452/500 6 8026 15
Subj 8000/1000/1000 2 9965 25

Table 3: Summary of datasets we use in experiments:
number of classes (C'), vocabulary size (V) and sen-
tence length (L).

(Schulz et al. 2020; Bang et al. 2019) utilized the informa-
tion bottleneck principle to generate post-hoc explanations
by highlighting important features while suppressing unim-
portant ones. Differently, we incorporate the information bot-
tleneck in model training to make model prediction behavior
more interpretable.

4 Experiments
We design experiments to answer the following:

1. Are NLP models augmented with WIGRAPH layer more
interpretable models?

2. Do NLP models augmented with WIGRAPH layer predict
well?

Besides, we extend WIGRAPH to one concept based vision
task in Section 4.5.

4.1 Setup: Datasets, Models And Metrics

Datasets Our empirical analysis covers six popular text
classification datasets as detailed by Table 3. These six
datasets are "sst1", "sst2"(Socher et al. 2013), "imdb"(Maas
et al. 2011), "AG news"(Zhang, Zhao, and LeCun 2015),
"TREC"(Li and Roth 2002) and "Subj"(Pang and Lee 2005).
Three of the datasets are for binary classification, and the rest
are for multi-class text classification tasks.

BASE Models We use four commonly used neural text
classifiers to evaluate WIGRAPH: LSTM, and transformer

based SOTA models including BERT, RoBERTa and distil-
BERT. As Section 2.4 described, we plug our WIGRAPH
layer right after the word embedding input layer. For the
LSTM models(Hochreiter and Schmidhuber 1997), we ini-
tialize word embeddings from (Mikolov et al. 2013) with
dimension d = 300. For BERT, RoBERTa and distilBERT
models, we use base models from (Wolf et al. 2020).

Hyperparameter Tuning We perform fine-tuning on
each model (batch size=64). We fix the word embedding
layer and train WIGRAPH layer along with the rest of a
BASE model. For the LSTM models, we vary the hid-
den size € {100, 300, 500}, and dropout in {0.0,0.2,0.3}.
We set foparse € {le — 02,1e — 03,1e — 04}, B, €
{1.0,1e — 02,1e — 03,1e — 04} and B; € {1.0,1e —
02,1e — 03, 1e — 04}. The learning rate is tuned from the
set {0.0001, 0.0005, 0.005,0.001}. For transformer based
models, we vary dropout in range {0.2,0.3,0.5}, hid-
den dimension to compute R € {128,256,512}. We set
Bsparse, Bg, i = 1.0 and anneal it by a factor of 0.1 every
epoch. For the larger vocabulary cases (IMDB, AG-News
datasets and transformer-base models), we filter words for
learning our interaction matrix A, i.e., we learn interactions
for the top frequent 10, 000 words.

Baselines: To our best knowledge, WIGRAPH is the only
plug-and-play layer to improve a target neural text classifier’s
interpretability using explicit pairwise word interactions. In
our experiments, we compare WIGRAPH to a BASE model
without WIGRAPH layer and to a BASE model augmented
by the VM ASK layer. (Chen and Ji 2020) proposed VM ASK
layer for improving NLP models’ intrinsic interpretability,
though this layer does not consider word interactions.

Evaluation Metrics: We use three types of evaluations to
compare WIGRAPH with baselines. (a) Prediction accuracy:
this is to measure if NLP models augmented with WIGRAPH
layer predict well. (b) To compare different models’ inter-
pretability, we will apply two post-hoc attribution techniques:
LIME(Ribeiro, Singh, and Guestrin 2016) and SampleShap-
ley (Kononenko et al. 2010) on model predictions. The re-
sulting feature attribution outputs will be evaluated using
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Metrics | BASE Models IMDB SST-1 SST-2 AGNews TREC Subj
AOPCs BASE 1434 876 1703 700 1195 9.67
LSTM VMASK 151 952 2214 739 1197 11.68

of LIME WIGRAPH-A 178 1033 2234 1494  20.13 1627
Generated BASE 1063 2608 4396 7.2 6882 44.13
Explanations BERT VMASK 1264 275 416 847 6514 4441
WIGRAPH-A 1096 34.81 4459 1113 6851 44.90

BASE 1030 3200 4151 157 6607 43.00

ROBERTa  VMASK 988 2602 4069 847 6458 43.66

WIGRAPH-A 1023 3270 4264 1572 6627 44.22

BASE 1100 2792 4225 883 6763 44.93

disIBERT  VMASK 920 2211 3977 800  63.14 40.65

WIGRAPH-A 1132 3621 4433  9.02 6874 4397

AOPCs of BASE 1580 791 2238 662 1190 11.66
LSTM VMASK 1648 973 2252 765 1186 1274

SampleShapley WIGRAPH-A 2173 978 4940  27.60 6827 29.29
Generated BASE 3.00 2865 4165 721 6537 33.22
Explanations BERT VMASK 1218 2992 4153 1002  65.14 4441
WIGRAPH-A 14.16 3602 4475 1043 6630 44.91

BASE 9.03 3601 3589 601 6607 13.08

RoBERTa  VMASK 800 2989 4264 568 5485 4375

WIGRAPH-A 850 3801 4278 712  67.56 43.61

BASE 1203 2807 4224 1509 4778 13.08

distilIBERT  VMASK 926 1867 3503 1395 5953 40.93

WIGRAPH-A 1218 3529 4314 1421 6608 4397

Table 4: AOPCs (%) obtained from results using LIME and SampleShapley to interpret the base, WIGRAPH-based models and
the baseline VM ASK across four SOTA models, and over six different datasets.

explanation faithfulness scores like AOPCs (details in Sec-
tion (4.3)). (3) We further design interaction interpretability
measures to compare different models in Section (4.4).

4.2 Prediction Performance Comparison

In Table 2, we compare prediction performance using four
different SOTA models across six different datasets. This
makes 24 different (BASE, data) combinations , and on each
case, we compare BASE model, VM ASK augmented base
model versus our WIGRAPH augmented model regarding the
prediction accuracy. Here we refer to WIGRAPH as the best
performing model between WIGRAPH-A and WIGRAPH-
A-R. Table 2 shows that adding WIGRAPH layer into SOTA
neural text classifier models makes the models predict better!
Empirically, the performance gains on LSTM models appear
more than on Transformer models.

4.3 Attribution Interpretability Comparison: Area
Under Perturbation Curve (AOPC)

Here we empirically check our hypothesis that training a
model augmented with WIGRAPH layer leads to improve-
ments of model explanation faithfulness during downstream
post-hoc interpretation analyses. We use Area Over Pertur-
bation Curve (AOPC) (Nguyen 2018; Samek et al. 2016)
as the evaluation metric. AOPC is defined as the average
change of prediction probability on the predicted class over a
test dataset by deleting top K words in explanations. Higher
AOPC scores reflect better interpretation faithfulness.

1 K
AOPC = 2= ; <S®) = k) o0 (12)

We generate word-level attribution explanations using two
popular post-hoc explanation methods: LIME(Ribeiro, Singh,
and Guestrin 2016) and SampleShapley (Kononenko et al.
2010). Across all datasets, we use 500 test samples and k €
{1,...,10}. Table 4 shows that WIGRAPH-A outperforms
the original BASE model and the BASE with VM ASK.

When LIME is used to post-hoc explain models, across
all 24 cases of (model, dataset) combinations, WIGRAPH
outperforms the original BASE model and the BASE with
VMASK layer regarding AOPC score in 21 cases. The
only three exception include the IMDB/BERT, TREC/BERT
and IMDB/RoBERTa setups. When SampleShapley is used,
WIGRAPH outperforms the original BASE model and the
BASE with VMASK layer in 22 cases out of 24 (model,
dataset) combinations.

4.4 Interaction Analysis And Ablation

In this experiment, we introduce a new metric: Interaction
Occlusion Score (10S). The IoS score measures the interaction
interpretability faithfulness of a target model on its learnt
interactions.

WIGRAPH discovers globally informative interactions
with the importance score E,[A,,  [x; ;] (see ¢ in Sec-
tion (2.4)). We sort entries of A and filter out the top K
global interaction scores, denoted by Af We then calcu-
late the accuracy of the model after only using these top k
interactions via:

1 M
I0S(k) = i Z Ly =y,

m=1

(13)
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BASE Models IMDB SST-1 SST-2 AGNews TREC Subj
LSTM WIGRAPH-A-R 89.12 4432 84.08 91.16 91.65 90.60
WIGRAPH-A 90.12 4647 86.21 90.87 92.20 91.40
WIGRAPH-A-R  90.81 5249 92.59 90.13 96.60 96.40

BERT WIGRAPH-A 9248 52.04 91.54 92.72 97.40  96.60
WIGRAPH-A-R  90.10 5290 92.97 91.54 95.20 95.50

RoBERTa WIGRAPH-A 88.21 54.52 9445 93.52 96.60 96.40
WIGRAPH-A-R 88.32 5081 88.19 93.85 96.40 96.20

distilBERT ~ WIGRAPH-A 88.07 49.95 90.77 91.08 97.40  96.30

Table 5: Ablations analysis regarding prediction accuracy from: WIGRAPH-A and WIGRAPH-A-R.

Here, we represent the label of the model on the m‘" test
sample as y,,.

Ablation: We perform extensive ablation analysis to com-
pare WIGRAPH-A and WIGRAPH-A-R. Table 5 provides
comparison analysis regarding prediction accuracy and we
can tell no clear winner between the two variations across
all 24 cases of (BASE, data) combinations. See Table 6 for
more ablation results via other metrics. We recommend to
use WIGRAPH-A in most real-world applications, due to
less parameters.

4.5 Modeling Concept Interaction In Vision

Koh et al. (2020) introduced the notion of high-level con-
cepts as an intermediate interpretable interface in the input-
model-predictions pipeline. These concepts describe high
level attributes of an image. This enables users to directly
interact with a model by intervening on human-interpretable
concepts. The interactions between these concepts can affect
prediction, however these interactions are unknown. In this
section, we investigate the utility of learning these interac-
tions for aiding prediction using our WIGRAPH layer. We
train a concept bottleneck (Koh et al. 2020) model on the
CUB dataset (Wah et al. 2011) which is jointly trained with a
WIGRAPH layer. We show that the WIGRAPH layer is able
to learn concept embeddings, model interactions between
concepts, and can also be used with test time concept in-
tervention to improve prediction accuracy on the final task.
In order to extend WIGRAPH for this setup, we introduce
a dynamic interaction graph with concepts and the image
as nodes. Intuitively, the image is considered to be a com-
position of concept embeddings. The interaction between
the concepts are learned variables whereas the interactions
between an image and its concepts are computed using the
cosine similarity.

Results: As a baseline, we fine-tune an Inception V3-based
joint concept bottleneck model (Koh et al. 2020) that achieve
a prediction accuracy of 80.04% on the CUB dataset (Wah
et al. 2011). Together with this model, we jointly train our
WIGRAPH and the concept embedding layer to learn the in-
teractions between the concepts. As described in (Koh et al.
2020), test time intervention (TTI) helps improve predic-
tion accuracy to 89.41%(+9.37%). Interestingly, we observe
that TTI achieves more improvements of prediction accuracy
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when using WIGRAPH augmented concept vision model to
95.74%(+15.70%).

5 Conclusions

In this paper, we try to answer the question: Does adding
a special layer in the form of discovering word-word inter-
actions lead to improvements in a neural text classifier’s
interpretability? Our paper gives a firm "Yes" to the question
and provides a neural-network based design for making such
a layer. The second component of WIGRAPH layer uses the
message passing framework and it can be expanded to allow
for learning and accounting for higher-order interactions (not
only pairwise) in a scalable way. We will explore this in our
future works. Furthermore, WIGRAPH can easily extend to
cross sentence tasks like Natural Language Inference, and
we will leave it to future.

A Model Training For WIGRAPH-A-R

We propose to train WIGRAPH jointly with other layers using
a new objective that we name as variational information bot-
tleneck loss for word interaction (VIB-WI loss). VIB-WI loss
aims to restrict the information of globally irrelevant word
interactions flowing to subsequent network layers, hence
forcing the model to focus on important interactions to make
predictions. Following the Information Bottleneck framework
(Alemi et al. 2016), we aim to learn A, R and all subsequent
layers” weights { W}, to make Z maximally informative of
Y, while being maximally compressive of X (see Figure 1).
That is

mara r(will(Z;Y) — BI(Z; X)}

Here I(-;-) denotes the mutual information, and 5 € Ry is a

coefficient balancing the two mutual information terms.
Given a specific example (x™,y™), we can further sim-

plify the lower bound of first term I(Z;Y) in Eq. (14) as:

I(z;y™) > Eqzjxmylog(p(y™[x™; A, R, {W})) (15)

(14)

Similarly for the second term I(Z; X) in Eq. (14) and for
a given example (x™,y"), we can simplify its upper bound
as:
I(z;x™) < KL(g(R|x™)][pro(R))

+KL(q(A[x™)[|pao(A)) (16)



Due to the difficulty in calculating two mutual information
terms in Eq. (14), we follow (Schulz et al. 2020; Alemi
et al. 2016) to use a variational approximation ¢(X,Y, Z)
to approximate the true distribution p(X, Y, Z). Details on
how to derive Eq. (15) and Eq. (16) are in Section (5). Now
combining Eq. (15) and Eq. (16) in Eq. (14), we get the
revised objective as:

maz A R (W Eqzxm)log(p(y™[x™; A, R, {W}))
—Bi K L(q(R[x™)||pro(R))
—Bg K L(q(A|x™)||pao(A)) }

(I7)

Eq. (17) is the proposed VIB objective for a given observa-
tion (x™,y™). To increase the flexibility, we associate two
different coefficients from R with the two KL-terms. In
practice we treat them as hyper-parameters.

Detailed Model Specification: In this section, we describe
in detail how to learn discrete A and R along with the model
parameters during training. To learn the word mask R, we
use amortized variational inference(Rezende and Mohamed
2015). We use a single-layer feedforward neural network
as the inference network g, (R, |z;), associated parameters
¢ are optimized with the model parameters during train-
ing. For the interaction mask (graph) A, we use a train-
able parameter matrix v € RIVI*IVI that is also optimized
along with the model parameters during training. Further,
we use the mean field approximation (Blei, Kucukelbir, and
McAuliffe 2017) for both the word mask and the variational
interaction mask, that is, ¢(R|x) = HiL:1 q(Ry,|x¢) and
a(Asxlx) = T2 T (a0, %)),

Equation 17 requires prespecified prior distributions
pro and pgo. We use the Bernoulli distribution prior
(a non-informative prior) for each word-pair interaction

L L

ng[Al'me'j i, Xj]- Pao(Az) = Hi:1 Hj:l paO(Axi,x]) and

Pao(Az, z;) = Bernoulli(0.5). This leads to:
KL(g(Ax|x™)[|pao(A)) = —Hq(Ax[x™) (18)
Here, H, denotes the entropy of the term A |x™ under
the ¢ distribution. Similarly, for the word mask, p,q(R) =
Hlepro(in), and p,o(Ryx,) = Bernoulli(0.5). There-

fore,

K L(q(Rx[x™)[|pao(R)) = —Hq(Rx|x™) (19)
Finally, we have the following loss function for (x™, y™):
—(Exp(y[x™; A, R, {W}) + B8; Hy(Rx [x™) +
ByHq(Ax|x™)) + Boparsel| Ax|l1
During training, both A and R are discrete samples drawn
from Bernoulli distributions in Eq. (2) and Eq. (11). We,
therefore, use the Gumbel-Softmax(Jang, Gu, and Poole

2016) trick to differentiate through the sampling step and
propagate the gradients to their respective parameters v and

(20)

B Detailed Derivation

We follow the markov factorization : p(X,Y,Z) =
p(ZIX,Y)P(X,Y) = PEZXY)P(YX)P(X) =

P(Z|X)P(Y|X)P(X), motivated from the Markov assump-
tion: Y <> X <= Z,ie. Y and Z are independent of
each other given X. We assume the data are generated us-
ing the above assumption where Z is not observed, i.e. a
latent variable. Our derivation is based on (Chen et al. 2018;
Schulz et al. 2020; Alemi et al. 2016), where we start from
an approximation ¢(X, Y, Z) instead of the true distribution
p(X,Y,Z).

The lower bound for 1(Z;Y).

1(2,Y) = ;W Jlog @)
B 2o q(y|z)
= ;Q(y’ )log a(y)
— Zq(y,Z)IOgQ(Y|Z)
HH,(Y), e

where H, () represents entropy, and can be ignored for the
purpose of training the model.

> aly,z)logq(ylz)

Y,z

alylz)p(ylz)
=Dl S

— Zq y.z)logp(y|z) + KL[q(y|z)|[p(y|2)]

Y,z

> aly,z)logp(yla),

¥z
where K L[-||-] denotes Kullback-Leibler divergence. This
gives us the following lower bound:

1(Z,Y) > qly,z)logp(y|z) + Hy(y)

(22)

Y.z

=Y ax.y,2)logp(ylz) + Hy(y) (23
y,z7x

=Y a(x,y)q(z[x) log p(y|z)+ Hy(y),

Y,Z,X

where the last step uses ¢(x,y,2z) = q(x)q(y|x)q(z|x),
which is a factorization based on the conditional dependency:
Yy ¢ x <> z: y and z are independent given x.

Given a sample, (x(m), y(m)), we can assume the empiri-
cal distribution ¢(x(™) y(™)) simply defined as a multipli-
cation of two Delta functions

gx =x"y =y™) = 5 m (%) - Oy (y). (24
So we simplifying further of the first term:
I(z;y™) > " q(z|x"™) log p(y™|z)
z (25)
- Eq(z|x(m)) log(p(y(M) |Z))
Since Z = diag (Rx) E’, and E’ is a deterministic function

of A, we have:

I(Z; y(m)) > Eq(z|x(m))log(p(y(m) ‘Rv A7 X(m))) (26)



The upper bound for I(Z; X).

1(Z,X)

S 4, ) log a(ele)
— > a(x,2)logq(z)

By replacing ¢(z) with a prior distribution of z, py(z), we
have

> a(x,2)logq(z) > > q(x,2)log po(2).

X,z

(27
Then we can obtain an upper bound of the mutual information
> a(x,2)log g(z|x)

I(Z;X) <

— Y a(x,2)log po(2)
> a()KLg(z[x)||po(2)]

Eq(a) K Lg(2x)[|po(2)].

For a given sample (x™,y™),

(28)

(z:x"™)) = K Llg(zx"™)||po(2)] (29)

Given X, we assume R and A are independent. We also
assume a factorable prior pp(z) = pro(R)pao(A). This gives
us:

1(z,x"™) < KL(gRx"™)|[p,o(R))

+KL(g(A|x"™)||pao(A)) (30)

Additional Experimentation: Ablation Analysis For
Interpretation Scores

Metric Models TREC SST-2
BASE 67.63 4225

VMASK 63.14  39.77

AOPC WIGRAPH-A-R 6152 3622
WIGRAPH-A  68.74 44.33

Table 6: Ablations analysis for TREC and SST-2 datasets on
distilbert model regarding AOPC from LIME post-hoc expla-
nation model for ablations WIGRAPH-A and WIGRAPH-
A-R.
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