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1. Introduction

1.1. The general problem

This work is a contribution towards the development of a systematic understanding 
of the large time behavior of pathwise solutions of nonlinear first- and second-order 
stochastic partial differential equations (SPDEs for short) of the general form

du = F (Du, D2u)dt +
m∑

i=1
Hi(x, Du) ◦ dBi in Td × R+, (1.1)

and

dv = Div(F ′(v)Dv)dt +
∑

1≤i≤m
1≤j≤d

∂xj
(Hi,j(x, v)) ◦ dBi in Td × R+, (1.2)

with Bi being independent Brownian motions, m ∈ N, F, Hi, Hi,j nonlinear functions, 
Td the d-dimensional torus and R+ = (0, ∞).

The solutions to (1.1) and (1.2) are obtained as uniform limits of solutions to the 
corresponding “deterministic” problems with smooth paths approximating the Brownian 
motions. This fact is signified in (1.1) and (1.2) by the use of the Stratonovich notation 
“◦”.
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The analysis of the long-time behavior of solutions to (1.1) and (1.2) entails sev-
eral challenges including the possible degeneracy of the dissipation F , and the spatial 
inhomogeneity of the Hamiltonians Hi, Hi,j .

SPDEs like (1.1) and (1.2) appear in a variety of applications, including mean field 
systems with common noise, fluctuating geometric partial differential equations (PDEs 
for short) such as the stochastic mean curvature flow, and non-equilibrium thermody-
namics. We refer to the appendix for more details.

Throughout the paper, when dealing with (1.1) we work with the so-called stochastic 
(viscosity) solutions to (1.1) which were developed in a series of papers by the third 
and fourth authors, see, for example, Lions and Souganidis [35,38,37,36,34] as well as 
Souganidis [46] for an extensive overview. The well-posedness of solutions to (1.2) follows 
in many case from the theory of stochastic kinetic solutions developed by Lions, Perthame 
and Souganidis [32,33], Gess and Souganidis [20,21], and its extension to parabolic-
hyperbolic SPDEs by Gess and Souganidis [22] and Fehrman and Gess [15,16]. We refer 
again to [46] for an overview.

In all of the examples we consider here, the typical result is that, in the long time limit, 
the solutions of the SPDEs converge almost surely (a.s. for short) to stationary solutions. 
In the spatially homogeneous case, these are random constants. In some problems, while 
similar behavior is also observed for the deterministic version of the equations, the pres-
ence of stochasticity is shown to accelerate the convergence. In others, although it is 
known that, in general, solutions to the deterministic analogues of the problems do not 
converge, the effect of the stochastic perturbation is such that the deterministic obstacles 
can be overcome and the solutions relax to constants.

The acceleration of the convergence to constants in the presence of random pertur-
bations can be explained heuristically as follows. In the examples we consider here, the 
decrease of the oscillations due the second-order diffusion in (1.1) decays for large values 
of the gradient Du. Therefore, for large initial gradient Du, the decrease of the oscil-
lations due to the stochastic part of (1.1) dominates, and yields an accelerated rate of 
convergence, compared to the deterministic problem. The derivation of such quantitative 
rates of convergence due to the stochastic parts of the equations is one of the main contri-
butions of the present work. As a main application of these, we prove an increased decay 
of oscillations in the stochastic mean curvature flow due to the stochastic fluctuations.

1.2. The main results

We describe in an informal way, that is, without stating precise theorems, the main 
results obtained in this work, which can be classified in the following three cases: (i) any 
space dimension and multiple spatially homogeneous noises, (ii) any space dimension, 
spatially inhomogeneous noise, and vanishing drift F , and (iii) one spatial dimension and 
spatially homogeneous noise.
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1.2.1. Any space dimension and multiple spatially homogeneous noises
We consider here SPDEs of the form

du = F (Du, D2u)dt +
m∑

i=1
Hi(Du) ◦ dBi in Td × R+, (1.3)

and present a result yielding the convergence to constants for large times. The argu-
ment is qualitative and does not give a convergence rate. It applies, however, to general 
settings, and, in particular, does not impose any restrictions on the dimension.

Given α, β1, . . . , βm ∈ R+, let 
(
SαF +

∑K
i=1 βiHi

(t)
)

t≥0 denote the solution operator, 
that is the nonlinear semigroup, associated to the deterministic problem

ut = αF (Du, D2u) +
m∑

i=1
βiHi(Du) in Td × R+. (1.4)

Theorem 1.1 (See Theorem 2.1 below). Assume that F is continuous and non-decreasing 
in D2u, F (0, 0) = 0, each Hi is the difference of two convex functions with Hi(0) = 0
for i = 1, . . . , m, and there exist αn, β1

n, . . . , βm
n ∈ [0, ∞) such that, for all v ∈ C(Td),

lim
n→∞

SαnF +
∑m

i=1 βi
nHi

(1)(v) = constant. (1.5)

Then, almost surely, every solution u(·, t) to (1.3) converges, as t → ∞, uniformly to a 
constant.

The heuristic reason behind this result is the fact that, if some combination of the 
diffusion and noise coefficients of the equation forces convergence, then, by elementary 
properties of Brownian paths, a.s. and after some time the Brownian motions will stay 
close to this combination for a long period of time, after which the solution will be close 
to a constant.

Note that (1.5) includes examples of F , H for which the separate dynamics SF , SH

do not converge to constants. In this sense, the result includes an effect of stabilization 
by noise, where global asymptotic stability is produced by the inclusion of the stochastic 
fluctuations 

∑m
i=1 Hi(Du) ◦ dBi.

In particular, the result can be applied to the stochastic mean curvature equation in 
multiple dimensions implying the convergence of the solution to a constant. In a non-
quantitative form, this extends the results obtained in Dabrock, Hofmanová and Röger 
[8] to non-Lipschitz continuous initial data.

1.2.2. Any space dimension, spatially inhomogeneous noise and vanishing drift
The analysis of the long-time behavior of solutions to (1.1) with spatially inhomoge-

neous noise is completely open. Motivated from this, we consider here the simpler case 
of SPDEs of the type
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du = H(x, Du) ◦ dB on Td × R+, (1.6)

with Hamiltonian H = H(x, p) convex in the p-variable.
The deterministic version of the problem, that is, ut = H(x, Du), has attracted much 

attention in the literature; see, for example, Fathi [13], Namah and Roquejoffre [40], Bar-
les and Souganidis [2], and Barles, Ishii and Mitake [1]. These works provide conditions 
under which the deterministic semigroups converge, in the sense that there exists c ∈ R

such that, for all u ∈ C(TN ) and uniformly as t → ∞,

lim
t→∞

‖SH(±t)u ± ct − φ±‖ = 0,

where φ± solves, in the viscosity sense,

±(c + H)(x, Dφ±) = 0 in Td. (1.7)

We obtain the following analogous result in the stochastic case.

Theorem 1.2 (See Theorem 3.9 below). Assume that H = H(x, p) is strictly convex in 
p. Then, there exist φ± : Td → R satisfying (1.7), and a global-in-time, statistically 
stationary, solution ψ : R × Td → R to

dψ = (c + H)(x, Dψ) ◦ dB on Td × R, (1.8)

satisfying

φ− ≤ ψ(·, t) ≤ φ+ for all t ∈ R+ and lim sup
t→∞

ψ(·, t) = φ+, lim inf
t→∞

ψ(·, t) = φ−,

so that for the solution u to (1.6) we have

lim
t→∞

‖u(·, t) + cB(t) − ψ(·, t)‖ = 0.

A particular case is H(x, p) = a(x)
√

1 + |p|2 with a(·) > 0, which corresponds to the 
motion of a graph interface driven by isotropic noise, see Section A.2 below.

We note that it is possible to replace the strict convexity of H by only convexity and 
the assumptions that the deterministic semigroups converge and the solutions to (1.6)
are equicontinuous in x.

We comment next on the proof of the theorem above. One of the main difficulties 
in the analysis of stochastic Hamilton-Jacobi equations comes from the irreversibility of 
the dynamics. For example, even for equations driven by 1-dimensional noise as above, 
B(t) = 0 does not imply that u(·, t) = u(·, 0), even though this would be the case if the 
equation was satisfied in the classical sense. Nevertheless, it was shown in Gassiat, Gess, 
Lions and Souganidis [19] that in the case of convex Hamiltonians a certain monotonicity 
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of u with respect to the driving signal allows the proof of cancellations at the level 
of the PDE solution u; see also, Hoel, Karlsen, Risebro, Storrosten [25,24]. Repeated 
applications of this observation, combined with properties of the deterministic equations, 
allow us to obtain the existence of the stationary solutions ψ, and to prove that all 
solutions are close to them for large times.

1.2.3. Spatially homogeneous noise and d = 1
We prove new quantitative decay estimates and large time convergence for SPDEs of 

the form

du = ∂x(F (∂xu))dt + H(∂xu) ◦ dB on T × R+. (1.9)

For the precise assumptions on F, H see Section 4 below.
The proof relies on a novel combination of entropy inequalities with the nonlinearity 

of the Hamiltonian H to deduce quantitative decay estimates for the derivative ∂xu. As 
a first main result, in Section 4.1, we derive quantitative estimates relying purely on the 
stochastic part in (1.9), thus giving estimates uniform in F .

Theorem 1.3 (See Theorem 4.8 below). Assume that H = H(x, p) grows super-linearly in 
p with rate q ≥ 1, and is the difference of two convex functions H1, H2, with H ≥ αH1
for some α ∈ (0, 1], and F ∈ C1(R) is non-decreasing. Then, for almost every Brownian 
path, there exist positive constants c and C(B) depending only on q and α such that, if 
q = 1, then the solutions u to (1.9) satisfy

‖ux(·, T )‖L1 ≤ C(B)(e−cT osc(u0) + 1), (1.10)

and, if q > 1,

‖ux(·, T )‖Lq ≤ C(B)
(

T − 1
2(q−1) + 1

)
. (1.11)

Note, that, if q > 1, the bound on ‖ux(·, T )‖Lq is uniform with respect to the initial 
condition.

In Section 4.2, we derive estimates that in contrast rely entirely on the dissipation F , 
and are uniform with respect to the noise H. For the sake of brevity, we discuss here 
only the results in the third case analyzed in Section 4.3, where the interplay of diffusion 
and noise is exploited to derive improved decay estimates.

We consider the stochastic mean curvature equation for a one-dimensional graph

du = ∂xxu√
1 + |∂xu|2

dt +
√

1 + |∂xu|2 ◦ dB in T × R+. (1.12)

The analysis of the long-time behavior of solutions to (1.12) is challenging in view of 
the degeneracy of the ellipticity of the mean-curvature operator for large values of the 
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gradient ∂xu. Indeed, it was shown in Colding and Minicozzi [7] that in the deterministic 
setting, that is, for

ut = ∂xxu√
1 + |∂xu|2

,

this degeneracy leads to limitations on the speed of convergence of solutions. More pre-
cisely, as described in Remark 4.21, it is possible to find solutions uR with osc(uR(·, 0)) =
R and

lim inf
R→∞

osc(uR(·, R)) ≥ 1. (1.13)

In contrast, we prove that the inclusion of noise in the stochastic mean curvature equa-
tion has a “regularization by noise” effect in the sense that it improves the dependency of 
the decay of solutions on the initial condition. The heuristic reason for this improvement 
is that, for large initial gradient ∂xu(·, 0), the decay of oscillations caused by the mean 
curvature operator in (1.12) becomes small, and, hence, the decay of oscillations due to 
the stochastic part in (1.12) dominates.

Theorem 1.4 (See Theorem 4.20 below). Let u be the solution to (1.12) driven by Brown-
ian motion B with initial condition u0, and set τ(u0, B) := inf {t ≥ 0 : osc(u(·, t)) ≤ 2}. 
Then there exists a deterministic constant c > 0, and, for almost every Brownian path, 
constants C(B), ρ(B) ∈ R+, such that

τ(u0, B) ≤ c log(1 + osc(u0)) + C(B), (1.14)

and

‖ux(·, t)‖∞ ≤ C(B)osc(u0)e−ct for all t ≥ τ(u0, B) + ρ(B). (1.15)

In particular, these estimates provide a quantified and path-by-path improvement of 
the qualitative results obtained in Es-Sarhir and von Renesse [12].

Notably, (1.15) implies that eventually the solution regularizes, that is, it becomes 
Lipschitz continuous, and, moreover,

‖ux(t)‖∞ ≤ 1 for all t ≥ C log(osc(u0) + 1) + C(B),

a fact that shows that the inclusion of noise improves the relaxation of the initial os-
cillation from the superlinear time scale found in (1.13) in the deterministic case to a 
logarithmic one.

A second application and example of increased speed of convergence concerns stochas-
tic Hamilton-Jacobi equations (sHJ for short) with polynomial nonlinearities, that is, for 
α, β > 1 and (ux)[α] := ux|ux|α−1,
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du = ∂x(ux)[α] dt + |ux|β ◦ dB in T × R+. (1.16)

In the deterministic version of (1.16), that is, for the PDE ut = ∂x(ux)[α], the de-
generacy of the diffusion at ux = 0 yields that the decay of ‖ux(t)‖∞ is of order t− 1

α−1

which is slow for α large–this bound can be easily derived from solutions with separated 
variables.

In contrast, it follows from the results obtained in this work that a higher order of 
decay is caused by the stochastic part if 2β < 1 + a. Indeed, in this range, the decay 
of oscillations due to the stochastic part in (1.16) dominates the decay caused by the 
degenerate diffusion.

Theorem 1.5 (See Example 4.23 below). For α, β > 1, let u be the solution to (1.16) with 
initial condition u0 and B a Brownian motion. There exists a constant C(B) ∈ R+, such 
that, for all t > 0,

‖ux(·, t)‖Lβ ≤ C(B)t− 1
2(β−1) , (1.17)

and

‖ux(·, t)‖∞ ≤ C(B)t− β
2(β−1)(α+β−1) .

Note that, when β is close to one, this estimate significantly exceeds the optimal 
deterministic decay of order t− 1

α−1 .

1.3. Organization of the paper

The paper is organized as follows. In section 2 we present an argument that yields the 
convergence to constants for a large class of SPDEs but without a rate of convergence. 
Section 3 is devoted to the study of the long-time behavior of solutions to stochas-
tic Hamilton-Jacobi equations with inhomogeneous Hamiltonians that are convex in the 
gradient. Section 4, which is about the long-time behavior of parabolic-hyperbolic SPDEs 
with spatially homogeneous noise, consists of following three parts: (i) convergence due 
to the stochastic fluctuations, (ii) convergence due to the dissipation, and (iii) conver-
gence due to the interaction between the stochastic fluctuations and dissipation. In each 
subsection, we present several results and examples. In Section 5, we list a number of 
questions that left open by the present work and which we believe to be of interest. 
Finally, in the Appendix we discuss a number of motivating and concrete examples of 
SPDEs to which our results apply. The appendix can also be considered as an introduc-
tion of the scope of a large number of nonlinear SPDEs with multiplicative stochastic 
dependence arising in concrete applications, and, in addition, provides the motivation 
for the concrete problems addressed earlier in the paper.
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1.4. Notation

We write Td for the d-dimensional torus and, when d = 1, T instead of T 1. Through-
out the paper ‖w‖X stands for the norm of w ∈ X. When X = L∞, we simply write 
‖w‖. We write BV for the set of functions of bounded variation and BUC(X) for the 
set bounded and uniformly continuous functions on X. The oscillation of a function w
is denoted by osc(w). For an integrable function F : R → R, we set [F ](v) :=

∫ v

0 F (r)dr. 
Given two random variables X and Y , X d= Y means that X and Y have the same dis-
tribution. Moreover, we write L(X |W) for the law of the random variable conditioned 
upon the σ-algebra associated with a Brownian path W .

1.5. Acknowledgments

BG acknowledges support by the Max Planck Society through the Research Group 
“Stochastic analysis in the sciences”. This work was funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) - SFB 1283/2 2021 - 317210226. PES 
was partially supported by the National Science Foundation grants DMS-1900599 and 
DMS-2153822, the Office for Naval Research grant N000141712095 and the Air Force 
Office for Scientific Research grant FA9550-18-1-0494.

2. Qualitative convergence for homogeneous equations

We consider general SPDEs of the type

du = F (Du, D2u)dt +
m∑

i=1
Hi(Du) ◦ dBi in Td × R+, (2.1)

where B = (B1, . . . , Bm) is a m-dimensional Brownian motion and

F = F (p, X) is continuous and non-decreasing in X and F (0, 0) = 0,

Hi is the difference of two convex functions, and Hi(0) = 0 for i = 1, . . . , m,
(2.2)

and present a simple argument that yields convergence to constants. The proof is qual-
itative and does not give a convergence rate but it can be applied in general settings, 
and, in particular, does not impose any restrictions on the dimension.

The results extend to the more general equations

du = F (Du, D2u)dt +
m∑

i=1
Hi(Du) ◦ dξi in Td × R+, (2.3)

where ξ = (ξ1, . . . , ξm) is any continuous, stationary, ergodic process as long as its 
restriction to intervals have full support. This is, for instance, the case of fractional 
Brownian motion.
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We recall from the introduction that, for v ∈ C(Td) and t ≥ 0, SαF +
∑m

i=1 βiHi
(t)v

denotes the solution to the deterministic initial value problem

Vt = αF (DV, D2V ) +
m∑

i=1
βiHi(DV ) in Td × R+, V (·, 0) = v,

and we assume that

there exist αn, β1
n, . . . , βm

n such that, for all v ∈ C(Td),

lim
n→∞

SαnF +
∑m

i=1 βi
nHi

(1)(v) = constant.
(2.4)

The qualitative long-time result is stated next.

Theorem 2.1. Assume (2.2) and (2.4) and B = B(ω) is a m-dimensional Brownian 
motion sample path. Let u ∈ C(Td × [0, ∞)) be a solution to (2.1). Then, almost surely 
in B, u(·, t) converges, as t → ∞ and uniformly in Td, to a constant.

Before we proceed with the proof, a number of remarks are in order.
As far as (2.4) is concerned, typically, it can be assumed that either αn = n and βi

n ≡ 0
or αn = 0 and βi

n = n, that is, that solutions to deterministic equations corresponding 
to either F or one of the Hi converge for large times to a constant.

Examples of the former are F = F (p) ≥ 0 with equality if and only if p = 0, and 
F (p, A) = Tr(a(p)A) with a(·) taking values in the set of strictly positive symmetric 
matrices. Hence, our results apply to the case

F (p, A) = Tr

(
A

(
Id − p ⊗ p

1 + |p|2
))

and H(p) =
√

1 + |p|2,

corresponding to the stochastic mean-curvature flow of a graph, where Id is the identity 
matrix. We therefore recover in a simpler way, but in a different topology, the result of 
[8] that the graph becomes asymptotically constant for large time.

It is also possible to find examples where SF and the SHi
taken separately do not 

converge. Indeed, for instance take d = m + 1 ≥ 2, F (p) = |p1|, Hi(p) = |pi+1|. On the 
other hand, (2.4) holds for αn = β1

n = . . . = βd
n = n.

The idea of the proof is classical. It combines the compactness property in the space 
variable, the continuous dependence of the solutions on the paths and the fact that, in 
large time intervals, the noise is small. For additive noise dependence, the problem was 
investigated by Dirr and Souganidis [11].

Increasing the regularity of the path ξ in (2.3), it is possible to weaken the regularity 
requirement on H. Indeed, when ξ is a Brownian motion, its trajectories take value in 
C0,α([0, T ]) for any α < 1

2 , and the support of its law in this space still contains all smooth 
functions. It follows, for example, from the results of Lions, Seeger and Souganidis [34]
that the map ξ ∈ C0,α �→ u is continuous if, for some ε > 0, H ∈ C1,ε.



P. Gassiat et al. / Journal of Functional Analysis 286 (2024) 110269 11
In principle, the proof below is flexible and could extend to x-dependent equations as 
long as the solutions are continuous with respect to the driving signal and equicontinuous 
in the space variable. The latter is delicate and, at the moment, is only known for x-
dependent equations in the case where H = H(x, Du) is convex and F ≡ 0; see [19]. 
However, in that case, we have a more precise description of the long-time dynamics 
which are discussed in section 3 below.

The proof of Theorem 2.1. Throughout the argument, without loss of generality, we as-
sume that αn > 0.

It follows from the contraction property of the solution operator of (2.3) with ξ =
(ξ1, . . . , ξm) an arbitrary continuous path (see [46]) that the map t → osc(u(·, t)) is 
non-increasing.

Thus to prove the result, it suffices to show that, for some subsequence tn → ∞, 
osc(u(·, tn)) → 0.

It follows again from the contraction property of the solutions of (2.3), the continuity 
with respect to the paths (see [46]) and the compactness of Td that, given u0 = u(·, 0)
and t ≥ 0, the set

K(u0) =
{

v(·, t) : v solves (2.1) for some path B ∈ C([0, t],Rd)
}

is compact in C(Td).
Indeed, the comparison principle and the homogeneity of (2.1) give that the equation 

preserves upper and lower bounds and modulus of continuity by a standard comparison 
argument. For instance, for the latter point, note that, for all y ∈ Rd, if v is a solution 
to (2.1), so does v(· + y, t) and, hence, the comparison principle (see [46]) yields

sup
t≥0,x∈Td

{v(x + y, t) − v(x, t)} ≤ sup
x∈Td

{u0(x + y) − u0(x)}.

The compactness implies that the convergence in (2.4) is uniform over v ∈ K(u0), 
that is,

lim
n→∞

sup
v∈K(u0)

osc
(
SαnF +

∑
i βi

nHi
(1)(v)

)
= 0, (2.5)

Recall that, for any α > 0, the law of Brownian motion has full support on C([0, α]), 
namely for any continuous function f : [0, α] → R with f(0) = 0, and any ε > 0, it holds 
that

P (∀t ∈ [0, α], |B(t) − f(t)| ≤ ε) := pα,f,ε > 0.

By independence and stationarity of increments, this further implies that,
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P (∃T ≥ 0 : ∀t ∈ [0, α], |B(t + T ) − B(T ) − f(t)| ≤ ε)

≥ sup
N≥1

P (∃0 ≤ k ≤ N : ∀t ∈ [0, α], |B(t + kα) − B(kα) − f(t)| ≤ ε)

≥ sup
N≥1

{
1 − (1 − pα,f,ε)N

}
=1.

Letting now εn → 0 be arbitrary, this implies that, almost surely, there exists Tn such 
that

sup
{

d∑
i=1

∣∣Bi(t + Tn) − Bi(Tn) − βi
nt
∣∣ , t ∈ [0, αn]

}
≤ εn.

Moreover, in view of the continuity of the solution map with respect to B and the fact 
that u(·, t) is in K(u0), we find that, for some ε′

n → 0 depending on εn and K(u0),

‖SαnF +βnH(1)(u(·, Tn)) − u(·, Tn + αn)‖∞ ≤ ε′
n.

The assertion above and (2.5) imply that osc(u(·, Tn + αn)) → 0, and, hence, the 
result. �
3. Inhomogeneous and convex Hamiltonians

We investigate here the long time behavior of Td-periodic solutions to the inhomoge-
neous Hamilton-Jacobi equation

du + H(x, Du) ◦ dξ = 0 in Td × R+ u(0, ·) = u0 on Td, (3.1)

with ξ ∈ C([0, ∞)), a special case being the stochastic Hamilton-Jacobi equation

du + H(x, Du) ◦ dB = 0 in Td × R+ u(0, ·) = u0 on Td. (3.2)

We denote by SH the solution operator (semigroup) associated to the deterministic 
evolution vt+H(x, Dv) = 0, and, for each ξ ∈ C1([0, ∞)) and each v ∈ C(Td), Sξ,[0,t]

H )(v)
is the value at time t of the solution to ut + H(x, Du) ◦ dξ = 0 and u(·, 0) = v.

Throughout the section we make two assumptions which we state next. Their role was 
already mentioned in the discussion before the proof of Theorem 2.1.

We assume that

H = H(x, p) is continuous on Td × Rd and convex in the p variable, (3.3)

and
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for any compact K ⊂ C(Td) and T > 0, the family{
Sξ,[0,T ]

H u : u ∈ K, ξ ∈ C1([0, T ])
}

is equicontinuous.
(3.4)

We remark that sufficient conditions for (3.4) to hold are given Theorem A.1 in Seeger 
[43] and Proposition 2.5 in [19]. Note that, in the periodic setting of this paper, it is true 
that H(x, p) ≤ H̄(p) for a convex H̄, and, thus, (2.8) in [19] is always satisfied. Then 
for (3.4) to hold requires additional information like local controllability in the control 
problem associated to H. Coercivity of H is, for example, sufficient but not necessary.

When H is convex in the gradient, the control representation of S±H yields a useful 
monotonicity lemma which is stated next. For the proof we refer to [19] (see also [3]).

Lemma 3.1. Assume (3.3). Then, for all t ≥ 0, S−H(t)SH(t) ≤ Id ≤ SH(t)S−H(t).

We further recall that using the lemma above repeatedly allows to prove some mono-
tonicity properties for the solution map, which in particular, in combination with the 
compactness assumption (3.4), imply that the solution map may be extended to arbi-
trary continuous ξ. In [19], these results are stated in Corollary 2.4, Corollary 2.8 and 
Corollary 2.7, which, for the convenience of the reader, we summarize in the following 
lemma and proposition.

Lemma 3.2 (Corollaries 2.4 and Corollary 2.8 in [19]). Assume (3.3). Then, for all 
ξ, ζ ∈ C1([0, T ]) such that ξ(0) = ζ(0), ξ(T ) = ζ(T ) and ξ ≤ ζ on [0, T ],

Sξ;[0,T ]
H ≥ Sζ;[0,T ]

H ,

and, for any ξ ∈ C1([0, T ]) with ξ(0) = 0,

SH

(
ξ(T ) − min

[0,T ]
ξ

)
S−H

(
− min

[0,T ]
ξ

)
≥ Sξ;[0,T ]

H ≥ S−H

(
max
[0,T ]

ξ − ξ(T )
)

SH

(
max
[0,T ]

ξ

)
.

If ξ is such that ξ(0) = inf [0,T ] ξ and ξ(T ) = sup[0,T ] ξ, then Sξ;[0,T ]
H = SH(ξ(T ) − ξ(0)). 

Similarly, if ξ(0) = sup[0,T ] ξ and ξ(T ) = inf [0,T ] ξ, then Sξ;[0,T ]
H = S−H(−ξ(T ) + ξ(0)).

Proposition 3.3 (Corollary 2.7 in [19]). Assume (3.3) and (3.4). Then,

the solution map ξ �→ Sξ,[0,T ]
H (u) admits a unique continuous extension to ξ ∈ C([0, T ]),

(3.5)
and the results of Lemma 3.2 still hold for ξ, ζ ∈ C([0, T ]).

To establish the long-time behavior of (3.3), that is, the convergence to constants, we 
need to assume that solutions to the deterministic problem, that is, when ξ(t) = ±t, 
converge in the sense that
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there exists c ∈ R such that, for each u ∈ C(Td), there exist

φ± = φ±(u) ∈ C(Td) such that ± c ± H(x, Dφ±) = 0 on Td and

SH(T )u − cT →
T →∞

φ+ and S−H(T )u + cT →
T →∞

φ− uniformly in Td.

(3.6)

It is a classical fact in the theory of viscosity solutions that the equations c +
H(x, Dφ+) = 0 and −c − H(x, Dφ−) = 0 are not equivalent except, of course, when 
there exist C1-solutions.

The fact that H and −H have opposite ergodic constants is true here due to the 
convexity of H but is not true in general; see, for example, the discussion about this 
issue in [42, Section 4.1].

Finally, sufficient conditions for the convergence in (3.6) have been obtained by several 
authors using either control or PDE arguments. The literature is very long. Here, we only 
refer to [13], which assumes that H strictly convex in the gradient, and [2] for the most 
general, in the sense that no convexity of H is required, convergence result.

In order to simplify the notation for what follows, we set Ĥ = H + c, in which case 
we may assume that c = 0 and note that the convergence in (3.6) may be restated as 
convergence, for any u ∈ C(Td), of SĤ(T )u and S−Ĥ(T )u.

We denote by E± the set of continuous solutions to ±Ĥ(x, Dφ±) = 0 and record in 
the next lemma some of its properties and provide a sketch of their proof.

Lemma 3.4. Assume (3.3) and (3.6). Then,

(i) if φ ∈ E+ (resp. φ ∈ E−), then, for each T ≥ 0, S−Ĥ(T )φ ≤ φ (resp. SĤ(T )φ ≥ φ), 
and

(ii) the maps

φ ∈ E− �→ SĤ(∞)φ := lim
D→∞

SĤ(D)φ ∈ E+ and

φ ∈ E+ �→ SĤ(−∞)φ := lim
D→∞

S−Ĥ(D)φ ∈ E−

are inverse of each other.

Proof. The first claim follows immediately from Lemma 3.1 and the fact that φ ∈ E+ if 
and only if φ = SĤ(T )φ for all T ≥ 0.

For (ii), it suffices to prove that, for each φ ∈ E+, SĤ(∞)SĤ(−∞)φ = φ, and 
this is obtained as follows: Lemma 3.1 yields that SĤ(∞)SĤ(−∞)φ ≥ φ, and (i) 
above gives that SĤ(−∞)φ ≤ φ. We then deduce from the comparison principle that 
SĤ(∞)SĤ(−∞)φ ≤ SĤ(∞)φ = φ. �

Following [14], we call a pair (φ+, φ−) ∈ E+ × E− such that φ− = S−Ĥ(∞)φ+ conju-
gate, and we denote by P the set of such pairs.

We will frequently use the following monotonicity property.
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Lemma 3.5. Let (φ+, φ−) ∈ P, and u ∈ C(Td) such that φ− ≤ u ≤ φ+. Then, for any 
ξ ∈ C([0, T ]), it holds that

φ− ≤ S
ξ,[0,T ]
Ĥ

u ≤ φ+.

Proof. By comparison, it suffices to prove the claim for u = φ− and u = φ+. If ξ

is piecewise linear, this is an immediate implication of the following inequalities (for 
arbitrary δ ≥ 0)

S−Ĥ(δ)φ− = φ− ≤ SĤ(δ)φ−, S−Ĥ(δ)φ+ ≤ φ+ = SĤ(δ)φ+,

and the general case follows by density. �
The next proposition shows that each conjugate pair is associated to a unique global 

(in time) solution to du + H(x, Du) ◦ dξ = 0.
We also show, although we will not need it later, that this correspondence is actually 

one-to-one if

there exists T > 0 such that the set
{

SH(T )u : u ∈ C(Td)
}

is equicontinuous. (3.7)

Proposition 3.6. Assume (3.3), (3.4) and (3.6), and let ξ ∈ C(R; R) be such that 
lim supt→−∞ ξ(t) = − lim inft→−∞ ξ(t) = +∞. Then,

(i) for each conjugate pair (φ+, φ−), there exists a unique solution ψ : Td ×R → R to

dψ + Ĥ(x, Dψ) ◦ dξ = 0 on Td × R, (3.8)

such that

φ−(x) ≤ ψ(x, t) ≤ φ+(x) for all t ∈ R and x ∈ Td, (3.9)

and
(ii) if, in addition (3.7) holds, then, conversely, given a solution ψ to (3.8), there exists 

a unique (φ+, φ−) ∈ P such that (3.9) holds.

Proof. To prove (i) choose a decreasing sequence (T n)n∈N such that T n →
n→∞

−∞, 
T 0 = 0, and, for n ≥ 1,

ξ(T 2n+1) = min
[T 2n+2,T 2n]

ξ, ξ(T 2n) = max
[T 2n+1,T 2n−1]

ξ,

and

Dn
+ := ξ(T 2n) − ξ(T 2n+1) → +∞, Dn

− := ξ(T 2n+1) − ξ(T 2n+2) → −∞,

n→∞ n→∞



16 P. Gassiat et al. / Journal of Functional Analysis 286 (2024) 110269
and let ψn,+ : Td × [T n, +∞) → R (resp. ψn,−) be the solution to (3.8) in Td × [T n, +∞)
with ψn,+(T n, ·) = φ+ (resp. φ−).

It follows from Lemma 3.2 and Lemma 3.4 that ψn,+ is non-decreasing (resp. ψn,− is 
non-increasing) in n, and, in addition, the comparison principle gives

‖ψn,+ − ψn,−‖∞;Td×[T n−1,∞) ≤ ‖ψn,+(T n−1, ·) − ψn,−(T n−1, ·)‖∞.

The right hand side of inequality above tends to 0, since, if, for instance, n is odd,

ψn,+(T n−1, ·) − ψn,−(T n−1, ·) = φ+ − SĤ(Dk
+)φ− →n→∞ 0.

Hence, the sequences (ψn,+)n∈N and (ψn,−)n∈N converge (locally uniformly) to a con-
tinuous function ψ on Td × R, which is a solution to (3.8) satisfying (3.9).

Assume now that ψ̃ is another function satisfying (3.8) and (3.9). Then, using again 
the comparison principle, we find ψn,− ≤ ψ̃ ≤ ψn,+, and, after letting n → ∞, we obtain 
that ψ̃ = ψ.

To prove (ii) consider next a solution ψ to (3.8). In view of (3.7), the sequence 
(ψ(T n, ·))n≥0 is compact, and, therefore, converges, up to a subsequence n′ → ∞, to 

φ ∈ C(Td). But then, assuming for instance that the n′’s are odd, ψ(T n′−1, ·) converges 
to φ+ = SĤ(∞)(φ), which, in turn, implies that ψ must coincide with the solution 
associated to φ+ was constructed in (i). �

Given π = (φ+, φ−) ∈ P and ξ as in the previous proposition, we denote by ψπ,ξ the 
unique solution to (3.8). The lemma below provides information on the behavior of ψπ,ξ

as t → ∞.

Lemma 3.7. Assume (3.3), (3.4), (3.6) and let ξ ∈ C(R; R) be such that lim supt→−∞ ξ(t)
= − lim inft→−∞ ξ(t) = lim supt→+∞ ξ(t) = − lim inft→+∞ ξ(t) = +∞. Then, for each 
π = (φ+, φ−) ∈ P,

lim sup
t→∞

ψπ,ξ(·, t) = φ+ and lim inf
t→∞

ψπ,ξ(·, t) = φ−. (3.10)

Proof. Let (Tn)n∈N be an increasing to +∞ sequence such that, for all n ∈ N,

ξ(T2n) = min
[0,T2n]

ξ and ξ(T2n+1) = max
[0,T2n+1]

ξ,

and set Dn = ξ(Tn+1) −ξ(Tn). The Dn’s have alternating signs, and |Dn| is an increasing 
sequence which diverges to +∞.

Then

SH(D2n)φ+ = φ+ ≥ ψ(T2n+1, ·) ≥ SH(D2n)φ− →n→∞ φ+,

and, similarly, ψ(T2n, ·) → φ− as n → ∞. �
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Remark 3.8. For t ∈ R, and ξ as in Proposition 3.6, let ξt := ξ(· − t). It is clear that, for 
any π ∈ P ,

ψπ,ξt

= ψπ,ξ(·, · − t).

In particular, if ξ is drawn according to a process whose law is invariant with respect 
to time-shifts, then the same invariance holds for the law of ψ. This is, for instance, the 
case when ξ is a two-sided Brownian motion.

The main result of this section asserts that any solution on Td × [0, ∞) gets, in the 
t → ∞ limit, close to a global in time solution ψ as in Proposition 3.6.

Theorem 3.9. Let H satisfy (3.3), (3.4) and (3.6) and assume that ξ ∈ C([0, ∞)) is such 
that lim supt→∞ ξ(t) = − lim inft→∞ ξ(t) = +∞. Then, for any solution u to

du + H(x, Du) ◦ dξ(t) = 0 on Td × [0, ∞) u(0, ·) = u0 ∈ C(Td),

there exists a conjugate pair (φ+, φ−) such that

u(x, t) = c ξ(t) + ψ(t, x) + ot→+∞(1) (3.11)

where

φ− ≤ ψ ≤ φ+, lim sup
t→∞

ψ(·, t) = φ+ and lim inf
t→∞

ψ(·, t) = φ−.

Proof. Replacing H by Ĥ if necessary, we may assume that c = 0.
Without loss of generality, we may assume that ξ is extended to R and is unbounded 

for negative times, so that there exists a global solution ψ associated to each conjugate 
pair as in Proposition 3.6. Of course, ψ may depend on the choice of the extension, but 
(3.11) will hold for all choices.

Let T2n, T2n+1, Dn be as in the proof of Lemma 3.7. Due to the assumed equiconti-
nuity, there exists a subsequence n′ such that u(T2n′) converges to some φ−. Then by 
assumption (3.6), u(T2n′+1) converges to φ+ = SH(∞)φ−.

Note that Lemma 3.1 implies that, for each n,

SH(T2n+2)SH(T2n+1)(φ−) ≥ SH(D2n+2 + D2n+1)(φ−) = φ−

and by induction, for all n, m ≥ 0,

Sξ,[T2n,T2n+2m]
H (φ−) ≥ φ−. (3.12)

It follows that, for any other subsequence n′′ = n′ + m′ with u(T2n′′) → φ̂−,

φ̂− = lim S
ξ,[T2n′ ,T2n′+2m′ ]
H (u(Tn)) ≥ φ−
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and, after reversing the roles of φ−, φ̂−, we obtain that in fact (3.12) is an equality, that 
is.

φ− = lim
n→∞

u(T2n)

and then obviously

φ+ = lim
n→∞

u(T2n+1) = SH(+∞)φ−.

Letting ψ be the solution given by Proposition 3.6 and satisfying φ− ≤ ψ ≤ φ+, the 
comparison principle then implies that limn→∞ ‖u(·, Tn) − ψ(·, Tn)‖∞ = 0. �

The pair (φ+, φ−) above is in general not unique, so that the limiting behavior may 
depend on both the signal ξ and the initial condition u0. Recall that, in the deterministic 
case (ξ(t) = t), φ+ can be obtained from u0 via a rather explicit Hopf-type formula (see 
[9]). Whether there exists such a simple relation in the case of oscillating ξ is an open 
question.

We now turn to (3.1) with u0 ∈ C(Td) fixed and B = B(ω) drawn according 
to the probability distribution of a (two-sided) Brownian motion, and let Π(ω) =
(Φ+(ω), Φ−(ω)) be the (random) conjugate pair given by Theorem 3.9. We now discuss 
the law of the random variable Φ+. Its support in the space C(Td) is easily characterized 
by the following proposition.

Proposition 3.10.

(i) We have

Supp(Φ+) =
{

SĤ(∞)Sξ;[0,1]
Ĥ

u0; ξ ∈ C([0, 1])
}

, (3.13)

where the closure is taken with respect to the sup-norm.
(ii) Let φ+

+∞ = SĤ(∞)u0 and φ+
−∞ = SĤ(∞)S−Ĥ(∞)u0. Then φ+

+∞ (resp. φ+
−∞) is 

the smallest (resp. largest) function in Supp(Φ+).
(iii) If φ− ≤ u0 ≤ φ+, for some (φ+, φ−) ∈ P, then Supp(Φ+) = {φ+}.

Proof. To prove (i) observe that Supp(Φ+) is contained in the set in the right, since

Φ+(ω) = SĤ(∞)Φ+(ω) = lim sup
t→∞

SĤ(∞)Sξ;[0,t]
Ĥ

u0.

For the reverse inclusion, let φ+ = SĤ(∞)Sξ

Ĥ
u0 and define ξ(n) ∈ C([0, 2]) by ξ(n) = ξ

on [0, 1] and ξ̇ = n on [1, 2]. Then, the continuity of the solution map yields εn → 0 such 
that, if ‖B − ξ(n)‖∞;[0,2] ≤ n−1, then ‖u(2, ·) − φ+‖∞ ≤ εn, and, hence,
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‖Φ+(ω) − φ+‖ ≤ εn.

Since, in view of the full support property of Brownian motion, the event {ω ∈ Ω :
‖B − ξ(n)‖∞;[0,2] ≤ n−1} has positive probability, it follows that φ+ is in the support of 
Φ+.

To prove (ii), let ξ ∈ C([0, 1]) with ξ(0) = 0. Then Lemma 3.2 yields that

Sξ

Ĥ
u0 ≥ S−Ĥ(γ)SĤ(D)u0,

where D = max[0,1] ξ, γ = max[0,1] ξ − ξ(1) both being non-negative.
It then follows from Lemma 3.1 that

SĤ(∞)S−Ĥ(γ)SĤ(D)u0 ≥ SĤ(∞)u0,

which implies that φ+
+∞ is indeed the smallest element of the support.

Similarly, for D′ = − min[0,1] ξ, γ′ = − min[0,1] ξ + ξ(1), we have by Lemma 3.2 that

Sξ

Ĥ
u0 ≤ SĤ(γ′)S−Ĥ(D′)u0 ≤ S

and then by Lemma 3.1

SĤ(∞)Sξ

Ĥ
u0 ≤ SĤ(∞)S−Ĥ(D′)u0

≤ SĤ(∞)SĤ(n)S−Ĥ(n)S−Ĥ(D′) →n→∞ SĤ(∞)S−Ĥ(∞)u0,

so that φ+
−∞ is the largest element of the support.

Finally, for (iii) observe that the assumption on u0 implies that φ+
+∞ = φ+

−∞ = φ+, 
hence, the result is a consequence of (ii). �

A simple example, already considered in section 2, is the homogeneous Hamiltonian 
H = H(p) with H(0) = 0 < H(p) for p �= 0. Then c = 0, E+ = E− = R, and 
Proposition 3.10 implies that

Supp(Φ+) = [inf u0, sup u0] .

In particular, in this case Φ+(ω) is not a constant random variable unless u0 is constant.
It is also not difficult to construct an example where Φ+(ω) is not even constant 

modulo additive scalars. Indeed, in view of the previous conclusion, it suffices to construct 
H and u0 so that the difference of SĤ(∞)u0 and SĤ(∞)S−Ĥ(∞)u0 is not constant.

Next we consider the large-time value of a solution to (3.2), still in the case of a 
driving Brownian motion, where, in view of Theorem 3.9,

u(x, t) = cB(t) + ψΠ(ω)(x, t, ω) + ot→+∞(1).
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It follows that u(·, t) depends, up to a small error, on (i) the macroscopic position given 
by cB(t), (ii) the limiting upper/lower profiles Π = (Φ+, Φ−), and (iii) the actual value 
of the associated stationary solution ψ(t, ω) at time. The result below states, roughly 
speaking, that these three factors are independent in the large time limit.

Theorem 3.11. Assume (3.3), (3.4) and (3.6), and let u be a Td-periodic solution to 
(3.2) with B Brownian motion. Then, there exist three independent random variables 
Z ∼ N (0, 1) and B, B′ two-sided Brownian motions, such that, in law and with respect 
the sup-norm topology for the second component,

(
B(t)√

t
, u(·, t) − cB(t)

)
→

t→∞

(
Z, ψΠ(B),B′

(·, 0)
)

. (3.14)

Proof. We split [0, t] into the three disjoint intervals

I1
t = [0,

√
t], I2

t = [
√

t, t −
√

t] and I3
t = [t −

√
t, t],

noting that 
√

t could be replaced by any function growing to infinity slower than t.
The idea of the proof is that, up to a small error, each of Φ+, B(t)√

t
, ψ(·, t) are deter-

mined respectively by the value of the increments of B on these subintervals.
Fix ε > 0. It suffices to show that, for each t > 0 and i = 1, 2, 3, there exist independent 

Brownian motions Bi,t such that

lim
t→∞

P

(∣∣B2,t(t) − B(t)
∣∣

√
t

+
∥∥∥u(·, t) − cB(t) − ψΠ(B1,t),B3,t

(·, t)
∥∥∥ ≤ 3ε

)
= 1. (3.15)

Let

At :=
{

there exist φ ∈ E+ and s ∈ I1
t such that ‖u(·, s) − φ‖ ≤ ε

}
,

and note that there exists some (deterministic) Tε so that

At ⊃
{

max
s∈I1

t

(
B(s) − min

[0,s]
B

)
≥ Tε

}
.

Indeed, it suffices to choose Tε such that

sup
ξ∈C([0,1])

∥∥∥SĤ(∞)Sξ,[0,1]
Ĥ

u0 − SĤ(Tε)Sξ,[0,1]
Ĥ

u0

∥∥∥
∞

≤ ε,

which exists by (3.4) and (3.6).
It then follows from the scaling properties of the Brownian motion that, as t → ∞,

P (At) ≥ P

(
max

(
B(s) − min B

)
≥ t−1/4Tε

)
→ 1.
s∈[0,1] [0,s]
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Also note that, for φ as in the definition of the event, on At we have ‖Φ+ − φ‖ ≤ ε.
Furthermore, let

A′
t := {max

I3
t

B − min
I3

t

B ≥ T ′
ε}.

It follows that, if T ′
ε is large enough, then, on A′

t,

sup
φ+∈E+

sup
ξ∈C([0,1])

∥∥∥SB,I3
t

Ĥ
Sξ,[0,1]

Ĥ
φ+ − ψB,φ+

∥∥∥ ≤ ε. (3.16)

Indeed, it suffices to choose T ′
ε so that

sup
φ+∈Supp(Φ+(u0))

‖φ+ − SĤ(T ′
ε)(φ−)‖∞ + ‖φ− − S−Ĥ(T ′

ε)(φ+)‖∞ ≤ ε,

with φ− the conjugate of φ+.
Let τ1 and τ2 be the times where B attains its minimum and maximum in I3

t . Then, 
assuming for instance that τ1 < τ2, we find that, for any ξ in C([0, 1]),

SB,I3
t

Ĥ
Sξ,[0,1]

Ĥ
φ+ ≤ SB,[τ2,t]

Ĥ
φ+

and

SB,I3
t

Ĥ
Sξ,[0,1]

Ĥ
φ+ ≥ SB,[τ1,t]

Ĥ
φ− ≥ SB,[τ2,t]

Ĥ
SĤ(T ′

ε)φ− ≥ SB,[τ2,t]
Ĥ

φ+ − ε.

Since φ− ≤ ψ ≤ φ+ at all times, ψB,φ+ also satisfies the same inequalities, (3.16) follows.
For i = 1, 2, 3, let Bi,t be independent Brownian motions with the same increments 

as B on Ii
t and note that on At, again choosing φ as in the definition of the event, it 

holds that

‖Φ+(B1,t) − φ‖ ≤ ε.

Then, on At ∩ A′
t, we have

u(·, t) − cB(t) = S
B;I3

t

Ĥ
S

B;[s,t−
√

t]
Ĥ

φ ± ε = ψφ,B3,t

(·, t) ± 2ε = ψΦ+(B1,t),B3,t

(·, t) ± 3ε,

where by ±ε we mean any function with sup-norm less than ε.
Then (3.15) follows, since we clearly also have that

P

(
B2,t(t) − B(t)√

t
≥ ε

)
→ 0 as t → ∞. �

We remark that in many cases of interest, solutions of E+ and E− are unique up 
to additive constants. This is, for example, the case if H(x, p) = 1 |p|2 − V (x) with 
2
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V ∈ C(Td) attaining its minimum at a unique point of Td, or if H(x, p) = a(x)
√

1 + |p|2
where a > 0 attains its maximum at a unique point.

For the reader’s convenience, we state the results in this case, where, in particular, 
any two solutions to the equation to (3.1) on [0, ∞) × Td become asymptotically close, 
as t → ∞, up to a constant.

Corollary 3.12. Assume that H satisfies (3.3), (3.4) and (3.6), and, in addition, that

P =
{

(φ+
0 + k, φ−

0 + k) : k ∈ R
}

for some φ+
0 , φ−

0 ∈ C(Td).

Then, given ξ ∈ C(R) which is unbounded from above and below at ±∞,

(i) there exists a unique solution ψ to dψ + Ĥ(x, Dψ) ◦ dξ = 0 on Td × R such that 
φ−

0 ≤ ψ ≤ φ+
0 ,

(ii) given any solution u to du + H(x, Du) ◦ dξ = 0 on Td × [0, ∞), there exists a 
constant k = k(u(·, 0), ξ) such that

lim
t→∞

‖u(·, t) − cξ(t) − ψ(·, t) − k‖∞ = 0,

(iii) when ξ = B(ω) is a (two-sided) Brownian motion, then, in law and the sup-norm 
in the second argument,

(
B(t)√

t
, u(·, t) − cB(t)

)
→

t→+∞

(
Z, ψB′

(·, 0) + k(u0, B)
)

,

with Z ∼ N (0, 1), and the Brownian motions B, B′, are independent.

4. Quantitative estimates for homogeneous SPDE

4.1. Convergence due to stochastic fluctuations

We fix ξ ∈ C([0, ∞)) and consider the long-time behavior of parabolic-hyperbolic 
SPDEs of the form

du = ∂x(F (∂xu))dt + H(∂xu) ◦ dξ in T × R+, (4.1)

including as a special case

du = ∂x(F (∂xu))dt + H(∂xu) ◦ dB in T × R+, (4.2)

and prove, exploiting only the fluctuating part H(∂xu) ◦ dξ, that solutions converge to 
constants for large times. In particular, the results also apply to problems with F ≡ 0, 
that is, SPDEs like
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du = H(∂xu) ◦ dξ in T × R+.

The main focus of this section is on the derivation of quantitative results which lead 
to improved rates of convergence due to stochasticity in the following sections.

We begin with a qualitative convergence result (Theorem 4.1), which can be shown 
under weaker assumptions than the quantitative statements following below. In this 
qualitative form and for F ≡ 0, this result was first obtained in [36].

Throughout the subsection we assume that

H = H1 − H2 for two convex functions H1, H2 : R → R, and H(0) = 0. (4.3)

In addition, in the following result we will require that

H(p) > 0 for all p ∈ R \ {0}. (4.4)

Theorem 4.1. Assume (4.3) and (4.4), F ∈ C1(R) is non-decreasing, u0 ∈ C(T ), ξ ∈
C([0, ∞)) with lim supt→∞ |ξ(t)| = +∞, and let u be the viscosity solution to (4.1) with 
initial condition u0. Then, there exists a constant u∞ such that

lim
t→∞

‖u(·, t) − u∞‖ = 0.

If ξ = ξ(ω) is an a.s. unbounded and continuous martingale, then E[u∞] =
∫
T u0.

Proof. We first assume that u0 ∈ C2(T ), consider a smooth approximation ξε of ξ and 
the unique viscosity solution uε to

uε
t = ∂x(F (uε

x)) + H(uε
x)ξ̇ε in T × R+ uε(0, ·) = u0 on T ,

and recall that, in view of [35], as ε → 0 and for all T > 0, uε → u in C(T × [0, T ]).
In addition, since H(0) = 0, we also have (see [35]), for all t ∈ R+,

‖uε(·, t)‖ ≤ ‖u0‖ and ‖uε
x(·, t)‖ ≤ ‖u0x‖. (4.5)

Next, we observe that vε = uε
x is the entropy solution to

vε
t = ∂xx(F (vε)) + ∂xH(vε)ξ̇ε in T × R+ vε(0, ·) = u0,x on T ,

and, thus, for any convex and smooth E : R → R, we have

d

dt

∫
T

E(vε)dx ≤ −
∫
T

E′′(vε)F ′(vε)(vε
x)2dx −

∫
T

E′′(vε)vε
xH(vε)ξ̇εdx

= −
∫
T

E′′(vε)F ′(vε)(vε
x)2dx ≤ 0.
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By an additional approximation argument, we may assume that H, H1 and H2 in (4.4)
are smooth, and, hence, using the previous observation with E = H1 and E = E2 yields 
that, for i = 1, 2,

t �→ Nε
i (t) :=

∫
Hi(uε

x(x, t))dx is non-increasing. (4.6)

Thus, the map

t �→ Nε(t) :=
∫

H(uε
x(x, t))dx = Nε

1 (t) − Nε
2 (t)

is of bounded variation, and, in view of (4.5), ‖Nε‖BV is uniformly bounded. It follows 
that, along subsequences, Nε ⇀ N weak-� in BVloc(R+) for some N ∈ BVloc(R+).

We also know that, for all t ∈ R+,

‖vε(·, t)‖ ≤ ‖v0‖ and ‖vε(t)‖BV ≤ ‖v0‖BV . (4.7)

Then the Aubin-Lions-Simon Lemma (see Simon [44, Theorem 5]) together with the 
equicontinuity of the uε’s imply that vε → v = ux in Cloc(R+; L1(T )).

It follows from the dominated convergence theorem that

Nε(t) → N(t) =
∫
T

H(ux(x, t))dx and

Nε
1 (t) → N1(t) =

∫
T

H1(ux(x, t))dx and Nε
2 (t) → N2(t) =

∫
T

H2(ux(x, t))dx,

and, finally, in view of (4.6) and (4.7), N1 and N2 are both non-increasing and bounded.
A standard approximation argument yields

∫
T

uε(x, t)dx −
∫
T

uε(x, s)dx =
t∫

s

⎛
⎝∫

T

H(uε
x(x, s))dx

⎞
⎠ dξε

s =
t∫

s

Nεdξε

= Nε(t) (ξε(t) − ξε(s)) −
t∫

s

(ξε(u) − ξε(s))dNε(u),

(4.8)

where the right hand side is a Stieltjes integral.
In view of the convergences in ε shown above, we can pass to the limit ε → 0 in (4.8)

to obtain that

∫
u(x, t)dx −

∫
u(x, s)dx = N(t) (ξ(t) − ξ(s)) −

t∫
(ξ(u) − ξ(s))dN(u). (4.9)
T T s
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If t > 0 and s ∈ [0, t] are such that ξ achieves its minimum on [s, t] at s and its 
maximum at t, we deduce from (4.9) that

N(t) =
∫
T u(x, t)dx −

∫
T u(x, s)dx

ξ(t) − ξ(s) +
t∫

s

ξ(u) − ξ(s)
ξ(t) − ξ(s) dN(u)

≤ max u0 − min u0

ξ(t) − ξ(s) + N2(s) − N2(t).

(4.10)

Finally, since N i(t) is non-increasing and bounded, the limits

N∞ := lim
t→∞

N(t) = lim
t→∞

N1(t) − lim
t→∞

N2(t)

exist.
In view of the fact that lim supt→∞ |ξ(t)| = +∞, (4.10) implies that there is a sequence 

tn → ∞ along which N(tn) → 0.
Hence, N∞ = 0 and

lim
t→∞

∫
T

H(ux(t))dx = 0, (4.11)

which, in view of (4.4), implies that

ux(·, t) →
t→∞

0 in measure. (4.12)

The equicontinuity and equiboundedness of the family (u(·, t))t≥0 yields that, along 
subsequences tn → ∞, u(·, tn) → u∞ uniformly for some bounded and Lipschitz contin-
uous u∞.

It follows from (4.12) that u∞,x = 0 a.e. which implies that u∞ is a constant.
Since (4.1) admits a comparison principle, the constant u∞ is independent of the 

chosen subsequence and thus

lim
t→∞

‖u(·, t) − u∞‖ = 0.

In addition, if ξ = ξ(ω) is given as paths of an a.s. unbounded, continuous martingale, 
then, taking expectations in (4.9) gives

E

∫
T

u(x, t)dx −
∫
T

u0(x)dx = 0,

and the claim follows after letting t → ∞.
It remains to remove the assumption that u0 is smooth. Indeed, given u0 ∈ C(T ), 

choose u±,ε
0 ∈ C2(T ) such that
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lim
ε→0

‖u±,ε
0 − u0‖ = 0, ‖u+,ε

0 − u−,ε
0 ‖ ≤ ε and u+,ε

0 ≥ u0 ≥ u−,ε
0 .

It follows from the comparison principle for (4.1) and the asymptotic behavior of the 
solutions for smooth data that there are constant u±,ε

∞ such that

u+,ε(·, t) ≥ u(·, t) ≥ u−,ε(·, t) and, as t → ∞, u±,ε(·, t) → u±,ε
∞ .

Since

‖u+,ε(·, t) − u−,ε(·, t)‖ ≤ ‖u+,ε
0 − u−,ε

0 ‖ ≤ ε,

we have

|u+,ε
∞ − u−,ε

∞ | ≤ ε

and the claim follows. �
Remark 4.2. In the setting of Theorem 4.1 with ξ(ω) an a.s. unbounded, continuous 
martingale, there is, in general, no additional information on u∞, which as shown in [36]
can be random. However, when H(p) = |p| and F ≡ 0, if u solves (4.1), then, for any 
non-decreasing and continuous ϕ, ϕ(u) is also a solution, and, hence,

E[ϕ(u∞)] =
∫
T

ϕ(u0)dx,

a fact which implies that Law(u∞) = (u0)∗dx.

The next result is a quantitative version of Theorem 4.1. For this, we assume that

there exists α ∈ (0, 1] such that H ≥ αH1, (4.13)

a fact which can be seen as a way to quantify the growth of the Hamiltonian H away 
from its minimum H(0) = 0.

Theorem 4.3. Assume (4.3), (4.4), (4.13), F ∈ C1(R) is non-decreasing, u0 ∈
C(T ) ∩ W 1,1(T ), ξ ∈ C([0, ∞)), and let u be the solution to (4.1) with initial condi-
tion u0. Then, there exists C = C(α) > 0 such that, for all T ≥ 0,∫

T

H1(ux(x, T )) dx ≤ C
max u0 − min u0

maxt∈[0,T ](ξ(t) − min[0,t] ξ) . (4.14)

If, moreover, H1 is even, then, for all T ≥ 0,∫
H1(ux(x, T ))dx ≤ C

max u0 − min u0

max[0,T ] ξ − min[0,T ] ξ
. (4.15)
T
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Proof. As in the proof of Theorem 4.1 we first assume that u0 ∈ C2(T ).
Fix an arbitrary time interval [s0, t0] and let s, t ∈ [s0, t0] be such that s ≤ t and

max
t∈[s0,t0]

(ξ(t) − min
[s0,t]

ξ) = ξ(t) − ξ(s).

Using an argument similar to the one leading to (4.10) and recalling that dN = dN1 −
dN2 with N1 and N2 non-increasing, we get

N(t) ≤ max u0 − min u0

ξ(t) − ξ(s) + N2(t) − N2(s) ≤ max u0 − min u0

ξ(t) − ξ(s) + N2(s) − N2(t).

Since N1 is non-increasing and, in view of (4.13), N2 ≤ (1 − α)N1, we finally get

N1(t0) ≤ N1(t) ≤ max u0 − min u0

maxt∈[s0,t0](ξ(t) − min[s0,t] ξ) + (1 − α)N1(s). (4.16)

To obtain the general estimate, we first notice that, without loss of generality, we can 
choose η > 0 such that β := 1 − α + η < 1 and N ∈ N maximal so that

max
t∈[0,T ]

(ξ(t) − min
[0,t]

ξ) ≥ (max u0 − min u0) 1
N1(0)η

N∑
k=1

β−k. (4.17)

Otherwise,

N1(T ) ≤ N1(0) ≤ 1
ηβ

max u0 − min u0

maxt∈[0,T ](ξ(t) − min[0,t] ξ)

and nothing remains to be shown.
Next, notice that we can choose a partition of [0, T ] consisting of intervals Ik =

[tk, tk+1], with k = 1, . . . , N , such that

N∑
k=1

max
t∈[tk,tk+1]

(ξ(t) − min
[tk,t]

ξ) ≥ max
t∈[0,T ]

(ξ(t) − min
[0,t]

ξ)

and, in view of (4.17),

max u0 − min u0

maxIk
ξ − minIk

ξ
= η(1 − α + η)k−1N1(0).

Applying (4.16) sequentially on the intervals Ik we obtain that

N1(T ) ≤ βN N1(0).
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Since N is chosen maximal for (4.17) we have, for some constant C = C(β) > 0,

max
t∈[0,T ]

(ξ(t) − min
[0,t]

ξ) ≤ C
max u0 − min u0

N1(0)ηβN

and we conclude that

N1(T ) ≤ βN N1(0) ≤ C
max u0 − min u0

maxt∈[0,T ](ξ(t) − min[0,t] ξ) .

To obtain the result for u0 ∈ C(T ) ∩ W 1,1(T ), we approximate u0 by smooth functions 
uε

0 obtained by mollification. Since, as ε → 0, uε
0 → u0 in W 1,1, we have that uε → u

uniformly and uε
x → ux in Ct(L1

x). Then the statement follows from convexity of H1 and 
Fatou’s Lemma.

For the proof of the last claim, we observe that, by symmetry, we also have the 
estimate ∫

H1(−ux(T ))dx ≤ C
max u0 − min u0

maxt∈[0,T ](−ξ(t) + max[0,t] ξ) , (4.18)

which implies the estimate in case H1 is even. �
Next, we discuss a number of concrete examples.

Example 4.4. We consider the 2-d stochastic mean curvature flow in graph form per-
turbed by homogeneous noise

du = δ
∂xxu

1 + (∂xu)2 dt +
√

1 + (∂xu)2 ◦ dB, (4.19)

with initial condition u0 ∈ C(T ) ∩ W 1,1(T ), and B Brownian motion. A simple calcu-
lation shows that (4.19) can be recast as (4.1) with F (p) = δ arctan(p) and H(p) =√

1 + |p|2.
The only issue with applying Theorem 4.3 is that H(0) = 1. This can be resolved by 

an elementary change of unknown: Indeed, it is immediate that ũ := u − B solves

dũ = δ
∂xxũ

1 + (∂xũ)2 dt + (
√

1 + (∂xũ)2 − 1) ◦ dB

while ũx = ux. Now H(p) =
√

1 + p2 − 1 satisfies all the assumptions of Theorem 4.3. 
Since the conclusions of the theorem concern ũx, next we write them using ux.

It follows that ∫
(
√

1 + u2
x − 1)dx ≤ C

max u0 − min u0

maxt∈[0,T ] B − min[0,T ] B
(4.20)
T
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and, thus,

‖u(T ) −
∫
T

u(T )dx‖∞ ≤ C
max u0 − min u0

maxt∈[0,T ] B − min[0,T ] B
.

The last estimate is pathwise and quantified and improves [12, Proposition 4.1], which 
proved the qualitative convergence in mean E‖u(T ) −

∫
T u(T )dx‖2

H1 → 0.

Example 4.5. We consider the Ohta-Kawasaki equation with spatially homogeneous noise 
(see, for example, Kawasaki and Ohta [28] and Katsoulakis and Kho [27])

du = δ
∂xxu

1 + (∂xu)2 dt + (1 + (∂xu)2) 1
4 ◦ dB (4.21)

with δ ≥ 0, and Lipschitz continuous initial condition u0, which, as per the discussion 
in the previous example, can be transformed to

dũ = δ
∂xxũ

1 + (∂xũ)2 dt + (1 + (∂xũ)2) 1
4 − 1) ◦ dB

without changing the x-derivative.
It is immediate that H(p) = (1 + p2) 1

4 − 1 satisfies (4.3).
Moreover,

H ′(p) = 1
2(1 + p2)− 3

4 p, H ′′(p) = 1
2(1 + p2)− 3

4 − 3
4(1 + p2)− 7

4 p2 =: H ′′
1 − H ′′

2 ,

with

H1(p) :=
p∫

0

p1∫
0

1
2(1 + p2

2)− 3
4 dp2 dp1

and, since H ′′
1 ≥ 0 and H ′′

2 ≥ 0, it follows that H = H1 − H2 is the difference of two 
convex functions.

Finally, to check (4.13) we observe that, for |p| ≤ K, there exists η ∈ (0, 1) so that 
H ′′ ≥ ηH ′′

1 . Moreover, there is a constant C such that

H(p) ≥ C
1

1 + K3/2 |p|2.

Since ‖ux(·, t)‖ ≤ ‖u0,x‖, it follows that we can thus apply Theorem 4.3.
Hence, there is a constant C > 0, which may depend on ‖u0‖Lip but not on δ such 

that

‖u(·, T ) −
∫

u(x, T )dx‖∞ ≤ C

osc0,T B
. (4.22)
T
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Remark 4.6. As seen in the two examples with δ = 0, in contrast to [12, Proposition 4.1], 
the proof given here does not rely on the (degenerate) viscosity of the mean curvature 
operator, but exploits exclusively the convexity of the Hamiltonian in the stochastic 
term.

Next we show that iterating the estimate in Theorem 4.3 allows to improve the de-
pendency on the initial condition and the speed of convergence in T .

In preparation, given a path ξ : [0, T ] → R and C > 0, we define the times τC
k by

τC
0 := 0, τC

k+1 := inf
{

t ≥ τC
k , osc(ξ)τC

k ,t = C
}

∧ T, (4.23)

and

NC
0,T (ξ) := sup{k ≥ 0 : τC

k < T}, (4.24)

where osc(ξ)s,t denotes the oscillation of ξ on the time interval [s, t].
We have the following auxiliary lemma.

Lemma 4.7. Let B be a Brownian motion. Then NC
0,T (B) ∼

T →∞
cC−1/2T almost surely, 

where c = E[τ1
1 ] < ∞.

Proof. Note that by the strong Markov property, (τC
n+1 − τC

n )n≥0 are i.i.d., and, in view 
of the Brownian scaling, equal in law to C1/2τ1

1 . Then the strong law of large numbers 
implies that, a.s.,

τC
N ∼N→∞ NC1/2E[τ1

1 ],

which yields the result. �
Next we state the following improvement of Theorem 4.3 for which we need to quantify 

the growth of H by assuming that

there exist C1 > 0, C2 ≥ 0 and q ≥ 1 such that, for all p ∈ R, H1(p) ≥ C1 (|p|q − C2) .

(4.25)
Recall that the total variation of a function u : T → R is defined by

‖u‖T V = sup

⎧⎨
⎩
∫
T

uφx, φ ∈ C1(T ), ‖φ‖∞ ≤ 1

⎫⎬
⎭ ,

and that it coincides with ‖ux‖L1 when u ∈ W 1,1(T ).
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Theorem 4.8. Assume (4.3), (4.13), (4.25), F ∈ C1(R) non-decreasing, u0 ∈ C(T ), and 
ξ ∈ C([0, ∞)) with lim supt→∞ |ξ(t)| = +∞, and let u be the solution to (4.1) with initial 
condition u0. There exist c, C > 0 depending only on q and α such that, if q = 1, then, 
for all T > 0,

‖u(·, T )‖T V ≤ e−cN
C/C1
0,T (ξ)osc(u0) + CC2, (4.26)

and, if q > 1,

‖ux(·, T )‖Lq ≤ C
(

(C1osc0,T ξ)− 1
q−1 + C

1/q
2

)
. (4.27)

Notably, the latter bound is uniform with respect to the initial condition.

Proof. As in the proof of Theorem 4.3, by approximation, it is sufficient to consider 
u0 ∈ C2(T ).

Note that (4.25) and Hölder’s inequality imply that

osc(u(·, t))q ≤ ‖ux(·, t)‖q
Lq ≤ 1

C1

(∫
H1(ux(y, t))dy

)
∧
(∫

H1(−ux(y, t))dy

)
+ C2.

(4.28)
When q = 1, we consider the stopping times τk = τ

2C/C′
1

k with C the constant from 
Theorem 4.3, which we can apply repeatedly to get that

osc(u(·, τk+1)) ≤ ‖ux(·, τk+1)‖L1 ≤ osc(u(τk))
2 + C2,

and, by induction,

osc(u(·, τN )) ≤ osc(u0)
2N

+ 2C2.

When q > 1, we let

C ′′ = 2q+1 C

C1
,

where C is the constant from Theorem 4.3, and assume that, for some N ∈ Z, such that 
2N ≥ C

1/q
2 ,

osc0,T ξ ≥ C ′′
∞∑

k=N

(2k)1−q.

We can then find (tk)k≤−N such that

lim tk = 0, t−N = T and osctk,tk+1ξ ≥ C ′′(2k)1−q.

k→−∞
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Next we note that, if we assume that, for some k > N ,

osc(u(t−k)) ≤ 2k + C
1/q
2 , (4.29)

then combining again Theorem 4.3 and (4.28), we find

osc(u(·, t−k+1)) ≤ ‖u(·, t−k+1)‖Lq ≤
(

C

C1

2k + C
1/q
2

C ′′(2k)1−q
+ C2

)1/q

≤
(

2k + 2N

2q+12k(1−q) + C2

)1/q

≤ 2k−1 + C
1/q
2 .

Since it is clear that (4.29) holds for k large enough, using induction we get

osc(u(T )) ≤ 2N + C
1/q
2 ,

and choosing the smallest N satisfying the required constraints, we conclude. �
Remark 4.9. When q > 1, the decay rate in Theorem 4.8 is optimal. Indeed, recall that in 
the first-order deterministic setting, that is, F ≡ 0, H convex, and ξ(t) = t, the solution 
is given by the Lax-Oleinik formula

u(x, t) = sup
y∈T1

{
u0(y) − tL

(
y − x

t

)}
,

where L is the convex conjugate of H. In particular, if H(p) = |p|q, with q > 1, then 
L(v) = Cq|v|q/(q−1). Simple choices of u0 then lead to solutions satisfying osc(u(t)) �
t−1/(q−1), which is the same rate as in the theorem.

Remark 4.10. In order to get optimal constants in the exponential in (4.26), we need 
to replace 2 by any ρ > 1 in the proof of Theorem 4.8. This leads to c = ln(ρ) and 
C = ρC/C1. If ξ = B is a Brownian motion, the overall dependence in the exponential 
is of order ln(ρ)ρ−1/2, which achieves its maximum value 2/e when ρ = e2.

We conclude this subsection remarking that, in the special case of a quadratic Hamil-
tonian, under a specific condition on the dissipation and when ξ = B is a Brownian 
motion, we can apply the results of Gassiat and Gess [18] to obtain estimates on the 
Lipschitz constant of the solution. The decay is of the same order in t as that given by 
Theorem 4.8 but in a stronger topology.

Proposition 4.11 (Quadratic Hamiltonian). Let u solve

∂tu = g(∂xu)∂xxu + 1(∂xu)2 ◦ dB(t)
2
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where B is a Brownian motion and g ≥ 0 is continuous and satisfies, for some 
Cg ∈ [0, 1/2) and in the sense of distributions, g′′ ≤ Cg. Then, there exist (0, ∞)-valued 

random variables (C(t))t≥0 and Z such that, for each t > 0, C(t) d= t1/2Z, and

‖ux(·, t)‖ ≤ 1
C(t) . (4.30)

Proof. It follows from [18] that, for each t > 0,

‖ (uxx(·, t))+ ‖ ≤ 1
Xt

,

where X is the (maximal continuous) solution to

X0 = 0, X ≥ 0, dX = −Cg

X
dt − dB when X > 0.

The fact that Cg < 1
2 ensures that X is a Bessel process of dimension in (0, 1), and, in 

particular, is a.s. positive for a.e. t > 0.
Since ‖∂xu(t)‖ is non-increasing in t and, in view of the 1-periodicity of u, ‖ux(·, t)‖ ≤

‖uxx(·, t)+‖, we obtain (4.30) with

C(t) = max
0≤s≤t

Xs.

The existence of the random variable Z follows immediately from the scaling invariance 
of Bessel processes. �
4.2. Convergence due to dissipation

Here we provide quantitative estimates on the long-time behavior of parabolic-
hyperbolic SPDEs of the form

dv = Div(F ′(v)Dv)dt +
∑
i,j

∂xi
(Hi,j(x, v)) ◦ dξj in Td × R+ (4.31)

dictated by the dissipation due to the parabolic part, that is, the estimates are uniform 
in H and ξ. In particular, the results apply to the case that ξ = B(ω) is given by paths 
of Brownian motion and yield uniform estimates in ω. In this section, we will always 
assume that F ∈ C1

loc(R) with F ′ ≥ 0, H ∈ C0(Td × R; Rd×m), v0 ∈ L1(Td), and 
ξ ∈ C0(R+; Rm).

The key step is the observation that, given that the noise part of (4.31) is divergence 
free, the usual Lp- and entropy-entropy dissipation inequalities known in the determin-
istic setting can be recovered in a pathwise manner for (4.31). As a consequence, it is 
possible to obtain quantitative estimates for the rate of convergence, that resemble the 
deterministic setting.
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The well-posedness of SPDEs like (4.31) is an intricate subject and is known under 
various assumptions on the coefficients F, H and B, see [32,33,20,15,16,46]. Since here we 
are not focusing on the concept of solutions and their uniqueness, but on uniform apriori 
estimates, we define solutions as limits of smooth approximations, for which uniform 
estimates will be shown.

Definition 4.12. A function v ∈ C([0, ∞), L1(Td)) is a solution to (4.31) if there exist 
sequences vε

0 ∈ C2(Td) with 
∫
Td vε

0dx = 0, ξε ∈ C2(R+; Rm), Hε ∈ C3(Td × R; Rd×m)
with DivxHε(x, ·) = 0, F ε ∈ C3(R; R+) such that (F ε)′ ≥ F ′ ∨ ε > 0 and classical 
solutions vε to (4.31) with (v0, ξ, H, F ) replaced by (vε

0, ξε, Hε, F ε) such that

(vε
0, ξε, Hε, F ε) → (v0, ξ, H, F )

in L1(Td) ×C0(R+; Rm) ×C0(Td ×R; Rd×m) ×C0(R) and vε → v in C([0, ∞), L1(Td)).

Theorem 4.13. Fix v0 ∈ L1(Td) and let v be a solution of the parabolic-hyperbolic PDE 
(4.31) with initial value v0. Let p ∈ [1, 2d

d−2 1d≥3 + ∞1d≤2) and E : R → R+ be such that 
E′′ = 1/F ′ and E′(0) = E(0) = 0.

Then, there exists c > 0 depending only on the embedding constant of H1 ↪→ Lp and 
not on H, B and F as long as F ′ ≥ 0 and 1/F ′ ∈ L1

loc, such that, path-by-path and for 
all t > 0,

‖v(·, t)‖2
Lp ≤ c

∫
E(v(x, 0))dx

t
. (4.32)

Proof. We prove the estimate for the regular approximations vε from Definition 4.12
with constant c in (4.32) uniform in ε and noting that Eε ≤ E since (F ε)′ ≥ F ′. Passing 
to the limit ε → 0 then provides the claim. For simplicity, we drop the ε’s in the notation 
in the following.

Given convex and smooth E : R → R we find

d

dt

∫
Td

E(v(x, t))dx = −
∫

E
′′(v)F ′(v)|Dv|2 −

∑
i

∫
E

′′(v)vxi
Hi,j(x, v)Ḃj

= −
∫

E
′′(v)F ′(v)|Dv|2

−
∑

i

(∫
[E′′(v)Hi,j(x, v)]xi

− [E′′(v)Hi,j
xi

(x, v)]
)

Ḃj

= −
∫

E
′′(v)F ′(v)|Dv|2 = −

∫
|D[(E′′

F ′)1/2](v)|2,

where the third term vanishes since H is divergence free, and [·] denotes an anti-
derivative.

We now choose E = E. Then 
∫ v(E′′(s)F ′(s)) 1

2 ds = v.
0
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Since v has mean zero, Poincaré’s inequality and the Sobolev embedding yield, for 
p ∈ [1, 2d

d−2 1d≥3 + ∞1d≤2), and for some cP > 0 that

d

dt

∫
Td

E(v(x, t))dx ≤ −cP ‖v‖2
Lp ,

and, hence, for some constant c depending on the embedding constant cP only,

∫
Td

E(v(x, t))dx + c

t∫
0

‖v(·, r)‖2
Lpdr ≤

∫
Td

E(v(x, 0))dx.

Next, choosing E(v) = |v|p, which can be justified by an approximation argument, we 
get that t �→ ‖v‖2

Lp is non-increasing for all p ∈ [1, ∞).
Hence,

t∫
0

‖v(·, r)‖2
Lpdr ≥ t‖v(·, t)‖2

Lp

and, thus, using that E ≥ 0, we find

‖v(·, t)‖2
Lp ≤ c

t

∫
Td

E(v(x, 0))dx. �

Remark 4.14. In the case of spatially homogeneous noise, instead of embedding into Lp, 
we could embed into homogeneous Ẇ s,1 spaces for s ∈ [0, 1). Due to the L1-contraction 
these homogeneous semi-norms do not increase. This would lead to estimates like

‖v(·, t)‖2
Ẇ s,1 ≤ c

t

∫
Td

E(v(x, 0))dx.

We discuss next a concrete example.

Example 4.15. We consider the porous medium and fast diffusion SPDE

dv = Δv[m]dt +
∑
i,j

∂xi
(Hi,j(x, v)) ◦ dBj in Td × R,

with m ∈ (0, 2), B ∈ C0(R+; Rd), H ∈ C0(Td × R; Rd×d), and Dv[m] := m|v|m−1Dv, 
which is like (4.31) with F ′(r) = m|r|m−1. Assume that v is a solution in the sense of 
Definition 4.12. For E(r) := |r|3−m, so that (E′′(v)F ′(v)) 1

2 = 1 and p ∈ [1, 2d
d−2 1d≥3 +

∞1d≤2), we find
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‖v(·, t)‖2
Lp ≤

‖v(·, 0)‖3−m
L3−m

t
.

The next two results are about (4.31) for d = 1 with homogeneous Hamiltonians.
When F is uniformly elliptic, that is, F ′ ≥ c > 0, we have the usual exponential decay 

in L2-norm for (4.31), which we record here for convenience.

Proposition 4.16. Assume that F ′ ≥ c > 0, and H is homogeneous in x and let λ1 be the 
first eigenvalue of (−∂xx) on T and v = ux a solution of (4.31) in T × R+. Then, for 
all t ≥ 0,

‖ux(·, t)‖L2 ≤ ‖ux(·, 0)‖L2 e− c
λ1

t.

Proof. Using an approximation argument, we may assume that B ∈ C1. It then follows, 
using Poincaré’s inequality, that

1
2

d

dt

∫
u2

x(·, t)dx ≤
∫

uxF (ux)xx +
∫

uxH(ux)xḂ

= −
∫

(uxx)2F ′(ux) ≤ − c

λ1

∫
(ux)2.

We conclude applying Gronwall’s inequality. �
The next proposition is about the degenerate setting, that is, for F ′ ≥ 0.

Proposition 4.17. Assume that H(x, u) = H(u) and F ′ ≥ 0, and let E : R → R+
be smooth and convex, G(r) =

∫ r

0 (F ′E′′) 1
2 (u)du, and v = ux a solution to (4.31) in 

T × R+. Then, there exists C > 0 such that, for all t ≥ 0,

G2(‖ux(·, T )‖∞) ≤ C

T

∫
T

E(ux(0)) dx.

Proof. Arguing as in the proof of Theorem 4.13 we find, using that E is smooth, convex 
and F non-decreasing,

d

dt

∫
T

E(ux(x, t)) dx = −
∫
T

E′′(ux)F ′(ux)|∂xux|2 dx ≤ −
∫

E′′(ux)F ′(ux)|∂xux|2 dx

= −
∫

|∂xG(ux)|2 dx ≤ −c‖G2(ux)‖∞.

Hence,

∫
T

E(ux(x, t)) dx + c

t∫
0

G2(‖ux(·, r)‖∞) dr ≤
∫
T

E(ux(x, 0)) dx.
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Since t �→ ‖ux(·, t)‖∞ is non-increasing and G is non-decreasing, we obtain that

ct‖G2(ux(·, t))‖∞ ≤
∫
T

E(ux(x, 0)) dx. �

4.3. Improved bounds and convergence due to the interaction of stochastic fluctuations 
and dissipation

Taking advantage of the interplay of the dissipative behavior of the parabolic part and 
the averaging behavior of the hyperbolic part, in this section we derive new quantitative 
estimates for the long-time behavior of space-periodic solutions to parabolic-hyperbolic 
SPDEs when d = 1. In particular, these estimates unveil improved decay compared to 
the deterministic equations.

Theorem 4.18. Assume H ∈ C2
loc(R) is convex and even, F : R → R is odd with F ′ > 0

and let G(r) =
∫ r

0 (F ′H ′′)1/2(u)du, u0 ∈ C(T ). If u is a periodic in space solution to 
(4.31) in T × R+, then, for every T > 0,

‖G(ux(·, T ))‖2
∞ ≤ osc(u(·, 0))

Γ(B)0,T
, (4.33)

where, for t(s) = inf{t > s ≥ 0 : B(t) < B(s)},

Γ(B)S,T = sup
S≤s≤T

t(s)∧T∫
s

(B(u) − B(s))du. (4.34)

Proof. Fix s and t = t(s) ∧ T . Using (4.8) and the fact that the maps t → sup u(·, t) and 
t → − inf u(·, t) are non-increasing, we find

osc(u(·, 0)) = sup u(·, 0) − inf u(·, 0) ≥ sup u(·, t) − inf u(·, s) ≥
∫

u(·, t) −
∫

u(·, s)

= N(t) (B(t) − B(s)) −
t∫

s

(B(u) − B(s))dN(u)

≥ −
t∫

s

(B(u) − B(s))dN(u)
du

du

were N(r) =
∫
T H(ux(·, r))dx is non-increasing.

In addition, we have

dN(r)
dr

≤ −
∫

(F ′H ′′)(ux(x, r))(uxx(x, r))2dx
T
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= −
∫
T

(G(ux(x, r)))2
xdx ≤ −‖G(ux(·, r))‖2

∞.

Since G is non-decreasing and ‖ux(·, t)‖∞ is non-increasing in t, it follows that 
‖G(ux(·, t))‖∞ is non-increasing, and the proof is complete. �

Next, we state and prove a result about the long-time behavior of the quantity defined 
in (4.34). In the claim, f(t) = o(t) means limt→∞ f(t)/t = 0.

Lemma 4.19. Fix K > 0, and, for any t ≥ 0, let T (t) := inf{s > t, Γ(B)t,s ≥ K}, where 
Γ(B)t,s is defined by (4.34). Then, P -a.s. and as t → ∞,

T (t) = t + o(t). (4.35)

Proof. Note that, since Γ(B)t,s ≥ Γ(B)n,s if t ≤ n ≤ s, it suffices to show the claim for 
integer n’s. In addition, the full support property of Brownian motion implies that, for 
each ε > 0, pε := P (Γ(B)0,ε ≥ C) ∈ (0, 1) and we have that

P (T (n)−n > εn) = P (Γ(B)0,εn ≤ C) ≤ P
(
Γ(B)0,ε ≤ C , . . . , Γ(B)(n−1)ε,nε ≤ C

)
= pn

ε .

It follows from the Borel-Cantelli lemma that, P -a.s.,

lim
n

T (n) − n

n
= 0,

and the proof is complete. �
We now show how all the previous results can be combined for the stochastic mean 

curvature SPDE

du = ∂xxu

1 + (∂xu)2 dt +
√

1 + (∂xu)2 ◦ dB in T × R+, (4.36)

and, thereby, that the interplay of stochastic fluctuation with deterministic decay leads 
to an improved decay of oscillations (see Remark 4.21).

Theorem 4.20. Fix δ > 0 and assume that B = (B(ω, t))t≥0 is a Brownian motion on a 
probability space (Ω, F , P ). There exists c > 0 and a P -a.s. finite random variable C(ω), 
such that, if u is the solution to (4.36) with initial condition u0∈ C(T ), then, for all 
t ≥ 0,

osc(u(·, t)) ≤ C(ω)osc(u0)e−ct. (4.37)

Let τ(u0, B) := inf {t ≥ 0 : osc(u(·, t)) ≤ 2}. Then there is a deterministic c > 0, and, 
for almost every Brownian path, constants C(B), ρ(B) such that
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τ(u0, B) ≤ c log(1 + osc(u0)) + C(B) (4.38)

and

‖ux(·, t)‖∞ ≤ C(ω)osc(u0)e−ct for all t ≥ τ(u0, B) + ρ(B). (4.39)

Finally, for each fixed u0,

lim sup
t→∞

ln(‖ux(·, t)‖L2)
t

≤ − δ

λ1
. (4.40)

Proof. We first remark that (4.38) is an immediate consequence of (4.37).
For the rest of the claims similarly to Example 4.4 we introduce ũ = u − B and note 

that ũ satisfies

dũ = ∂x(F (∂xũ))dt + H(∂xũ) ◦ dB in T × R+ and ũ(0, ·) = u0 on T , (4.41)

for F (ρ) = arctan(ρ) and H(p) =
√

1 + p2 − 1 with H(p) ≥ |p| − 1.
The claimed estimates are obtained in the following three steps: (i) Theorem 4.8 yields 

that osc(u(·, t)) is of order 1 after a time which depends logarithmically on osc(u0), (ii) in 
view of Theorem 4.18, after the time given by (i), ‖ux‖∞ is also of order 1, and (iii) the 
uniform bound on ux, which is a consequence of (ii) is then used to obtain exponential 
convergence to a constant.

Here we show (i). Theorem 4.8 implies that, for all t ≥ 0,

osc(u(·, t)) ≤ osc(u0)e−cNC
0,t(B) + 2.

Also note that, due to Lemma 4.7, a.s. and as t → ∞, NC
0,t(B) ∼ C−1/2t.

It follows that, for some c > 0, C(B) a.s. finite and for all t ≥ 0,

osc(u(·, t)) ≤ C(B)osc(u0)e−ct + 2. (4.42)

We now use Theorem 4.18 with G = [(F ′H ′′)1/2], which has the property that, for 
some K > 0,

G(r) ≥ r

K1/2 for 0 ≤ r ≤ 2 and G(r) ≥ 2
K1/2 for r > 2.

Let T (t) be defined as in Lemma 4.19, and note that, due to Theorem 4.18, that 
osc(u(·, t)) < 4 yields

‖G(ux(·, T (t)))‖∞ ≤
√

osc(u(·, t))
K

<
2

K1/2 ,

and, hence,
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‖ux(·, T (t))‖∞ ≤ K1/2‖G(ux(·, T (t)))‖∞ ≤
√

osc(u(·, t)).

In view of Lemma 4.19, the last inequality implies that, for t large enough,

‖ux(·, t)‖∞ ≤
√

osc(u(·, t − o(t))), (4.43)

and, in particular, for all t ≥ T (τ(u0, B)), ‖ux(·, t)‖∞ ≤ 2.
It also follows from Proposition 4.16 that, if ‖ux(·, t0)‖∞ ≤ η, then, for all t ≥ t0,

‖ux(·, t)‖L2 ≤ ‖ux(·, 0)‖L2e
− δ

λ1(1+η2) (t−t0)
, (4.44)

which, combined with (4.43), gives (4.39), and with (4.42), implies (4.37).
It only remains to prove (4.40), which now follows immediately from (4.44), recalling 

that, by (4.39) it holds that ‖ux(·, t)‖∞ →
t→∞

0. �
Remark 4.21. Note that (4.37) may seem expected, since it is similar to, for example, the 
long-time behavior of solutions to the heat equation. This is not, however, the case since, 
due to the degeneracy of the mean curvature operator, the solution of the deterministic 
problem, that is, when B ≡ 0, exhibits very different behavior.

Indeed, it is possible to construct a sequence of solutions uR to the deterministic mean 
curvature flow with osc(uR(·, 0)) = R, such that, for R large enough, some c > 0, and 
all t ≤ cR,

osc(uR(·, t)) ≥ R

2 ,

which is in sharp contrast with the stochastic setting where, in view of Theorem 4.20, 
the solutions become of order 1 in a time which only depends logarithmically of the size 
of the initial condition.

To construct uR, one can proceed, similarly to [7], by taking as initial condition a 
graph “sandwiched” between two “grim reaper”-type solutions of the mean curvature 
flow, which are finite on a compact interval and move at constant speed of order R

downwards (resp. −R and upwards). It then follows from the maximum principle that the 
corresponding solution stays in between the grim reapers, and, therefore, its oscillation 
is greater than R/2 for times of order R.

Remark 4.22. It follows from Remark 4.10 that in (4.37) it is possible to take any constant 
c satisfying

c < min[2
e

,
δ

λ1
].

We conclude this section discussing the example of SPDEs with nonlinear diffusion 
degenerating at zero.
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We recall that the deterministic p-Laplace equation

∂tu = ∂x(ux)[α] (4.45)

admits separated variables solutions of the form u = g(t)f(x) with g(t) = ((α−1)t))− 1
α−1 , 

f(x) + ∂x(fx)α = 0 and f periodic with average zero. It follows that solutions to (4.45)
have decay of order t− 1

α−1 . The same optimal order of decay can also be found in signed 
self-similar solutions (see Hulshof [26]) on the full space.

In the case of SPDEs, if the order of degeneracy α of the parabolic part is much 
larger than the degeneracy β of the noise in the sense that β ≤ α−1

2 , then the decay 
due to the noise is faster than that of the parabolic part, hence, improving the rate of 
convergence compared to the deterministic case. The parabolic part is only used in the 
end to improve from a W 1,q to a Lipschitz estimate.

Example 4.23. We consider nonlinear fluctuating diffusion SPDEs like

du = ∂x((ux)[α]) dt + |ux|β ◦ dB,

with α, β > 1, B Brownian motion, and u0 ∈ C(T ). Then, for all T > 0,

‖ux(·, T )‖Lβ ≤ C
(

(osc0,T B/C1)− 1
β−1
)

(4.46)

and

‖ux(·, T )‖∞ ≤ C
(

(osc0,T −1B/C1)− 1
β−1
) β

α+β−1 ≈ CT − β
2(β−1)(α+β−1) .

Note if β ≈ 1, the decay above exceeds significantly the optimal deterministic decay 
t− 1

α−1 .

Indeed, Theorem 4.8 implies (4.46), while, in view of Proposition 4.17 with

G(r) =
r∫

0

(wα−1wβ−2) 1
2 (w)dw =

r∫
0

w
α+β−3

2 dw = r
α+β−1

2 ,

we find

G2(‖ux(·, T )‖∞) ≤ C

∫
T

(ux(·, T − 1))β dx.

Therefore,

G2(‖ux(·, T )‖∞) ≤ C
(

(osc0,T −1B/C1)− 1
β−1
)β

,
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and, thus,

‖ux(·, T )‖∞ ≤ C
(

(osc0,T −1B/C1)− 1
β−1
) β

α+β−1
.

5. Open questions

We discuss a number of questions about the general theory and the examples presented 
earlier.

Regarding the latter, some of the most intriguing questions are extensions to non-
compact domains, the characterization of the random limiting constant, the asymptotic 
behavior of stochastic Hamilton-Jacobi equations with multiple spatially inhomogeneous 
noises, as well as with non-convex Hamiltonians, and the properties of the stationary 
solutions ψ : Td × R → R.

The present work unveils an accelerated decay of oscillations for the mean-curvature 
flow in 2+1 dimensions with spatially homogeneous noise. An extension of these results 
to higher dimension, in particular, the case of 3+1 dimensions driven by multiple noises 
is left as an open problem. Moreover, the case of the mean curvature flow with spatially 
inhomogeneous noise is left untouched, and constitutes a challenging open question.

Data availability

No data was used for the research described in the article.

Appendix A. Motivations and examples of nonlinear SPDEs

We present a number of applications and settings that give rise to SPDEs which fall 
within the framework of this paper. The discussion here is meant to provide background 
information and motivation for the examples of SPDEs treated in the main text.

We emphasize that the following exposition is meant to be informal and the list of 
included references is by no means complete. Whenever possible, we refer to monographs 
and contributions offering exhaustive accounts on the available literature. Listing all of 
the pertinent literature would be beyond the scope of this appendix.

A.1. Joint mean field-local interaction limits of particle systems and mean field games 
with common noise

The conditional empirical density measure μN := L( 1
N

∑N
j=1 δXj

t
| W) of the mean 

field-type interacting particle system

dXi
t = b(Xi

t ,
1
N

N∑
δXj

t
)dt + σ(Xi

t ,
1
N

N∑
δXj

t
) ◦ dWt + α(Xi

t ,
1
N

N∑
δXj

t
)dBt, (A.1)
j=1 j=1 j=1
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converges, in the mean field limit N → ∞, to a solution of the nonlinear, nonlocal, 
stochastic Fokker Planck equation

dμ = [∂2
i,j(aij(x, t, μ)μ) − ∂i(bi(x, t, μ)μ)]dt − ∂i(σik(x, t, μ)μ) ◦ dW k

t μ(·, 0) = μ0,

(A.2)
where aij = 1

2αikαjk and W and B are independent Brownian motions. This has been 
shown for L2-valued solutions by Kurtz and Xiong [31] and for measure-valued solutions 
by Coghi and Gess [6]. For further work on this, we refer to the references in these 
works. The conditional law signifies the fact that W acts on all particles and, hence, it 
is called common noise. See also [30] for a motivation of the same class of SPDE arising 
in statistical mechanics.

For an exposition of the same limiting problem in the context of mean field games 
with common noise, we refer to Carmona and Delarue [5, Section 2.1.2] and Cardaliaguet, 
Delarue, Lasry and Lions [4], and the references therein.

The coefficients aij , bi, σik depend on the measure μ in a possibly non-local manner 
which correspond to nonlocal interactions in the original system (A.1).

It is a natural question to ask what happens when the interaction is localized, that is, 
when aij , bi, σik are replaced by a sequence of coefficients aij,ε, bi,ε, σik,ε which converge 
to coefficients with local dependence on the measure, that is, informally, for ρ ∈ L1,

aij,ε(x, t, ρ dx) → aij(x, t, ρ(x)), bi,ε(x, t, ρ dx) → bi(x, t, ρ(x)),

σik,ε(x, t, ρ dx) → σik(x, t, ρ(x)).

Such limit then leads, always informally, to the nonlinear, stochastic Fokker Planck 
equation

dρ = [∂2
i,j(aij(x, t, ρ)ρ) − ∂i(bi(x, t, ρ)ρ)]dt − ∂i(σik(x, t, ρ)ρ) ◦ dW k

t , (A.3)

with the coefficients now depending on ρ in a local manner.
A relevant example is the case for which the diffusion without common noise, that 

is, when σ ≡ 0 in (A.1), is reversible with respect to a Gibbs’ measure 1
Z e−V . This 

corresponds to the choice bi(x, t, μ) = aij(x, t, μ)∂jV (x, t, μ). In this case, the nonlinear, 
stochastic Fokker Planck equation (A.3) becomes

dρ = [∂i(aij(x, t, ρ)∂jρ) + ∂i(aij(x, t, ρ)(∂jV )(x, t, ρ)ρ)]dt − ∂i(σik(x, t, ρ)ρ) ◦ dW k
t .

(A.4)
We discuss here the special case where the non-local interaction is of convolution-type, 
that is,

aij,ε(x, t, μ) = (V 1,ε ∗ μ)(x)aij(x), bi,ε(x, t, μ) = (V 2,ε ∗ μ)(x)bi(x) and

σik,ε(x, t, μ) = (V 3,ε ∗ μ)(x)σik(x),
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where (V i,ε)ε>0 is a smooth and compactly supported Dirac family.
Then (A.4) becomes

dρ = [∂i(aij(x)ρ∂jρ) + ∂i(aij(x)∂jV (x)ρ2)]dt − ∂i(σik(x)ρ2 ◦ dW k
t ), (A.5)

and, when d = 1, V ≡ 0 and σik(x) = 1,

dρ = ∂x(a(x)ρ∂xρ)dt − ∂x(ρ2 ◦ dWt), (A.6)

an equation to which our methods apply leading to a quantified convergence estimate 
for ρ to its mean without any non-degeneracy assumptions on the coefficient a ≥ 0.

The well-posedness of solutions to (A.6) for spatially homogeneous a follows from Gess 
and Souganidis [20]. For inhomogeneous, regular a, the well-posedness should follow from 
a modification of these arguments, but is left as an open problem here.

A.2. Stochastic front propagation

Consider an evolving hypersurface (Γ(t))t≥0 embedded in Rd moving with normal 
velocity (at point X(t) ∈ Γ(t))

dX(t) · nΓ(X(t)) = −κ(X(t))dt + dζ(X(t), t),

where nΓ(x) is the outer normal at x ∈ Γ, κ(x) is the scalar curvature of Γ at x, and ζ
is a stochastic perturbation.

In the level-set formulation of this evolution, Γ(t) is assumed to be the zero set at 
time t of the solution u of the SPDE

du = |Du|div
(

Du

|Du|

)
dt + |Du| ◦ dζ(x, t). (A.7)

For particular cases of the noise dζ, the SPDE (A.7) can be studied using stochastic 
viscosity solutions, see, for example [35], Souganidis and Yip [45], Souganidis [46], Yip 
[48] and Dirr, Luckhaus and Novaga [10].

If Γ(t) is of graph-form, that is,

Γ(t) =
{

(z, f(z, t)) : z ∈ Rd−1} ,

then f satisfies the graph SPDE

df =
√

1 + |Df |2div
(

Df√
1 + |Df |2

)
dt +

√
1 + |Df |2 ◦ dζ(z, t, f(z, t)).

In the physics literature, Kawasaki and Ohta [28] derived an equation in the case 
where dζ is space-time white noise acting on the interface Γ, in which case the graph 
SPDE can be (formally) rewritten as
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∂tf =
√

1 + |Df |2div
(

Df√
1 + |Df |2

)
+
(
1 + |Df |2

)1/4 ◦ dξ(z, t), (A.8)

where dξ is a space-time white noise on R × Rd−1. This can be seen by checking that

dζ(z, t, f(z, t)) :=
(
1 + |Df(z, t)|2

)−1/4
dξ(z, t)

defines a space-time white noise on Γ, that is, for any smooth compactly supported 
function φ, 

∫
Γ φζdμΓ is a centered Gaussian with variance given by 

∫
φ2dμΓ. Here the 

measure μΓ is the surface measure on Γ, which can be explicitly written as
∫

ψ(x, s)dsdμΓ(x) =
∫

R×RN−1

dsdzφ(z, s, f(z, s))
√

1 + |Df(z, s)|2.

Note that (A.8) is purely formal even when d = 2, since its solution f would be too 
irregular for the nonlinear gradient term to be well-defined. In fact, it is not clear that 
the solution should remain a graph, and it is an open question to which extent one can 
make sense of this equation rigorously.

Of course, it is possible to consider more general motions either in the deterministic 
term or the stochastic perturbation like, for example, purely stochastic velocities of the 
form

dX(t) · nΓ(X(t)) = a (X(t), n(X(t)))) ◦ dB(t),

where n(x) is the outer normal to the point x ∈ Γ(t). This motion can be interpreted 
as an interface fluctuating according to a space-homogeneous external factor, but with a 
local speed depending on a fixed parameter which can be inhomogeneous and anisotropic. 
The corresponding level SPDE is

du = a(x, − Du

|Du| )|Du| ◦ dB,

which can be studied using the theory of stochastic viscosity solutions developed by the 
last two authors.

Assuming that the interface is of graph-form, that is, Γ(t) = {(z, f(z, t))}, and that 
the heterogeneity does not depend on the last coordinate, that is, a(x, v) = a(z, v) where 
x = (z, xn), yields the SPDE

df(t, z) = H(z, Df) ◦ dB

with

H(z, Df) := a

(
z,

(Dzf, 1)√
1 + |Df |2

)√
1 + |Df |2.
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When the function H is convex in its second variable, which is, for instance, the case for 
isotropic motions, that is, a = a(z), then the problem is within the framework developed 
in section 3.

A.3. Thermodynamically consistent fluctuation corrections to gradient flows

We outline how SPDEs arise from thermodynamically consistent fluctuation correc-
tions to gradient flows.

We consider nonlinear diffusion PDEs in 1+1 dimension of the form

∂tρ = ∂xxΦ(ρ), (A.9)

which come up in various applications, including interacting particle systems, such as the 
zero range process (see, for example, Kipnis and Landim [29]), geometric PDE, such as 
the curve shortening and mean curvature flows (see, for example, Funaki and Spohn [17]), 
and in the form of porous medium diffusion equations, see, for example, the monograph 
by Vázquez [47].

Introducing, for some nonlinear, convex function Ψ with antiderivative [Ψ], the en-
ergy E(ρ) =

∫
[Ψ](ρ) dx with functional derivative denoted by d

dρ E(ρ), and the Onsager 
operator Mρ = BρB∗

ρ with

Bρg := ∂x

((
Φ′(ρ)
Ψ′(ρ)

) 1
2

g

)
,

we can informally rewrite (A.9) as the following gradient flow on the space of densities:

dρ = ∂xxΦ(ρ) = ∂x

(
Φ′(ρ)
Ψ′(ρ)∂xΨ(ρ)

)
= Mρ

d

dρ
E(ρ).

The choice of the energy E and the corresponding function Ψ identifies a gradient 
structure on the space of densities.

Following the general ansatz for thermodynamically consistent fluctuations around 
gradient flows (see, for example, Öttinger [41]), the corresponding fluctuating gradient 
flow becomes

dρ = Mρ
d

dρ
E(ρ) + BdWt = ∂xxΦ(ρ)dt + ∂x

((
Φ′(ρ)
Ψ′(ρ)

) 1
2

◦ dξ

)
, (A.10)

with dξ a space-time white noise.
In fact, lattice based particle systems correspond to spatially correlated noise

ρt = ∂xxΦ(ρ) + ∂x

((
Φ′(ρ)
Ψ′(ρ)

) 1
2

◦ dξε

)
, (A.11)
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where dξε is white in time and correlated in space with decorrelation length of the order 
of mesh-size; see, for example, Giacomin, Lebowitz and Presutti [23] and Mariani [39]
for the case of the simple exclusion process.

Motivated from the above, we analyze the long-time behavior of parabolic-hyperbolic 
SPDEs with spatially homogeneous noise B, on the level of the anti-derivative u, that 
is,

du = ∂xΦ(∂xu)dt +
(

Φ′(∂xu)
Ψ′(∂xu)

) 1
2

◦ dB. (A.12)

We next introduce two particular examples of this general framework. The first is the 
stochastic mean curvature flow

du = ∂xxu

1 + (∂xu)2 dt +
√

1 + (∂xu)2 ◦ dB, (A.13)

which corresponds to Φ(ρ) = arctan(ρ). Then, 
(

Φ′(ρ)
Ψ′(ρ)

) 1
2

=
√

1 + ρ2, that is, Ψ(ρ) =
1
2( ρ

1+ρ2 + arctan(ρ)) in (A.12).
The next example addresses the Kawasaki-Ohta equation (see [28]), which constitutes 

the choice of a thermodynamically consistent noise for the curve shortening flow. Follow-
ing the framework laid out in the beginning of this subsection, for d = 1, the PDE for 
the derivative ρ = ux of the curve given as the graph of u can be written as a gradient 
flow

∂tρ = ∂x

(
(1 + ρ2) 1

2 ∂x

(
ρ√

1 + ρ2

))
= Mρ

d

dρ
E(ρ),

where d
dρ E(ρ) is the functional derivative of the energy E(ρ) =

∫
(1 + ρ2) 1

2 dx and 

M = BB∗ is the Onsager operator with Bρg =: ∂x

(
(1 + ρ2) 1

4 g
)

.
Note that, with this choice of a gradient structure, the curve shortening flow corre-

sponds to a gradient flow with respect to the arclength as energy E. In accordance to 
(A.12), on the level of u, the fluctuating stochastic curve shortening flow with spatially 
homogeneous noise takes the form

du = ∂xxu

1 + (∂xu)2 dt + (1 + (∂xu)2) 1
4 ◦ dB.
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