Downloaded 12/26/23 to 205.208.121.238 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SIAM J. CONTROL OPTIM. © 2023 Society for Industrial and Applied Mathematics
Vol. 61, No. 6, pp. 3341-3369

AN ALGEBRAIC CONVERGENCE RATE FOR THE OPTIMAL
CONTROL OF MCKEAN-VLASOV DYNAMICS*

PIERRE CARDALIAGUET!, SAMUEL DAUDINt, JOE JACKSON?!, AND
PANAGIOTIS E. SOUGANIDISS

Abstract. We establish an algebraic rate of convergence of the value functions of N-particle
stochastic control problems towards the value function of the corresponding McKean—Vlasov problem,
also known as mean field control. The rate is obtained in the presence of both idiosyncratic and
common noises and in a setting where the value function for the McKean—Vlasov problem need not
be smooth. Our approach relies crucially on uniform in N Lipschitz and semiconcavity estimates for
the N-particle value functions as well as a certain concentration inequality.
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1. Introduction. We consider an optimal control problem with a large number
of particles. The value function for this optimization problem reads

(1.1) VN(t07x0)::ai€1}fNE/t ZL Xf o)+ F (m¥,) | dt+G (mX,) |,

where T > 0 is a finite horizon, ¢y € [0,7] is the initial time, and xo = (z},...,2}') €
(RN is the initial position of the N particles. The infimum is taken over the set A" of
progressively measurable (R?)N-valued processes a = (a*)I_, in L2([0, T] x ©; (RY)N),
and X = (X1!,..., X"N) satisfies, for each k€ {1,...,N},

t
(1.2) XF=af+ /a’;ds—i—\/i(Bf—Bfo)+\/2a0(B?—B?0), t € [to, T).

to

The (B*)j>o are independent d-dimensional Brownian motions defined on the fixed

filtered probability space (Q,F,F,P) satisfying the usual conditions, and L?([0,T] x

Q; (Rd) ) denotes the set of square—mtegrable and progressively measurable processes
aklng values in (RY)N, and mxt is the empirical measure of X;. The cost function
L:RYx R? — R is supposed to be convex in the second variable and smooth, while
the maps F,G : P1(R?) — R are assumed to be smooth and bounded over the space
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Pl(Rd) of Borel measures on R? with a finite first-moment (precise assumptions will
be given in section 2). The constant ag > 0 is the level of the common noise, and the
(B*)k>1 are viewed as independent or idiosyncratic noises.

1.1. Our results. To describe our result we need to introduce the map U :
[0,T] x P2 (R?) — R, where P5(R?) is the space of Borel measures on R? with a finite
second-moment, given, for (tg,mg) € [0,T] x Po(R?), by

(1.3)
U(to,mo) := inf E VtT (L(Xt,at(Xt)) v F (L (Xt\]-"tBO))) e (E (XT|}'7’?O)>

where the infimum is taken over an appropriate set A of admissible controls (this will
0

be made precise later), FZ" = (FP )0<t<T denotes the filtration generated by B,

E(Xt|.7-'tBO) is the law of X; conditioned upon .7-'B and

t

(1.4) X=Xy + / as(Xs)ds + V2(By — By,) +V/2ao (B — By))
to

with B another Brownian motion, X, a random initial condition with law mg, and

B° B, and X, mutually independent.

Although it is known that, as N tends to infinity, VY converges to i, the existing
convergence results come without any rate.

Our main result is the following algebraic convergence rate: there exist 3 € (0, 1],
depending only on the dimension d, and C' > 0, depending on the data (F,G, H), such
that, for any (t,x) € [0, 7] x (RN
(1.5) VN (t,x) —U (t,my )| <CN P (1+ My (mY)),
where My(mY)=N"1 ZZ]\LI |2¢|? is the second-order moment of the measure my .

Although the exact value of 8 could be traced back through the computation, it is
clearly not optimal. In particular, it is very far from the one obtained for a standard
particle system. Similarly, even if some dependence with respect to a moment of the

measure m2 is expected, the dependence given here is probably far from sharp.

1.2. Background and related literature. The convergence of VY to U was
shown by Lacker [22] in a general framework and for suitable initial data but without
common noise, that is, with ap =0 in (1.2). Recently, the results of [22] were extended
in Djete, Possamai, and Tan [14] to problems with a common noise and interaction
through the controls. Besides [14, 22] several other papers have studied the question
of the mean field limit of optimal control problems; for example, Cavagnari, Lisini,
Orrieri, and Savaré [9] and Fornasier, Lisini, Orrieri, and Savaré [15] investigate the
problem without noise using I'-convergence techniques. The recent contribution of
Gangbo, Mayorga, and Swiech [17] studies the mean field limit without idiosyncratic
but with common noise using partial differential equation (PDE) techniques. This is
possible thanks to the fact that VY solves the Hamilton—Jacobi (HJ) equation

-0, VN ZAMV (t,x) —ag Ztr D2 VN (t,x))

3,j=1

H(z',ND VN (t,x))=F(mY) in (0,7) x (RHY

X

_|_
=2~
Mz

VN(T, x):g(mN) in (RHN
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where H(z,p) = supyepa[—p-a— L(x, )], while U is expected to solve (in some sense)
the infinite dimensional HJ equation

Oty m) — (1 + ao) /R divy (D (t,m,y))m(dy)
—ao [ DRty ()
+ [ . Daldltm.g)m(dy) =Fm) in (0.7) x Po(R)

Z/I(Y]g,dm)zg(m) in Py(RY).

(1.7)

For the definition of the derivatives D,,i{ and D2,, .U we refer the reader to the books
of Cardaliaguet, Delarue, Lasry, and Lions [5] and Carmona and Delarue [8].

One of the reasons for introducing the value functions is that they provide optimal
feedback for the optimization problems. For the particle system, this optimal feedback
is given (rigorously) by o (t,x) = —D,H (x;, ND,, V"™ (t,x)), while for the limit system
it takes the form (at least formally) o} (x,m) = —DpH (z, DU (t, m, z)). The difficulty
in the PDE analysis of [17] is that, in the absence of the idiosyncratic noise, the value
function VN is not smooth in general, and, thus, (1.6) has to be interpreted in the
viscosity sense. A suitable notion of viscosity solution for the infinite dimensional HJ
equation (1.7) without idiosyncratic noise is introduced in [17], and then it is proven
that VIV converges to this viscosity solution. In the presence of idiosyncratic noise
the notion of viscosity solution to (1.7) is not understood yet, and we will not try to
use this approach.

1.3. More about our results. While the existing results mentioned above
demonstrate the convergence of VVV to U under many different technical hypotheses
and using a variety of techniques, none provides a rate of convergence. Our main
result fills this gap in the literature by providing a rate of convergence of VN to U in
the presence of both idiosyncratic and common noise.

We emphasize that quantitative information about the convergence toward the
mean field limit is particularly important for numerical applications. Obtaining a
convergence of the value functions with a rate also proves to be a useful starting point
in order to prove finer propagation of chaos results, as illustrated in the contribution
[7], which is based on the results of the present paper.

The primary challenge we face is related to the (lack of) regularity of &/. Indeed, if
U is a smooth solution solution to (1.7), then the projections U™ : [0,T] x (RN — R
given by UM (t,x) =U(t,mL) are smooth solutions of the HJ equation

N
—oU™ (t,x) Z AUN (%) —ag Y tr(DZVN(t,%))
j=1 7,7=1
(1.8) 1 ol j N N . d\N
—&-NZH(:C%NDI]U (t,x)) = F(mY)+ Ex(t,x) in (0,T) x (RY)

UN(T,x)=G(my) i (RHY

with By (t,x) = —N"2 30 tr(Dpmld (t,mY 2, 27)).

If Dyl is bounded, then it is immediate that |E,| = O(1/N). Thus, U" solves
the same equation as V» up to a term of order O(1/N). By a comparison argument,
we conclude that [/ —V| = O(1/N), that is, there exists a constant C' such that, for all
t€[0,7) and x € (RN, [VN(t,x) —U(t,mY)| < C/N. See also [18] for more on what
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convergence results can be obtained once (1.7) has a sufficiently smooth solution.
This argument is similar to the approach taken in [5, 8] to study the convergence
problem in the context of mean field games (see Lasry and Lions [26]) in situations
where a classical solution to the so-called master equation is known to exist; also
see Bayraktar and Cohen [1] and Cecchin and Pelino [11] for related results. In this
setting, convergence is related to the propagation of chaos for the optimal trajectories
of the game.

Of course, the simple argument outlined above works only when the value function
U is smooth. For instance, this is the case if the maps F and G are convex and
sufficiently smooth (see the discussion in Chapter 3.7 of [5]). However, we do not
assume such a convexity property and the map U is expected to present discontinuities
in its first-order derivative, as can be seen in, for instance, Briani and Cardaliaguet
[3]. Because of this, the techniques in [5, 8] break down.

When the value function is not smooth, the convergence rate has been studied
primarily in the case of finite state space; see Kolokoltsov [20] and Cecchin [10]. In
this finite state space setting, the convergence rate is of order 1/ V/N. Indeed, as
explained in [10], the particle system is then a kind of discretization of the continuous
McKean—Vlasov equation.

The situation is different and much more difficult in the continuous state space
setting. This might come as a surprise since the convergence rate for particle systems is
very well understood; see, for instance, Fournier and Guillin [16]. The main difficulty,
however, is that, even though the optimal feedback in the particle system remains
bounded independently of N (see Lemma 3.1), it cannot be expected to be uniformly
continuous as a function of the empirical measure. Indeed, this uniform continuity
would imply the C'-regularity of the limit ¢/, which does not hold in general. So it
is necessary to find a way to show that, despite the fact that the controls played by
each particle might be very different, a kind of concentration of measure takes place.

Finally, we mention that a result similar to the one we prove here in the context of
mean field control remains an open question in the context of mean field games. The
difficulty is that the N-player game is described this time by a system of N coupled
Hamilton—Jacobi-Bellman (HJB) equations, instead of just one HJB equation in the
present case. And it proves difficult to obtain estimates on the PDE system which
are uniform in the number of players.

1.4. Strategy of the proof. We discuss briefly the strategy of the proof. We
first point out that we do not rely on a propagation of chaos, which we cannot prove
at this stage. Indeed, as for a given initial condition there might be several opti-
mal trajectories for the limit problem, a propagation of chaos is not expected to
hold without additional assumptions on the initial data. The main ingredients for
the proof are uniform in N, Lipschitz, and semiconcavity estimates for YV, and a
concentration inequality. To bound from above VY by U is relatively easy, because
VN can be transformed into an approximate subsolution for the HJ equation (1.7).
The opposite inequality is much trickier, because it seems impossible to transform
an optimal control for the V¥, in which the control depends on each particle, into
a feedback for 4. We overcome this difficulty by dividing the particles into sub-
groups in such a way that the optimal controls for the particles in each subgroup
are close and show a propagation of chaos, based on a concentration inequality, for
each subgroup. The proof being technical, we first show the result when there is no
common noise, and, in a second step, we extend the result to problems with common
noise.
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1.5. Organization of the paper. In the rest of the introduction we fix nota-
tion. We state the assumptions and the main result in section 2. As the proof of the
convergence rate is technical, we start in section 3 with the problem without common
noise. Indeed this case contains the main ideas without the extra technicalities due
to the common noise. We first give some estimates on VV and U (subsection 3.1)
and then show the relatively easy bound from above for VY in subsection 3.2. The
main part of the proof, that is, the bound from below, which is the aim of subsec-
tion 3.3, requires a concentration inequality proved in subsection 3.4. We explain the
adaptation of the proof to the case with common noise in section 4.

1.6. Notation. We work on Rd; we write Iy for the identity matrix in R? and By
for the ball in R? centered at the origin with radius R. For x = (xl .. , ) (]Rd)
m € P(R?) stands for the empirical measure of x, that is, mY = ~ ZZ 10qi. If

»:[0,T] x R? — R? is smooth enough, we write Dy, A, and D2<p for the derivatives
With respect to space and J;p and Oy for the derivatives with respect to time.
Similarly, for V = V(t,z',...,2N) : [0,T] x (RY)N — R, we define the derivatives
DV, AV, 0V. We denote by P(Rd) the set of Borel probability measures on R?
and note that, if m € P(Rd) has a density, for simplicity of notation, m is also used
to denote the denbity Given m € P(R?) and p > 1, M,(m) is the pth moment of m,
that is, Mp,(m) = [a |:E|pdm and P,(R?) is the set of m € P(R?) such that M,(R?) <
oco. We endow Pp(R ) with the Wasserstein metric d,, defined by d?(m,m’) :=
inf reri(m,m) Jga |2 —y[Pdm(z,y), where II(m,m') is the set of all w € ’P(Rgx ]Rd) with
marginals m and m’. Let L be the set of all 1-Lipschitz functions from R? to R. We
recall the duality formula dy(m,m’) = supyey, [pa @d(m —m'). For U : Py (RY) = R
smooth enough, 2 5m :P1 (Rd) x R — R denotes the linear functlonal derivative, which
satisfies, for all m,m’ € P (R?) and all h € (0,1), U(m') fo Jra 2Z( 1 -
h)ym+hm',z)(m’ m)(da:)dh We use the standard conventlon fRd gm (m,z)m (dx)
for all m € P, (Rd) If is differentiable with respect to the space variable, we deﬁne
the L-derivative of U by D U(m,x) = Dy2Y (m,z). Higher order derivatives are
defined similarly.

We refer the reader to [5, Chapter 2] and [8, Book 1, Chapter 5] for the properties
of the L-derivatives.

Finally, throughout the paper, unless otherwise noted, we use C for positive
constants that depend on the data and may change from line to line with this being
made explicit.

2. Assumptions and main result.

2.1. Assumptions. We now state our standing assumptions on the maps H, F',
and G, which constitute the data of our problem. We keep in mind that L : R x
R? 5 R is a Legendre transform of H with respect to the last variable, that is,
L(z,a) =sup,cga[—a-p— H(z,p)]. We assume that

1) H e C?(R? x R%:R) and for some ¢, C' >0 and all (z,p) € R? x R?,
—C+clpl” <H(a,p) <C+ ¢|p[* and |D,H(z,p)| <C(lp| +1),

H is locally strictly convex with respect to the last variable,
(2.2) that is, for any R > 0, there exists cg > 0 such that
D2, H(x,p) > crly for all (z,p)e R? x Bhg,
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(2.3) for any R > 0, there exists Cr > 0 such that
|D2,H(x,p)| +|D2,H(z,p)| < Cr forall (z,p)€R” x B,

(24) FeC*Pi(RY);R) with F, Dy, F, D2, F, and D2, F uniformly bounded,
and, finally,

(2.5) G eC*Pi(RY);R) with all derivatives up to order 4 uniformly bounded.

For simplicity, in what follows we put together all the assumptions above in

(2.6) assume that (2.1), (2.2), (2.3), (2.4), and (2.5) hold.

Remark 2.1. We make the following comments regarding (2.6).

(i) The strict convexity of H with respect to the gradient variable is standard in
optimal control. In particular, it implies that L has the same regularity as H.

(ii) Although the at most linear growth in p of D,H, which is used to ob-
tain, independent of N, Lipschitz estimates on the value function VV (see
Lemma 3.1), is somehow restrictive, we do not know if it is possible to
avoid it. It is, however, satisfied by, for instance, a Hamiltonian of the form
H(z,p) = |p|* + V(z) - p for some smooth and globally Lipschitz continuous
vector field V : RY — R,

(iii) The fact that the “full” Hamiltonian (z,p,m) — H(z,p) — F(m) has a sep-
arate form is not completely necessary. In particular, our method allows
handling dynamics of the form

dX, =b (Xt, c (Xt|]-'tBO>) dt + aydt +v/2dB, + v/2agd B

for some bounded nonlinear drift b: R% x Py(R%) — R? with bounded deriv-
atives. However this leads to much heavier computations that we decided to
avoid to keep the paper as clear as possible.

(iv) The uniform bounds on D,,F and D,,G imply that both maps are Lipschitz
continuous in Pl(Rd). The additional smoothness is used to obtain, indepen-
dent of N, semiconcavity estimates on the value function Vv (see Lemma 3.4).

(v) As L is the Legendre transform of H, (2.2) implies, after a simple calculation,
that, for any R > 0, there exists Cr > 0 such that

(2.7) |DyL(z,a)| < Cg forall (z,a)€ R? x Bpg.

2.2. The formulation of the problem. For concreteness, we fix throughout

the paper a filtered probability space (2, F,F = (F);>0, P) satisfying the usual condi-

tions and hosting independent d-dimensional Brownian motions B® and (B*).cn.

2.2.1. The definition of V. The definition of V¥ and the relevant quanti-
ties/functions were given and discussed in the introduction—see (1.1) and (1.2), where
it was also explained that, assuming (2.6), Vv is the unique classical solution to the
HJ equation (1.6) and that the infimum in (1.1) is achieved (in feedback form) by the

function o= (a*)N_, : [0,7] x (RN — R given by

(2.8) ag(t,x) = —D,H (2, ND VN (t,x)) .

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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2.2.2. The definition of U without common noise. Suppose now that ag =
0. To define U, it is more intuitive to work with closed-loop controls, and to view the
problem in terms of deterministic control of the associated Fokker—Planck equation.

For fixed (tg,mg) € [to,T] x P2(R?), let A(tg,mg) be the set of pairs (m,a)
with m = (m¢) e 1) = (Mt ))iepor] € COlto, T); P2(RY), o : [to, T] x R* — R?
measurable such that fto Jga lou(t, 2)|*m(t, da)dt < co and m solves (in the sense of
distributions) the Fokker—Planck equation

dym = Am —div(ma) in (to,T] x R and mi(to,-) =mo.
Then we define U : [0, 7] x Po(R?) = R by
(2.9)

T
U(to,mo) = inf {/ </ L(z,a(t,z))m(t,dz) + f(mt)> dt + g(mT)} .
(m,a)€A(to,m0) to RY

Notice that it is not restrictive to consider feedback controls which are only a func-
tion of the time and space variables instead of controls which depend as well on the
probability measure m(t). Indeed, if & : [0, 7] x R% x Py(R?) is such a control with
corresponding trajectory m € C([0, 7], P2(R%)), we can obtain the curve ¢ — 7(t) with
the same cost by considering the control «(t,z) = a(t, z, m(t)).

One advantage of using this deterministic formulation of the McKean—Vlasov con-
trol problem is that, at least in the absence of common noise, the dynamic program-
ming principle is straightforward. In particular, we can assert the following, which
will be useful in what follows.

PROPOSITION 2.2. Assume (2.6). Then, for any 0 <tg<t; <T,
ty
U(to,mo) = inf {/ </ L(z,a(t,x))m(dx) + ]-'(mt)> dt+L{(t1,mtl)} .
(m,Oé)E.A(toﬂ’no) to Rd

2.2.3. The definition of U with common noise. To define I/ when ag > 0, we
use again a form of closed-loop formulation, but this time the relevant Fokker—Planck
equation becomes stochastic and we work with a notion of weak solution.

For fixed (to,mo) € [0,T] x P2(R?), we define a control rule R € Alty,mg) to
be a tuple R = (Q,F,F,P,W,m,«), where (Q,F,F) = (Fi)o<i<r,P) is a filtered
probability space supporting the d-dimensional Brownian motion W, a = (ay),<i<T
is an F-progressively measurable process taking values in L (Rd;Rd) and such that
« is uniformly bounded, in the sense that

(2.10) | sup Jloll oo e )l 20 2 < 00,
t€[to, T

and m satisfies the stochastic PDE
dmy(x) =[(1+ ag)Amy(z) — div(meay(2))] dt

2.11
(211) +V2a0Dmy(z) -dWy in (to,T] x R® with my, =mg in R%

The last condition means that, P-a.s., for any smooth test function ¢ € C°°([0,T]xR%)
with a compact support and for any t € [to, T,

[ oramtan)= [ owmo(n) + [ [ (@0.@) +aute)- Do)
+ (14 a0) Au(a))m(da)ds + [ V2 [ Dou(a)m(do)- V.
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Now we define

U(to, mo)
T
(2.12) :R628£7m0)EP l/t(, (/]Rd L(z, a(x))my(de) +]:(mt>> dt + g(mT)l :

The connection to the informal description (1.3) of U is that, if « is a bounded
Lw(Rd;Rd)-valued process defined on some filtered probability space (Q,F,F =
(Ft)o<t<t,P) supporting independent Brownian motions B and W, « is adapted
to the filtration of W, and X is a strong solution to the McKean—Vlasov equation

t
(213) Xt :Yto + / aS(XS)ds + \/E(Bt — Btg) + v 2(10(Wt — Wt0)7
to
then (0, F,FW W, m,a) € A(tog,mo), where m; = L(X;|W), that is, m is the condi-
tional law of X given the filtration of the Brownian motion W.
As in the case ag =0, we have the following dynamic programming principle.

PROPOSITION 2.3. Assume (2.6). Then, for any 0 <tg <ty <T, for U defined by
(2.12), we have

t1
Ulto,mo)=  inf  EF U (/ L(x,at(z))mt(dx)—l—]:(mt))dt+L{(t1,mtl)}.
(m,a)EA(to,mo) to R4

Unlike in the case without common noise, where the control problem is determin-
istic and thus the dynamic programming principle is straightforward, in the common
noise case we will need to use some machinery from Djete, Possamai, and Tan [13]
and Lacker, Sholnikov, and Zhang [23] to verify that the dynamic programming prin-
ciple holds. To streamline the presentation, we present the proof of Proposition 2.3
as well as proofs of some other technical results from [13, 14, 23] in the appendix (see
section 5).

Remark 2.4. We could have defined U using (2.12) when ag = 0 as well, and, in
the end, it would be possible, thanks in part to Lemma 3.3 below, to prove that this
is equivalent to (2.9). We chose to define things separately with and without common
noise mostly to avoid some unnecessary technicalities and to simplify the presentation
for the reader interested in the case without common noise. The only mathematical
reason for splitting up the definitions is that, for technical reasons, it is convenient
to work with L°-feedback controls in the case of common noise, whereas without
common noise we have no difficulty working with square-integrable controls.

2.3. The main result. With V¥ defined by (1.1) and U defined by (2.9) if
ap =0 or (2.12) if ag > 0, we have the following result.

THEOREM 2.5. Assume (2.6). Then there exist § € (0,1] depending only on d
and C >0 depending on the data (F,G,H) such that, for any (t,x) € [0,T] x (RH)N,
‘VN(t,x) —U(t,m,]y)‘ < ON7B(1+ My(m)).

For the convenience of the reader we repeat here the strategy of the proof. We
detail in section 3 the proof of Theorem 2.5 when ag = 0, the adaptation to the case
ag > 0 being the aim of section 4. The proof of Theorem 2.5 requires several steps:
We first obtain uniform in N regularity (Lipschitz and semiconcavity) estimates on
VN in Lemma 3.1 and Lemma 3.4, respectively. Then we show how to bound from
above VY by U plus an error term (Proposition 3.7). This estimate is relatively easy
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and boils down to transforming the map V¥ into a subsolution of the HJ equation
(1.7). The converse estimate, which is more involved, is the aim of Proposition 3.8.
The technical reason is that we found no way to embed I into the equation for VIV
as a subsolution. Actually, since U is semiconcave, it is naturally a supersolution of
that equation and the remaining term is a priori large. We overcome this issue by
using locally optimal feedback of the N-problem for the continuous one, the main
difficulty being to compare the empirical measure in the N-problem to the solution of
the Fokker—Planck equation. This step, which is difficult, relies on a key concentration
inequality, which we prove in section 3.4.

3. The proof of Theorem 2.5 without common noise. We assume that
ag = 0, and, throughout the proof, we use the fact that V is the unique solution of
the uniformly parabolic backward PDE (1.6) and, therefore, is smooth.

3.1. Some regularity estimates. We first establish the uniform in N regular-
ity estimates for V.

LEMMA 3.1. Assume (2.6). There exists a constant C > 0 such that, for any
N >1, [V ]lso + Nsup; [ Dys VN [loo + 1|0V [0 < C.

Remark 3.2. The estimate on D,; V™ implies that the optimal feedback of the
problem, given by o*(t,x) = —D,H(x*, ND,; VN (t,x)), remains uniformly bounded.

Proof. The bound on V¥ is obvious.

We note that w* = D,: VN satisfies

N
—ow' (t,x) — E Agrw'(t,x) + NDxH(xZ,NDmiVN(t,X))

k=1
N

(3.1) +3 DyH(zF ND VN (t,x)) - Dyrw' (1, %)
k=1

1 .
:ijmfu@Lxﬂ in (0,7) x (RHN,

. 1 .
zﬂngzﬁawm&@wm(ww,

and we observe that the maximum principle for linear parabolic equations (see, e.g.,
Theorem 8.1.4 of [21]) together with the condition |D, H (z,p)| < C(1+ |p|) from (2.1)
gives

. T Dnz oo D o
it < [ (R IDHCNDN )]+ 10T gy 10y
t

N N

Taking a supremum in z and then applying Gronwall’s inequality gives | D, VN (t,x)| <

%, as required. Similarly w® = 9, V" satisfies
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N
—Opw' (t,x) — Z Arw' (t,x)
k=1
N
+> DpH(a* NDw VN (t,x)) - Dyew' (t,x) =0 in (0,7) x (RN,
(3.2) k=1 v
w'(T,x) = —% Ztr {D;mg(mij’xk) + 1
k=1

VD%, G 2t o)

oy S HGH DaG(na) = Flnd) in (&),

and the uniform bound on [|§; V||~ this time follows directly from the maximum
principle. 0

LEMMA 3.3. Assume (2.6). There is C' > 0 such that, for all t9,so € [0,T] and
mo, o € Pa(RY), [U(to, mo) — U(so,o)| < C(|te — s0|"/? + dy(m,m)). Moreover, if
(to,mo) € [0,T] x P1(RY) and (m, ) is optimal in the definition of U(to, mo) in (1.3),
then ||alle < C.

Proof. The result is standard, so we only sketch the argument and refer the reader
to [3] and [12] for more details. Fix (to, ) € [0,7] x Py (R?). Tt follows from (2.6)
that there exists at least one pair (m,«) that is optimal in the definition of U (tg, ).
Moreover, for such an optimal pair (m,«), there exists a map u € C;’2((t0,T) x R%)
with oy (2) = —DpH(x, Du(t,z)) and such that (u,m) solves the system

—Osu(t,x) — Au(t,z) + H(xz, Du(t,x)) = %(mt’x) in (to,T) x RY,
dym(x) — Amy(z) — div(D, H (x, Du(t,z))mq(s)) =0 in (to, T) x RY,

my, =g, u(T,z)= %(mT,LB) in RY.

Arguing as for the Lipschitz estimate in Lemma 3.1, one can check that || Dull. < C
for some constant C' > 0 and, since a« = —D,H(x,Du), ||o|c < C. The standard
parabolic regularity theory then implies that || Da|loc = || D[DpH(-, Du(,))]|loc < C.

Fix 72; € P1(R?) and let z be the solution to dyp— Ap+div(pa) =0 in (to,T) x
R? with pu(to) = 7. It is easy to check that there exists C' = C(||Da|so,T) such
that sup;cr,, 71 di(p(t), m(t)) < Cdi(mi,mo). Thus, for some C' depending on 7', on
the regularity of L, F, and G and || Da/|| oo,

uto.m) < [ ( [, L autant.ds) +f(u(t)))dt+g(u(T)>

dt +G(m(T))+C sup di(u(t),m(t))

d tefto,T]

< /T [ [ 2 @it dz) +-Fm(o)

<U(to,m0) + Cdi (1, Mo).
This establishes the estimate
(33) |U(t0,m0) —u(to,moﬂ SCdl(mo,mo).

Finally, we fix so < to, and we choose (m,a) optimal in the definition of U(sq,mg).
By dynamic programming (Proposition 2.2), we have U(sg, mg) = fstg(fRd L(z,a(t,))
my(dx) + F(my))dt + U(tg, me, ), and, thus,
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utsocna) ~tttomo) < | [ ([ steatt.aypm(an + 7m0 )

+ |M(t0,mt0) —U(to,m0)| < C(to — 50) + Cdl(mto,mo)
< C(to — s0) + Clto — s0)*/?,

where we have used (3.3) and the boundedness of «, together with the fact that (2.2)
implies a similar inequality for L. This completes the proof. 0

The key estimate on V'V is discussed next.

LEMMA 3.4. Assume (2.6). There exists an independent of N constant C, such
that, for any N > 1, £ = (£%) € (Rd)N and £° € R,

Z D2, VN (t,x)¢! fﬂ+2ZD2ltvN(t x) - €€" + DEVN (t,x)(€°)?

1,j=1 i=1

(3.4)
< OSP4 o)
<~ Z €712+ C(&°)

Remark 3.5. Inequality (3.4) plays a crucial role in the proof of Lemma 3.12
below. Since VN~converges to U, it follows that (3.4) implies the sem1c0ncav1ty
of the extension U : [0,77] x L2((Q F,P);R%) — R defined, for X € L2(Q,R%), b
U(t,X) :=U(t, L(X)), where (Q, F,P) is a fixed atomless probability space and £(X )
is the law of the random variable X.

Proof. For 1 <4,j,k <N, let
wi — DﬂvN . 52’7 i, D2 VNgz 5] wO — (9tVN§0, w0,0 — 8ttVN(§O)27

zixd

, . - N iy N ;
WO =wh0 =9, D VN - £0¢0 &= =2 i j—ow™, and op =37 o Dyrw'.

A straightforward computation gives

N N
—0@ =Y A+ Y D DpH (¥, ND VN (t,x))

k=1 k=1
N
=-N> D} H(z" ND VN (t,x))ox - op — 2> D2, H(2* ND VN (t,x))6" .0,
. _N k=1
——ZD?MH(:&nDzivNa,x))f’lgi
ZD L T ZD Dy F(mY zh)et e

1,j=1

Denote by v the right-hand side of the equality above. Recalling that H is strictly
convex in the p variable and that N9,V is bounded, we have, for all 1 < k < N,
~ND2,Hoy -0y, — 2D2 HE* 0, < & |§’“|2 We can use again the Lipschitz bounds on
VN and (2.3) to deduce that 'y(t,x) Zk 1 1€72. Next, fix (to,xo) and consider
the weak solution m® to
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N
oym™ (t,x) — Z Agem™ (t,x)

N

=Y div(D,H (2", ND VN (8,%x))mN) =0 in (to,T) x (RN
k=1

m (to,-) =0y, in (RHY

Integrating the @w-equation against m”, we find that, for all (tg,xo) € [0,T] x
RN S(to,x0) < supy [|0(T, %) |00 + % Zszl |€F]2. In order to bound the right-hand
side of the inequality above, we first note that, by the equation satisfied by V¥, we
have VN (T,x) = — Sn_ A GN (%) + & SO, H(2%, ND G (x)) — FN(x), where
FN(x) := F(mY) and GV (x) := G(mY), and, similarly, 02 VN (T,x) = fZiV:lekat
VN(T,x) + Sony DpH (2%, NDyw G (x)) - Dy 8, VN (T, x). Recalling the expressions
of the derivatives of F¥ and GV as a function of the derivatives of F and G in
Proposition 5.35 of [8], we find, after a tedious but straightforward computation,
that under our standing assumptions on F and G, for some C, supy [|0(T,X)|cc <

N i
§ i €7+ O O
3.2. The easy estimate. The second step in the proof of Theorem 2.5 is an

upper bound of VY in terms of ¢. Our strategy will be to first compare U to \A)N,
where

N
3.5 pN t,m):= m(da?).
(35) (tm) /() 2

We start with a lemma whose proof is a straightforward computation, which is essen-
tially the same as the one carried out in the proof of Proposition 3.1 in Cardaliaguet
and Masoero [6]. Hence, we omit the details.

LEMMA 3.6. Let VN be given by (3.5). Then VYN s smooth and satisfies the
inequality

_0 9N (¢, m) — / dio( DoV (£, m, ) ym(dy)

Re
/ H(y, D D™ (t,m, y))mldy) < F¥(m) in (0,T) x P1(RY),
VN(T,m)=GN(m) in Pi(RY),

N N A
where FN f(]Rd)N (m)[1;=ym(da?) and GN(m f(Rd)Ng D=, m(da).
Next we prove the easier inequality in Theorem 2.5.

PROPOSITION 3.7. There exist constants C' depending on the data and B depend-
ing only on d such that, for all (t,x0) € [0,T] x (RN
C
(3.6) VN (tm,) SUCtm) + 575 (1+ My (my,)).
Proof. Theorem 1 in [16] gives constants C' and § depending only on d such that,
for any m € Po(R?) and for all N €N, f(Rd)N dy (mL,m) [T, m(da®) < S My"?(m).
Fix (to,mo) € [0,T) x P2(R?) and let a* be optimal in the definition of U (to, mq).

Using Lemma 3.6 together with a standard verification argument, for example, using
Itd’s formula in Theorem 5.99 of [8], we see that
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a€A(to,mo)

PN(tg,mo) < inf { /T ( / Lz, at,2))m(dr) +fN(mt>) dt+§N<mT>}

and, hence,

B7) DV (to,mo) < /T (/R L(z,a* (t,2)) + ]?N(mt)) dt +GN (mr).

to
Since, in view of Lemma 3.3, a* is uniformly bounded by a constant independent of NV,
an easy computation shows that the corresponding state process satisfies SUD e, 7]
Jga lz)?m(t,dx) < (14 CT) [ga |x[*mo(dz) + CT. Tt then follows from the Lipschitz
continuity of F with respect to d; that
N

DT m(t.da?)

Jj=1

B (1)~ Fm(1))| < c/(

and, similarly, |GN (m(T)) — g(m(T))| < &1+ My"? (my)).
Using the optimality of a*, (3.7), and the estimates above, we obtain

+ £(1 + My (mg))

VN (t )<EVT(L(X D)+ F(L(X0) )dt+ G(L(Xr))
0,Mo) > t; O t NP

to

c 1/2
<U(to,mo) + 775 (1+ My (o).
Fix now x¢ € (RY)N. Then the Lipschitz estlmate on VN and the same argument as
above yield [VN (to,x0) — VN (to,m{)| < S (1 + M21/2( X)) Putting together the
last two estimates gives (3.6). 0

3.3. The main estimate. The aim of this section is to prove the opposite
inequality.

PROPOSITION 3.8. Assume (2.6). There exists € (0,1] depending only on the
dimension and C > 0 depending on the data, such that, for any N > 1 and any

(t,%) €[0,7] x (RN

N
c 1 .
N N 2 72
(38) Utt,mo) =V2(6%) < 35 (1 N H~ . )

As pointed out in the introduction, the main difficulty is that it does not seem
possible, at least to us, to transform an optimal control for the VN which depends
on each particle into a feedback for ¢. We overcome this difficulty by dividing the
players into subgroups in such a way that the optimal controls for the agents in each
subgroup are close and showing a propagation of chaos—type result for each subgroup
using a concentration inequality.

We begin explaining how to create the subgroups based on an appropriate parti-
tion of {1,...,N}.

LEMMA 3.9. For each § >0 there exist a constant C' depending only on the data
(F,G,H)), a partition (C‘j)je{l,.”,J} of {1,...,N} lsuch that J < C6~%, and, for
j=1,...,J, controls &’ € R? such that, for all ke C7,

(3.9) |H (zf, NDx VN (to,%0)) + @ + (NDw VN (to,%0)) + L(zf, &)| < C6.
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Proof. Let @*(t,x) = —D,H(z*, ND_ V" (t,x)) be the optimal feedback for par-
ticle k, and recall (see Remark 3.2) that there exists R depending only on the data
such that |a*(t,x)| < R.

Given 6 >0, we can find a é-covering of B C R? consisting of J < C6~¢ balls of
radius 6 centered at (@;);cq1,....5y C Br-

Then, we choose the partition (C7);e1,s so that, for each k € C7, [a%(¢,x)—a’ | <
§. It follows using (2.7) that, for each k € C7,

|H (2§, NDw VN (t0,%0)) + @ - (VDo V™ (fo,%0)) + L(ah, )|
— |(a? = G (tg, x0)) - (ND VN (to, o)) + L{ah, @) — L(ak, alto,x0))|
< (ND V™ (t0,%0)) + | Da Lll e g ) ) 16 (0, %0) = @] < €. 0

For § > 0 we consider such a partition (C’j)je{l,m”]} of {1,..., N} with associated
controls @', ... @’ satisfying the conditions of Lemma 3.9 and we define n? = |C7| for
all je{1,...,J}. Fix je{1,...,J}, set o* =@’ if k € C7, let, for tg,s0 € [0,T] and
Xo0,Yo0 € (Rd)N,

XfOJrT—J:O—&—Ta +v2BF and YE, ., = yo—i—Ta k4 2Bk,

J

XfOHZ Zke(ﬁ Xk, and MY g4r = Zke@ 5Y;;+T

(3.10)

consider the solution m? to
(3.11) dym? — Am? +@ -Dm? =0 in (so,T) x R? and m? (s, ") :mg,o in RY,

and, finally, set m(s) =4 djes nim(s).
We state next the concentration inequality we need for the proof of Proposi-
tion 3.8.

LEMMA 3.10. There exist a positive constant B € (0,1/2), depending on d and

a positive constant C, which depends only on sup; |a’|, d and T, such that, for all
h>0,

(3.12) E [dl (mj(so +h), m@sw)} <O+ MY?(mi (s0))) (h/n?)P,

(3.13)

B[y (m(so+ )i, )| < 007" 3 Lk — ul + OO+ My (m (s0)) (/)
keCi

and, as a consequence,

(3.14) E [dl (m(so +h), mgw)} < O3 (1 + My (m(s0))?)(h/N)?
(3.15)

N
E [d (miso+).mY, )] < D[ — b+ 0o (1 Ml 0)B)(h/N).

Proof. Inequality (3.12) is precisely the concentration inequality (3.24) of Propo-
sition 3.13 that we prove in section 3.4. Being that Ys’f)+h - thUJrh =yk — 2k for all
h >0 and all k € {1,... N}, inequality (3.13) follows in a straightforward way from
(3.12). Similarly (3.15) follows from (3.14). It remains to prove estimate (3.14). Using
(3.12) as well as the Cauchy—Schwarz inequality, the concavity of the maps n — n!'=#
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and n — n'~2#, the fact that > n/ = N, and the assumption that 3 € (0,1/2), we
obtain the followmg string of 1nequaht1es

E [dl (m(so + h),m%V(SOJrh)] < J;] %E [d1 (mj (so+ h)’m%(,§0+h)]

. hPe
<CZ (1 4+ MY (m (50)))(nj)ﬂ
jed
) ) 1/2 ) 1/2
(nj)l—B nd ) nJ
<or [S U+ (Shmoren) (S
jeJd jeJ j€J
J N\ J 1 v
<cn’ N <Z Z) + My (m(s0)) N <Z J(nj)12ﬁ> ]
jeJ jeJ
<C (Jh) (1 + M21/2(m(so))>.
N
Recalling that J < 06~ is enough to conclude. O

We are now ready, using the above construction, to prove Proposition 3.8.

Proof of Proposition 3.8. Following a viscosity solutions—type argument, we dou-
ble the variables and, for 6, A € (0,1), we set

M := m e U(s,mY) — VN (L, x
(t,x), (S7y)€[0XT]><(Rd)N u( y) (t,x))

-
2(,NZI —ﬂtﬁ;\zjl2

We denote by ((t0,X0), (s0,y0)) a maximum point in the expression above. Using the
uniform bound on & and VV and the Lipschitz estimate for VY we can estimate the
error related to the penalization. We find that there exists C' > 0 such that

(3.16)

C
(3.17) —Z|x0 Yil? + |so — to]> < CH? and f2| vel? < = T

i=1

Now we fix § > 0 and we define (X¢)¢>t,, (Ys)s>s0, M7, and m according to (3.10)
and (3.11) for some partition (C’j)je{17,..,J} of {1,...,N} with associated controls
a',...a’ satisfying the conditions of Lemma 3.9. By estimate (3.17) it holds, in
particular, that + va:l |28 — yb| < CO and Ma(m(sg)) < CAL

The Lipschitz regularity of ¢/ in Lemma 3.3 and the definition of X; and Y, give,
by definition of M,

M>E

eso+h(u(80 +h, mg - VN(tO +h, Xt0+h))

woin)

1 1 K P ) I\ N i )
20 NZ‘YSO+h_XtO+h‘ + (to — s0) _ﬁzmwﬂ
k=1 =1
> E|:680+h(u(50 + h,m(so + h)) — VN(to + haXt0+h)):| _ C(s—dﬁ(l + )\—%)

N
A .
_ 24 N2 i 1/2\2
<N§j 2[2 + (s to>> v vkl +Cn2)

hB
NB
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To continue, we need a dynamic programming—type argument, which is stated
next. Its proof is postponed to later in the paper.

LEMMA 3.11. With the notation above, we have
U(so + h,m(so + h)) =U(so,myn)
J

so+h
—/ Z —nJL (z,a?ym? (s, x)dz + F(m(s)) | ds.

Using Itd’s formula for VN we find

S0+ J
M2630+hu(80,m%) _ 630+h/ (/ Z (S a;)dac—&—]:( ( ))) ds
50 1
to+h
— R | VN (20, %0) +/ A + Z[Am +a*- Dzk}> VY (,X)dt
to k=1

N

B N
_ s—dB -k 11 k k2 a2 A i 1/2\2
Co""(1+ A 2)Nﬂ 20 <N;|y0 zo|” + (s0 — to) N ;(Iyol—i—Ch )~

Since the @ are uniformly bounded, the map L(-,@’) is uniformly Lipschitz indepen-
dently of j. Hence, using Lemma 3.10 and (3.17), we find

S‘U-'rh J 1
/ Z L(z,a%)ym? (s, z)dzds

L

Jj=1

so+h J & . 1 . i j
<E / Z *L Xto so+s? J)+0Nnjdl (mJ(s),m;(to—So‘*'S) ds

j=1 k}ECJ

to+h N 1/2 h?
S]E/t S0 L(xE ak)ds +C€h+CZ n (L4 Ml ) oy

0 k=1 J=1

to+h N 1 B 1 h’@
=* /t > L(XE ab)ds| +Con+Com (142 1.

0 k=1

Note that in the last inequality we used exactly the same argument as for the proof
given above for the third inequality of Lemma 3.10.

Hence, recalling the optimality of (xg,yo) in (3.16) and employing the equation
for VV, we get

hB
0> (et — ) (U(s0,my,) — V™ (to,x0)) — C6~ dﬁ(1+A")Nﬁ
N ) so+h
— CARYANTES "y = COh— e [ / (F(m(s)) = F(m¥, _,.,.))ds
i=1 so
1 to+h N
—eS°+hE[N/ D (L(XE,0F) + b - (NDV(s,X,))
to k=1

+ H(X§7NDrkV(s7XS)))ds] :
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Using the Lipschitz regularity of F and Lemma 3.10 to deal with the difference
of the F and (3.17) to deal with the term in ), |y|, we find

hB

0> e h(U(so,md ) — VN (to,x0)) — C6~ P (1+A7%) ~NF " CAV2p1/2 — Coh — Ch?

1 to+h N
et L [T YOt 4ot (VDY X))
to k=1

+ H(X* ND_V(s, XS))ds)ds} :

The regularity of L and H and the uniform boundedness of the o and of ND_ .V
allow us to infer that

— ONY2RY2 — con

 RP
0 2 esoh(u(SOamiX)) - VN(t07XO)) - C(sidﬁ(l + AiE)NB

1 to+h N
Oh2680+hE[N/ S (L(ak, aF)ds + a* - (N D, V(s,X,))
to k=1

+ H(zf, NDmkV(s,XS)))ds] — Ch3/?,
and, in view of (3.9),

. hB
0> e h(U(so,may ) — VN (to,x0)) — C6~ ¥ (1 + xf)% — O\V/2p1/?

to+h N

(3.18) Z‘NDszN(&XS)) — ND VN (s,%0))|ds

— _CE|=

to
— COh — Ch3/? — Ché.

The semiconcavity of VY and the penalization by the term in @ give the next lemma.
The proof is postponed to the end of the section.

LEMMA 3.12. For any (t,x) € [0,T] x (RN
N
D D VN (t,%) = Dy VN (t0, %0)|
k=1
N

N 1/2
Z x0|+<NZ x’g|+|xk_g;’g2)> 91/2|t—t0‘1/2

k=1

Z\Q

We continue with the ongoing proof. Inserting the estimate of Lemma 3.12 into
(3.18), we obtain

L hP
0> e h(U(so,may) — VN (to,x0)) — c<5—d5(1 AT m A/2p1/2

+(0+8)h+ h3/2>
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. N 1/2
—ce [ (5 LS xt—af+ (NZ X§x§|+X§x§|2>>
0 k 1 k=1

916;2 |s — t0|1/2> ds

hPe
NB

> e* h(U(s0,m,) — VN (to, x0)) — CO~(1+A7%)
— C(0 4 8)h — CXNV2RY2 — o1/ 2h(hM2 4 h)V/2.

Dividing by h we find, for each choice of 8, ;6 >0 and 0 <h < (T — so) A (T —tp),

X hB-1
e U(so,my,) =V (to,%0)) € Oz (L+AY2) + C(048) + CAV>h 12

NB§ds
+ Ch1/49_1/2.

—-1/2p,8-1

We take § = h1, § = (2—5—)2, A=N", and h=N"%.
Making appropriate choices of ay, as, az, and ay we deduce

(3.19) e (U(s0,m ) — VN (tg, %)) <CN

for some 8= B(8) € (0,1/2) and for N such that h = N~ < (T — so) A (T — to).
For N such that h =N~ > (T —s9) A (T'—tp), we have by (3.17) that (T —so) V
(T — s9) <h+ CH, and, so, using Lemma 3.1 and Lemma 3.3, we find
(U (s0,myy) = VN (to,x0)| < U(s0,my, ) — G(my,)| +|G(my) — G(myg, )|
(G ) = VN (g, %0)| < C(h+0)/2 + CO+ C(h+0) <CN 7,
where in the last line we choose B even smaller if necessary. With this choice of B , We

have now established that (3.19) holds for all values of N.
Finally, we conclude that, for all (t,x) € [0,T] x (R4)N

N
S0 )\ 7
e Ut,my ) = VN (t,x)) <e® (U(so,mp ) — VN (to,x0)) + ﬁz 2" |?

N
e 1 .
—min(8,a3) 0|2
<CN 3<1+N§|x).

=1

Before proving the various lemmas used in the proof of Proposition 3.8, we com-
plete the proof of the main result.

Proof of Theorem 2.5. Combining Proposition 3.7 and Proposition 3.8 we know
that there exist 3 € (0,1] depending on dimension and C' > 0 depending on the data
such that, for any (¢,x) € [0,7] x (RN,

U(t,mff)—vN(t,x))]gczv B+ MY+ Ma(md ) <CNTP(1+ Ma(ml)). D

We continue with the proofs of the several auxiliary results stated earlier.

Proof of Lemma 3.11. For K € N and any nonnegative integrable functions
md,...,m on R such that 1 mf € P(R?), let
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UB (to,m, ... . mE) = inf / /
ormM00 - 10 )= s ) e R
+.7:<Zm )dt—i—Q(Zm )

where the infimum is taken over the tuple of measures (m*, 8*) (the 3* being a vector
measure) with 3% << m* such that (m*, 8¥) solve, in the sense of distributions,

(t,z)
d;v)) mF(t, z)dx

oym* — Am* +div(8F) =0 in (to,T) x RY and m"(to) =mk in R%

We establish next that UX (tg,md, ..., m) =U(tg,my+---+m{), and the result will
then follow from Proposition 2.2.

Since obviously UK (tg,m},...,m&) <U(to,m$ + -+ +mk), next we concentrate
on the reverse inequality.
Fix e >0, let (m!,3,...,m% BK) be c-optimal for UX (tg,m},...,m{), and set

8= Zszl BE and m(t) = Zivzl mF(t). Then (m, 3) solves
dym — Am +div(8) =0 in (to,T] x R? and m(ty) =mo in R%
and we have

e+ U (tog,m},...,mE)
& K
! . B (t, x) m’“(t,x)m N .
>/t° </dez—1L( 7’”'“(&?6)) m(t,x) (t,z)d +}—<’; (t)>>dt
K
+9<kam>
k

' Y1, B t,)
Z/to (/Rd ( ’M) m(t,a:)dx+.7-'(m(t))> dt +G(m(T))

Zu(t05m0)7

where the second inequality follows from the convexity of the map (8, m) — mL(x, %)
and the third one by the definition of U. 0

Proof of Lemma 3.12. Set p* = D xV(t9,%xo) and p* = 3;V(to,%o). Then, in view
of Lemma 3.4, we have, for any (¢,x), (to,x0) € [0,T] x (RN

2% — 2§ |2+ C(t —to)?.

=zl Q
] =

VN (t,x) = VN (to, o) ZP —p'(t—to) <
k

1

The optimality of (to, X0, S0,¥0) also gives, for any (¢,x),
1 < i iz, L 2 N
w—NZ\x = Yo ‘*‘@(t—so) + V7 (t,x)
(3.20)
N
z 29NZ‘ (750—30) + V" (o, X0)-
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From (3.20), we conclude that p* = 3”0971\,% and p' =05t
Furthermore, rearranging (3.20) yields

N
1
N N k k 2
VEi(tx) =V (to’xO)ZTQNZ|‘T0_ ol 29NZ| Yol 29N|t0_80|

1 k_ghp o L 2
29Nt sol? 29NZ| o~ Yl 29N Z| o)l
———|to — so|* — ! (t—to) + (to — s0)|?
29]\7 20N
Moo 1
kK
_Zp (z% —af) +pl(t —to) — ;mm —xp|? —ﬁ(t—to),

and, after some elementary manipulations

VY(t,x) = VN (to, o) ZP —p'(t —to)

1 al 1
k k|2

Assuming that 6 < (2C)~1, it follows that
w(t, X) VN(to,Xo) VN (t,x)

+Zp —zk) +pt(t—to) + Z|x — 2k 4+ C(t —t)?

is convex and satisfies 0 < w(t,x) < g5 Sae, [¢F — z§|? + L(t — t9)2. Thus, for any
(t,x) and any (s,y), we have

> Daw(t,x) - (y* - a*) + dpw(t, x)(s — t) < w(t,x)
+ ZDmkUJ(t,X) (y* = 2F) + dpw(t,x) (s — t)

w(s,y) _GNZ\y —zg® + (sfto)~

Letting y* = af + %QND;E;C w(t,x) and s =1tg+ 505}10(15, z) in the inequality above, we
obtain

N
N
(3.21) QT E |Dew(t,x)|* < E Dyew(t,x) - (a8 — zf) + dpw(t, z) (t — to),
k=1

and, after using the Cauchyfschwarz mequahty7

N N 1/2
(3.22) ) [Dgsw(t,x)| < N2 (Z |Dmkw(t,x)|2>

k=1 k=1

N 1/2
4 4
< N1/2 (NH ; |x§ — kaDmkw(t,xﬂ + m\@w(t,x)”t - t0|> .
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Recalling the definition of w and that |D,« VY| < C/N and |9,VV| < C, we find

2C 2C
|Dyrw(t,x)| = ‘ — D VN (t,x) 4+ pF + = i (" —af)|<CN'+ = \Jsk — k|
and
|0yw(t,x)| = | — 9V (to,x0) +2C(t — to)| < C.

Returning to (3.22), we have

>

k=1

2C
—D VN (t,x) 4+ p* + W(a:k — k)

1/2
C
k B2 4
<N92|$0_$+ Z|$o—x 9|t—t0|> ;

from which we deduce the result by the definition of p*. ]

3.4. A concentration inequality. This section is devoted to the proof of the
following concentration inequality.

PROPOSITION 3.13. Take a constant drift a in R? and initial position y3, ..., yd’
in R? for some N >1 and consider (Y0, (YN )i>0 defined for all 1 <k <N and
t>0 by

Y =yl +at +V2BF,
where (B})i>0, ... (B)i>0 are N independent d-dimensional standard Brownian mo-
tions defined on some probability space (2, F,P). Define as well the empirical measure
my, = Efj:l dyr and m € C([0,T], P2(R%)) to be the solution to

(3.23) { om+a.Dm—Am=0 in (0,400) x R,

m(0) =my, .

Then, there exists a positive constant 5 € (0,1/2) depending on the dimension d and
a positive constant C' depending on |a|, d, and T such that, for all h €[0,T] it holds
that

(3.24) E [di(m(h),m¥,)] <CO1+ My > (m¥,))(h/N)P.

Remark 3.14. The proof will show that one can take f=1/(2d + 4).

To prove Proposition 3.13, it is convenient to introduce first a few facts and
notations.

We denote by L denote the set of all 1- LlprhltZ functions from R? to R, and let
Lr be the set of all 1-Lipschitz functions ¢: Br C R? - [-R, R]. For any ¢ € Ly, we
denote by ¢ the extension ¢ : R? — — [-R, R] given by

i é(x), | < R,
o(z) = 2 o(Ea), R<|z|<2R,
0, |x| > 2R.

Note that 5 is also 1-Lipschitz.
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Let L(e, R) be the e-covering number of Lz with respect to the L*°-distance, that
is,
L(e,R) =inf{k € N: there exist ¢1,...,¢r € Lg such that for all
¢ € LR, ||¢ — ¢j|| ;~ <€ for some j}.

Tt is known (see, for example, [19]) that
(3.25) L(e,1) <exp{Ce 9},

and, after a rescaling argument,

(3.26) L(e, R) < exp {c (f)d}

Indeed, if {¢1,...,¢n} € L is ¢/R-dense in L, then {51,...,$n} is e-dense in Lg,
where ¢;(x) = R¢(z/R). Thus (3.26) follows from (3.25).

To prove Proposition 3.13 we need two preliminary estimates.

We recall the notation after Lemma 3.17.

LEMMA 3.15. There exists a constant C' > 0 such that, for any ¢ € L, ]P’[fRd d(m(h)
2
—m{Yh) > x] §exp{—%—mh}.

Proof. Let u be the solution of
—u—Au—a-Du=0 in (0,h) xR? and u(h)=¢ in R

and note that, since ||D¢|| <1, ||Duljco < 1.
Using It6’s formula and the equation for m, we get

1 N h
Ny_ /ot k k
y d(m(h) —my, ) = \/iN ,;_1/0 Du(s,Y,).dB.

The random variables s ~1/2 foh Du(s,YF)dB¥ are independent and sub-Gaussian, uni-
formly in k. Indeed, viewing h~1/2 fo Du(-,Y*)dB* as a time-changed Brownian mo-
tion, we have that B, = h~1/2 foh Du(t,YF)dBF, where B is a standard Brownian
motion and 7 < 1 is a stopping time (we use here that ||Dul| < 1). In particular,
P Oh Du(s,YF)dBY > z] < Plsupy<;<; |Be| > h'/?], from which the claim follows
easily.

We now apply Hoeffding’s inequality (see, for example, Proposition 2.5 in [28])
to complete the proof. 0

LEMMA 3.16. There exists a constant C' such that, for any R >0,

E | sup (E(m(h)—m{\/[h) SC(l—i—RdLﬂ)N%h%ﬂ.

$€ELR R4

Proof. We fix € > 0 and use the estimate on L(¢, R) to choose K < exp{C’(?)d}
and ¢1,...,¢x in Lg such that, for each ¢ € Ly, there exists k € {1,..., K} such that

16 = Gl (3 < € and hence |6 =G| _ gy S
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Then, using Lemma 3.15 and the upper bound on K, for any x > ¢, we have

P
¢€Lr JR?

sup d(m(h) — m%) > x] <P [Elk: such that or(m(h) — m%) >z — e}
Rd

(3.27) gi[@{ g}k(m(h)—mgh)m—e]gexp{c<lj)d_N(xC;e)2}.

We fix a small positive parameter v, and note that, if e =y~ a Rh1/dg=2/dN—1/d
then

R\* Na? Nz?  N(z—e¢)?
(3.28) Rexp{C(€> - Ch}—R@(p{CW T o }

Further computations reveal that there is a constant C such that x > 2¢ as soon as

d 1
Rtz 7
~ya+z N @+2
By choosing «y even smaller, we deduce, in view of (3.27) and (3.28), that, for some con-
stant C' and all R, z as in (3.29), P[supgey,,, Jga @(m(h) —my, ) > 2] <exp {—NC“"Q } .
It follows that

Rh

_ N C( N )dijﬁ o —N.r2
E | su m(h) —m S/ 1dx+/ . eX { }da:
g, J o=} < | ot P G

N

< C(1+ Ra=)Nar2 pate. o

Finally, we give the proof of the concentration inequality.

Proof of Proposition 3.13. Throughout, C' is a positive constant which, although
changing from line to line, depends only on d, T', and |a/.

We fix R >0, and note that, any ¢ € L normalized with ¢/(0) =0, can be written
as ¢ =¢ + ¢, with ¢ € Lg and |p| < |z[1pe.

Thus, for any h € (0,1], we get

E[dy(m(h),my, )] =E lsup p(m(h) — m%)}

¢€L JR?
+/ |z[1pe m(h) + E [/ |x13%m¥h]
R R
Mo

(m(h) | ElMa(md, )]
R * R

<E | sup qz~5(m(h) — mgh
_¢ELR R4

~—

(3.30)
<E|sup [ o(m(h)-m¥,)|+

|#€LR R4 |
_ = ] 1+ M.
<E|sup [ ¢(m(h)—m¥, )|+ CHQ—WO)))_
|#€LR R4 | R
Using Lemma 3.16, we find that
-1 _1 1+ M-
E[dy (m(h),m} )] < C(1+ R7%2 )Nz hwiz + CHQ—EW
L 1+ M>(m(0)))

R
Optimizing in R, that is, taking R = N7arip =51 /1 + M3(m(0)), gives the result

with ﬁzﬁ. 0
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4. The proof of Theorem 2.5 with a common noise. We now show that
the method developed above can be adapted to problems with a common noise, that
is, for ag > 0. Recall that VY and U are defined by (1.1) and (2.12) respectively.

Proof of Theorem 2.5 when ag > 0. Since the proof follows closely the one in the
case a® =0, here we emphasize and explain the main differences.

We first note that the estimates of Lemma 3.1 and 3.4 remain valid (with the same
proof ), that is, there exists C' > 0 such that [V ||sc + N sup; | Dy VN [loo + [0V || o0 <
C, and, for any (¢,x) €[0,7T] x (]Rd)N7 (€)iz1,.. N € (Rd)N and £° € R,

Z D2, VN (t,x)€" - £J+2ZD%VN(L‘ x)€'€” + D VN (t,x)(€°)?

1,7=1 =1

N
Z £Z|2—|—C §0

Z\Q

We note for later use that the observation above implies that the conclusion of
Lemma 3.12 still holds, because its proof relies only on the above estimates.
However, the proof of Lemma 3.3 does not adapt to the case ag > 0. Hence, we
need a new argument which relies on some results of [14].
In particular, we have the following analogue of Lemma 3.3.

LEMMA 4.1. Assume (2.6). There exists a constant C > 0 depending only on
the data such that, for all s,t € [0,T] and all m,m’ € Po(RY) [U(s,m) —U(t,m)| <
C(dy (m,m')+|t—s|), and, moreover, for any e >0 and (to,mo) € [0, T]x Po(R?), there
exists an e-optimal control rule R = (Q, F,F,P, W, m,«) € A(tog, mo) forU(tg, mg) such
that ||allee < C.

Proof. Fix R >0 and let VN and U® denote the values of the problems defining
VY and U when controls are restricted to the ball B C R

More precisely, define AM:E to be the set of a = (a¥)¥_,’s such that [o*| < R
for each R, and Af(ty,mo) to be the set of (Q, F,F,P,W,m,a) € A(ty, mg) such that
|a| < R. Then define V% exactly as in (1.1) but with A% replacing A and define
U exactly as in (2.12) but with A% (g, mo) replacing A%,

Then Proposition 5.1 and Theorem 3.6 of [14] give limy_, o VB (¢, xN) =ULE(t,m),
where xV = (z1,...,2V), m EPQ(Rd), and z!,..., 2N € R? are such that

It follows from Lemma 3.1 and Lemma 5.2 that there is Ry > 0 such that VN-Fo =
VN and Yo =1, and so we infer that, for all x; and m as above, limy_,o, VIV (¢, xV) =
U(t,m). Hence, the uniform regularity on WV established in (3.3), which, as noted
above, holds equally well when ag > 0, is enough to conclude that, for some C > 0,
t(s,m) —U(t,m")| < C(dy(m,m’) + |t — s|) for all m,m’ € Py(R%). Finally, for any
€ > 0 and (ty,mq), we can choose an e-optimal pair (m,«) for U7, and that this
control is also e-optimal for /. This completes the proof. O

Let VY be as defined in Lemma 3.7. Then it is easily checked that VYN is smooth
and satisfies, with 7V and GV as in Lemma 3.7,
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—&ﬁN@mﬂ—(1+a%/mdwﬂDmﬁN@meDme

Rd
—ap [ (D2 P (g m(a)
ﬁ/H@ﬂﬁwmmyWWMgfmwm(&ﬂxﬂwﬂ

R4

YN(T,m)=G(m) in Pi(RY.

Then, as in the proof of Lemma 3.7, it is possible to use It6’s formula for conditional
measures (see, for example, [8, Book 2, Chapter 4]) to infer that, for any solution
(m,a) to (2.11),

9N(to,m0) <E

/tOT (/Rd L(J:,ozt(x))mt(x)dq;+]?N(mt)> dt+§N(mT)] .

Using the same argument as in the proof of Lemma 3.7 with Lemma 4.1 replacing
Lemma 3.10, we arrive at

YV (to,m&) <U(to,mE) + C(1+ My > (m ))N—°.

o) <
We now turn to the opposite inequality. As before, for 6, A € (0,1), let

M:: ma esus)mN 7VN t)X
(t1x)7(51y)€[0}j{T]><(]Rd)N( (@ y) (t,x))

1 . 12 1 9 A 12
o T __ a0 _ —t _ (3

and denote by ((to,%0), (S0,¥0)) @ maximum point in the expression above.
As in (3.17) we have

N N
1 i i 1 i -
(4.1) & 2170 = vol* + [to — sol* < €9, D lwlf<oat
i=1 j

Next, for § > 0, we use the partition (C’j)je{17,,.,J} of {1,..., N} constructed in
Lemma 3.9. ‘
We set o =@’ if k€ C7 and let

Xfo+7 =af + 10" + \@B’j +v2a%B?, Y;Z+T =yt ok + \/iBf +v2a9BY,
; 1
J [
and MY = 5YJE+T’
keCi

and m/J is the solution to
dmi = [(1 +a®)Am! — o ~Dmi} +2a0Dm? -dB? in (s0,T] x RY,
m{,o :mg,o in RY.

Finally, we set ms = N"1 > jesm'ml, and claim that, for all h >0 and j € {1,...,J},

(4.2) E[dy(ml, o, )] < CO+ My 2mi )P (0],
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and
(4.3) E [dl(mso+h, mi )| £ Cot e At N,

The proof follows from Lemma 3.10 and estimate (4.1). Indeed, to establish (4.2), we
first note that the process (1m¢);¢(s,,7) s0lves (2.11) in the sense of distributions (with
B replacing W) if and only if the process m; = (Id — v/2a%(B? — By, ))#m; solves,
P-a.s. in the (classical) sense of distributions, with &y (z) = oy (z + v2a°(B? — BY),
the equation

(44) dﬁlt(a:) = [Aﬁlt(ﬂﬁ) — le(mt&t(x))] dt in (to,T] X Rd, ’f%to =Mmy in Rd.
Next, we consider

mt0+T =(Id— V2 Bo)ﬂmt 4+, and on-’rT Y; ., —V2a9BY,

and notice that mj and Y* solve the same equatlons as in Lemma 3.10, and, hence,
(4.2) holds with m mt + teplacing m] , and m? replacing th

to+h
Since
J _~J
Mor = Mio47 * 5\/ 2008,
and
ml _ L E 5< = E Y *0 55
Yt0+7 n] on+7_+\/ QQDBQ Y§0+7— 2a°B9 Y50+7 2a°B9’
keCi keC

we can conclude that
E [dl(miwmm@sﬁh)} =E |:d1(mio+h * 6\/2:10327 m%fs(ﬁh * 6\/2(1032)

and so (4.2) holds. The proof for (4.3) is similar.

We proceed with the proof noticing that the dynamic programming principle in
Lemma 3.11 still holds but with an expectation, since now the measures are random,
and with Proposition 2.3 replacing Proposition 2.2.

Moreover, since the conclusion of Lemma 3.12 also holds as already pointed out,
we can argue as in the proof of Proposition 3.8 (the time-regularity provided by
Lemma 4.1 replacing that in Lemma 3.3) that U(t,mY) — VN (¢t,x)) < CN=#(1 +
+ Efil |z¢|?). The conclusion then follows as in the proof of Theorem 2.5. 0

5. Appendix. We adapt some technical results from [13] and [14] to our setting.
Most importantly, we infer the dynamic programming principle (Proposition 2.3) in
our setting from the dynamic programming principle which is stated in Theorem 3.1
of [14]. Most of the arguments are straightforward adaptations of the superposition
and mimicking results achieved in [23], and so the proofs are only sketched.

Following Definition 2.1 in [13] and Definition 2.3 in [14] we define, for each
(to,mo) € [0,T] x Po(R?), the set of weak controls A, (tg,mg) to be the set of tuples
R = (Q,F,P,F = (Fo<i<r:G = (G)o<i<7, X, B,W,m,«) such that the following
hold.
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1. (Q,F,P) is a probability space equipped with filtrations G, F such that, for
all OSIJ)ST, gtC]:t and ft\/]::,?J_gﬂgt

2. X =(Xt)o<i<r is a continuous, F-adapted R%-valued process.

3. a=(oy)t,<i<T is a bounded, F-predictable process taking values in R

4. (B,W) is a R? x R%-valued standard F Brownian motion, W is G-adapted,
and ./—"t \% O'(B) 1 QT.

5. m = (my)s<i<t is a G-predictable process taking values in Py(R%) and such
that m; = L(X|G;) for dP ® ds-a.e. (s,w) € [t,T] x 2.

6. For all tg <t <T

t
Xt = Xto + / Ckst + \/i(Bt — Bto) =+ v/ QGO(Wt - Wt0)7 »C(th) =my.

to
We also let

Z/[w (to, mo) = inf E]P

T
REAw (to,mo) / (L(X¢, o) + F(my))dt + G(mr)

to

In our context, a superposition principle is a result asserting the following: given
a_control rule R = (Q,F,F,P,W,m,a) € A € R(to,mo), we can find an extension
(Q,F,G) of (Q,F,F) hosting another Brownian motion B independent of F and a
process X such that dX; = a;(X;)dt + v/2dB; + +/2aqdW; such that m; = L(X;|F;).
We refer the reader to [23] for details. The superposition results of [23] are useful to us
because we need to apply some technical results from [13, 14], and the superposition
allows us to check that our formulation is equivalent to the one used in [13, 14].

In what follows, for technical reasons, that is, to have the coercivity condition on
the cost appearing in Assumption 2.1 of [14], we will work with a truncated version of
the weak formulation defined here. Namely, we define A (tg,mg) just as Ay, (to, mo),
but with the controls o required to take values in B C R%. Then, we write

RGAg(to,mo tO

Uf(to,mo) = inf )EHD [/ (L(Xt,Oét) —|—.7-"(mt))dt + g(mT) .

We also truncate the original form of the problem, by defining U just like U, but
with controls a required to take values in B C R4

The following can be obtained using the superposition and following results of
[23], as in the proof of Theorem 8.3 of [23].

PROPOSITION 5.1. For each R, UE =UF.

It is also useful to note that the regularity results of Lemma 3.1, which holds also
in the case ag > 0, can be used to infer that U =U for all R > R,.

LEMMA 5.2. There ezists Ry depending on the data such that, for each R > Ry,
Ut =u.

Proof. Theorem 3.1 and Theorem 3.6 in [14] together with Proposition 5.1 yield
that, for all t € [0, 7], m € Po(R?), and z; € R? such that

N N
1 9 1 ) 4
S‘Jffpﬁ '§1 |zi]” < oo and N 215“ N, m Pa(RY),
1= 1=

we have, for xN = (z1,...,zx) € (RH)V,
(5.1) lim V&N (6, xN) =R (t,m).
N—o00
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Next, notice that, by (3.1) (see Remark 3.2), there is Ry depending only on the
data such that, for all R > Ry, VV* =V~ Thus (5.1) actually gives, for all R > Ry,
limpy oo VY (t,xV) =UE(t,m). Tt follows that U =UT0. Indeed, clearly U <UTo.

For the other inequality, for any (¢g,mg), we can choose R = (2, F,F,P, W, m, «)
to be e-optimal in the definition of U (tg, mg). Since « is bounded by hypothesis, there
exists R > Ry such that R € AR(ty,myg), and, hence, U0 (ty,mg) = U (tg,mp) <
U(tg,mo) + €. Letting € — 0 gives U (to, mo) = U (tg, my). 1]

Now, we turn to the dynamic programming principle, that is, Proposition 2.3.

Proof of Proposition 2.3. We combine Theorem 3.1 of [13] with Proposition 5.1
to conclude that, for all 0 <tg <ty <T and any R > Ry,

u(th mo) = uR(th mO)

t1
:L{f(to,mo) = inf EP |:/ (L(Xt,at) + }'(mt))dt +Z/l§,(t1,mtl)}
REeAE(to,mo) to

ty
REASIEI%to,mO) |:/t0 ( ( taat) + ]:(mt)) + ( 17mt1):|

t1
it EP[/ (L(Xt,at)+f(mt))dt+u(t1,mtl)}.
ReAE(to,mo) to

Since R can be arbitrarily large, it is easy to see that the above imply

t1
Ultymo) = inf P / (L(X1,0) + F(me))dt +U(tr,me) | |
REAw(to,mg) t()

and, using the superposition and adapting arguments from [23], Proposition 2.3 fol-
lows. ]
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