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1. Introduction
1.1. The general problem

This work is a contribution towards the development of a systematic understanding
of the large time behavior of pathwise solutions of nonlinear first- and second-order
stochastic partial differential equations (SPDEs for short) of the general form

m
du = F(Du, D*u)dt + Y H'(z,Du)odB’ in T*xR,, (1.1)
i=1

and

dv = Div(F'(v)Dv)dt + Y 0, (H" (2,v))0dB’ in T xR, (1.2)

1<i<m
1<j<d

with B’ being independent Brownian motions, m € N, F, H?, H"J nonlinear functions,
T? the d-dimensional torus and R, = (0, 00).

The solutions to (1.1) and (1.2) are obtained as uniform limits of solutions to the
corresponding “deterministic” problems with smooth paths approximating the Brownian
motions. This fact is signified in (1.1) and (1.2) by the use of the Stratonovich notation

(1]
o,
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The analysis of the long-time behavior of solutions to (1.1) and (1.2) entails sev-
eral challenges including the possible degeneracy of the dissipation F', and the spatial
inhomogeneity of the Hamiltonians H?, H*J.

SPDEs like (1.1) and (1.2) appear in a variety of applications, including mean field
systems with common noise, fluctuating geometric partial differential equations (PDEs
for short) such as the stochastic mean curvature flow, and non-equilibrium thermody-
namics. We refer to the appendix for more details.

Throughout the paper, when dealing with (1.1) we work with the so-called stochastic
(viscosity) solutions to (1.1) which were developed in a series of papers by the third
and fourth authors, see, for example, Lions and Souganidis [35,38,37,36,34] as well as
Souganidis [46] for an extensive overview. The well-posedness of solutions to (1.2) follows
in many case from the theory of stochastic kinetic solutions developed by Lions, Perthame
and Souganidis [32,33], Gess and Souganidis [20,21], and its extension to parabolic-
hyperbolic SPDEs by Gess and Souganidis [22] and Fehrman and Gess [15,16]. We refer
again to [46] for an overview.

In all of the examples we consider here, the typical result is that, in the long time limit,
the solutions of the SPDEs converge almost surely (a.s. for short) to stationary solutions.
In the spatially homogeneous case, these are random constants. In some problems, while
similar behavior is also observed for the deterministic version of the equations, the pres-
ence of stochasticity is shown to accelerate the convergence. In others, although it is
known that, in general, solutions to the deterministic analogues of the problems do not
converge, the effect of the stochastic perturbation is such that the deterministic obstacles
can be overcome and the solutions relax to constants.

The acceleration of the convergence to constants in the presence of random pertur-
bations can be explained heuristically as follows. In the examples we consider here, the
decrease of the oscillations due the second-order diffusion in (1.1) decays for large values
of the gradient Du. Therefore, for large initial gradient Du, the decrease of the oscil-
lations due to the stochastic part of (1.1) dominates, and yields an accelerated rate of
convergence, compared to the deterministic problem. The derivation of such quantitative
rates of convergence due to the stochastic parts of the equations is one of the main contri-
butions of the present work. As a main application of these, we prove an increased decay
of oscillations in the stochastic mean curvature flow due to the stochastic fluctuations.

1.2. The main results

We describe in an informal way, that is, without stating precise theorems, the main
results obtained in this work, which can be classified in the following three cases: (i) any
space dimension and multiple spatially homogeneous noises, (ii) any space dimension,
spatially inhomogeneous noise, and vanishing drift F', and (iii) one spatial dimension and
spatially homogeneous noise.
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1.2.1. Any space dimension and multiple spatially homogeneous noises
We consider here SPDEs of the form

du = F(Du, D*u)dt + Y H;(Du)odB' in T%xRy, (1.3)
i=1

and present a result yielding the convergence to constants for large times. The argu-
ment is qualitative and does not give a convergence rate. It applies, however, to general
settings, and, in particular, does not impose any restrictions on the dimension.

Given o, f1,...,8™ € Ry, let (SCEF_;'_ZIF{:lBiHi (t»tzo denote the solution operator,
that is the nonlinear semigroup, associated to the deterministic problem

uy = aF (Du, D*u) + Y B'H;(Du) in T xR,. (1.4)

i=1

Theorem 1.1 (See Theorem 2.1 below). Assume that F' is continuous and non-decreasing
in D*u, F(0,0) = 0, each H; is the difference of two convex functions with H;(0) = 0
fori=1,...,m, and there exist a,, L, ..., ™ € [0,00) such that, for all v € C(T?),

nh_)néo Sa,reyr | g, (1)(v) = constant. (1.5)

Then, almost surely, every solution u(-,t) to (1.3) converges, as t — 0o, uniformly to a
constant.

The heuristic reason behind this result is the fact that, if some combination of the
diffusion and noise coefficients of the equation forces convergence, then, by elementary
properties of Brownian paths, a.s. and after some time the Brownian motions will stay
close to this combination for a long period of time, after which the solution will be close
to a constant.

Note that (1.5) includes examples of F, H for which the separate dynamics S, Sy
do not converge to constants. In this sense, the result includes an effect of stabilization
by noise, where global asymptotic stability is produced by the inclusion of the stochastic
fluctuations Y1, H;(Du) o dB".

In particular, the result can be applied to the stochastic mean curvature equation in
multiple dimensions implying the convergence of the solution to a constant. In a non-
quantitative form, this extends the results obtained in Dabrock, Hofmanova and Réger
[8] to non-Lipschitz continuous initial data.

1.2.2. Any space dimension, spatially inhomogeneous noise and vanishing drift

The analysis of the long-time behavior of solutions to (1.1) with spatially inhomoge-
neous noise is completely open. Motivated from this, we consider here the simpler case
of SPDEs of the type
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du=H(xz,Du)odB on T%xR,, (1.6)

with Hamiltonian H = H(x,p) convex in the p-variable.

The deterministic version of the problem, that is, u; = H(x, Du), has attracted much
attention in the literature; see, for example, Fathi [13], Namah and Roquejofire [40], Bar-
les and Souganidis [2], and Barles, Ishii and Mitake [1]. These works provide conditions
under which the deterministic semigroups converge, in the sense that there exists ¢ € R
such that, for all u € C(T?) and uniformly as t — oo,

Jim ||y () £ et — 6] =0,
where ¢F solves, in the viscosity sense,
+(c+ H)(z, Dp*) =0 in T (1.7)
We obtain the following analogous result in the stochastic case.

Theorem 1.2 (See Theorem 5.9 below). Assume that H = H(x,p) is strictly convex in
p. Then, there exist ¢T : T4 — R satisfying (1.7), and a global-in-time, statistically
stationary, solution 1 : R x T% — R to

dip = (c+ H)(z, D) odB on T xR, (1.8)
satisfying

¢~ <(,t) <@t forall te Ry and limsupi(-,t) =¢T, ligiolgfi//(~,t) =¢,

t—o00

so that for the solution u to (1.6) we have
Tim [[u(- )+ eB(t) — (-, 1) =0.

A particular case is H(z,p) = a(x)y/1 + [p|2 with a(-) > 0, which corresponds to the
motion of a graph interface driven by isotropic noise, see Section A.2 below.

We note that it is possible to replace the strict convexity of H by only convexity and
the assumptions that the deterministic semigroups converge and the solutions to (1.6)
are equicontinuous in x.

We comment next on the proof of the theorem above. One of the main difficulties
in the analysis of stochastic Hamilton-Jacobi equations comes from the irreversibility of
the dynamics. For example, even for equations driven by 1-dimensional noise as above,
B(t) = 0 does not imply that u(-,¢) = u(+,0), even though this would be the case if the
equation was satisfied in the classical sense. Nevertheless, it was shown in Gassiat, Gess,
Lions and Souganidis [19] that in the case of convex Hamiltonians a certain monotonicity
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of u with respect to the driving signal allows the proof of cancellations at the level
of the PDE solution u; see also, Hoel, Karlsen, Risebro, Storrosten [25,24]. Repeated
applications of this observation, combined with properties of the deterministic equations,
allow us to obtain the existence of the stationary solutions 1, and to prove that all
solutions are close to them for large times.

1.2.8. Spatially homogeneous noise and d =1
We prove new quantitative decay estimates and large time convergence for SPDEs of
the form

du = 0;(F(0yu))dt + H(Ozu) odB on T x R.. (1.9)

For the precise assumptions on F, H see Section 4 below.

The proof relies on a novel combination of entropy inequalities with the nonlinearity
of the Hamiltonian H to deduce quantitative decay estimates for the derivative d,u. As
a first main result, in Section 4.1, we derive quantitative estimates relying purely on the
stochastic part in (1.9), thus giving estimates uniform in F.

Theorem 1.3 (See Theorem 4.8 below). Assume that H = H(x,p) grows super-linearly in
p with rate ¢ > 1, and is the difference of two convex functions Hy, Ho, with H > aH;
for some a € (0,1], and F € C1(R) is non-decreasing. Then, for almost every Brownian
path, there exist positive constants ¢ and C(B) depending only on q and « such that, if
g =1, then the solutions u to (1.9) satisfy

|z (-, T) |1 < C(B)(e”“Tosc(ug) + 1), (1.10)
and, if ¢ > 1,
e (5 T) o < C(B) (T7760 +1) (1.11)

Note, that, if ¢ > 1, the bound on ||uy(-,T)| L« is uniform with respect to the initial
condition.

In Section 4.2, we derive estimates that in contrast rely entirely on the dissipation F’,
and are uniform with respect to the noise H. For the sake of brevity, we discuss here
only the results in the third case analyzed in Section 4.3, where the interplay of diffusion
and noise is exploited to derive improved decay estimates.

We consider the stochastic mean curvature equation for a one-dimensional graph

du = \/%dw V1t |0uZodB in T xR, (1.12)
+

The analysis of the long-time behavior of solutions to (1.12) is challenging in view of
the degeneracy of the ellipticity of the mean-curvature operator for large values of the
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gradient 9,u. Indeed, it was shown in Colding and Minicozzi [7] that in the deterministic
setting, that is, for

Opatl
U = ————
1+ |0, u|?

this degeneracy leads to limitations on the speed of convergence of solutions. More pre-
cisely, as described in Remark 4.21, it is possible to find solutions u with osc(uft(-,0)) =
R and

liminf osc(u®(-, R)) > 1. (1.13)
R—o0
In contrast, we prove that the inclusion of noise in the stochastic mean curvature equa-
tion has a “regularization by noise” effect in the sense that it improves the dependency of
the decay of solutions on the initial condition. The heuristic reason for this improvement
is that, for large initial gradient d,u(-,0), the decay of oscillations caused by the mean
curvature operator in (1.12) becomes small, and, hence, the decay of oscillations due to
the stochastic part in (1.12) dominates.

Theorem 1.4 (See Theorem 4.20 below). Let u be the solution to (1.12) driven by Brown-
ian motion B with initial condition ug, and set T(ug, B) :=inf {t > 0: osc(u(-,t)) < 2}.
Then there exists a deterministic constant ¢ > 0, and, for almost every Brownian path,
constants C(B), p(B) € Ry, such that

7(ug, B) < clog(1 + osc(ug)) + C(B), (1.14)
and
[tz (-, 1) loe < C(B)osc(ug)e™ " for all t > T(ug, B) + p(B). (1.15)

In particular, these estimates provide a quantified and path-by-path improvement of
the qualitative results obtained in Es-Sarhir and von Renesse [12].

Notably, (1.15) implies that eventually the solution regularizes, that is, it becomes
Lipschitz continuous, and, moreover,

Iz (®)|loo <1 for all t > Clog(osc(ug) + 1) + C(B),

a fact that shows that the inclusion of noise improves the relaxation of the initial os-
cillation from the superlinear time scale found in (1.13) in the deterministic case to a
logarithmic one.

A second application and example of increased speed of convergence concerns stochas-
tic Hamilton-Jacobi equations (sHJ for short) with polynomial nonlinearities, that is, for
o, B>1and (ug)® = uy|u.|* 7,
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du = 0, (up)!V dt + Jug|? odB in T xR,. (1.16)

In the deterministic version of (1.16), that is, for the PDE u; = 9, (us)l, the de-
generacy of the diffusion at u, = 0 yields that the decay of ||u,(t)||c is of order et
which is slow for « large—this bound can be easily derived from solutions with separated
variables.

In contrast, it follows from the results obtained in this work that a higher order of
decay is caused by the stochastic part if 28 < 1 + a. Indeed, in this range, the decay
of oscillations due to the stochastic part in (1.16) dominates the decay caused by the
degenerate diffusion.

Theorem 1.5 (See Example /.23 below). For a, 8 > 1, let u be the solution to (1.16) with
initial condition ug and B a Brownian motion. There exists a constant C(B) € Ry, such
that, for allt > 0,

g (- 8)|| s < C(B)t™ @D, (1.17)
and
0 (-, )]l se < C(B)t™ 7017571

Note that, when g is close to one, this estimate significantly exceeds the optimal
deterministic decay of order T

1.8. Organization of the paper

The paper is organized as follows. In section 2 we present an argument that yields the
convergence to constants for a large class of SPDEs but without a rate of convergence.
Section 3 is devoted to the study of the long-time behavior of solutions to stochas-
tic Hamilton-Jacobi equations with inhomogeneous Hamiltonians that are convex in the
gradient. Section 4, which is about the long-time behavior of parabolic-hyperbolic SPDEs
with spatially homogeneous noise, consists of following three parts: (i) convergence due
to the stochastic fluctuations, (ii) convergence due to the dissipation, and (iii) conver-
gence due to the interaction between the stochastic fluctuations and dissipation. In each
subsection, we present several results and examples. In Section 5, we list a number of
questions that left open by the present work and which we believe to be of interest.
Finally, in the Appendix we discuss a number of motivating and concrete examples of
SPDEs to which our results apply. The appendix can also be considered as an introduc-
tion of the scope of a large number of nonlinear SPDEs with multiplicative stochastic
dependence arising in concrete applications, and, in addition, provides the motivation
for the concrete problems addressed earlier in the paper.
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1.4. Notation

We write T¢ for the d-dimensional torus and, when d = 1, T instead of T'. Through-
out the paper |w||x stands for the norm of w € X. When X = L*°, we simply write
|w||. We write BV for the set of functions of bounded variation and BUC(X) for the
set bounded and uniformly continuous functions on X. The oscillation of a function w
is denoted by osc(w). For an integrable function F : R — R, we set [F](v) := [ F(r)dr.

Given two random variables X and Y, X 2 Y means that X and Y have the same dis-
tribution. Moreover, we write £L(X [W) for the law of the random variable conditioned
upon the o-algebra associated with a Brownian path W.

1.5. Acknowledgments

BG acknowledges support by the Max Planck Society through the Research Group
“Stochastic analysis in the sciences”. This work was funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) - SFB 1283/2 2021 - 317210226. PES
was partially supported by the National Science Foundation grants DMS-1900599 and
DMS-2153822, the Office for Naval Research grant N000141712095 and the Air Force
Office for Scientific Research grant FA9550-18-1-0494.

2. Qualitative convergence for homogeneous equations

We consider general SPDEs of the type

m
du = F(Du, D*u)dt + Y H;(Du)odB' in T?xR,, (2.1)
i=1

where B = (B*,..., B™) is a m-dimensional Brownian motion and

F =F(p,X) is continuous and non-decreasing in X and F(0,0) =0, (2.2)
H; is the difference of two convex functions, and H;(0) =0 for i =1,...,m, .

and present a simple argument that yields convergence to constants. The proof is qual-
itative and does not give a convergence rate but it can be applied in general settings,
and, in particular, does not impose any restrictions on the dimension.

The results extend to the more general equations

du = F(Du,D*u)dt + Y  H;(Du)od' in T xRy, (2.3)

i=1

where ¢ = (¢1,...,&™) is any continuous, stationary, ergodic process as long as its
restriction to intervals have full support. This is, for instance, the case of fractional
Brownian motion.
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We recall from the introduction that, for v € C(T) and t > 0, Saryym, pin, (Hv
denotes the solution to the deterministic initial value problem

Vi =aF(DV,D?V)+ Y B'H;(DV) in T?xRy, V(,0)=u,
=1
and we assume that

there exist a,, 8%, ..., 3™ such that, for all v € C(T?),

. (2.4)
nh_}ngo Se, ey pi i, (1)(v) = constant.
The qualitative long-time result is stated next.
Theorem 2.1. Assume (2.2) and (2.4) and B = B(w) is a m-dimensional Brownian

motion sample path. Let u € C(T¢ x [0,00)) be a solution to (2.1). Then, almost surely
in B, u(-,t) converges, as t — oo and uniformly in T?, to a constant.

Before we proceed with the proof, a number of remarks are in order.

As far as (2.4) is concerned, typically, it can be assumed that either o, = n and 8, = 0
or a, = 0 and !, = n, that is, that solutions to deterministic equations corresponding
to either F' or one of the H; converge for large times to a constant.

Examples of the former are F' = F(p) > 0 with equality if and only if p = 0, and
F(p,A) = Tr(a(p)A) with a(-) taking values in the set of strictly positive symmetric
matrices. Hence, our results apply to the case

F(p, A) = Tr (A (Id PP )) and H(p) = /T+ [oP,

1+ [p[?

corresponding to the stochastic mean-curvature flow of a graph, where I; is the identity
matrix. We therefore recover in a simpler way, but in a different topology, the result of
[8] that the graph becomes asymptotically constant for large time.

It is also possible to find examples where Sy and the Sy, taken separately do not
converge. Indeed, for instance take d = m + 1 > 2, F(p) = |p1|, Hi(p) = |pi+1]- On the
other hand, (2.4) holds for a,, = 8L = ... = B¢ =n.

The idea of the proof is classical. It combines the compactness property in the space
variable, the continuous dependence of the solutions on the paths and the fact that, in
large time intervals, the noise is small. For additive noise dependence, the problem was
investigated by Dirr and Souganidis [11].

Increasing the regularity of the path & in (2.3), it is possible to weaken the regularity
requirement on H. Indeed, when £ is a Brownian motion, its trajectories take value in
C%([0,T)) for any o < %, and the support of its law in this space still contains all smooth
functions. It follows, for example, from the results of Lions, Seeger and Souganidis [34]
that the map & € C%® — u is continuous if, for some £ > 0, H € C=.



P. Gassiat et al. / Journal of Functional Analysis 286 (2024) 110269 11

In principle, the proof below is flexible and could extend to z-dependent equations as
long as the solutions are continuous with respect to the driving signal and equicontinuous
in the space variable. The latter is delicate and, at the moment, is only known for z-
dependent equations in the case where H = H(x, Du) is convex and F' = 0; see [19].
However, in that case, we have a more precise description of the long-time dynamics
which are discussed in section 3 below.

The proof of Theorem 2.1. Throughout the argument, without loss of generality, we as-
sume that a,, > 0.

It follows from the contraction property of the solution operator of (2.3) with & =
(€Y,...,€™) an arbitrary continuous path (see [46]) that the map ¢ — osc(u(-,t)) is
non-increasing.

Thus to prove the result, it suffices to show that, for some subsequence t,, — oo,
osc(u(-,tn)) — 0.

It follows again from the contraction property of the solutions of (2.3), the continuity
with respect to the paths (see [46]) and the compactness of T? that, given ug = u(,0)
and t > 0, the set

K(uo) = {v(-,t) : v solves (2.1) for some path B € C([0,#],R%)}

is compact in C(T?).

Indeed, the comparison principle and the homogeneity of (2.1) give that the equation
preserves upper and lower bounds and modulus of continuity by a standard comparison
argument. For instance, for the latter point, note that, for all y € R%, if v is a solution
to (2.1), so does v(- + y,t) and, hence, the comparison principle (see [46]) yields

sup  {v(z +y,t) —v(z, 1)} < sup {uo(z +y) — uo(2)}.
t>0,z€Td zeTd

The compactness implies that the convergence in (2.4) is uniform over v € K(uyp),
that is,

lim sup osc (Sa"FJrEi gim,(1)(v) =0, (2.5)

n—oo ’UEK:(’U.(])
Recall that, for any « > 0, the law of Brownian motion has full support on C([0, a]),

namely for any continuous function f : [0,a] — R with f(0) =0, and any € > 0, it holds
that

P (Vt €[0,a], |B(t) — f(t)] <€) :=Dpa,re > 0.

By independence and stationarity of increments, this further implies that,
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P (3T >0:Vt € [0,a], |B(t+T)— B(T) — f(t)| <¢)

> supP(I0< k< N:Vte|0,a], |B(t+ ka)— B(ka) — f(t)| <e)
N>1

> sup {1 — (1= pa,s)"}
N>1
=1.

Letting now &,, — 0 be arbitrary, this implies that, almost surely, there exists T}, such
that

d
sup{Z|Bi(t+Tn)Bi(Tn) il t€[0,an]}§5n.

i=1

Moreover, in view of the continuity of the solution map with respect to B and the fact
that u(-,t) is in K(ug), we find that, for some &/, — 0 depending on &,, and K(uyp),

S0, e, 1 (1) (-, T)) = e T + 0l o < €5,

The assertion above and (2.5) imply that osc(u(-,T,, + a,)) — 0, and, hence, the
result. O

3. Inhomogeneous and convex Hamiltonians

We investigate here the long time behavior of T %periodic solutions to the inhomoge-
neous Hamilton-Jacobi equation

du+ H(z,Du)odé =0 in TYx Ry u(0,-)=uy on T (3.1)
with £ € C([0,00)), a special case being the stochastic Hamilton-Jacobi equation
du+ H(x,Du)odB =0 in T¢xR; u(0,-)=wug on T (3.2)
We denote by Sy the solution operator (semigroup) associated to the deterministic
evolution vy + H (x, Dv) = 0, and, for each ¢ € C'*(]0,00)) and each v € C(T4), qu’[o’t])(v)
is the value at time ¢ of the solution to u; + H(x, Du) o d§ = 0 and u(-,0) = v.
Throughout the section we make two assumptions which we state next. Their role was

already mentioned in the discussion before the proof of Theorem 2.1.
We assume that

H = H(z,p) is continuous on T? x R? and convex in the p variable, (3.3)

and
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for any compact K C C(Td) and T > 0, the family

(3.4)
{SIELI,[O,T]u cuckK, Ec Cl([O,T])} is equicontinuous.

We remark that sufficient conditions for (3.4) to hold are given Theorem A.1 in Seeger
[43] and Proposition 2.5 in [19]. Note that, in the periodic setting of this paper, it is true
that H(x,p) < H(p) for a convex H, and, thus, (2.8) in [19] is always satisfied. Then
for (3.4) to hold requires additional information like local controllability in the control
problem associated to H. Coercivity of H is, for example, sufficient but not necessary.

When H is convex in the gradient, the control representation of S4 g yields a useful
monotonicity lemma which is stated next. For the proof we refer to [19] (see also [3]).

Lemma 3.1. Assume (3.3). Then, for allt >0, S_g(t)Sy(t) < Id < Su(t)S_g(t).

We further recall that using the lemma above repeatedly allows to prove some mono-
tonicity properties for the solution map, which in particular, in combination with the
compactness assumption (3.4), imply that the solution map may be extended to arbi-
trary continuous . In [19], these results are stated in Corollary 2.4, Corollary 2.8 and
Corollary 2.7, which, for the convenience of the reader, we summarize in the following
lemma and proposition.

Lemma 3.2 (Corollaries 2.4 and Corollary 2.8 in [19]). Assume (3.3). Then, for all
£,C € C1(0,T)) such that £(0) = C(0), £(T) = (T) and € < C on [0, ),

Sg[ovT] 2 S?I;[OaT] ,

and, for any & € C1([0,T)) with £(0) =0,

. o > £;10,7] > . .
Su (E(T) gHTI}&) S u ( [%“7{}5> >S8y 25w r[g%cé“ &(T) | Su r[lggfé“
If € is such that £(0) = infjo 11 § and {(T) = supg 11§, then SE[O’T] =Su(

Similarly, if §(0) = supjo ) § and {(T') = inf|o 17§, then Sg[O’T] =S_p(—&(T) + £(0)).

Proposition 3.3 (Corollary 2.7 in [19]). Assume (3.3) and (3.4). Then,

the solution map & — SE[O’T] (u) admits a unique continuous extension to & € C([0,T1]),
(3.5)
and the results of Lemma 3.2 still hold for & ¢ € C([0,T1]).

To establish the long-time behavior of (3.3), that is, the convergence to constants, we
need to assume that solutions to the deterministic problem, that is, when £(t) = =t,
converge in the sense that
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there exists ¢ € R such that, for each u € C(T?), there exist
¢F = ¢*(u) € C(T?) such that +c+ H(z, D$T) =0 on T? and (3.6)
Sy(Tu—cT — ¢ and S_py(T)u+cT — ¢~ uniformly in T

T—o00 T—r 00

It is a classical fact in the theory of viscosity solutions that the equations ¢ +
H(z,D¢T) = 0 and —c — H(x,D¢p~) = 0 are not equivalent except, of course, when
there exist C'!'-solutions.

The fact that H and —H have opposite ergodic constants is true here due to the
convexity of H but is not true in general; see, for example, the discussion about this
issue in [42, Section 4.1].

Finally, sufficient conditions for the convergence in (3.6) have been obtained by several
authors using either control or PDE arguments. The literature is very long. Here, we only
refer to [13], which assumes that H strictly convex in the gradient, and [2] for the most
general, in the sense that no convexity of H is required, convergence result.

In order to simplify the notation for what follows, we set H=H+ ¢, in which case
we may assume that ¢ = 0 and note that the convergence in (3.6) may be restated as
convergence, for any u € C(T?), of Sy (T)u and S_ ;4 (T)u.

We denote by £F the set of continuous solutions to +H (x, D¢*) = 0 and record in
the next lemma some of its properties and provide a sketch of their proof.

Lemma 3.4. Assume (3.3) and (3.6). Then,

(i) ifpe&™ (resp. p € £ ), then, for each T >0, S_;(T)p < ¢ (resp. Sy (T)p > &),
and
(ii) the maps

peE = Sy(c0)d = Dlgn Sy(D)p € ET and

peET  Sy(—0)p = lim S z(D)p €&

D—o0

are inverse of each other.

Proof. The first claim follows immediately from Lemma 3.1 and the fact that ¢ € £ if
and only if ¢ = Sy (T)¢ for all T > 0.

For (ii), it suffices to prove that, for each ¢ € 1, Sy (00)Sg(—o0)¢ = ¢, and
this is obtained as follows: Lemma 3.1 yields that Sy (00)Sy(—00)¢ > ¢, and (i)
above gives that Sy (—00)¢ < ¢. We then deduce from the comparison principle that

Sp(00)Sg(—00)p < Sp(0)p =¢. O

Following [14], we call a pair (¢7,¢7) € ET x £~ such that ¢~ =54 (c0)¢™ conju-
gate, and we denote by P the set of such pairs.
We will frequently use the following monotonicity property.
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Lemma 3.5. Let (¢7,¢7) € P, and u € C(T?) such that ¢~ < u < ¢t. Then, for any
&€ C([0,T7), it holds that

¢ < 550y < gt

<
H

Proof. By comparison, it suffices to prove the claim for © = ¢~ and u = ¢T. If ¢
is piecewise linear, this is an immediate implication of the following inequalities (for
arbitrary d > 0)

S (06~ =9~ <Su(0)¢™, S_p()eT <o =540,
and the general case follows by density. O

The next proposition shows that each conjugate pair is associated to a unique global
(in time) solution to du + H(x, Du) o d¢ = 0.

We also show, although we will not need it later, that this correspondence is actually
one-to-one if

there exists 7' > 0 such that the set {Sy(T)u: u € C(Td)} is equicontinuous. (3.7)

Proposition 3.6. Assume (3.3), (3.4) and (3.6), and let £ € C(R;R) be such that
limsup,_, ., &(t) = —liminf;, o, &(t) = +o0. Then,

(i) for each conjugate pair (¢, ¢~), there exists a unique solution v : T4 x R — R to
dip + H(x, D) o dé =0 on T4 x R, (3.8)

such that
¢~ (x) < p(x,t) < ¢ (x) forallt €R and x € TY, (3.9)

and
(ii) 4f, in addition (3.7) holds, then, conversely, given a solution v to (3.8), there exists
a unique (¢, ) € P such that (3.9) holds.

Proof. To prove (i) choose a decreasing sequence (T™),cn such that T" — —oo,

n—oo
T° =0, and, for n > 1,

grtt) = g, (1) = 3

in max
[T2n+2 727 [T2n+1,T2n—1]

and

Db = E(T?") —&(T?") = 4oo, DM :=&(T*) —¢(T?"*?) — —oo,

n—oo n—oo
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and let ™t : TIx[T™, +00) — R (resp. 9™~ ) be the solution to (3.8) in T x [T, +oc0)
with ™+ (T",-) = ¢ (resp. ¢7).

It follows from Lemma 3.2 and Lemma 3.4 that 1™ is non-decreasing (resp. ¢™~ is
non-increasing) in n, and, in addition, the comparison principle gives

97 = aaipaxiret,oe) < 97T = 97 (T, s

The right hand side of inequality above tends to 0, since, if, for instance, n is odd,
wn,-&-(Tn—l7 ) _ Qb"’_(T"_l, ) — ¢+ _ Sf{(Di)(b_ —nseo 0.

Hence, the sequences (¥ 1), en and (™7 ),en converge (locally uniformly) to a con-
tinuous function ¢ on T x R, which is a solution to (3.8) satisfying (3.9).

Assume now that v is another function satisfying (3.8) and (3.9). Then, using again
the comparison principle, we find ™~ < 1 < ™% and, after letting n — oo, we obtain
that ¢ = 1.

To prove (ii) consider next a solution @ to (3.8). In view of (3.7), the sequence
((T™,+)),,>o is compact, and, therefore, converges, up to a subsequence n’ — oo, to
¢ € C(T?). But then, assuming for instance that the n'’s are odd, w(T”,_l7 -) converges
to o7 = Sz (00)(¢), which, in turn, implies that ¢ must coincide with the solution
associated to ¢ was constructed in (i). O

Given 7 = (¢*,¢~) € P and ¢ as in the previous proposition, we denote by ¥™* the
unique solution to (3.8). The lemma below provides information on the behavior of 1™
ast — oo.

Lemma 3.7. Assume (3.3), (3.4), (3.6) and let £ € C(R;R) be such that limsup,_, _ ., £(¢)
= —liminf, ,_ &(t) = limsup,_,,  §(t) = —liminf,,  £(t) = +o00. Then, for each
T=(¢",07) €P,

limsupy™S(-,t) = ¢ and litrginf P ) = ¢ (3.10)

t—o0

Proof. Let (T,),en be an increasing to 400 sequence such that, for all n € N,

&(Toy) = [min € and &£(Topy1) = : max &,

;Ton 0,T2541]

and set Dy, = £(Ty+1) —&(Ty). The D, ’s have alternating signs, and | D,,| is an increasing
sequence which diverges to +oo.
Then

SH(DZn)¢+ = ¢+ > w(T2n+1; ) > SH(D2n)¢_ —7n—o0 ¢+a

and, similarly, ¥(T2,,") = ¢~ asn — oo. O
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Remark 3.8. For t € R, and £ as in Proposition 3.6, let £ := £(- —t). It is clear that, for
any ™ € P,

P™E = (1),

In particular, if ¢ is drawn according to a process whose law is invariant with respect
to time-shifts, then the same invariance holds for the law of . This is, for instance, the
case when £ is a two-sided Brownian motion.

The main result of this section asserts that any solution on T¢ x [0, 00) gets, in the
t — oo limit, close to a global in time solution ¥ as in Proposition 3.6.

Theorem 3.9. Let H satisfy (3.3), (3.4) and (3.6) and assume that £ € C(]0,00)) is such
that lim sup,_, . £(t) = —liminf;_,o £(t) = H+o00. Then, for any solution u to

du+ H(x,Du)odé(t) =0 on T x [0,00) u(0,-) =ug € C(T?),
there exists a conjugate pair (¢+, ) such that

u(z,t) = c&(t) + Y(t,x) + 0t 100(1) (3.11)

where

¢~ < <o, limsupt(-,t) = ¢ and liminfe(,t) =¢ .
PR t—00
Proof. Replacing H by H if necessary, we may assume that ¢ = 0.

Without loss of generality, we may assume that £ is extended to R and is unbounded
for negative times, so that there exists a global solution v associated to each conjugate
pair as in Proposition 3.6. Of course, ¢ may depend on the choice of the extension, but
(3.11) will hold for all choices.

Let Ty, Tont1, Dy be as in the proof of Lemma 3.7. Due to the assumed equiconti-
nuity, there exists a subsequence n’ such that u(7Ts, ) converges to some ¢~. Then by
assumption (3.6), u(Tan/41) converges to ¢ = Sy (c0)p™.

Note that Lemma 3.1 implies that, for each n,

St (Tont2) S (Tont+1)(¢7) > Su(Dant2 + Dany1)(¢07) = ¢~
and by induction, for all n,m > 0,

8%[T2n7T2n+2'm] ((b—) Z ¢_ . (3.12)

~

It follows that, for any other subsequence n” = n' +m' with w(Te,) — ¢,

(5— — lim SE[T2n”T2n’+2m'](u(Tn)) > ¢—
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and, after reversing the roles of ¢, ¢?_, we obtain that in fact (3.12) is an equality, that
is.

¢~ = lim u(Ty,)

n—oo

and then obviously

(b+ = hm U(T2n+1) = SH(+OO)¢_
n—oo
Letting 1 be the solution given by Proposition 3.6 and satisfying ¢~ < 1 < ¢, the
comparison principle then implies that lim, o ||u(-, 1) — ¥(-, Tn)||, =0. O

The pair (¢+,¢~) above is in general not unique, so that the limiting behavior may
depend on both the signal £ and the initial condition ug. Recall that, in the deterministic
case (£(t) =t), 1 can be obtained from ug via a rather explicit Hopf-type formula (see
[9]). Whether there exists such a simple relation in the case of oscillating £ is an open
question.

We now turn to (3.1) with ug € C(T?) fixed and B = B(w) drawn according
to the probability distribution of a (two-sided) Brownian motion, and let I(w) =
(®F(w), P (w)) be the (random) conjugate pair given by Theorem 3.9. We now discuss
the law of the random variable ®*. Its support in the space C(T?) is easily characterized
by the following proposition.

Proposition 3.10.

(i) We have

Supp(@*) = {85(00)85 " uo; € € C (0,1}, (3.13)

where the closure is taken with respect to the sup-norm.

(i) Let ¢Too = Sy(c0)uo and ¢t = Sp(00)S_gz(o0)ug. Then ¢, (resp. o) is
the smallest (resp. largest) function in Supp(®™T).

(iii) If ¢~ <wg < @™, for some (¢T,¢7) € P, then Supp(®+) = {¢T}.

Proof. To prove (i) observe that Supp(®™) is contained in the set in the right, since

Pt (w) = Sy (00)@T (w) = limsup Sg(oo)Sg[O’t]uo.

t—o00
For the reverse inclusion, let ¢+ = Sg(oo)S%uo and define €™ € C([0,2]) by € = ¢
on [0,1] and £=non [1,2]. Then, the continuity of the solution map yields &, — 0 such

that, if | B — £™]|w.j0,2) < n7 Y, then [[u(2,-) — ¢T||« < €n, and, hence,
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12F (w) — 67| < en

Since, in view of the full support property of Brownian motion, the event {w €  :
|B — & lloos0,2) < n ™'} has positive probability, it follows that ¢ is in the support of
ot

To prove (ii), let £ € C([0,1]) with £(0) = 0. Then Lemma 3.2 yields that

S&uo > S_ ()85 (D)uo,

where D = max(g 1] &, ¥ = max[p 1) § — £(1) both being non-negative.
It then follows from Lemma 3.1 that

S1(00)S_5 (7) S5 (D)ug = S (00)uo,

which implies that qﬁioo is indeed the smallest element of the support.
Similarly, for D" = —minp 11§, 7' = —minjg 1) £ + £(1), we have by Lemma 3.2 that

SEuo < Sp(v)S_ (D ug < S
and then by Lemma 3.1

8(00) S0 < S(00)S_ (D)o
< Sp(00)Sr(n)S_ 5 (n)S_ (D) =n—eo Sg(00)S_ g (00)ug,

so that ¢T__ is the largest element of the support.
Finally, for (iii) observe that the assumption on uy implies that gbioo = ¢t = o,
hence, the result is a consequence of (ii). O

A simple example, already considered in section 2, is the homogeneous Hamiltonian
H = H(p) with H(0) = 0 < H(p) for p # 0. Then ¢ = 0, £t = & = R, and
Proposition 3.10 implies that

Supp(®™) = [inf ug, sup uo] -

In particular, in this case ®*(w) is not a constant random variable unless ug is constant.
It is also not difficult to construct an example where ®*(w) is not even constant
modulo additive scalars. Indeed, in view of the previous conclusion, it suffices to construct
H and ug so that the difference of Sy (c0)ug and Sy (00)S_ 4 (00)ug is not constant.
Next we consider the large-time value of a solution to (3.2), still in the case of a
driving Brownian motion, where, in view of Theorem 3.9,

w(x,t) = eB(t) + ¥ (2t w) + 0p s oo (1).
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It follows that u(-,t) depends, up to a small error, on (i) the macroscopic position given
by ¢B(t), (ii) the limiting upper/lower profiles IT = (®*,®~), and (iii) the actual value
of the associated stationary solution % (t,w) at time. The result below states, roughly
speaking, that these three factors are independent in the large time limit.

Theorem 3.11. Assume (3.3), (3.4) and (3.6), and let u be a T%-periodic solution to
(3.2) with B Brownian motion. Then, there exist three independent random variables
Z ~ N(0,1) and B, B’ two-sided Brownian motions, such that, in law and with respect
the sup-norm topology for the second component,

(B\ﬁ_?,u(',t) — cB(t)> T (Z’ ¢H(B),B'(.’O)) ) (3.14)

Proof. We split [0, ¢] into the three disjoint intervals
I} =[0,V1), I? = [Vt,t —Vt] and I} = [t — V1, 1],

noting that v/t could be replaced by any function growing to infinity slower than t.

The idea of the proof is that, up to a small error, each of &, %, Y(-,t) are deter-

mined respectively by the value of the increments of B on these subintervals.
Fix e > 0. It suffices to show that, for each t > 0 and i = 1, 2, 3, there exist independent
Brownian motions B%! such that

tli>nolo]p <M + Hu(.,t) — ¢B(t) — ¢H(Bl=i)x}33’t(.7t)H < 35) =1. (3.15)

Let

Ay := {there exist ¢ € ET and s € I} such that |ju(-,s) —¢| <e},

and note that there exists some (deterministic) 7. so that

Ay D {max (B(s) - minB) > TE} )

sel} [0,s]
Indeed, it suffices to choose T, such that

sup HSﬁ(oo)SE[o’l]uo—Sﬁ(TE)Sg[O’l]uoH < g,
¢ec([0,1]) 00

which exists by (3.4) and (3.6).

It then follows from the scaling properties of the Brownian motion that, as t — oo,

P(A) >P (max (B(s) — minB) > t1/4T5> — 1.
s€[0,1] [0,s]
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Also note that, for ¢ as in the definition of the event, on A; we have |®T — ¢|| < e.
Furthermore, let

A} = {max B —min B > T/}.
1} I3
It follows that, if T/ is large enough, then, on A},

sup  sup Hsg’ff’ SO UgH B0t H <e. (3.16)
o+eet gec(o,1))

Indeed, it suffices to choose T” so that

sup 6% = ST (@ Moo + 07 = S_p(TD) (67|l <&,
¢t ESupp(®+(uo))

with ¢~ the conjugate of ¢T.

Let 7 and 7 be the times where B attains its minimum and maximum in If’. Then,
assuming for instance that 7 < 75, we find that, for any ¢ in C(]0, 1]),

B,I? o£,00,1] ,+ B,[T2,t] 4+
Sy 'Sy eT =Sy
and
B,I;’ ,[0,1 B,[r1,t] — B,[T2,t — B,[T2,t
SF[ ‘qu[ ]¢+ZSH[1]¢ ZSH[z]SH(TE/)(b ZSH[2]¢+7€.

Since ¢~ < 1) < ¢ at all times, 1/)B’¢+ also satisfies the same inequalities, (3.16) follows.

For i = 1,2,3, let B"" be independent Brownian motions with the same increments
as B on I} and note that on A;, again choosing ¢ as in the definition of the event, it
holds that

[9F(BY) — ¢ <e.
Then, on A; N A}, we have
.73 . _ ,t ot ot
u(,t) = cB(t) = §EH §BIVI g 4 o g0 B (L) 0o = g BUBY () L3,

where by ¢ we mean any function with sup-norm less than e.
Then (3.15) follows, since we clearly also have that

B*t(t) — B(t)
r (T

We remark that in many cases of interest, solutions of £T and £~ are unique up

>5>—>0 as t—o0. O

to additive constants. This is, for example, the case if H(x,p) = 3|p|*> — V(z) with
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V € C(T49) attaining its minimum at a unique point of T, or if H(z,p) = a(z)/1 + |p|?
where a > 0 attains its maximum at a unique point.

For the reader’s convenience, we state the results in this case, where, in particular,
any two solutions to the equation to (3.1) on [0,00) x T ¢ become asymptotically close,
as t — 0o, up to a constant.

Corollary 3.12. Assume that H satisfies (3.3), (3.4) and (3.6), and, in addition, that
P={(¢¢ +k, ¢y +k) : k€R} for some ¢f,dy € C(T?).
Then, given & € C(R) which is unbounded from above and below at +oo,

(i) there exists a unique solution v to di + ﬁ(ar, Dy)odé =0 on T4 x R such that

$o ¥ <o,
(i) given any solution u to du + H(x,Du)odé = 0 on T? x [0,00), there exists a
constant k = k(u(-,0),&) such that

N Ju(-,1) = c&(t) = o 1) = ko = 0,

(iii) when & = B(w) is a (two-sided) Brownian motion, then, in law and the sup-norm
in the second arqument,

B(t) B

(B2t -eB0)) 2 (207 0+ b B).
with Z ~ N(0,1), and the Brownian motions B, B’, are independent.

4. Quantitative estimates for homogeneous SPDE

4.1. Convergence due to stochastic fluctuations

We fix £ € C([0,00)) and consider the long-time behavior of parabolic-hyperbolic
SPDEs of the form

du = 0,(F(0yu))dt + H(Oyu)od§ in T xRy, (4.1)
including as a special case

du = 0, (F(0zu))dt + H(Ozu) odB in T x Ry, (4.2)
and prove, exploiting only the fluctuating part H(9,u) o d§, that solutions converge to

constants for large times. In particular, the results also apply to problems with F' = 0,
that is, SPDEs like
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du=H(0yu)od¢ in T xRy.

The main focus of this section is on the derivation of quantitative results which lead
to improved rates of convergence due to stochasticity in the following sections.

We begin with a qualitative convergence result (Theorem 4.1), which can be shown
under weaker assumptions than the quantitative statements following below. In this
qualitative form and for F' = 0, this result was first obtained in [36].

Throughout the subsection we assume that

H = H; — H> for two convex functions Hy, Hy : R — R, and H(0) = 0. (4.3)
In addition, in the following result we will require that
H(p) >0 forall peR\{0}. (4.4)

Theorem 4.1. Assume (4.3) and (4.4), F € CY(R) is non-decreasing, ugp € C(T), £ €
C([0,00)) with limsup,_, . |£(t)] = 400, and let u be the viscosity solution to (4.1) with
initial condition ug. Then, there exists a constant us, such that

T ful-,6) = une]) = 0.
If € = &(w) is an a.s. unbounded and continuous martingale, then Elus] = [1 uo.

Proof. We first assume that ug € C?(T), consider a smooth approximation £° of ¢ and
the unique viscosity solution u® to

U = 0, (F(uS)) + HuS)E in T xRy u(0,-)=wup on T,

and recall that, in view of [35], as € — 0 and for all T > 0, u® — w in C(T x [0,T7]).
In addition, since H(0) = 0, we also have (see [35]), for all t € Ry,

[u= (-, D)l < [luoll and [Juz.(-, )] < [luoe |- (4.5)
Next, we observe that v® = u is the entropy solution to
V5 = 0 (F(0°)) + 0, H(v%)EF in T xRy v°(0,) =up, on T,
and, thus, for any convex and smooth F : R — R, we have

%/E(va)dm < —/E”(UE)F'(UE)(U;)Qd:U—/E”(va)viH(vs)éadx
T

T T

= f/E”(vs)F'(va)(v;)zdx <0.
T
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By an additional approximation argument, we may assume that H, H; and Hy in (4.4)
are smooth, and, hence, using the previous observation with ¥ = H; and E = F» yields
that, for i =1, 2,

t— NE(t /H (x,t))dz is non-increasing. (4.6)

Thus, the map
t— Ne(t /H (z,t))dz = Ni(t) — N5(t)

is of bounded variation, and, in view of (4.5), || N¢||py is uniformly bounded. It follows
that, along subsequences, N© — N weak-x in BV},.(R) for some N € BV,.(R}).
We also know that, for all ¢ € R,

[0 Ol < ool and " (@) v < [[vollBv- (4.7)

Then the Aubin-Lions-Simon Lemma (see Simon [44, Theorem 5]) together with the
equicontinuity of the u®’s imply that v® — v = u, in Cjoe(Ry; L1(T)).
It follows from the dominated convergence theorem that

Ne(t) = N(t) /Huxxt))da: and

Ni(t) — Ny(t /H1 ug(z,t))dr and N5(t) — Na(t) = /Hg(ux(x,t))dx,
T

and, finally, in view of (4.6) and (4.7), N1 and Ns are both non-increasing and bounded.
A standard approximation argument yields

T/us(m,t)dac—jr/u(xsda:—/ /H (2, 8))dz | des = /Nsdgs
t

N (1) (6°(t) — / (5))AN*(u),

where the right hand side is a Stieltjes integral.
In view of the convergences in € shown above, we can pass to the limit € — 0 in (4.8)
to obtain that

t

/ ul(z, t)da / ule, s)dz = N(t) (6(t) — £(5)) — / (€() - E(s)AN().  (49)

T T s
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Ift > 0 and s € [0,¢] are such that & achieves its minimum on [s,t] at s and its
maximum at ¢, we deduce from (4.9) that

_ Jpulz,t) dx—fT §u (s) "
M) = €0 — &l &0 —e(s) N o)
max ug — min ug
ST e TR

Finally, since N*(t) is non-increasing and bounded, the limits

i _ Ty 1 2
Noo = tlggo N(t) = tlggo N(®) tlggo N(®)
exist.
In view of the fact that limsup,_, . |£(t)| = 400, (4.10) implies that there is a sequence
t, — oo along which N(¢,) — 0.
Hence, No, = 0 and

lim | H(ug(t))dz =0, (4.11)

which, in view of (4.4), implies that

ug(-,t) — 0 in measure. (4.12)
t—o0

The equicontinuity and equiboundedness of the family (u(:,t)):>0 yields that, along
subsequences t,, — 00, u(+, t,) — Us uniformly for some bounded and Lipschitz contin-
UOUS U -

It follows from (4.12) that 4 , = 0 a.e. which implies that us is a constant.

Since (4.1) admits a comparison principle, the constant u., is independent of the
chosen subsequence and thus

Jim [[u(-,£) — s | = 0.

In addition, if £ = £(w) is given as paths of an a.s. unbounded, continuous martingale,
then, taking expectations in (4.9) gives

E/u(m,t)dac - /uo(x)dac o,
T T

and the claim follows after letting t — oo.
It remains to remove the assumption that wg is smooth. Indeed, given uy € C(T),
choose uT*® € C2(T) such that
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lim ufs —uoll =0, flug® —ug || <e and ud® >up > ug*.
e—

It follows from the comparison principle for (4.1) and the asymptotic behavior of the
solutions for smooth data that there are constant u%° such that

utE(t) > u(,t) > uTf(,t) and, ast — oo, uHe(t) = ule.

o0
Since
[ut2 (o) —u ()] < flug ™ —ug €| < e
we have
ulf —ufl<e

and the claim follows. 0O

Remark 4.2. In the setting of Theorem 4.1 with £(w) an a.s. unbounded, continuous
martingale, there is, in general, no additional information on 4., which as shown in [36]
can be random. However, when H(p) = |p| and F = 0, if u solves (4.1), then, for any
non-decreasing and continuous ¢, ¢(u) is also a solution, and, hence,

Efp(uo0)] = / o(uo)de,

T

a fact which implies that Law(us) = (uo)«dx.
The next result is a quantitative version of Theorem 4.1. For this, we assume that
there exists « € (0, 1] such that H > aHj, (4.13)

a fact which can be seen as a way to quantify the growth of the Hamiltonian H away
from its minimum H(0) = 0.

Theorem 4.3. Assume (4.3), (4.4), (4.13), F € CYR) is non-decreasing, uy €
C(T)NnWHLL(T), ¢ € C([0,00)), and let u be the solution to (4.1) with initial condi-
tion ug. Then, there exists C = C(«) > 0 such that, for all T > 0,

max ug — min ug
Hi(ug(z,T))de < C - . 4.14
T/ i ( )) maXge[o,1] (&(t) — ming ¢ £) ( )
If, moreover, Hy is even, then, for all'T > 0,
max ug — min ug (4.15)

/Hl(ug;(x,T))dx <C
T

maxio, 7] & — ming 7y &
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Proof. As in the proof of Theorem 4.1 we first assume that ug € C?(T).
Fix an arbitrary time interval [so, fo] and let s,t € [sg, to] be such that s <t and

A0 RO = €0 e

Using an argument similar to the one leading to (4.10) and recalling that dN = dN! —
dN? with N and N2 non-increasing, we get

N(t) < max ug — min ug

M) =&

max ug — min ug

+ Na(t) — Na(s) < €0 —£(5)

—+ NQ(S) — Ng(t)

Since N; is non-increasing and, in view of (4.13), No < (1 — a) N7, we finally get

max ug — min ug

maXtG[So,tO] (g(t) - min[SO,t] €)

To obtain the general estimate, we first notice that, without loss of generality, we can
choose > 0 such that 5 :=1—a+n<1and N € N maximal so that

i . 1 _
tgl[gg](ﬁ(t) ~ min §) > (maxug — minwug) AOT > sk (4.17)

Otherwise,

i max ug — min ug
nB maX¢eo, 1] (f(t) - min[o,t] f)

Ni(T) < N1(0)

IA

and nothing remains to be shown.
Next, notice that we can choose a partition of [0,7] consisting of intervals I =
[tk,trt1], with &k =1,..., N, such that

N
max (£(t) — min &) > max (£(t) — min &)

1 tE[tk,tk+1] [tk,t] - tE[O,T] [O,t]

and, in view of (4.17),

max ug — min u
> © =n(l—a+n)"1Ny(0).

maxy, & —ming, €

Applying (4.16) sequentially on the intervals I, we obtain that

Ni(T) < BV N1 (0).
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Since N is chosen maximal for (4.17) we have, for some constant C' = C(8) > 0,

. max ug — min ug
t) — - @
e (€0 —win ) < O——1 e 5%

and we conclude that

max ug — min g

max,o,7](§(t) — ming 4 &)

N(T) < BNN1(0) <

To obtain the result for ug € C(T) N W1H1(T), we approximate ug by smooth functions
u§ obtained by mollification. Since, as ¢ — 0, u§ — ug in W1, we have that u® — u
uniformly and uZ — u, in Cy(LL). Then the statement follows from convexity of H; and
Fatou’s Lemma.

For the proof of the last claim, we observe that, by symmetry, we also have the
estimate

max ug — min g
(e < 7 418
/ 1 (7)) maxe(o,7](—£(t) + maxig 4 £) e

which implies the estimate in case Hy is even. 0O
Next, we discuss a number of concrete examples.

Example 4.4. We consider the 2-d stochastic mean curvature flow in graph form per-
turbed by homogeneous noise

du=13 azg“ dt + /T + (9yu)2 0 dB, (4.19)
u

with initial condition ug € C(T) N W1(T), and B Brownian motion. A simple calcu-
lation shows that (4.19) can be recast as (4.1) with F(p) = darctan(p) and H(p) =
Niear

The only issue with applying Theorem 4.3 is that H(0) = 1. This can be resolved by
an elementary change of unknown: Indeed, it is immediate that @ := u — B solves

Opg U

T

dt + (/14 (0,@)?> —1)odB
while @, = u;. Now H(p) = y/1+ p? — 1 satisfies all the assumptions of Theorem 4.3.

Since the conclusions of the theorem concern ,, next we write them using u,.
It follows that

/(\/1 Fu2 — 1)de < O — 2% %0 — %o (4.20)

J maxcjo,7] B — minjg, 7 B



P. Gassiat et al. / Journal of Functional Analysis 286 (2024) 110269 29

and, thus,

max ug — min ug

u(T) — / u(T)dx <C - .
lu(T) J (T)dzllos maxco, 7] B — minjg, 7 B

The last estimate is pathwise and quantified and improves [12 Proposition 4.1], which
proved the qualitative convergence in mean E|ju(T fT T)dz|%. — 0

Example 4.5. We consider the Ohta-Kawasaki equation with spatially homogeneous noise
(see, for example, Kawasaki and Ohta [28] and Katsoulakis and Kho [27])

Opztt

Wdt + (1 + (8xu)2)i o dB (421)

du =
with 6 > 0, and Lipschitz continuous initial condition wg, which, as per the discussion
in the previous example, can be transformed to

Opall

Tt + (L (@)}~ 1)0dB

di=§
without changing the z-derivative.
It is immediate that H(p) = (14 p?)3 — 1 satisfies (4.3).
Moreover,

1 1 3
H'(p) = 5(1+p") " 3p, H'(p) = 5(L+ )74 = (1497 0p% = 1Y — Hj,

,.;;

with

—_

=//— 1+ p2)~ % dps dpy

and, since H > 0 and HY > 0, it follows that H = H; — Hy is the difference of two
convex functions.

Finally, to check (4.13) we observe that, for |p| < K, there exists n € (0,1) so that
H" > nH{. Moreover, there is a constant C' such that

l\D

1

- 2
H(p) 201+K3/2|p| ~

Since ||ug (-, t)]] < ||uo,z||, it follows that we can thus apply Theorem 4.3.
Hence, there is a constant C' > 0, which may depend on ||ug||zi, but not on ¢ such
that

C

osco 7B’

|u(-,T) — /u(x,T)dxHoo < (4.22)

T
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Remark 4.6. As seen in the two examples with § = 0, in contrast to [12, Proposition 4.1],
the proof given here does not rely on the (degenerate) viscosity of the mean curvature
operator, but exploits exclusively the convexity of the Hamiltonian in the stochastic
term.

Next we show that iterating the estimate in Theorem 4.3 allows to improve the de-
pendency on the initial condition and the speed of convergence in T
In preparation, given a path £ : [0,7] — R and C > 0, we define the times ch by

7§ =0, 7, :=inf {t > 7, osc(§) o = C’} AT, (4.23)
and
N§(€) =sup{k > 0: 75 < T}, (4.24)

where osc(€)s,¢ denotes the oscillation of £ on the time interval [s, t].
We have the following auxiliary lemma.

Lemma 4.7. Let B be a Brownian motion. Then N (B) i cC~Y2T almost surely,
’ —00

where ¢ = E[r{] < co.

Proof. Note that by the strong Markov property, (TS_,'_l - TS)nZO are i.i.d., and, in view

of the Brownian scaling, equal in law to C''/ 2rl. Then the strong law of large numbers
implies that, a.s.,

TG ~Nosoo NCY2E[7]],
which yields the result. O

Next we state the following improvement of Theorem 4.3 for which we need to quantify
the growth of H by assuming that

there exist C7; > 0, Co > 0 and ¢ > 1 such that, for all p € R, Hy(p) > Ci (|p|? — C3).
(4.25)
Recall that the total variation of a function v : T — R is defined by

lullry = sup / ey $€CHT), 6l <15,

T

and that it coincides with |Jug||z: when u € WH(T).
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Theorem 4.8. Assume (4.3), (4.13), (4.25), F € CY(R) non-decreasing, ug € C(T), and
& € C(]0,00)) with limsup,_, . [£(¢)| = +o0, and let u be the solution to (4.1) with initial
condition ug. There exist ¢,C > 0 depending only on q and a such that, if ¢ = 1, then,
for all T > 0,

lu(, T) v < e @osc(ug) + CCs, (4.26)
and, if ¢ > 1,
e (-, T) || e < C ((closco,Tg)*fil + c;/Q) . (4.27)

Notably, the latter bound is uniform with respect to the initial condition.

Proof. As in the proof of Theorem 4.3, by approximation, it is sufficient to consider
U € C? (T)
Note that (4.25) and Holder’s inequality imply that

oselul, )" < s DL, < ( / H1<um<y,t>>dy) A ( / H1<—uz<y,t>>dy) e
(4.28)

20/, with C the constant from

When ¢ = 1, we consider the stopping times 7 = 7,
Theorem 4.3, which we can apply repeatedly to get that

osc(u(Ty))

C
9 + 2,

osc(u(, The1)) < fJua (s Togr)lr <
and, by induction,

osc(u(-,7n)) < % + 2C5.

A

When ¢ > 1, we let

C
C// — 2q+1 —
cy’

where C' is the constant from Theorem 4.3, and assume that, for some N € Z, such that
2 > 0y,

o0

osco & > C” Z (2F)1-q,

k=N

We can then find (¢x)r<—n such that

lim t, =0, t_y=T and oscy,,,&> C"(2") 7

k——o00
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Next we note that, if we assume that, for some k > N,
k 1/q
osc(u(t_g)) < 2%+ Cy'7, (4.29)

then combining again Theorem 4.3 and (4.28), we find

C 2k 4 Cl/ v
aC//(Qk)l—q +Co

osc(u(sst 1)) < ulst—pyr)llze < (

2k 4 oN
= \ 2¢+19k(1—q)

1/q
+ cz) <2l

Since it is clear that (4.29) holds for k large enough, using induction we get

osc(u(T)) < 2V + €/,
and choosing the smallest NV satisfying the required constraints, we conclude. 0O
Remark 4.9. When ¢ > 1, the decay rate in Theorem 4.8 is optimal. Indeed, recall that in

the first-order deterministic setting, that is, F' = 0, H convex, and £(t) = t, the solution
is given by the Lax-Oleinik formula

ula,t) = sup {uO(y) —tL (y n m) } :

where L is the convex conjugate of H. In particular, if H(p) = |p|%, with ¢ > 1, then

L(v) = C,Jv|?@=1)_ Simple choices of ug then lead to solutions satisfying osc(u(t)) >

~

t=1/(a=1)  which is the same rate as in the theorem.

Remark 4.10. In order to get optimal constants in the exponential in (4.26), we need
to replace 2 by any p > 1 in the proof of Theorem 4.8. This leads to ¢ = In(p) and
C = pC/C;. If £ = B is a Brownian motion, the overall dependence in the exponential

is of order In(p)p~'/2, which achieves its maximum value 2/e when p = €.

We conclude this subsection remarking that, in the special case of a quadratic Hamil-
tonian, under a specific condition on the dissipation and when £ = B is a Brownian
motion, we can apply the results of Gassiat and Gess [18] to obtain estimates on the
Lipschitz constant of the solution. The decay is of the same order in ¢ as that given by
Theorem 4.8 but in a stronger topology.

Proposition 4.11 (Quadratic Hamiltonian). Let u solve

A = g(0u)dzzu + %(azuf o dB(t)
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where B is a Brownian motion and g > 0 is continuous and satisfies, for some
Cy €10,1/2) and in the sense of distributions, g"" < Cy. Then, there exist (0, 00)-valued

random variables (C(t))i>0 and Z such that, for each t >0, C(t) 2 27, and
o ()l € = (4.30)
OO = Gy .
Proof. It follows from [18] that, for each ¢ > 0,

1
| (um(-,t))_,’_ | < Z»

where X is the (maximal continuous) solution to
Cy
Xo=0, X >0, dX=-=Ldt—dB when X >0.

The fact that Cy < % ensures that X is a Bessel process of dimension in (0,1), and, in
particular, is a.s. positive for a.e. ¢ > 0.

Since [|0,u(t)|| is non-increasing in ¢ and, in view of the 1-periodicity of u, ||us(-, )| <
|tzs (-, t) 4], we obtain (4.30) with

C(t) = max X;.
0<s<t
The existence of the random variable Z follows immediately from the scaling invariance
of Bessel processes. O

4.2. Convergence due to dissipation

Here we provide quantitative estimates on the long-time behavior of parabolic-
hyperbolic SPDEs of the form

dv = Div(F'(v)Dv)dt + 3 0, (H" (z,v)) 0d¢’ in T xRy (4.31)

,J

dictated by the dissipation due to the parabolic part, that is, the estimates are uniform
in H and . In particular, the results apply to the case that £ = B(w) is given by paths
of Brownian motion and yield uniform estimates in w. In this section, we will always
assume that F € C}_(R) with F/ > 0, H € C%(T? x R;R¥>™), vy € LY(T?), and
€€ CO(R;R™).

The key step is the observation that, given that the noise part of (4.31) is divergence
free, the usual LP- and entropy-entropy dissipation inequalities known in the determin-
istic setting can be recovered in a pathwise manner for (4.31). As a consequence, it is
possible to obtain quantitative estimates for the rate of convergence, that resemble the
deterministic setting.
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The well-posedness of SPDEs like (4.31) is an intricate subject and is known under
various assumptions on the coefficients F, H and B, see [32,33,20,15,16,46]. Since here we
are not focusing on the concept of solutions and their uniqueness, but on uniform apriori
estimates, we define solutions as limits of smooth approximations, for which uniform
estimates will be shown.

Definition 4.12. A function v € C(]0,00), L'(T%)) is a solution to (4.31) if there exist
sequences v € C2(T?) with [1,v§dz =0, & € C*(Ry;R™), H® € C3(T? x R;R4*™)
with Div,H¢(z,-) = 0, F° € C3(R;R,) such that (F¢) > F' Ve > 0 and classical
solutions v¢ to (4.31) with (vo, &, H, F) replaced by (v§, £, He, F©) such that

(v6, €% H, F*) = (v, &, H, F)
in LY(T?) x CO(R,; R™) x CO(T4 x R; R¥>™) x CO(R) and v* — v in C([0, 00), L}(T%)).

Theorem 4.13. Fiz vy € L'(T?) and let v be a solution of the parabolic-hyperbolic PDE
(4.31) with initial value vo. Let p € [1, %1@3 + o0ly<2) and E : R — Ry be such that
"=1/F" and E'(0) = E(0) = 0.
Then, there exists ¢ > 0 depending only on the embedding constant of H' < LP and
not on H, B and F as long as F' >0 and 1/F' € L}, ., such that, path-by-path and for
allt >0,

loc?

fE(v(x,O))dx_

lo(-)[Zn < e p (4.32)

Proof. We prove the estimate for the regular approximations v* from Definition 4.12
with constant ¢ in (4.32) uniform in € and noting that £ < E since (F*)’ > F’. Passing
to the limit € — 0 then provides the claim. For simplicity, we drop the £’s in the notation

in the following.
Given convex and smooth E : R — R we find

%/F(v(x,t))dx = —/F”(U)F'(U)IDM2 _ Z/Eu(v)vaw(mw)Bj
Ta l

_/EH(U)F’(U)|DU|2

_ Z (/ [E" (0)H™ (2,0)]4, — [EII(U)Hiﬁij(zw)]) 5

f/E”m ()| Dl = /|D (B F)2)(w)]2,

where the third term vanishes since H is divergence free, and [] denotes an anti-
derivative.
We now choose E = E. Then [} (E" (s)F'(s))2ds = v.
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Since v has mean zero, Poincaré’s inequality and the Sobolev embedding yield, for
p €1, dQTdQleg + 0olg4<2), and for some cp > 0 that

d
o E(v(z,t))dz < —cpl|v||3,,
’]I‘d

and, hence, for some constant ¢ depending on the embedding constant cp only,

/ (v(z,t)) d:c+c/|| ||Lpdr</E (z,0))dz.

Next, choosing E(v) = |v|P, which can be justified by an approximation argument, we
get that ¢ — ||v]|2, is non-increasing for all p € [1, o0).
Hence,

t
S0l = ot 0l
0
and, thus, using that £ > 0, we find
oDl <5 [ B 0)ds. o

Td

Remark 4.14. In the case of spatially homogeneous noise, instead of embedding into LP,
we could embed into homogeneous W*! spaces for s € [0,1). Due to the L'-contraction
these homogeneous semi-norms do not increase. This would lead to estimates like

o€y < 5 [ Blw(e,0))da,
Td
We discuss next a concrete example.
Example 4.15. We consider the porous medium and fast diffusion SPDE
dv = Avl™dt +Y 0, (H" (z,v)) 0dB’ in T*xR,
4,J

with m € (0,2), B € C°(R;RY), H € C°(T? x R;R*?), and Dvl™ := m|v|™ ! Du,
which is like (4.31) with F’(r) = m|r|™~1. Assume that v is a solution in the sense of
Definition 4.12. For E(r) := |r[3~™, so that (E”(v)F'(v))2 = 1 and p € [1, 24 1455 +
o00ly<2), we find
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oDl < 7

The next two results are about (4.31) for d = 1 with homogeneous Hamiltonians.
When F is uniformly elliptic, that is, F > ¢ > 0, we have the usual exponential decay
in L?-norm for (4.31), which we record here for convenience.

Proposition 4.16. Assume that F' > ¢ > 0, and H is homogeneous in x and let A1 be the
first eigenvalue of (—0zz) on T and v = u, a solution of (4.31) in T x Ry. Then, for
allt >0,

c

e ()l 2 < llua(, 0 g2 e "

Proof. Using an approximation argument, we may assume that B € C'. It then follows,
using Poincaré’s inequality, that

1d
2dt

We conclude applying Gronwall’s inequality. O
The next proposition is about the degenerate setting, that is, for £’ > 0.

Proposition 4.17. Assume that H(x,u) = H(u) and F' > 0, and let E : R — R4
be smooth and convex, G(r) = fOT(F'E")%(u)du, and v = u, a solution to (4.31) in
T x Ry. Then, there exists C' > 0 such that, for allt >0,

C
G (sl D) < 5 [ Ews(0) da,

T

Proof. Arguing as in the proof of Theorem 4.13 we find, using that E is smooth, convex
and F' non-decreasing,

%/E(ux(x,t)) do = —/E”(uw)F’(ux)|8$u$\2dx < —/E"(uw)F’(ux)lawudear
T T

—— [ 10.Glun) P e < ~€G? (1) |

Hence,

t

/E(uz(x,t))d$+0/G2(Huz(o,7")Hoo)dr < /E(uz(x,O))dx.
T

T 0
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Since t — ||ug (-, t)|loo is non-increasing and G is non-decreasing, we obtain that

ctHG2(uz(-,t))HooS/E(uz(x,o))d:c. o
T

4.3. Improved bounds and convergence due to the interaction of stochastic fluctuations
and dissipation

Taking advantage of the interplay of the dissipative behavior of the parabolic part and
the averaging behavior of the hyperbolic part, in this section we derive new quantitative
estimates for the long-time behavior of space-periodic solutions to parabolic-hyperbolic
SPDEs when d = 1. In particular, these estimates unveil improved decay compared to
the deterministic equations.

Theorem 4.18. Assume H € C?(R) is convexr and even, F : R — R is odd with F' > 0
and let G(r) = [J (F'H")"*(u)du, ug € C(T). If u is a periodic in space solution to
(4.31) in T x Ry, then, for every T > 0,

2 _ osc(u(+,0))
1G(ua (-, 1))l < T(Blor (4.33)
where, for t(s) = inf{t > s > 0: B(t) < B(s)},
t(s)ANT
I'(B)s,r = sup / (B(u) — B(s))du. (4.34)
§<s<T

S

Proof. Fix s and ¢t = ¢(s) AT. Using (4.8) and the fact that the maps ¢t — sup u(-,t) and
t — —infu(-,t) are non-increasing, we find

osc(u(+,0)) = supu(-,0) — inf u(-,0) > supu(-, t) — infu(-, s) > /u(-,t) - /u(,s)

= N(t) (B(t) = B(s)) - /(B(U) — B(s))dN (u)

were N(r) = [ H(ug(-,7))dz is non-increasing.
In addition, we have
dN
d(r) < - / (F'H")(wp (2, 7)) (tge (, 7)) e
r
T
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— - [(Gus (e, m)ide < ~[Glusl )

T

Since G is non-decreasing and ||uy (-, )|l is non-increasing in ¢, it follows that
IG(uy(-,t))|loo is non-increasing, and the proof is complete. 0O

Next, we state and prove a result about the long-time behavior of the quantity defined
n (4.34). In the claim, f(t) = o(t) means lim;—, f(¢)/t = 0.

Lemma 4.19. Fiz K > 0, and, for anyt > 0, let T(t) := inf{s > ¢, T'(B), > K}, where
['(B)s,s ts defined by (4.34). Then, P-a.s. and as t — oo,

T(t) =t + ot). (4.35)

Proof. Note that, since I'(B);,s > I['(B),,s if t < n < s, it suffices to show the claim for
integer n’s. In addition, the full support property of Brownian motion implies that, for
each ¢ > 0, p. :=P(I'(B)o,. > C) € (0,1) and we have that

P(T(n)—n>en) =P (I'(B)oen <C) <P (1"(3)0’g <C L, T(B)-1)ene < C) =pZ.
It follows from the Borel-Cantelli lemma that, P-a.s.,

T(n) —
lim 7(71) n_ 0,
n n

and the proof is complete. O

We now show how all the previous results can be combined for the stochastic mean
curvature SPDE

0
du = H’(’";“ dt +/1+ (pu)20dB in T x Ry, (4.36)
and, thereby, that the interplay of stochastic fluctuation with deterministic decay leads
to an improved decay of oscillations (see Remark 4.21).

Theorem 4.20. Fiz 6 > 0 and assume that B = (B(w,t))t>0 is a Brownian motion on a
probability space (2, F,P). There exists ¢ > 0 and a P-a.s. finite random variable C(w),
such that, if u is the solution to (4.36) with initial condition uop€e C(T), then, for all
t>0,

osc(u(-,t)) < C(w)osc(ug)e . (4.37)

Let m(ug, B) :=inf {t > 0: osc(u(-,t)) < 2}. Then there is a deterministic ¢ > 0, and,
for almost every Brownian path, constants C(B), p(B) such that
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7(ug, B) < clog(1 + osc(ug)) + C(B) (4.38)
and
|tz (- t)]|oo < C(w)osc(ug)e™ " for all t > 7(ug, B) + p(B). (4.39)

Finally, for each fixed uy,

1 (ot 5
lim sup (e, 0)ll22) < —— (4.40)
t—o00 t A1
Proof. We first remark that (4.38) is an immediate consequence of (4.37).
For the rest of the claims similarly to Example 4.4 we introduce 4@ = v — B and note
that @ satisfies

di = 0, (F(0,@))dt + H(0,@) odB in T xR, and @(0,-)=wug on T, (4.41)

for F(p) = arctan(p) and H(p) = /1 +p? — 1 with H(p) > |p| — 1.

The claimed estimates are obtained in the following three steps: (i) Theorem 4.8 yields
that osc(u(+,t)) is of order 1 after a time which depends logarithmically on osc(ug), (ii) in
view of Theorem 4.18, after the time given by (i), ||us|/co is also of order 1, and (iii) the
uniform bound on wu,, which is a consequence of (ii) is then used to obtain exponential
convergence to a constant.

Here we show (i). Theorem 4.8 implies that, for all ¢ > 0,

ose(u(-,t)) < osc(ug)e~NorP) 4 2,

Also note that, due to Lemma 4.7, a.s. and as t — oo, NOC:t(B) ~ C1/2¢,
It follows that, for some ¢ > 0, C(B) a.s. finite and for all ¢t > 0,

osc(u(-,t)) < C(B)osc(ug)e " + 2. (4.42)

We now use Theorem 4.18 with G = [(F’H")'/?], which has the property that, for
some K > 0,

G(r) for 0 <r <2 and G(T)Z%forr>2.

ST
- K1l/2

Let T(t) be defined as in Lemma 4.19, and note that, due to Theorem 4.18, that
osc(u(+,t)) < 4 yields

osc(u(-,t)) 2

1G(u (-, T(1))) oo < < mum

and, hence,
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s (- T () oo < K2(1G (ua (-, T(8))) oo < Vosc(ul1)).

In view of Lemma 4.19, the last inequality implies that, for ¢ large enough,

[z (-, ) loe < Vosc(u(,t = oft))), (4.43)

and, in particular, for all t > T(7(ug, B)), [|uz(-,t)]cc < 2.
It also follows from Proposition 4.16 that, if ||uz (-, t0)|lec < 1, then, for all ¢ > ¢,

_ ) _
et (- 6)][ 22 < [t (-, 0)| e 30w 7000 (4.44)

which, combined with (4.43), gives (4.39), and with (4.42), implies (4.37).
It only remains to prove (4.40), which now follows immediately from (4.44), recalling
that, by (4.39) it holds that |Juz(-, 1) co T 0. O
— 00

Remark 4.21. Note that (4.37) may seem expected, since it is similar to, for example, the
long-time behavior of solutions to the heat equation. This is not, however, the case since,
due to the degeneracy of the mean curvature operator, the solution of the deterministic
problem, that is, when B = 0, exhibits very different behavior.

Indeed, it is possible to construct a sequence of solutions u’* to the deterministic mean
curvature flow with osc(uf*(-,0)) = R, such that, for R large enough, some ¢ > 0, and
all t < cR,

osc(ul(-,t)) > g,

which is in sharp contrast with the stochastic setting where, in view of Theorem 4.20,
the solutions become of order 1 in a time which only depends logarithmically of the size
of the initial condition.

To construct uf, one can proceed, similarly to [7], by taking as initial condition a
graph “sandwiched” between two “grim reaper”-type solutions of the mean curvature
flow, which are finite on a compact interval and move at constant speed of order R
downwards (resp. — R and upwards). It then follows from the maximum principle that the
corresponding solution stays in between the grim reapers, and, therefore, its oscillation
is greater than R/2 for times of order R.

Remark 4.22. Tt follows from Remark 4.10 that in (4.37) it is possible to take any constant
c satisfying

¢ < min[—,

e )\_1]

We conclude this section discussing the example of SPDEs with nonlinear diffusion
degenerating at zero.
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We recall that the deterministic p-Laplace equation
Opu = O, () (4.45)

admits separated variables solutions of the form u = ¢(t) f (z) with g(¢) = ((a—1)t))~ a,
f(x) + 0,(fz)* = 0 and f periodic with average zero. It follows that solutions to (4.45)
have decay of order ¢~ =-1. The same optimal order of decay can also be found in signed
self-similar solutions (see Hulshof [26]) on the full space.

In the case of SPDEs, if the order of degeneracy « of the parabolic part is much
larger than the degeneracy (3 of the noise in the sense that § < aT_l, then the decay
due to the noise is faster than that of the parabolic part, hence, improving the rate of
convergence compared to the deterministic case. The parabolic part is only used in the
end to improve from a W14 to a Lipschitz estimate.

Example 4.23. We consider nonlinear fluctuating diffusion SPDEs like
du = 8, ((ug)!) dt + |ug|® 0 dB,
with «, 8 > 1, B Brownian motion, and ug € C(T). Then, for all T > 0,
o (-, T)|| s < C ((OSCO,TB/CQ—ﬁ) (4.46)
and
__1 a+l/3371 _ B
o (5 T) e < € ((0500,01B/C1) ™77 ~ OT ™ 2FTwraT.

Note if 8 =~ 1, the decay above exceeds significantly the optimal deterministic decay
1
T

Indeed, Theorem 4.8 implies (4.46), while, in view of Proposition 4.17 with

T

/ wP=? %( )dw:/u)wr?S dw:raJréFI,
0

we find

Therefore,

__1\#8
G (|l (- T)lloe) < C (030,01 B/C) 777 ),
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and, thus,

s
Jta (5 T) oo < € (050001 B/Cr) 77 ) 777
5. Open questions

We discuss a number of questions about the general theory and the examples presented
earlier.

Regarding the latter, some of the most intriguing questions are extensions to non-
compact domains, the characterization of the random limiting constant, the asymptotic
behavior of stochastic Hamilton-Jacobi equations with multiple spatially inhomogeneous
noises, as well as with non-convex Hamiltonians, and the properties of the stationary
solutions 1 : T% x R — R.

The present work unveils an accelerated decay of oscillations for the mean-curvature
flow in 241 dimensions with spatially homogeneous noise. An extension of these results
to higher dimension, in particular, the case of 341 dimensions driven by multiple noises
is left as an open problem. Moreover, the case of the mean curvature flow with spatially
inhomogeneous noise is left untouched, and constitutes a challenging open question.

Data availability
No data was used for the research described in the article.
Appendix A. Motivations and examples of nonlinear SPDEs

We present a number of applications and settings that give rise to SPDEs which fall
within the framework of this paper. The discussion here is meant to provide background
information and motivation for the examples of SPDEs treated in the main text.

We emphasize that the following exposition is meant to be informal and the list of
included references is by no means complete. Whenever possible, we refer to monographs
and contributions offering exhaustive accounts on the available literature. Listing all of
the pertinent literature would be beyond the scope of this appendix.

A.1. Joint mean field-local interaction limits of particle systems and mean field games
with common notise

The conditional empirical density measure p := L£(+ Zjvzl dx; | W) of the mean
field-type interacting particle system

N
1
dxz_bxg, dt—i—aXZ,NZ oth—l—ozXZ, B, (A1)

HMZ
uMz
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converges, in the mean field limit N — oo, to a solution of the nonlinear, nonlocal,
stochastic Fokker Planck equation

d,u = [812,j (aij (.23, t ,u),u') - aZ(bZ(xv L, M):u)]dt - al(o.zk (.73, 2 M)M) © thk :u('a O) = Ho;

(A.2)
where a”/ = £a'*ad* and W and B are independent Brownian motions. This has been
shown for L2-valued solutions by Kurtz and Xiong [31] and for measure-valued solutions
by Coghi and Gess [6]. For further work on this, we refer to the references in these
works. The conditional law signifies the fact that W acts on all particles and, hence, it
is called common noise. See also [30] for a motivation of the same class of SPDE arising
in statistical mechanics.

For an exposition of the same limiting problem in the context of mean field games
with common noise, we refer to Carmona and Delarue [5, Section 2.1.2] and Cardaliaguet,
Delarue, Lasry and Lions [4], and the references therein.

The coefficients a*, b, o'* depend on the measure y in a possibly non-local manner
which correspond to nonlocal interactions in the original system (A.1).

It is a natural question to ask what happens when the interaction is localized, that is,
ik

when a¥, b*, o' are replaced by a sequence of coefficients a™>¢, b, ¢*%¢ which converge

to coefficients with local dependence on the measure, that is, informally, for p € L!,
ae(z,t, p dx) — a (x,t, p(x)), b (x,t, p da) — b (x,t, p(z)),
o (@t p do) = 0 (@, b, plx)).

Such limit then leads, always informally, to the nonlinear, stochastic Fokker Planck
equation

dp = [07 ;(a" (x,t, p)p) — Bi(V'(, t, p)p)]dt — (0" (2, t, p)p) 0 AW, (A.3)

with the coefficients now depending on p in a local manner.

A relevant example is the case for which the diffusion without common noise, that
is, when ¢ = 0 in (A.1), is reversible with respect to a Gibbs’ measure %e’v. This
corresponds to the choice b*(z,t, pu) = a® (x,t, 1)0;V (x,t, ). In this case, the nonlinear,
stochastic Fokker Planck equation (A.3) becomes

dp = [0;(a’ (x,t, p)9;p) + 0;(a¥ (z,t, p)(9; V) (, L, p)p)]dt — O;(c* (z,t, p)p) o AWE.
(A.4)
We discuss here the special case where the non-local interaction is of convolution-type,
that is,

a? (@, t, 1) = (VI p)(w)a (), b (x,t,p) = (V3 p)(2)0' () and
o™ (@, t, 1) = (V3 5 p)(2)0™ (2),
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where (V%) is a smooth and compactly supported Dirac family.
Then (A.4) becomes

dp = [0i(a (x)p0;p) + 0i(a™ (2)0;V (x)p?)]dt — 0;(0** () p* 0 dW), (A.5)
and, when d = 1, V =0 and o%*(z) = 1,
dp = 0, (a(x)pdyp)dt — O, (p? o dW,), (A.6)

an equation to which our methods apply leading to a quantified convergence estimate
for p to its mean without any non-degeneracy assumptions on the coefficient a > 0.

The well-posedness of solutions to (A.6) for spatially homogeneous a follows from Gess
and Souganidis [20]. For inhomogeneous, regular a, the well-posedness should follow from
a modification of these arguments, but is left as an open problem here.

A.2. Stochastic front propagation

Consider an evolving hypersurface (I'()),>, embedded in R¢ moving with normal
velocity (at point X (¢) € T'(t))

dX () -np (X (1) = —R(X(t)dt + dC(X (1), 1),

where np(z) is the outer normal at z € T, k() is the scalar curvature of I' at x, and ¢
is a stochastic perturbation.
In the level-set formulation of this evolution, T'(¢) is assumed to be the zero set at
time t of the solution u of the SPDE
. Du
du = |Duldiv (—) dt + |Dul o d{(z,t). (A7)
| Dul
For particular cases of the noise d¢, the SPDE (A.7) can be studied using stochastic
viscosity solutions, see, for example [35], Souganidis and Yip [45], Souganidis [46], Yip
[48] and Dirr, Luckhaus and Novaga [10].
If T'(t) is of graph-form, that is,

L(t)={(z f(z1) : ze R},
then f satisfies the graph SPDE
df = /14 |Df|?div (ﬁ) dt + /14 |Df2 0 d((z,t, f(z,1)).

In the physics literature, Kawasaki and Ohta [28] derived an equation in the case
where d( is space-time white noise acting on the interface I', in which case the graph
SPDE can be (formally) rewritten as
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o f = /1+|Df|2div (ﬁ) + (1+ |Df|2)1/4 o dé(z,t), (A.8)

where d€ is a space-time white noise on R x R%~1. This can be seen by checking that

dC(z,t, f(2,1)) == (1 + |Df(z,0)[2) " de(z, 1)

defines a space-time white noise on I', that is, for any smooth compactly supported
function ¢, [ ¢¢dur is a centered Gaussian with variance given by [ ¢*dup. Here the
measure pr is the surface measure on I', which can be explicitly written as

/w(a:, s)dsdur(z) = / dsdzg(z, s, f(z,8))/1+|Df(z,9)|%

RxRN-1

Note that (A.8) is purely formal even when d = 2, since its solution f would be too
irregular for the nonlinear gradient term to be well-defined. In fact, it is not clear that
the solution should remain a graph, and it is an open question to which extent one can
make sense of this equation rigorously.

Of course, it is possible to consider more general motions either in the deterministic
term or the stochastic perturbation like, for example, purely stochastic velocities of the
form

dX(t) - ne(X (1) = a (X(1),n(X (1)) 0 dB(),

where n(z) is the outer normal to the point z € I'(¢). This motion can be interpreted
as an interface fluctuating according to a space-homogeneous external factor, but with a
local speed depending on a fixed parameter which can be inhomogeneous and anisotropic.
The corresponding level SPDE is
du = a(z, —|ZD)—UU|)|Du| odB,

which can be studied using the theory of stochastic viscosity solutions developed by the
last two authors.

Assuming that the interface is of graph-form, that is, T'(t) = {(z, f(z,t))}, and that
the heterogeneity does not depend on the last coordinate, that is, a(xz,v) = a(z,v) where
x = (z,2,), yields the SPDE

df(t,z) = H(z,Df) o dB

with

ol D) 5
H(z,Df) = (,m>\/l+|Df|.
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When the function H is convex in its second variable, which is, for instance, the case for
isotropic motions, that is, a = a(z), then the problem is within the framework developed
in section 3.

A.3. Thermodynamically consistent fluctuation corrections to gradient flows

We outline how SPDEs arise from thermodynamically consistent fluctuation correc-
tions to gradient flows.
We consider nonlinear diffusion PDEs in 141 dimension of the form

8tp = 8mzq)(p)7 (AQ)

which come up in various applications, including interacting particle systems, such as the
zero range process (see, for example, Kipnis and Landim [29]), geometric PDE, such as
the curve shortening and mean curvature flows (see, for example, Funaki and Spohn [17]),
and in the form of porous medium diffusion equations, see, for example, the monograph
by Vazquez [47].

Introducing, for some nonlinear, convex function ¥ with antiderivative [¥], the en-
ergy E(p) = [[¥](p) dz with functional derivative denoted by < E(p), and the Onsager

dp
operator M, = B,B; with
D'(p)\*
B = 0 (wm) )

we can informally rewrite (A.9) as the following gradient flow on the space of densities:

!/
dp = 0,0 (p) = 0, (%amm) = M, B ().
The choice of the energy E and the corresponding function ¥ identifies a gradient
structure on the space of densities.
Following the general ansatz for thermodynamically consistent fluctuations around
gradient flows (see, for example, Ottinger [41]), the corresponding fluctuating gradient
flow becomes

o d B ®(p)\*
dp = Mpd—pE(p) + BdW,; = 8,,,®(p)dt + 0, ((\Iﬂ(p)) o dg) , (A.10)

with d¢ a space-time white noise.
In fact, lattice based particle systems correspond to spatially correlated noise

be = 0ra(p) + B, ((igﬁ;) Yo df€> , (A1)
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where d£° is white in time and correlated in space with decorrelation length of the order
of mesh-size; see, for example, Giacomin, Lebowitz and Presutti [23] and Mariani [39]
for the case of the simple exclusion process.

Motivated from the above, we analyze the long-time behavior of parabolic-hyperbolic
SPDEs with spatially homogeneous noise B, on the level of the anti-derivative u, that
is,

du = 0,®(D,u)dt + <%> "o dB. (A.12)

We next introduce two particular examples of this general framework. The first is the
stochastic mean curvature flow

dy = —Dazt dt+\/ (0,u)2 o dB, (A.13)

1+ (Ozu

1
o’ 2
which corresponds to ®(p) = arctan(p). Then, < (p)) = /14 p?, that is, ¥(p) =

'(p)
1(1+p2 + arctan(p)) in (A.12).
The next example addresses the Kawasaki-Ohta equation (see [28]), which constitutes

the choice of a thermodynamically consistent noise for the curve shortening flow. Follow-
ing the framework laid out in the beginning of this subsection, for d = 1, the PDE for
the derivative p = u, of the curve given as the graph of u can be written as a gradient
flow

_ 2y N B
dp =0y <(1+p) m(m)) MpdpE(p),

where d%E(p) is the functional derivative of the energy E(p) = [(1 + p?)2 dz and

M = BB* is the Onsager operator with B,g =: J, ((1 +p?)ig).

Note that, with this choice of a gradient structure, the curve shortening flow corre-
sponds to a gradient flow with respect to the arclength as energy E. In accordance to
(A.12), on the level of u, the fluctuating stochastic curve shortening flow with spatially
homogeneous noise takes the form

Opatl

mdt + (1 + (813’11/)2)% [e] dB

du =
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