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AN ALGEBRAIC CONVERGENCE RATE FOR THE OPTIMAL
CONTROL OF MCKEAN--VLASOV DYNAMICS\ast 
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PANAGIOTIS E. SOUGANIDIS\S 

Abstract. We establish an algebraic rate of convergence of the value functions of N -particle
stochastic control problems towards the value function of the corresponding McKean--Vlasov problem,
also known as mean field control. The rate is obtained in the presence of both idiosyncratic and
common noises and in a setting where the value function for the McKean--Vlasov problem need not
be smooth. Our approach relies crucially on uniform in N Lipschitz and semiconcavity estimates for
the N -particle value functions as well as a certain concentration inequality.
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1. Introduction. We consider an optimal control problem with a large number
of particles. The value function for this optimization problem reads

\scrV N (t0,x0) := inf
\alpha \in \scrA N

E

\Biggl[ \int T

t0

\Biggl( 
1

N

N\sum 
k=1

L
\bigl( 
Xk

t , \alpha 
k
t

\bigr) 
+\scrF 

\bigl( 
mN

Xt

\bigr) \Biggr) 
dt+ \scrG 

\bigl( 
mN

XT

\bigr) \Biggr] 
,(1.1)

where T > 0 is a finite horizon, t0 \in [0, T ] is the initial time, and x0 = (x10, . . . , x
N
0 ) \in 

(Rd)N is the initial position of theN particles. The infimum is taken over the set \scrA N of
progressively measurable (Rd)N -valued processes \alpha = (\alpha k)Nk=1 in L

2([0, T ]\times \Omega ; (Rd)N ),
and X= (X1, . . . ,XN ) satisfies, for each k \in \{ 1, . . . ,N\} ,

Xk
t = xk0 +

\int t

t0

\alpha k
sds+

\surd 
2
\bigl( 
Bk

t  - Bk
t0

\bigr) 
+
\surd 
2a0

\bigl( 
B0

t  - B0
t0

\bigr) 
, t\in [t0, T ].(1.2)

The (Bk)k\geq 0 are independent d-dimensional Brownian motions defined on the fixed
filtered probability space (\Omega ,\scrF ,F,P) satisfying the usual conditions, and L2([0, T ]\times 
\Omega ; (Rd)N ) denotes the set of square-integrable and progressively measurable processes
taking values in (Rd)N , and mN

Xt
is the empirical measure of Xt. The cost function

L : Rd \times Rd \rightarrow R is supposed to be convex in the second variable and smooth, while
the maps \scrF ,\scrG : \scrP 1(Rd)\rightarrow R are assumed to be smooth and bounded over the space
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3342 CARDALIAGUET, DAUDIN, JACKSON, AND SOUGANIDIS

\scrP 1(Rd) of Borel measures on Rd with a finite first-moment (precise assumptions will
be given in section 2). The constant a0 \geq 0 is the level of the common noise, and the
(Bk)k\geq 1 are viewed as independent or idiosyncratic noises.

1.1. Our results. To describe our result we need to introduce the map \scrU :
[0, T ]\times \scrP 2(Rd)\rightarrow R, where \scrP 2(Rd) is the space of Borel measures on Rd with a finite
second-moment, given, for (t0,m0)\in [0, T ]\times \scrP 2(Rd), by

\scrU (t0,m0) := inf
\alpha \in \scrA 

E

\Biggl[ \int T

t0

\Bigl( 
L(Xt, \alpha t(Xt)) +\scrF 

\Bigl( 
\scrL 
\Bigl( 
Xt| \scrF B0

t

\Bigr) \Bigr) \Bigr) 
+ \scrG 

\Bigl( 
\scrL 
\Bigl( 
XT | \scrF B0

T

\Bigr) \Bigr) \Biggr] 
,

(1.3)

where the infimum is taken over an appropriate set \scrA of admissible controls (this will
be made precise later), FB0

= (\scrF B0

t )0\leq t\leq T denotes the filtration generated by B0,

\scrL (Xt| \scrF B0

t ) is the law of Xt conditioned upon \scrF B0

t , and

Xt =Xt0 +

\int t

t0

\alpha s(Xs)ds+
\surd 
2(Bt  - Bt0) +

\surd 
2a0

\bigl( 
B0

t  - B0
t0

\bigr) 
,(1.4)

with B another Brownian motion, Xt0 a random initial condition with law m0, and
B0, B, and Xt0 mutually independent.

Although it is known that, as N tends to infinity, \scrV N converges to \scrU , the existing
convergence results come without any rate.

Our main result is the following algebraic convergence rate: there exist \beta \in (0,1],
depending only on the dimension d, and C > 0, depending on the data (\scrF ,\scrG ,H), such
that, for any (t,x)\in [0, T ]\times (Rd)N ,\bigm| \bigm| \scrV N (t,x) - \scrU 

\bigl( 
t,mN

x

\bigr) \bigm| \bigm| \leq CN - \beta 
\bigl( 
1 +M2

\bigl( 
mN

x

\bigr) \bigr) 
,(1.5)

where M2(m
N
x ) =N - 1

\sum N
i=1 | xi| 2 is the second-order moment of the measure mN

x .
Although the exact value of \beta could be traced back through the computation, it is

clearly not optimal. In particular, it is very far from the one obtained for a standard
particle system. Similarly, even if some dependence with respect to a moment of the
measure mN

x is expected, the dependence given here is probably far from sharp.

1.2. Background and related literature. The convergence of \scrV N to \scrU was
shown by Lacker [22] in a general framework and for suitable initial data but without
common noise, that is, with a0 = 0 in (1.2). Recently, the results of [22] were extended
in Djete, Possama\"{\i}, and Tan [14] to problems with a common noise and interaction
through the controls. Besides [14, 22] several other papers have studied the question
of the mean field limit of optimal control problems; for example, Cavagnari, Lisini,
Orrieri, and Savar\'e [9] and Fornasier, Lisini, Orrieri, and Savar\'e [15] investigate the
problem without noise using \Gamma -convergence techniques. The recent contribution of
Gangbo, Mayorga, and Swiech [17] studies the mean field limit without idiosyncratic
but with common noise using partial differential equation (PDE) techniques. This is
possible thanks to the fact that \scrV N solves the Hamilton--Jacobi (HJ) equation\left\{                 

 - \partial t\scrV N (t,x) - 
N\sum 
j=1

\Delta xj\scrV N (t,x) - a0

N\sum 
i,j=1

tr(D2
ij\scrV N (t,x))

+
1

N

N\sum 
j=1

H(xj ,NDxj\scrV N (t,x)) =\scrF (mN
x ) in (0, T )\times (Rd)N ,

\scrV N (T,x) = \scrG (mN
x ) in (Rd)N ,

(1.6)
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RATE FOR CONTROLLED MCKEAN--VLASOV DYNAMICS 3343

where H(x,p) = sup\alpha \in Rd [ - p \cdot \alpha  - L(x,\alpha )], while \scrU is expected to solve (in some sense)
the infinite dimensional HJ equation\left\{                 

 - \partial t\scrU (t,m) - (1 + a0)

\int 
Rd

divy(Dm\scrU (t,m,y))m(dy)

 - a0
\int 
R2d

tr(D2
mm\scrU (t, x,m,y, y\prime ))m(dy)m(dy\prime )

+

\int 
Rd

H(y,Dm\scrU (t,m,y))m(dy) =\scrF (m) in (0, T )\times \scrP 2(Rd),

\scrU (T,m) = \scrG (m) in \scrP 2(Rd).

(1.7)

For the definition of the derivatives Dm\scrU and D2
mm\scrU we refer the reader to the books

of Cardaliaguet, Delarue, Lasry, and Lions [5] and Carmona and Delarue [8].
One of the reasons for introducing the value functions is that they provide optimal

feedback for the optimization problems. For the particle system, this optimal feedback
is given (rigorously) by \alpha \ast 

i (t,x) = - DpH(xi,NDxi\scrV N (t,x)), while for the limit system
it takes the form (at least formally) \alpha \ast 

t (x,m) = - DpH(x,Dm\scrU (t,m,x)). The difficulty
in the PDE analysis of [17] is that, in the absence of the idiosyncratic noise, the value
function \scrV N is not smooth in general, and, thus, (1.6) has to be interpreted in the
viscosity sense. A suitable notion of viscosity solution for the infinite dimensional HJ
equation (1.7) without idiosyncratic noise is introduced in [17], and then it is proven
that \scrV N converges to this viscosity solution. In the presence of idiosyncratic noise
the notion of viscosity solution to (1.7) is not understood yet, and we will not try to
use this approach.

1.3. More about our results. While the existing results mentioned above
demonstrate the convergence of \scrV N to \scrU under many different technical hypotheses
and using a variety of techniques, none provides a rate of convergence. Our main
result fills this gap in the literature by providing a rate of convergence of \scrV N to \scrU in
the presence of both idiosyncratic and common noise.

We emphasize that quantitative information about the convergence toward the
mean field limit is particularly important for numerical applications. Obtaining a
convergence of the value functions with a rate also proves to be a useful starting point
in order to prove finer propagation of chaos results, as illustrated in the contribution
[7], which is based on the results of the present paper.

The primary challenge we face is related to the (lack of) regularity of \scrU . Indeed, if
\scrU is a smooth solution solution to (1.7), then the projections \scrU N : [0, T ]\times (Rd)N \rightarrow R
given by \scrU N (t,x) = \scrU (t,mN

x ) are smooth solutions of the HJ equation\left\{                 

 - \partial t\scrU N (t,x) - 
N\sum 
j=1

\Delta xj\scrU N (t,x) - a0

N\sum 
i,j=1

tr(D2
ij\scrV N (t,x))

+
1

N

N\sum 
j=1

H(xj ,NDxj\scrU N (t,x)) =\scrF (mN
x ) +EN (t,x) in (0, T )\times (Rd)N ,

\scrU N (T,x) = \scrG (mN
x ) in (Rd)N ,

(1.8)

with EN (t,x) = - N - 2
\sum N

j=1 tr(Dmm\scrU (t,mN
x , xi, xi)).

If Dmm\scrU is bounded, then it is immediate that | En| =O(1/N). Thus, \scrU N solves
the same equation as \scrV N up to a term of order O(1/N). By a comparison argument,
we conclude that | \scrU  - \scrV | =O(1/N), that is, there exists a constant C such that, for all
t\in [0, T ] and x\in (Rd)N , | \scrV N (t,x) - \scrU (t,mN

x )| \leq C/N. See also [18] for more on what
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3344 CARDALIAGUET, DAUDIN, JACKSON, AND SOUGANIDIS

convergence results can be obtained once (1.7) has a sufficiently smooth solution.
This argument is similar to the approach taken in [5, 8] to study the convergence
problem in the context of mean field games (see Lasry and Lions [26]) in situations
where a classical solution to the so-called master equation is known to exist; also
see Bayraktar and Cohen [1] and Cecchin and Pelino [11] for related results. In this
setting, convergence is related to the propagation of chaos for the optimal trajectories
of the game.

Of course, the simple argument outlined above works only when the value function
\scrU is smooth. For instance, this is the case if the maps \scrF and \scrG are convex and
sufficiently smooth (see the discussion in Chapter 3.7 of [5]). However, we do not
assume such a convexity property and the map \scrU is expected to present discontinuities
in its first-order derivative, as can be seen in, for instance, Briani and Cardaliaguet
[3]. Because of this, the techniques in [5, 8] break down.

When the value function is not smooth, the convergence rate has been studied
primarily in the case of finite state space; see Kolokoltsov [20] and Cecchin [10]. In
this finite state space setting, the convergence rate is of order 1/

\surd 
N . Indeed, as

explained in [10], the particle system is then a kind of discretization of the continuous
McKean--Vlasov equation.

The situation is different and much more difficult in the continuous state space
setting. This might come as a surprise since the convergence rate for particle systems is
very well understood; see, for instance, Fournier and Guillin [16]. The main difficulty,
however, is that, even though the optimal feedback in the particle system remains
bounded independently of N (see Lemma 3.1), it cannot be expected to be uniformly
continuous as a function of the empirical measure. Indeed, this uniform continuity
would imply the C1-regularity of the limit \scrU , which does not hold in general. So it
is necessary to find a way to show that, despite the fact that the controls played by
each particle might be very different, a kind of concentration of measure takes place.

Finally, we mention that a result similar to the one we prove here in the context of
mean field control remains an open question in the context of mean field games. The
difficulty is that the N -player game is described this time by a system of N coupled
Hamilton--Jacobi--Bellman (HJB) equations, instead of just one HJB equation in the
present case. And it proves difficult to obtain estimates on the PDE system which
are uniform in the number of players.

1.4. Strategy of the proof. We discuss briefly the strategy of the proof. We
first point out that we do not rely on a propagation of chaos, which we cannot prove
at this stage. Indeed, as for a given initial condition there might be several opti-
mal trajectories for the limit problem, a propagation of chaos is not expected to
hold without additional assumptions on the initial data. The main ingredients for
the proof are uniform in N , Lipschitz, and semiconcavity estimates for \scrV N , and a
concentration inequality. To bound from above \scrV N by \scrU is relatively easy, because
\scrV N can be transformed into an approximate subsolution for the HJ equation (1.7).
The opposite inequality is much trickier, because it seems impossible to transform
an optimal control for the \scrV N , in which the control depends on each particle, into
a feedback for \scrU . We overcome this difficulty by dividing the particles into sub-
groups in such a way that the optimal controls for the particles in each subgroup
are close and show a propagation of chaos, based on a concentration inequality, for
each subgroup. The proof being technical, we first show the result when there is no
common noise, and, in a second step, we extend the result to problems with common
noise.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RATE FOR CONTROLLED MCKEAN--VLASOV DYNAMICS 3345

1.5. Organization of the paper. In the rest of the introduction we fix nota-
tion. We state the assumptions and the main result in section 2. As the proof of the
convergence rate is technical, we start in section 3 with the problem without common
noise. Indeed this case contains the main ideas without the extra technicalities due
to the common noise. We first give some estimates on \scrV N and \scrU (subsection 3.1)
and then show the relatively easy bound from above for \scrV N in subsection 3.2. The
main part of the proof, that is, the bound from below, which is the aim of subsec-
tion 3.3, requires a concentration inequality proved in subsection 3.4. We explain the
adaptation of the proof to the case with common noise in section 4.

1.6. Notation. We work on Rd; we write Id for the identity matrix in Rd and BR

for the ball in Rd centered at the origin with radius R. For x= (x1, . . . , xN )\in (Rd)N ,
mN

x \in \scrP (Rd) stands for the empirical measure of x, that is, mN
x = 1

N

\sum N
i=1 \delta xi . If

\varphi : [0, T ]\times Rd \rightarrow Rd is smooth enough, we write D\varphi , \Delta \varphi , and D2\varphi for the derivatives
with respect to space and \partial t\varphi and \partial tt\varphi for the derivatives with respect to time.
Similarly, for \scrV = \scrV (t, x1, . . . , xN ) : [0, T ] \times (Rd)N \rightarrow R, we define the derivatives
Dxk\scrV , \Delta xk\scrV , \partial t\scrV . We denote by \scrP (Rd) the set of Borel probability measures on Rd

and note that, if m \in \scrP (Rd) has a density, for simplicity of notation, m is also used
to denote the density. Given m \in \scrP (Rd) and p\geq 1, Mp(m) is the pth moment of m,
that is, Mp(m) =

\int 
Rd | x| pdm, and \scrP p(Rd) is the set of m\in \scrP (Rd) such that Mp(Rd)<

\infty . We endow \scrP p(Rd) with the Wasserstein metric dp, defined by dp
p(m,m

\prime ) :=

inf\pi \in \Pi (m,m\prime )

\int 
Rd | x - y| pd\pi (x, y), where \Pi (m,m\prime ) is the set of all \pi \in \scrP (Rd\times Rd) with

marginals m and m\prime . Let L be the set of all 1-Lipschitz functions from Rd to R. We
recall the duality formula d1(m,m

\prime ) = sup\phi \in L

\int 
Rd \phi d(m  - m\prime ). For \scrU : \scrP 1(Rd) \rightarrow R

smooth enough, \delta U
\delta m :\scrP 1(Rd)\times R\rightarrow R denotes the linear functional derivative, which

satisfies, for all m,m\prime \in \scrP 1(Rd) and all h \in (0,1), \scrU (m\prime )  - \scrU (m) =
\int 1

0

\int 
Rd

\delta U
\delta m ((1  - 

h)m+hm\prime , x)(m\prime  - m)(dx)dh.We use the standard convention
\int 
Rd

\delta U
\delta m (m,x)m(dx) = 0

for all m\in \scrP 1(Rd). If \delta \scrU 
\delta m is differentiable with respect to the space variable, we define

the L-derivative of \scrU by DmU(m,x) = Dx
\delta U
\delta m (m,x). Higher order derivatives are

defined similarly.
We refer the reader to [5, Chapter 2] and [8, Book 1, Chapter 5] for the properties

of the L-derivatives.
Finally, throughout the paper, unless otherwise noted, we use C for positive

constants that depend on the data and may change from line to line with this being
made explicit.

2. Assumptions and main result.

2.1. Assumptions. We now state our standing assumptions on the maps H,F ,
and G, which constitute the data of our problem. We keep in mind that L : Rd \times 
Rd \rightarrow R is a Legendre transform of H with respect to the last variable, that is,
L(x,a) = supp\in Rd [ - a \cdot p - H(x,p)]. We assume that\Biggl\{ 

H \in C2(Rd \times Rd;R) and for some c, C > 0 and all (x,p) \in Rd \times Rd,

 - C + c| p| 2 \leq H(x,p)\leq C + 1
c | p| 

2 and | DxH(x,p)| \leq C(| p| + 1),
(2.1)

\left\{     
H is locally strictly convex with respect to the last variable,

that is, for any R> 0, there exists cR > 0 such that

D2
ppH(x,p)\geq cRId for all (x,p) \in Rd \times BR,

(2.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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3346 CARDALIAGUET, DAUDIN, JACKSON, AND SOUGANIDIS\Biggl\{ 
for any R> 0, there exists CR > 0 such that

| D2
xxH(x,p)| + | D2

xpH(x,p)| \leq CR for all (x,p) \in Rd \times BR,
(2.3)

\scrF \in C2(\scrP 1(Rd);R) with \scrF , Dm\scrF , D2
ym\scrF , and D2

mm\scrF uniformly bounded,(2.4)

and, finally,

\scrG \in C4(\scrP 1(Rd);R) with all derivatives up to order 4 uniformly bounded.(2.5)

For simplicity, in what follows we put together all the assumptions above in

assume that (2.1), (2.2), (2.3), (2.4), and (2.5) hold.(2.6)

Remark 2.1. We make the following comments regarding (2.6).
(i) The strict convexity of H with respect to the gradient variable is standard in

optimal control. In particular, it implies that L has the same regularity as H.
(ii) Although the at most linear growth in p of DxH, which is used to ob-

tain, independent of N , Lipschitz estimates on the value function \scrV N (see
Lemma 3.1), is somehow restrictive, we do not know if it is possible to
avoid it. It is, however, satisfied by, for instance, a Hamiltonian of the form
H(x,p) = | p| 2 + V (x) \cdot p for some smooth and globally Lipschitz continuous
vector field V :Rd \rightarrow Rd.

(iii) The fact that the ``full"" Hamiltonian (x,p,m) \rightarrow H(x,p) - \scrF (m) has a sep-
arate form is not completely necessary. In particular, our method allows
handling dynamics of the form

dXt = b
\Bigl( 
Xt,\scrL 

\Bigl( 
Xt| \scrF B0

t

\Bigr) \Bigr) 
dt+ \alpha tdt+

\surd 
2dBt +

\surd 
2a0dB

0
t

for some bounded nonlinear drift b : Rd \times \scrP 2(Rd)\rightarrow Rd with bounded deriv-
atives. However this leads to much heavier computations that we decided to
avoid to keep the paper as clear as possible.

(iv) The uniform bounds on Dm\scrF and Dm\scrG imply that both maps are Lipschitz
continuous in \scrP 1(Rd). The additional smoothness is used to obtain, indepen-
dent ofN , semiconcavity estimates on the value function \scrV N (see Lemma 3.4).

(v) As L is the Legendre transform of H, (2.2) implies, after a simple calculation,
that, for any R> 0, there exists CR > 0 such that

| DaL(x,a)| \leq CR for all (x,a) \in Rd \times BR.(2.7)

2.2. The formulation of the problem. For concreteness, we fix throughout
the paper a filtered probability space (\Omega ,\scrF ,F= (\scrF )t\geq 0,P) satisfying the usual condi-
tions and hosting independent d-dimensional Brownian motions B0 and (Bk)k\in N.

2.2.1. The definition of \bfscrV \bfitN . The definition of \scrV N and the relevant quanti-
ties/functions were given and discussed in the introduction---see (1.1) and (1.2), where
it was also explained that, assuming (2.6), \scrV N is the unique classical solution to the
HJ equation (1.6) and that the infimum in (1.1) is achieved (in feedback form) by the
function \alpha = (\alpha k)Nk=1 : [0, T ]\times (Rd)N \rightarrow RN given by

\alpha k(t,x) = - DpH
\bigl( 
xk,NDxk\scrV N (t,x)

\bigr) 
.(2.8)
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2.2.2. The definition of \bfscrU without common noise. Suppose now that a0 =
0. To define \scrU , it is more intuitive to work with closed-loop controls, and to view the
problem in terms of deterministic control of the associated Fokker--Planck equation.

For fixed (t0,m0) \in [t0, T ] \times \scrP 2(Rd), let \scrA (t0,m0) be the set of pairs (m,\alpha )
with m = (mt)t\in [t0,T ] = (m(t, \cdot ))t\in [t0,T ] \in C0([t0, T ];\scrP 2(Rd)), \alpha : [t0, T ] \times Rd \rightarrow Rd

measurable such that
\int T

t0

\int 
Rd | \alpha (t, x)| 2m(t, dx)dt < \infty and m solves (in the sense of

distributions) the Fokker--Planck equation

\partial tm=\Delta m - div(m\alpha ) in (t0, T ]\times Rd and m(t0, \cdot ) =m0.

Then we define \scrU : [0, T ]\times \scrP 2(Rd)\rightarrow R by

\scrU (t0,m0) = inf
(m,\alpha )\in \scrA (t0,m0)

\Biggl\{ \int T

t0

\biggl( \int 
Rd

L(x,\alpha (t, x))m(t, dx) +\scrF (mt)

\biggr) 
dt+ \scrG (mT )

\Biggr\} 
.

(2.9)

Notice that it is not restrictive to consider feedback controls which are only a func-
tion of the time and space variables instead of controls which depend as well on the
probability measure m(t). Indeed, if \widetilde \alpha : [0, T ]\times Rd \times \scrP 2(Rd) is such a control with
corresponding trajectory \widetilde m\in \scrC ([0, T ],\scrP 2(Rd)), we can obtain the curve t \mapsto \rightarrow \widetilde m(t) with
the same cost by considering the control \alpha (t, x) = \widetilde \alpha (t, x, \widetilde m(t)).

One advantage of using this deterministic formulation of the McKean--Vlasov con-
trol problem is that, at least in the absence of common noise, the dynamic program-
ming principle is straightforward. In particular, we can assert the following, which
will be useful in what follows.

Proposition 2.2. Assume (2.6). Then, for any 0\leq t0 \leq t1 \leq T ,

\scrU (t0,m0) = inf
(m,\alpha )\in \scrA (t0,m0)

\biggl\{ \int t1

t0

\biggl( \int 
Rd

L(x,\alpha (t, x))mt(dx) +\scrF (mt)

\biggr) 
dt+ \scrU (t1,mt1)

\biggr\} 
.

2.2.3. The definition of \bfscrU with common noise. To define \scrU when a0 > 0, we
use again a form of closed-loop formulation, but this time the relevant Fokker--Planck
equation becomes stochastic and we work with a notion of weak solution.

For fixed (t0,m0) \in [0, T ] \times \scrP 2(Rd), we define a control rule \scrR \in \scrA (t0,m0) to
be a tuple \scrR = (\Omega ,\scrF ,F,P,W,m,\alpha ), where (\Omega ,\scrF ,F) = (\scrF t)0\leq t\leq T ,P) is a filtered
probability space supporting the d-dimensional Brownian motion W , \alpha = (\alpha t)t0\leq t\leq T

is an F-progressively measurable process taking values in L\infty (Rd;Rd) and such that
\alpha is uniformly bounded, in the sense that

\| sup
t\in [t0,T ]

\| \alpha t\| L\infty (Rd;Rd)\| L\infty (\Omega ) <\infty ,(2.10)

and m satisfies the stochastic PDE

dmt(x) = [(1 + a0)\Delta mt(x) - div(mt\alpha t(x))]dt

+
\surd 
2a0Dmt(x) \cdot dWt in (t0, T ]\times Rd with mt0 =m0 in Rd.

(2.11)

The last condition means that, P-a.s., for any smooth test function \phi \in C\infty ([0, T ]\times Rd)
with a compact support and for any t\in [t0, T ],\int 

Rd

\phi t(x)mt(dx) =

\int 
Rd

\phi 0(x)m0(dx) +

\int t

t0

\int 
Rd

(\partial t\phi s(x) + \alpha s(x) \cdot D\phi s(x)

+ (1 + a0)\Delta \phi s(x))ms(dx)ds+

\int t

t0

\surd 
2a0

\int 
Rd

D\phi s(x)ms(dx) \cdot dWs.
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3348 CARDALIAGUET, DAUDIN, JACKSON, AND SOUGANIDIS

Now we define

\scrU (t0,m0)

= inf
\scrR \in \scrA (t0,m0)

EP

\Biggl[ \int T

t0

\biggl( \int 
Rd

L(x,\alpha t(x))mt(dx) +\scrF (mt)

\biggr) 
dt+ \scrG (mT )

\Biggr] 
.

(2.12)

The connection to the informal description (1.3) of \scrU is that, if \alpha is a bounded
L\infty (Rd;Rd)-valued process defined on some filtered probability space (\Omega ,\scrF ,F =
(\scrF t)0\leq t\leq T ,P) supporting independent Brownian motions B and W , \alpha is adapted
to the filtration of W , and X is a strong solution to the McKean--Vlasov equation

Xt =Xt0 +

\int t

t0

\alpha s(Xs)ds+
\surd 
2(Bt  - Bt0) +

\surd 
2a0(Wt  - Wt0),(2.13)

then (\Omega ,\scrF ,FW ,W,m,\alpha ) \in \scrA (t0,m0), where mt = \scrL (Xt| W ), that is, m is the condi-
tional law of X given the filtration of the Brownian motion W .

As in the case a0 = 0, we have the following dynamic programming principle.

Proposition 2.3. Assume (2.6). Then, for any 0\leq t0 < t1 \leq T , for \scrU defined by
(2.12), we have

\scrU (t0,m0) = inf
(m,\alpha )\in \scrA (t0,m0)

EP
\biggl[ \int t1

t0

\biggl( \int 
Rd

L(x,\alpha t(x))mt(dx) +\scrF (mt)

\biggr) 
dt+ \scrU (t1,mt1)

\biggr] 
.

Unlike in the case without common noise, where the control problem is determin-
istic and thus the dynamic programming principle is straightforward, in the common
noise case we will need to use some machinery from Djete, Possama\"{\i}, and Tan [13]
and Lacker, Sholnikov, and Zhang [23] to verify that the dynamic programming prin-
ciple holds. To streamline the presentation, we present the proof of Proposition 2.3
as well as proofs of some other technical results from [13, 14, 23] in the appendix (see
section 5).

Remark 2.4. We could have defined \scrU using (2.12) when a0 = 0 as well, and, in
the end, it would be possible, thanks in part to Lemma 3.3 below, to prove that this
is equivalent to (2.9). We chose to define things separately with and without common
noise mostly to avoid some unnecessary technicalities and to simplify the presentation
for the reader interested in the case without common noise. The only mathematical
reason for splitting up the definitions is that, for technical reasons, it is convenient
to work with L\infty -feedback controls in the case of common noise, whereas without
common noise we have no difficulty working with square-integrable controls.

2.3. The main result. With \scrV N defined by (1.1) and \scrU defined by (2.9) if
a0 = 0 or (2.12) if a0 > 0, we have the following result.

Theorem 2.5. Assume (2.6). Then there exist \beta \in (0,1] depending only on d
and C > 0 depending on the data (\scrF ,\scrG ,H) such that, for any (t,x) \in [0, T ]\times (Rd)N ,\bigm| \bigm| \scrV N (t,x) - \scrU (t,mN

x )
\bigm| \bigm| \leq CN - \beta (1 +M2(m

N
x )).

For the convenience of the reader we repeat here the strategy of the proof. We
detail in section 3 the proof of Theorem 2.5 when a0 = 0, the adaptation to the case
a0 > 0 being the aim of section 4. The proof of Theorem 2.5 requires several steps:
We first obtain uniform in N regularity (Lipschitz and semiconcavity) estimates on
\scrV N in Lemma 3.1 and Lemma 3.4, respectively. Then we show how to bound from
above \scrV N by \scrU plus an error term (Proposition 3.7). This estimate is relatively easy
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and boils down to transforming the map \scrV N into a subsolution of the HJ equation
(1.7). The converse estimate, which is more involved, is the aim of Proposition 3.8.
The technical reason is that we found no way to embed \scrU into the equation for \scrV N

as a subsolution. Actually, since \scrU is semiconcave, it is naturally a supersolution of
that equation and the remaining term is a priori large. We overcome this issue by
using locally optimal feedback of the N -problem for the continuous one, the main
difficulty being to compare the empirical measure in the N -problem to the solution of
the Fokker--Planck equation. This step, which is difficult, relies on a key concentration
inequality, which we prove in section 3.4.

3. The proof of Theorem 2.5 without common noise. We assume that
a0 = 0, and, throughout the proof, we use the fact that \scrV N is the unique solution of
the uniformly parabolic backward PDE (1.6) and, therefore, is smooth.

3.1. Some regularity estimates. We first establish the uniform in N regular-
ity estimates for \scrV N .

Lemma 3.1. Assume (2.6). There exists a constant C > 0 such that, for any
N \geq 1, \| \scrV N\| \infty +N supj \| Dxj\scrV N\| \infty + \| \partial t\scrV N\| \infty \leq C.

Remark 3.2. The estimate on Dxj\scrV N implies that the optimal feedback of the
problem, given by \alpha k(t, x) = - DpH(xi,NDxj\scrV N (t,x)), remains uniformly bounded.

Proof. The bound on \scrV N is obvious.
We note that wi =Dxi\scrV N satisfies

\left\{                         

 - \partial twi(t,x) - 
N\sum 

k=1

\Delta xkwi(t,x) +
1

N
DxH(xi,NDxi\scrV N (t,x))

+

N\sum 
k=1

DpH(xk,NDxk\scrV N (t,x)) \cdot Dxkwi(t,x)

=
1

N
Dm\scrF (mN

x , x
i) in (0, T )\times (Rd)N ,

wi(T,x) =
1

N
Dm\scrG (mN

x , x
i) in (Rd)N ,

(3.1)

and we observe that the maximum principle for linear parabolic equations (see, e.g.,
Theorem 8.1.4 of [21]) together with the condition | DxH(x,p)| \leq C(1+ | p| ) from (2.1)
gives

| wi(t, x)| \leq 
\int T

t

\biggl( 
1

N

\bigm\| \bigm\| DxH(\cdot ,NDxi\scrV N (s, \cdot ))
\bigm\| \bigm\| 
L\infty +

\| Dm\scrF \| L\infty 

N

\biggr) 
ds+

\| DmG\| L\infty 

N

\leq C

N
+C

\int T

t

\bigm\| \bigm\| wi(s, \cdot )
\bigm\| \bigm\| 
L\infty ds.

Taking a supremum in x and then applying Gronwall's inequality gives | Dxi\scrV N (t, x)| \leq 
C
N , as required. Similarly wt = \partial t\scrV N satisfies

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/2

6/
23

 to
 2

05
.2

08
.1

21
.2

38
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y
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\left\{                               

 - \partial twt(t,x) - 
N\sum 

k=1

\Delta xkwt(t,x)

+
N\sum 

k=1

DpH(xk,NDxk\scrV N (t,x)) \cdot Dxkwt(t,x) = 0 in (0, T )\times (Rd)N ,

wt(T,x) = - 1

N

N\sum 
k=1

tr

\biggl[ 
D2

y,m\scrG (mN
x , x

k) +
1

N
[D2

m,m\scrG (mN
x , x

k, xk)

\biggr] 
+

1

N

\sum 
k

H(xk,Dm\scrG (mN
x , x

k) - \scrF (mN
x ) in (Rd)N ,

(3.2)

and the uniform bound on \| \partial t\scrV N\| \infty this time follows directly from the maximum
principle.

Lemma 3.3. Assume (2.6). There is C > 0 such that, for all t0, s0 \in [0, T ] and
m0,m0 \in \scrP 2(Rd), | \scrU (t0,m0) - \scrU (s0,m0)| \leq C(| t0  - s0| 1/2 + d1(m,m)). Moreover, if
(t0,m0)\in [0, T ]\times \scrP 1(Rd) and (m,\alpha ) is optimal in the definition of \scrU (t0,m0) in (1.3),
then \| \alpha \| \infty \leq C.

Proof. The result is standard, so we only sketch the argument and refer the reader
to [3] and [12] for more details. Fix (t0,m0) \in [0, T ]\times \scrP 1(Rd). It follows from (2.6)
that there exists at least one pair (m,\alpha ) that is optimal in the definition of \scrU (t0,m0).
Moreover, for such an optimal pair (m,\alpha ), there exists a map u \in \scrC 1,2

b ((t0, T )\times Rd)
with \alpha t(x) = - DpH(x,Du(t, x)) and such that (u,m) solves the system\left\{         

 - \partial tu(t, x) - \Delta u(t, x) +H(x,Du(t, x)) =
\delta \scrF 
\delta m

(mt, x) in (t0, T )\times Rd,

\partial tmt(x) - \Delta mt(x) - div(DpH(x,Du(t, x))mt(s)) = 0 in (t0, T )\times Rd,

mt0 =m0, u(T,x) =
\delta \scrG 
\delta m

(mT , x) in Rd.

Arguing as for the Lipschitz estimate in Lemma 3.1, one can check that \| Du\| \infty \leq C
for some constant C > 0 and, since \alpha =  - DpH(x,Du), \| \alpha \| \infty \leq C. The standard
parabolic regularity theory then implies that \| D\alpha \| \infty = \| D[DpH(\cdot ,Du(\cdot , \cdot ))]\| \infty \leq C.

Fix m1 \in \scrP 1(Rd) and let \mu be the solution to \partial t\mu  - \Delta \mu +div(\mu \alpha ) = 0 in (t0, T )\times 
Rd with \mu (t0) = m1. It is easy to check that there exists C = C(\| D\alpha \| \infty , T ) such
that supt\in [t0,T ]d1(\mu (t),m(t)) \leq Cd1(m1,m0). Thus, for some C depending on T , on
the regularity of L, \scrF , and \scrG and \| D\alpha \| \infty ,

\scrU (t0,m1)\leq 
\int T

t0

\left(  \int 
Rd

L(x,\alpha t(x))\mu (t, dx) +\scrF (\mu (t)))dt+ \scrG (\mu (T )

\right)  
\leq 
\int T

t0

\Biggl[ \int 
Rd

L(x,\alpha t(x))m(t, dx) +\scrF (m(t))

\Biggr] 
dt+\scrG (m(T ))+C sup

t\in [t0,T ]

\bfd 1(\mu (t),m(t))

\leq \scrU (t0,m0) +C\bfd 1(m1,m0).

This establishes the estimate

| \scrU (t0,m0) - \scrU (t0,m0)| \leq Cd1(m0,m0).(3.3)

Finally, we fix s0 < t0, and we choose (m,\alpha ) optimal in the definition of \scrU (s0,m0).
By dynamic programming (Proposition 2.2), we have \scrU (s0,m0) =

\int t0
s0
(
\int 
Rd L(x,\alpha (t, x))

mt(dx) +\scrF (mt))dt+ \scrU (t0,mt0), and, thus,
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| \scrU (s0,m0) - \scrU (t0,m0)| \leq 
\bigm| \bigm| \bigm| \bigm| \int t0

s0

\biggl( \int 
Rd

L(x,\alpha (t, x))mt(dx) +\scrF (mt)

\biggr) 
dt

\bigm| \bigm| \bigm| \bigm| 
+ | \scrU (t0,mt0) - \scrU (t0,m0)| \leq C(t0  - s0) +Cd1(mt0 ,m0)

\leq C(t0  - s0) +C(t0  - s0)
1/2,

where we have used (3.3) and the boundedness of \alpha , together with the fact that (2.2)
implies a similar inequality for L. This completes the proof.

The key estimate on \scrV N is discussed next.

Lemma 3.4. Assume (2.6). There exists an independent of N constant C, such
that, for any N \geq 1, \xi = (\xi i)\in (Rd)N and \xi 0 \in R,

N\sum 
i,j=1

D2
xixj\scrV N (t,x)\xi i \cdot \xi j + 2

N\sum 
i=1

D2
xit\scrV 

N (t,x) \cdot \xi i\xi 0 +D2
tt\scrV N (t,x)(\xi 0)2

\leq C

N

N\sum 
i=1

| \xi i| 2 +C(\xi 0)2.

(3.4)

Remark 3.5. Inequality (3.4) plays a crucial role in the proof of Lemma 3.12
below. Since \scrV N converges to \scrU , it follows that (3.4) implies the semiconcavity
of the extension \widetilde \scrU : [0, T ] \times L2((\widetilde \Omega , \widetilde \scrF , \widetilde P);Rd) \rightarrow R defined, for X \in L2(\widetilde \Omega ,Rd), by\widetilde \scrU (t,X) := \scrU (t,\scrL (X)), where (\widetilde \Omega , \widetilde \scrF , \widetilde P) is a fixed atomless probability space and \scrL (X)
is the law of the random variable X.

Proof. For 1\leq i, j, k\leq N , let

\omega i =Dxi\scrV N \cdot \xi i, \omega i,j =D2
xixj\scrV N\xi i \cdot \xi j , \omega 0 = \partial t\scrV N\xi 0, \omega 0,0 = \partial tt\scrV N (\xi 0)2,

\omega 0,i = \omega i,0 = \partial tDxi\scrV N \cdot \xi 0\xi i \widetilde \omega =
\sum N

i,j=0 \omega 
i,j , and \sigma k =

\sum N
i=0Dxk\omega i.

A straightforward computation gives

 - \partial t\widetilde \omega  - 
N\sum 

k=1

\Delta xk\widetilde \omega +

N\sum 
k=1

Dxk\widetilde \omega .DpH(xk,NDxk\scrV N (t,x))

= - N
N\sum 

k=1

D2
ppH(xk,NDxk\scrV N (t,x))\sigma k \cdot \sigma k  - 2

N\sum 
k=1

D2
xpH(xk,NDxk\scrV N (t,x))\xi k.\sigma k

 - 1

N

N\sum 
i=1

D2
xxH(xi, nDxi\scrV N (t,x))\xi i.\xi i

+
1

N2

N\sum 
i,j=1

D2
mm\scrF (mN

x , x
i, xj)\xi i.\xi j +

1

N

N\sum 
i=1

DyDm\scrF (mN
x , x

i)\xi i.\xi i.

Denote by \gamma the right-hand side of the equality above. Recalling that H is strictly
convex in the p variable and that N\partial xk\scrV N is bounded, we have, for all 1 \leq k \leq N ,
 - ND2

ppH\sigma k \cdot \sigma k  - 2D2
xpH\xi 

k.\sigma k \leq C
N | \xi k| 2. We can use again the Lipschitz bounds on

\scrV N and (2.3) to deduce that \gamma (t,x) \leq C
N

\sum N
k=1 | \xi i| 2. Next, fix (t0,x0) and consider

the weak solution mN to
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\partial tm
N (t,x) - 

N\sum 
k=1

\Delta xkmN (t,x)

 - 
N\sum 

k=1

div(DpH(xk,NDxk\scrV N (t,x))mN ) = 0 in (t0, T )\times (Rd)N ,

mN (t0, \cdot ) = \delta x0
in (Rd)N .

Integrating the \widetilde \omega -equation against mN , we find that, for all (t0,x0) \in [0, T ] \times 
(Rd)N , \widetilde \omega (t0,x0)\leq supx \| \widetilde \omega (T,x)\| \infty + C

N

\sum N
k=1 | \xi k| 2. In order to bound the right-hand

side of the inequality above, we first note that, by the equation satisfied by \scrV N , we
have \partial t\scrV N (T,x) = - 

\sum N
k=1\Delta xk\scrG N (x)+ 1

N

\sum N
k=1H(xk,NDxk\scrG N (x)) - \scrF N (x), where

\scrF N (x) := \scrF (mN
x ) and \scrG N (x) := \scrG (mN

x ), and, similarly, \partial 2tt\scrV N (T,x) =  - 
\sum N

k=1\Delta xk\partial t
\scrV N (T,x) +

\sum N
k=1DpH(xk,NDxk\scrG N (x)) \cdot Dxk\partial t\scrV N (T,x). Recalling the expressions

of the derivatives of \scrF N and \scrG N as a function of the derivatives of \scrF and \scrG in
Proposition 5.35 of [8], we find, after a tedious but straightforward computation,
that under our standing assumptions on \scrF and \scrG , for some C, supx \| \widetilde \omega (T,x)\| \infty \leq 
C
N

\sum N
i=1 | \xi i| 2 +C(\xi 0)2.

3.2. The easy estimate. The second step in the proof of Theorem 2.5 is an
upper bound of \scrV N in terms of \scrU . Our strategy will be to first compare \scrU to \widehat \scrV N ,
where

\widehat \scrV N (t,m) :=

\int 
(Rd)N

\scrV N (t,x)
N\prod 
j=1

m(dxj).(3.5)

We start with a lemma whose proof is a straightforward computation, which is essen-
tially the same as the one carried out in the proof of Proposition 3.1 in Cardaliaguet
and Masoero [6]. Hence, we omit the details.

Lemma 3.6. Let \widehat \scrV N be given by (3.5). Then \widehat \scrV N is smooth and satisfies the
inequality\left\{         

 - \partial t\widehat \scrV N (t,m) - 
\int 
Rd

div(Dm
\widehat \scrV N (t,m,y))m(dy)

+

\int 
Rd

H(y,Dm
\widehat \scrV N (t,m,y))m(dy)\leq \widehat \scrF N (m) in (0, T )\times \scrP 1(Rd),\widehat \scrV N (T,m) = \widehat \scrG N (m) in \scrP 1(Rd),

where \widehat \scrF N (m) =
\int 
(Rd)N

\scrF (mN
x )
\prod N

j=1m(dxj) and \widehat \scrG N (m) =
\int 
(Rd)N

\scrG (mN
x )
\prod N

j=1m(dxj).

Next we prove the easier inequality in Theorem 2.5.

Proposition 3.7. There exist constants C depending on the data and \beta depend-
ing only on d such that, for all (t,x0)\in [0, T ]\times (Rd)N ,

\scrV N (t,mN
x0
)\leq \scrU (t,mN

x0
) +

C

N\beta 
(1 +M

1/2
2 (mN

x0
)).(3.6)

Proof. Theorem 1 in [16] gives constants C and \beta depending only on d such that,

for any m\in \scrP 2(Rd) and for all N \in N,
\int 
(Rd)N

d1(m
N
x ,m)

\prod N
i=1m(dxi)\leq C

N\beta M
1/2
2 (m).

Fix (t0,m0)\in [0, T )\times \scrP 2(Rd) and let \alpha \ast be optimal in the definition of \scrU (t0,m0).
Using Lemma 3.6 together with a standard verification argument, for example, using
It\^o's formula in Theorem 5.99 of [8], we see that
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RATE FOR CONTROLLED MCKEAN--VLASOV DYNAMICS 3353

\widehat \scrV N (t0,m0)\leq inf
\alpha \in \scrA (t0,m0)

\Biggl\{ \int T

t0

\biggl( \int 
Rd

L(x,\alpha (t, x))mt(dx) + \widehat \scrF N (mt)

\biggr) 
dt+ \widehat \scrG N (mT )

\Biggr\} 
and, hence,

\widehat \scrV N (t0,m0)\leq 
\int T

t0

\biggl( \int 
Rd

L(x,\alpha \ast (t, x)) + \widehat \scrF N (mt)

\biggr) 
dt+ \widehat \scrG N (mT ).(3.7)

Since, in view of Lemma 3.3, \alpha \ast is uniformly bounded by a constant independent of N ,
an easy computation shows that the corresponding state process satisfies supt\in [t0,T ]\int 
Rd | x| 2m(t, dx) \leq (1 + CT )

\int 
Rd | x| 2m0(dx) + CT. It then follows from the Lipschitz

continuity of \scrF with respect to d1 that\bigm| \bigm| \bigm| \widehat \scrF N (m(t)) - \scrF (m(t))
\bigm| \bigm| \bigm| \leq C

\int 
(Rd)N

d1(m
N
x ,m(t))

N\prod 
j=1

m(t, dxj)

\leq C

N\beta 
(1 +M

1/2
2 (m0))

and, similarly, | \widehat \scrG N (m(T )) - \scrG (m(T ))| \leq C
N\beta (1 +M

1/2
2 (m0)).

Using the optimality of \alpha \ast , (3.7), and the estimates above, we obtain

\widehat \scrV N (t0,m0)\leq E

\Biggl[ \int T

t0

\Bigl( 
L(Xt, \alpha 

\ast 
t ) +\scrF (\scrL (Xt))

\Bigr) 
dt+ \scrG (\scrL (XT ))

\Biggr] 
+

C

N\beta 
(1 +M

1/2
2 (m0))

\leq \scrU (t0,m0) +
C

N\beta 
(1 +M

1/2
2 (m0)).

Fix now x0 \in (Rd)N . Then the Lipschitz estimate on \scrV N and the same argument as

above yield | \scrV N (t0,x0)  - \widehat \scrV N (t0,m
N
x0
)| \leq C

N\beta (1 +M
1/2
2 (mN

x0
)). Putting together the

last two estimates gives (3.6).

3.3. The main estimate. The aim of this section is to prove the opposite
inequality.

Proposition 3.8. Assume (2.6). There exists \beta \in (0,1] depending only on the
dimension and C > 0 depending on the data, such that, for any N \geq 1 and any
(t,x)\in [0, T ]\times (Rd)N ,

\scrU (t,mN
x ) - \scrV N (t,x)\leq C

N\beta 

\Biggl( 
1 +

1

N

N\sum 
i=1

| xi| 2
\Biggr) 
.(3.8)

As pointed out in the introduction, the main difficulty is that it does not seem
possible, at least to us, to transform an optimal control for the \scrV N which depends
on each particle into a feedback for \scrU . We overcome this difficulty by dividing the
players into subgroups in such a way that the optimal controls for the agents in each
subgroup are close and showing a propagation of chaos--type result for each subgroup
using a concentration inequality.

We begin explaining how to create the subgroups based on an appropriate parti-
tion of \{ 1, . . . ,N\} .

Lemma 3.9. For each \delta > 0 there exist a constant C depending only on the data
(\scrF ,\scrG ,H)), a partition (Cj)j\in \{ 1,...,J\} of \{ 1, . . . ,N\} such that J \leq C\delta  - d, and, for

j = 1, . . . , J , controls \alpha j \in Rd such that, for all k \in Cj,\bigm| \bigm| H(xk0 ,NDxk\scrV N (t0,x0)) + \alpha j \cdot (NDxk\scrV N (t0,x0)) +L(xk0 , \alpha 
j)
\bigm| \bigm| \leq C\delta .(3.9)
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3354 CARDALIAGUET, DAUDIN, JACKSON, AND SOUGANIDIS

Proof. Let \widehat \alpha k(t,x) = - DpH(xk,NDxk\scrV N (t,x)) be the optimal feedback for par-
ticle k, and recall (see Remark 3.2) that there exists R depending only on the data
such that | \widehat \alpha k(t,x)| \leq R.

Given \delta > 0, we can find a \delta -covering of BR \subset Rd consisting of J \leq C\delta  - d balls of
radius \delta centered at (\alpha j)j\in \{ 1,...,J\} \subset BR.

Then, we choose the partition (Cj)j\in 1,...J so that, for each k \in Cj , | \widehat \alpha k(t,x) - \alpha j | \leq 
\delta . It follows using (2.7) that, for each k \in Cj ,

| H(xk0 ,NDxk\scrV N (t0,x0)) + \alpha j \cdot (NDxk\scrV N (t0,x0)) +L(xk0 , \alpha 
j)| 

= | 
\bigl( 
\alpha j  - \widehat \alpha k(t0,x0)

\bigr) 
\cdot (NDxk\scrV N (t0,x0)) +L(xk0 , \alpha 

j) - L(xk0 , \widehat \alpha (t0,x0))| 
\leq 
\bigl( 
NDxk\scrV N (t0,x0)) + \| DaL\| L\infty (Rd\times BR)

\bigr) 
| \widehat \alpha k(t0,x0) - \alpha j | \leq C\delta .

For \delta > 0 we consider such a partition (Cj)j\in \{ 1,...,J\} of \{ 1, . . . ,N\} with associated
controls \alpha 1, . . . \alpha J satisfying the conditions of Lemma 3.9 and we define nj

.
= | Cj | for

all j \in \{ 1, . . . , J\} . Fix j \in \{ 1, . . . , J\} , set \alpha k = \alpha j if k \in Cj , let, for t0, s0 \in [0, T ] and
x0,y0 \in (Rd)N,

Xk
t0+\tau = xk0 + \tau \alpha k +

\surd 
2Bk

\tau and Y k
s0+\tau = yk0 + \tau \alpha k +

\surd 
2Bk

\tau ,

mj
Xt0+\tau 

=
1

nj
\sum 

k\in Cj \delta Xk
t0+\tau 

and mj
Ys0+\tau 

=
1

nj
\sum 

k\in Cj \delta Y k
s0+\tau 

,
(3.10)

consider the solution mj to

\partial tm
j  - \Delta mj + \alpha j \cdot Dmj = 0 in (s0, T )\times Rd and mj(s0, \cdot ) =mj

y0
in Rd,(3.11)

and, finally, set m(s) = 1
N

\sum 
j\in J n

jmj(s).
We state next the concentration inequality we need for the proof of Proposi-

tion 3.8.

Lemma 3.10. There exist a positive constant \beta \in (0,1/2), depending on d and
a positive constant C, which depends only on supj | \alpha j | , d and T , such that, for all
h\geq 0,

E
\Bigl[ 
d1

\Bigl( 
mj(s0 + h),mj

Ys0+h

\Bigr) \Bigr] 
\leq C(1 +M

1/2
2 (mj(s0)))(h/n

j)\beta ,(3.12)

E
\Bigl[ 
d1

\Bigl( 
mj(s0 + h),mj

Xt0+h

\Bigr) \Bigr] 
\leq (nj)

 - 1 \sum 
k\in Cj

| xk0  - yk0 | +C(1 +M
1/2
2 (mj(s0)))(h/n

j)\beta ,

(3.13)

and, as a consequence,

E
\Bigl[ 
d1

\Bigl( 
m(s0 + h),mN

Ys0+h

\Bigr) \Bigr] 
\leq C\delta  - d\beta (1 +M2(m(s0))

1
2 )(h/N)\beta (3.14)

E
\Bigl[ 
d1

\Bigl( 
m(s0 + h),mN

Xt0+h

\Bigr) \Bigr] 
\leq 1

N

N\sum 
k=1

| xk0  - yk0 | +C\delta  - d\beta (1 +M2(m(s0))
1
2 )(h/N)\beta .

(3.15)

Proof. Inequality (3.12) is precisely the concentration inequality (3.24) of Propo-
sition 3.13 that we prove in section 3.4. Being that Y k

s0+h  - Xk
t0+h = yk0  - xk0 for all

h \geq 0 and all k \in \{ 1, . . .N\} , inequality (3.13) follows in a straightforward way from
(3.12). Similarly (3.15) follows from (3.14). It remains to prove estimate (3.14). Using
(3.12) as well as the Cauchy--Schwarz inequality, the concavity of the maps n\rightarrow n1 - \beta 
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and n\rightarrow n1 - 2\beta , the fact that
\sum 

j n
j = N , and the assumption that \beta \in (0,1/2), we

obtain the following string of inequalities:

E
\Bigl[ 
\bfd 1

\Bigl( 
m(s0 + h),mN

\bfY s0+h

\Bigr) \Bigr] 
\leq 
\sum 
j\in J

nj

N
E
\Bigl[ 
\bfd 1

\Bigl( 
mj(s0 + h),mj

\bfY s0+h

\Bigr) \Bigr] 
\leq C

\sum 
j\in J

nj

N
(1 +M

1/2
2 (mj(s0)))

h\beta 

(nj)\beta 

\leq Ch\beta 

\left[  \sum 
j\in J

(nj)1 - \beta 

N
+

\Biggl( \sum 
j\in J

nj

N
M2(m

j(s0))

\Biggr) 1/2\Biggl( \sum 
j\in J

nj

N(nj)2\beta 

\Biggr) 1/2
\right]  

\leq Ch\beta 

\left[  J

N

\Biggl( \sum 
j\in J

nj

J

\Biggr) 1 - \beta 

+M
1/2
2 (m(s0))

\sqrt{} 
J

N

\Biggl( \sum 
j\in J

1

J
(nj)1 - 2\beta 

\Biggr) 1/2
\right]  

\leq C

\biggl( 
Jh

N

\biggr) \beta \biggl( 
1 +M

1/2
2 (m(s0))

\biggr) 
.

Recalling that J \leq C\delta  - d is enough to conclude.

We are now ready, using the above construction, to prove Proposition 3.8.

Proof of Proposition 3.8. Following a viscosity solutions--type argument, we dou-
ble the variables and, for \theta ,\lambda \in (0,1), we set

M := max
(t,x),(s,y)\in [0,T ]\times (Rd)N

es(\scrU (s,mN
y ) - \scrV N (t,x))

 - 1

2\theta N

N\sum 
i=1

| xi  - yi| 2  - 1

2\theta 
| s - t| 2  - \lambda 

2N

N\sum 
i=1

| yi| 2.
(3.16)

We denote by ((t0,x0), (s0,y0)) a maximum point in the expression above. Using the
uniform bound on \scrU and \scrV N and the Lipschitz estimate for \scrV N we can estimate the
error related to the penalization. We find that there exists C > 0 such that

1

N

N\sum 
i=1

| xi0  - yi0| 2 + | s0  - t0| 2 \leq C\theta 2 and
1

N

N\sum 
i=1

| yi0| 2 \leq 
C

\lambda 
.(3.17)

Now we fix \delta > 0 and we define (Xt)t\geq t0 , (Ys)s\geq s0 , m
j , and m according to (3.10)

and (3.11) for some partition (Cj)j\in \{ 1,...,J\} of \{ 1, . . . ,N\} with associated controls
\alpha 1, . . . \alpha J satisfying the conditions of Lemma 3.9. By estimate (3.17) it holds, in
particular, that 1

N

\sum N
i=1 | xi0  - yi0| \leq C\theta and M2(m(s0))\leq C\lambda  - 1.

The Lipschitz regularity of \scrU in Lemma 3.3 and the definition of Xt and Yt give,
by definition of M,

M \geq E

\Biggl[ 
es0+h(\scrU (s0 + h,mN

Ys0+h
) - \scrV N (t0 + h,Xt0+h))

 - 1

2\theta 

\Biggl( 
1

N

N\sum 
k=1

| Y k
s0+h  - Xk

t0+h| 2 + (t0  - s0)
2

\Biggr) 
 - \lambda 

2N

N\sum 
i=1

| Y i
s0+h| 2

\Biggr] 

\geq E
\Bigl[ 
es0+h(\scrU (s0 + h,m(s0 + h)) - \scrV N (t0 + h,Xt0+h))

\Bigr] 
 - C\delta  - d\beta (1 + \lambda  - 

1
2 )
h\beta 

N\beta 

 - 1

2\theta 

\Biggl( 
1

N

N\sum 
k=1

| yk0  - xk0 | 2 + (s0  - t0)
2

\Biggr) 
 - \lambda 

2N

N\sum 
i=1

(| yi0| +Ch1/2)2.
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To continue, we need a dynamic programming--type argument, which is stated
next. Its proof is postponed to later in the paper.

Lemma 3.11. With the notation above, we have

\scrU (s0 + h,m(s0 + h))\geq \scrU (s0,myN
0
)

 - 
\int s0+h

s0

\left(  J\sum 
j=1

\int 
Rd

1

N
njL(x,\alpha j)mj(s,x)dx+\scrF (m(s))

\right)  ds.

Using It\^o's formula for \scrV N we find

M \geq es0+h\scrU (s0,mN
\bfy 0
) - es0+h

\int s0+h

s0

\Biggl( \int 
Rd

J\sum 
j=1

1

N
njL(x,\alpha j)mj(s,x)dx+\scrF (m(s))

\Biggr) 
ds

 - es0+hE

\Biggl[ 
\scrV N (t0,\bfx 0) +

\int t0+h

t0

\Biggl( 
\partial t +

N\sum 
k=1

[\Delta xk + \alpha k \cdot Dxk ]

\Biggr) 
V N (t,\bfX t)dt

\Biggr] 

 - C\delta  - d\beta (1 + \lambda  - 1
2 )

h\beta 

N\beta 
 - 1

2\theta 

\Biggl( 
1

N

N\sum 
k=1

| yk
0  - xk

0 | 2 + (s0  - t0)
2

\Biggr) 
 - \lambda 

2N

N\sum 
i=1

(| yi
0| +Ch1/2)2.

Since the \alpha j are uniformly bounded, the map L(\cdot , \alpha j) is uniformly Lipschitz indepen-
dently of j. Hence, using Lemma 3.10 and (3.17), we find\int s0+h

s0

\int 
Rd

J\sum 
j=1

1

N
njL(x,\alpha j)mj(s,x)dxds

\leq E

\left[  \int s0+h

s0

J\sum 
j=1

\Biggl( \sum 
k\in Cj

1

N
L(Xk

t0 - s0+s, \alpha 
j) +C

1

N
njd1

\Bigl( 
mj(s),mj

Xt0 - s0+s

\Bigr) \Biggr) 
ds

\right]  
\leq E

\Biggl[ \int t0+h

t0

N\sum 
k=1

1

N
L(Xk

s , \alpha 
k)ds

\Biggr] 
+C\theta h+C

J\sum 
j=1

1

N
nj(1 +M

1/2
2 (mj

s0))
h\beta 

(nj)\beta 

\leq E

\Biggl[ \int t0+h

t0

N\sum 
k=1

1

N
L(Xk

s , \alpha 
k)ds

\Biggr] 
+C\theta h+C\delta  - d\beta (1 + \lambda  - 

1
2 )
h\beta 

N\beta 
.

Note that in the last inequality we used exactly the same argument as for the proof
given above for the third inequality of Lemma 3.10.

Hence, recalling the optimality of (x0,y0) in (3.16) and employing the equation
for \scrV N , we get

0\geq (es0+h  - es0)(\scrU (s0,mN
y0
) - \scrV N (t0,x0)) - C\delta  - d\beta (1 + \lambda  - 

1
2 )
h\beta 

N\beta 

 - C\lambda h1/2N - 1
N\sum 
i=1

| yi0|  - C\theta h - es0+hE

\Biggl[ \int s0+h

s0

(\scrF (m(s)) - \scrF (mN
Xs0 - t0+s

))ds

\Biggr] 

 - es0+hE
\biggl[ 
1

N

\int t0+h

t0

N\sum 
k=1

(L(Xk
s , \alpha 

k) + \alpha k \cdot (NDxk\scrV (s,Xs))

+H(Xk
s ,NDxk\scrV (s,Xs)))ds

\biggr] 
.
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Using the Lipschitz regularity of \scrF and Lemma 3.10 to deal with the difference
of the \scrF and (3.17) to deal with the term in

\sum 
i | yi0| , we find

0\geq es0h(\scrU (s0,mN
y0
) - \scrV N (t0,x0)) - C\delta  - d\beta (1 + \lambda  - 

1
2 )
h\beta 

N\beta 
 - C\lambda 1/2h1/2  - C\theta h - Ch2

 - es0+hE
\biggl[ 
1

N

\int t0+h

t0

N\sum 
k=1

(L(Xk
s , \alpha 

k) + \alpha k \cdot (NDxk\scrV (s,Xs))

+H(Xk
s ,NDxk\scrV (s,Xs))ds)ds

\biggr] 
.

The regularity of L and H and the uniform boundedness of the \alpha k and of NDxk\scrV N

allow us to infer that

0\geq es0h(\scrU (s0,mN
y0
) - \scrV N (t0,x0)) - C\delta  - d\beta (1 + \lambda  - 

1
2 )
h\beta 

N\beta 
 - C\lambda 1/2h1/2  - C\theta h

 - Ch2  - es0+hE
\biggl[ 
1

N

\int t0+h

t0

N\sum 
k=1

(L(xk0 , \alpha 
k)ds+ \alpha k \cdot (NDxk\scrV (s,Xs))

+H(xk0 ,NDxk\scrV (s,Xs)))ds

\biggr] 
 - Ch3/2,

and, in view of (3.9),

0\geq es0h(\scrU (s0,mN
y0
) - \scrV N (t0,x0)) - C\delta  - d\beta (1 + \lambda  - 

1
2 )
h\beta 

N\beta 
 - C\lambda 1/2h1/2

 -  - CE

\Biggl[ 
1

N

\int t0+h

t0

N\sum 
k=1

| NDxk\scrV N (s,Xs)) - NDxk\scrV N (s,x0))| ds

\Biggr] 
 - C\theta h - Ch3/2  - Ch\delta .

(3.18)

The semiconcavity of \scrV N and the penalization by the term in \theta give the next lemma.
The proof is postponed to the end of the section.

Lemma 3.12. For any (t,x)\in [0, T ]\times (Rd)N ,

N\sum 
k=1

| Dxk\scrV N (t,x) - Dxk\scrV N (t0,x0)| 

\leq C

N

N\sum 
k=1

| xk  - xk0 | +

\Biggl( 
C

N\theta 

N\sum 
k=1

(| xk  - xk0 | + | xk  - xk0 | 2)

\Biggr) 1/2

+
C

\theta 1/2
| t - t0| 1/2.

We continue with the ongoing proof. Inserting the estimate of Lemma 3.12 into
(3.18), we obtain

0\geq es0h(\scrU (s0,mN
y0
) - \scrV N (t0,x0)) - C

\biggl( 
\delta  - d\beta (1 + \lambda  - 

1
2 )
h\beta 

N\beta 
+ \lambda 1/2h1/2

+ (\theta + \delta )h+ h3/2
\biggr) 
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3358 CARDALIAGUET, DAUDIN, JACKSON, AND SOUGANIDIS

 - CE
\int t

t0

\left(  1

N

N\sum 
k=1

| Xk
s  - xk0 | +

\Biggl( 
1

N\theta 

N\sum 
k=1

(| Xk
s  - xk0 | + | Xk

s  - xk0 | 2)

\Biggr) 1/2

+
C

\theta 1/2
| s - t0| 1/2

\biggr) 
ds

\geq es0h(\scrU (s0,mN
y0
) - \scrV N (t0,x0)) - C\delta  - d\beta (1 + \lambda  - 

1
2 )
h\beta 

N\beta 

 - C(\theta + \delta )h - C\lambda 1/2h1/2  - C\theta  - 1/2h(h1/2 + h)1/2.

Dividing by h we find, for each choice of \theta ,\lambda , \delta > 0 and 0<h\leq (T  - s0)\wedge (T  - t0),

es0(\scrU (s0,mN
y0
) - \scrV N (t0,x0))\leq C

h\beta  - 1

N\beta \delta d\beta 
(1 + \lambda  - 1/2) +C(\theta + \delta ) +C\lambda 1/2h - 1/2

+Ch1/4\theta  - 1/2.

We take \theta = h\alpha 1 , \delta = (\lambda 
 - 1/2h\beta  - 1

N\beta )\alpha 2 , \lambda =N - \alpha 3 , and h=N - \alpha 4 .
Making appropriate choices of \alpha 1, \alpha 2, \alpha 3, and \alpha 4 we deduce

es0(\scrU (s0,mN
y0
) - \scrV N (t0,x0))\leq CN - \widetilde \beta (3.19)

for some \widetilde \beta = \widetilde \beta (\beta )\in (0,1/2) and for N such that h=N - \alpha 4 \leq (T  - s0)\wedge (T  - t0).
For N such that h=N - \alpha 4 \geq (T  - s0)\wedge (T  - t0), we have by (3.17) that (T  - s0)\vee 

(T  - s0)\leq h+C\theta , and, so, using Lemma 3.1 and Lemma 3.3, we find

| \scrU (s0,mN
y0
) - \scrV N (t0,x0)| \leq | \scrU (s0,mN

y0
) - \scrG (mN

y0
)| + | \scrG (mN

y0
) - \scrG (mN

x0
)| 

+ | \scrG (mN
x0
) - \scrV N (t0,x0)| \leq C(h+ \theta )1/2 +C\theta +C(h+ \theta )\leq CN - \widetilde \beta ,

where in the last line we choose \widetilde \beta even smaller if necessary. With this choice of \widetilde \beta , we
have now established that (3.19) holds for all values of N .

Finally, we conclude that, for all (t,x)\in [0, T ]\times (Rd)N ,

et(\scrU (t,mN
x ) - \scrV N (t,x))\leq es0(\scrU (s0,mN

y0
) - \scrV N (t0,x0)) +

\lambda 

2N

N\sum 
i=1

| xi| 2

\leq CN - min(\widetilde \beta ,\alpha 3)

\Biggl( 
1 +

1

N

N\sum 
i=1

| xi| 2
\Biggr) 
.

Before proving the various lemmas used in the proof of Proposition 3.8, we com-
plete the proof of the main result.

Proof of Theorem 2.5. Combining Proposition 3.7 and Proposition 3.8 we know
that there exist \beta \in (0,1] depending on dimension and C > 0 depending on the data
such that, for any (t,x)\in [0, T ]\times (Rd)N ,\bigm| \bigm| \bigm| \scrU (t,mN

\bfx ) - \scrV N (t,\bfx ))
\bigm| \bigm| \bigm| \leq CN - \beta (1 +M

1/2
2 (mN

\bfx ) +M2(m
N
\bfx ))\leq CN - \beta (1 +M2(m

N
\bfx )).

We continue with the proofs of the several auxiliary results stated earlier.

Proof of Lemma 3.11. For K \in N and any nonnegative integrable functions
m1

0, . . . ,m
K
0 on Rd such that

\sum K
k=1m

k
0 \in \scrP (Rd), let
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\scrU K(t0,m
1
0, . . . ,m

K
0 ) := inf

(m1,\beta 1),...,(mK ,\beta K)

\int T

t0

\Biggl( \int 
Rd

K\sum 
k=1

L(x,
\beta k(t, x)

mk(t, dx)

\Biggr) 
mk(t, x)dx

+\scrF 

\Biggl( 
K\sum 

k=1

mk(t))

\Biggr) 
dt+ \scrG 

\Biggl( 
K\sum 

k=1

mk(T )

\Biggr) 
,

where the infimum is taken over the tuple of measures (mk, \beta k) (the \beta k being a vector
measure) with \beta k <<mk such that (mk, \beta k) solve, in the sense of distributions,

\partial tm
k  - \Delta mk +div(\beta k) = 0 in (t0, T ]\times Rd and mk(t0) =mk

0 in Rd.

We establish next that \scrU K(t0,m
1
0, . . . ,m

K
0 ) = \scrU (t0,m1

0+ \cdot \cdot \cdot +mK
0 ), and the result will

then follow from Proposition 2.2.
Since obviously \scrU K(t0,m

1
0, . . . ,m

K
0 )\leq \scrU (t0,m1

0 + \cdot \cdot \cdot +mK
0 ), next we concentrate

on the reverse inequality.
Fix \varepsilon > 0, let (m1, \beta 1, . . . ,mK , \beta K) be \varepsilon -optimal for \scrU K(t0,m

1
0, . . . ,m

K
0 ), and set

\beta =
\sum N

k=1 \beta 
K and m(t) =

\sum N
k=1m

k(t). Then (m,\beta ) solves

\partial tm - \Delta m+div(\beta ) = 0 in (t0, T ]\times Rd and m(t0) =m0 in Rd,

and we have

\varepsilon + \scrU K(t0,m
1
0, . . . ,m

K
0 )

\geq 
\int T

t0

\Biggl( \int 
Rd

K\sum 
k=1

L

\biggl( 
x,
\beta k(t, x)

mk(t, x)

\biggr) 
mk(t, x)

m(t, x)
m(t, x)dx+\scrF 

\Biggl( 
K\sum 

k=1

mk(t)

\Biggr) \Biggr) 
dt

+ \scrG 

\Biggl( 
K\sum 

k=1

mk(T )

\Biggr) 

\geq 
\int T

t0

\Biggl( \int 
Rd

L

\Biggl( 
x,

\sum K
k=1 \beta 

k(t, x)

m(t, x)

\Biggr) 
m(t, x)dx+\scrF (m(t))

\Biggr) 
dt+ \scrG (m(T ))

\geq \scrU (t0,m0),

where the second inequality follows from the convexity of the map (\beta ,m)\rightarrow mL(x, \beta 
m )

and the third one by the definition of \scrU .
Proof of Lemma 3.12. Set pk =Dxk\scrV (t0,x0) and p

t = \partial t\scrV (t0,x0). Then, in view
of Lemma 3.4, we have, for any (t,x), (t0,x0)\in [0, T ]\times (Rd)N ,

\scrV N (t,x) - \scrV N (t0,x0) - 
N\sum 

k=1

pk \cdot (xk  - xk0) - pt(t - t0)\leq 
C

N

N\sum 
k=1

| xk  - xk0 | 2 +C(t - t0)
2.

The optimality of (t0,x0, s0,y0) also gives, for any (t,x),

1

2\theta N

N\sum 
i=1

| xi  - yi0| 2 +
1

2\theta 
(t - s0)

2 + \scrV N (t,x)

\geq 1

2\theta N

N\sum 
i=1

| xi0  - yi0| 2 +
1

2\theta 
(t0  - s0)

2 + \scrV N (t0,x0).

(3.20)
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3360 CARDALIAGUET, DAUDIN, JACKSON, AND SOUGANIDIS

From (3.20), we conclude that pk =
yk
0 - xk

0

\theta N and pt = s0 - t0
\theta .

Furthermore, rearranging (3.20) yields

\scrV N (t, x) - \scrV N (t0, x0)\geq 
1

2\theta N

N\sum 
k=1

| xk0  - yk0 | 2  - 
1

2\theta N

N\sum 
k=1

| xk  - yk0 | 2 +
1

2\theta N
| t0  - s0| 2

 - 1

2\theta N
| t - s0| 2 =

1

2\theta N

N\sum 
k=1

| xk0  - yk0 | 2  - 
1

2\theta N
 - 

N\sum 
k=1

| (xk  - xk0) + (xk0  - yk0 )| 2

+
1

2\theta N
| t0  - s0| 2  - 

1

2\theta N
| (t - t0) + (t0  - s0)| 2

=
N\sum 

k=1

pk \cdot (xk  - xk0) + pt(t - t0) - 
N\sum 

k=1

1

2\theta N
| xk  - xk0 | 2  - 

1

2\theta 
(t - t0)

2,

and, after some elementary manipulations,

\scrV N (t,x) - \scrV N (t0,x0) - 
N\sum 

k=1

pk \cdot (xk  - xk0) - pt(t - t0)

\geq  - 1

2\theta N

N\sum 
k=1

| xk  - xk0 | 2  - 
1

2\theta 
(t - t0)

2.

Assuming that \theta \leq (2C) - 1, it follows that

w(t,x) = \scrV N (t0,x0) - \scrV N (t,x)

+

N\sum 
k=1

pk \cdot (xk  - xk0) + pt(t - t0) +
C

N

N\sum 
k=1

| xk  - xk0 | 2 +C(t - t0)
2

is convex and satisfies 0 \leq w(t,x) \leq 1
\theta N

\sum N
k=1 | xk  - xk0 | 2 + 1

\theta (t  - t0)
2. Thus, for any

(t,x) and any (s,y), we have

N\sum 
k=1

Dxkw(t,x) \cdot (yk  - xk) + \partial tw(t,x)(s - t)\leq w(t,x)

+

N\sum 
k=1

Dxkw(t,x) \cdot (yk  - xk) + \partial tw(t,x)(s - t)

\leq w(s,y)\leq 1

\theta N

N\sum 
k=1

| yk  - xk0 | 2 +
1

\theta 
(s - t0)

2.

Letting yk = xk0 +
1
2\theta NDxkw(t,x) and s= t0+

1
2\theta \partial tw(t, x) in the inequality above, we

obtain

\theta N

4

N\sum 
k=1

| Dxkw(t,x)| 2 \leq 
N\sum 

k=1

Dxkw(t,x) \cdot (xk  - xk0) + \partial tw(t, x)(t - t0),(3.21)

and, after using the Cauchy--Schwarz inequality,

N\sum 
k=1

| Dxkw(t,x)| \leq N1/2

\Biggl( 
N\sum 

k=1

| Dxkw(t,x)| 2
\Biggr) 1/2

(3.22)

\leq N1/2

\Biggl( 
4

N\theta 

N\sum 
k=1

| xk0  - xk| | Dxkw(t,x)| + 4

N\theta 
| \partial tw(t, x)| | t - t0| 

\Biggr) 1/2

.
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Recalling the definition of w and that | Dxk\scrV N | \leq C/N and | \partial t\scrV N | \leq C, we find

| Dxkw(t,x)| =
\bigm| \bigm| \bigm| \bigm|  - Dxk\scrV N (t,x) + pk +

2C

N
(xk  - xk0)

\bigm| \bigm| \bigm| \bigm| \leq CN - 1 +
2C

N
| xk  - xk0 | 

and

| \partial tw(t, x)| = |  - \partial t\scrV N (t0,x0) + 2C(t - t0)| \leq C.

Returning to (3.22), we have

N\sum 
k=1

\bigm| \bigm| \bigm| \bigm|  - Dxk\scrV N (t,x) + pk +
2C

N
(xk  - xk0)

\bigm| \bigm| \bigm| \bigm| 
\leq 

\Biggl( 
C

N\theta 

N\sum 
k=1

| xk0  - xk| + C

N\theta 

N\sum 
k=1

| xk0  - xk| 2 + C

\theta 
| t - t0| 

\Biggr) 1/2

,

from which we deduce the result by the definition of pk.

3.4. A concentration inequality. This section is devoted to the proof of the
following concentration inequality.

Proposition 3.13. Take a constant drift \alpha in Rd and initial position y10 , . . . , y
N
0

in Rd for some N \geq 1 and consider (Y 1
t )t\geq 0, . . . (Y

N
t )t\geq 0 defined for all 1\leq k\leq N and

t\geq 0 by

Y k
t = yk0 + \alpha t+

\surd 
2Bk

t ,

where (B1
t )t\geq 0, . . . (B

n
t )t\geq 0 are N independent d-dimensional standard Brownian mo-

tions defined on some probability space (\Omega ,\scrF ,P). Define as well the empirical measure
mN

Y\bft 
:= 1

N

\sum N
k=1 \delta Y k

t
and m\in \scrC ([0, T ],\scrP 2(Rd)) to be the solution to\biggl\{ 
\partial tm+ \alpha .Dm - \Delta m= 0 in (0,+\infty )\times Rd,
m(0) =mN

Y\bfzero 
.

(3.23)

Then, there exists a positive constant \beta \in (0,1/2) depending on the dimension d and
a positive constant C depending on | \alpha | , d, and T such that, for all h \in [0, T ] it holds
that

E
\bigl[ 
d1(m(h),mN

Yh
)
\bigr] 
\leq C(1 +M

1/2
2 (mN

Y\bfzero 
))(h/N)\beta .(3.24)

Remark 3.14. The proof will show that one can take \beta = 1/(2d+ 4).

To prove Proposition 3.13, it is convenient to introduce first a few facts and
notations.

We denote by L denote the set of all 1-Lipschitz functions from Rd to R, and let
LR be the set of all 1-Lipschitz functions \phi :BR \subset Rd \rightarrow [ - R,R]. For any \phi \in LR, we
denote by \widetilde \phi the extension \widetilde \phi :Rd \rightarrow [ - R,R] given by

\widetilde \phi (x) =
\left\{     
\phi (x), | x| \leq R,
2R - | x| 

R \phi ( R
| x| x), R < | x| < 2R,

0, | x| \geq 2R.

Note that \widetilde \phi is also 1-Lipschitz.
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3362 CARDALIAGUET, DAUDIN, JACKSON, AND SOUGANIDIS

Let \scrL (\epsilon ,R) be the \epsilon -covering number of LR with respect to the L\infty -distance, that
is,

\scrL (\epsilon ,R) = inf\{ k \in N : there exist \phi 1, . . . , \phi k \in LR such that for all

\phi \in LR,\| \phi  - \phi j\| L\infty < \epsilon for some j\} .

It is known (see, for example, [19]) that

\scrL (\epsilon ,1)\leq exp\{ C\epsilon  - d\} ,(3.25)

and, after a rescaling argument,

\scrL (\epsilon ,R)\leq exp

\Biggl\{ 
C

\biggl( 
R

\epsilon 

\biggr) d
\Biggr\} 
.(3.26)

Indeed, if \{ \phi 1, . . . , \phi n\} \in L is \epsilon /R-dense in L, then \{ \widetilde \phi 1, . . . , \widetilde \phi n\} is \epsilon -dense in LR,
where \widetilde \phi i(x) =R\phi (x/R). Thus (3.26) follows from (3.25).

To prove Proposition 3.13 we need two preliminary estimates.
We recall the notation after Lemma 3.17.

Lemma 3.15. There exists a constant C > 0 such that, for any \phi \in L, P[
\int 
Rd \phi (m(h)

 - mN
Yh
)>x]\leq exp

\Bigl\{ 
 - Nx2

Ch

\Bigr\} 
.

Proof. Let u be the solution of

 - \partial tu - \Delta u - \alpha \cdot Du= 0 in (0, h)\times Rd and u(h) = \phi in Rd,

and note that, since \| D\phi \| \leq 1, \| Du\| \infty \leq 1.
Using It\^o's formula and the equation for m, we get\int 

Rd

\phi (m(h) - mN
Yh
) = - 

\surd 
2
1

N

N\sum 
k=1

\int h

0

Du(s,Y k
s ).dBk

s .

The random variables h - 1/2
\int h

0
Du(s,Y k

s )dBk
s are independent and sub-Gaussian, uni-

formly in k. Indeed, viewing h - 1/2
\int \cdot 
0
Du(\cdot , Y k)dBk as a time-changed Brownian mo-

tion, we have that B\tau = h - 1/2
\int h

0
Du(t, Y k

t )dBk
t , where B is a standard Brownian

motion and \tau \leq 1 is a stopping time (we use here that \| Du\| \infty \leq 1). In particular,

P[
\int h

0
Du(s,Y k

s )dBk
s > x] \leq P[sup0\leq t\leq 1 | Bt| > h1/2x], from which the claim follows

easily.
We now apply Hoeffding's inequality (see, for example, Proposition 2.5 in [28])

to complete the proof.

Lemma 3.16. There exists a constant C such that, for any R> 0,

E

\Biggl[ 
sup
\phi \in LR

\int 
Rd

\widetilde \phi \bigl( m(h) - mN
Yh

\bigr) \Biggr] 
\leq C(1 +R

d
d+2 )N

 - 1
d+2h

1
d+2 .

Proof. We fix \epsilon > 0 and use the estimate on \scrL (\epsilon ,R) to choose K \leq exp\{ C
\bigl( 
R
\epsilon 

\bigr) d\} 
and \phi 1, . . . , \phi K in LR such that, for each \phi \in LR, there exists k \in \{ 1, . . . ,K\} such that

\| \phi  - \phi k\| L\infty (BR) < \epsilon , and hence
\bigm\| \bigm\| \bigm\| \widetilde \phi  - \widetilde \phi k\bigm\| \bigm\| \bigm\| 

L\infty (Rd)
\leq \epsilon .
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Then, using Lemma 3.15 and the upper bound on K, for any x> \epsilon , we have

P

\Biggl[ 
sup
\phi \in LR

\int 
Rd

\widetilde \phi (m(h) - mN
Yh
)>x

\Biggr] 
\leq P

\biggl[ 
\exists k such that

\int 
Rd

\widetilde \phi k(m(h) - mN
Yh
)>x - \epsilon 

\biggr] 

\leq 
K\sum 

k=1

P
\biggl[ \int 

Rd

\widetilde \phi k(m(h) - mN
Yh
)>x - \epsilon 

\biggr] 
\leq exp

\Biggl\{ 
C

\biggl( 
R

\epsilon 

\biggr) d

 - N(x - \epsilon )2

Ch

\Biggr\} 
.(3.27)

We fix a small positive parameter \gamma , and note that, if \epsilon = \gamma  - 
1
dRh1/dx - 2/dN - 1/d,

then

R exp

\Biggl\{ 
C

\biggl( 
R

\epsilon 

\biggr) d

 - Nx2

Ch

\Biggr\} 
=R exp

\biggl\{ 
C\gamma 

Nx2

h
 - N(x - \epsilon )2

Ch

\biggr\} 
.(3.28)

Further computations reveal that there is a constant C such that x> 2\epsilon as soon as

x\geq C
R

d
d+2h

1
d+2

\gamma 
1

d+2N
1

d+2

.(3.29)

By choosing \gamma even smaller, we deduce, in view of (3.27) and (3.28), that, for some con-

stant C and all R, x as in (3.29), P [sup\phi \in LR

\int 
Rd
\widetilde \phi (m(h) - mYh

)>x]\leq exp
\Bigl\{ 
 - Nx2

Ch

\Bigr\} 
.

It follows that

E

\Biggl[ 
sup
\phi \in LR

\int 
Rd

\widetilde \phi \bigl( m(h) - mN
Yh

\bigr) \Biggr] 
\leq 
\int C(Rdh

N )
1

d+2

0

1dx+

\int \infty 

C(Rdh
N )

1
d+2

exp

\biggl\{ 
 - Nx2

Ch

\biggr\} 
dx

\leq C(1 +R
d

d+2 )N
 - 1
d+2h

1
d+2 .

Finally, we give the proof of the concentration inequality.

Proof of Proposition 3.13. Throughout, C is a positive constant which, although
changing from line to line, depends only on d, T , and | \alpha | .

We fix R> 0, and note that, any \psi \in L normalized with \psi (0) = 0, can be written
as \psi = \widetilde \phi +\varphi , with \phi \in LR and | \varphi | \leq | x| 1Bc

R
.

Thus, for any h\in (0,1], we get

E[d1(m(h),mN
Y\bfh 

)] =E

\Biggl[ 
sup
\phi \in L

\int 
Rd

\phi (m(h) - mN
Y\bfh 

)

\Biggr] 

\leq E

\Biggl[ 
sup
\phi \in LR

\int 
Rd

\widetilde \phi (m(h) - mN
Y\bfh 

)

\Biggr] 
+

\int 
Rd

| x| 1Bc
R
m(h) +E

\biggl[ \int 
Rd

| x| 1Bc
R
mN

Y\bfh 

\biggr] 

\leq E

\Biggl[ 
sup
\phi \in LR

\int 
Rd

\widetilde \phi (m(h) - mN
Y\bfh 

)

\Biggr] 
+
M2(m(h))

R
+

E[M2(m
N
Y\bfh 

)]

R

\leq E

\Biggl[ 
sup
\phi \in LR

\int 
Rd

\widetilde \phi (m(h) - mN
Y\bfh 

)

\Biggr] 
+C

(1 +M2(m(0)))

R
.

(3.30)

Using Lemma 3.16, we find that

E[d1(m(h),mN
Yh
)]\leq C(1 +R

d
d+2 )N

 - 1
d+2h

1
d+2 +C

(1 +M2(m(0)))

R

\leq C(1 +R)N
 - 1
d+2h

1
d+2 +C

(1 +M2(m(0)))

R
.

Optimizing in R, that is, taking R = N
1

2d+4h - 
1

2d+4

\sqrt{} 
1 +M2(m(0)), gives the result

with \beta = 1
2d+4 .
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3364 CARDALIAGUET, DAUDIN, JACKSON, AND SOUGANIDIS

4. The proof of Theorem 2.5 with a common noise. We now show that
the method developed above can be adapted to problems with a common noise, that
is, for a0 > 0. Recall that \scrV N and \scrU are defined by (1.1) and (2.12) respectively.

Proof of Theorem 2.5 when a0 > 0. Since the proof follows closely the one in the
case a0 = 0, here we emphasize and explain the main differences.

We first note that the estimates of Lemma 3.1 and 3.4 remain valid (with the same
proof), that is, there exists C > 0 such that \| \scrV N\| \infty +N supj \| Dxj\scrV N\| \infty +\| \partial t\scrV N\| \infty \leq 
C, and, for any (t,x)\in [0, T ]\times (Rd)N , (\xi i)i=1,...,N \in (Rd)N and \xi 0 \in R,

N\sum 
i,j=1

D2
xixj\scrV N (t,x)\xi i \cdot \xi j + 2

N\sum 
i=1

D2
xit\scrV 

N (t,x)\xi i\xi 0 +D2
tt\scrV N (t,x)(\xi 0)2

\leq C

N

N\sum 
i=1

| \xi i| 2 +C(\xi 0)2.

We note for later use that the observation above implies that the conclusion of
Lemma 3.12 still holds, because its proof relies only on the above estimates.

However, the proof of Lemma 3.3 does not adapt to the case a0 > 0. Hence, we
need a new argument which relies on some results of [14].

In particular, we have the following analogue of Lemma 3.3.

Lemma 4.1. Assume (2.6). There exists a constant C > 0 depending only on
the data such that, for all s, t \in [0, T ] and all m,m\prime \in \scrP 2(Rd) | \scrU (s,m) - \scrU (t,m\prime )| \leq 
C(d1(m,m

\prime )+| t - s| ), and, moreover, for any \epsilon > 0 and (t0,m0)\in [0, T ]\times \scrP 2(Rd), there
exists an \epsilon -optimal control rule \scrR = (\Omega ,\scrF ,F,P,W,m,\alpha )\in \scrA (t0,m0) for \scrU (t0,m0) such
that \| \alpha \| \infty \leq C.

Proof. Fix R> 0 and let \scrV N,R and \scrU R denote the values of the problems defining
\scrV N and \scrU when controls are restricted to the ball BR \subset Rd.

More precisely, define \scrA N,R to be the set of \alpha = (\alpha k)Nk=1's such that | \alpha k| \leq R
for each R, and \scrA R(t0,m0) to be the set of (\Omega ,\scrF ,F,P,W,m,\alpha )\in \scrA (t0,m0) such that
| \alpha | \leq R. Then define \scrV N,R exactly as in (1.1) but with \scrA N,R replacing \scrA and define
\scrU R exactly as in (2.12) but with \scrA R(t0,m0) replacing \scrA R.

Then Proposition 5.1 and Theorem 3.6 of [14] give limN\rightarrow \infty \scrV N,R(t,xN ) = \scrU R(t,m),
where xN = (x1, . . . , xN ), m\in \scrP 2(Rd), and x1, . . . , xN \in Rd are such that

sup
N

1

N

N\sum 
i=1

| xi| 2 <\infty and
1

N

N\sum 
i=1

\delta xi \rightarrow 
N\rightarrow \infty 

m\in \scrP 2(Rd).

It follows from Lemma 3.1 and Lemma 5.2 that there is R0 > 0 such that \scrV N,R0 =
\scrV N and \scrU R0 = \scrU , and so we infer that, for all xi andm as above, limN\rightarrow \infty \scrV N (t,xN ) =
\scrU (t,m). Hence, the uniform regularity on \scrV N established in (3.3), which, as noted
above, holds equally well when a0 > 0, is enough to conclude that, for some C > 0,
| \scrU (s,m) - \scrU (t,m\prime )| \leq C

\bigl( 
d1(m,m

\prime ) + | t - s| 
\bigr) 
for all m,m\prime \in \scrP 2(Rd). Finally, for any

\epsilon > 0 and (t0,m0), we can choose an \epsilon -optimal pair (m,\alpha ) for \scrU R0 , and that this
control is also \epsilon -optimal for \scrU . This completes the proof.

Let \widehat \scrV N be as defined in Lemma 3.7. Then it is easily checked that \widehat \scrV N is smooth
and satisfies, with \widehat \scrF N and \widehat \scrG N as in Lemma 3.7,
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RATE FOR CONTROLLED MCKEAN--VLASOV DYNAMICS 3365

\left\{                 

 - \partial t\widehat \scrV N (t,m) - (1 + a0)

\int 
Rd

divy(Dm
\widehat \scrV N (t,m,y))m(dy)

 - a0
\int 
R2d

tr(D2
mm
\widehat \scrV N (t, x,m,y, y\prime ))m(dy)m(dy\prime )

+

\int 
Rd

H(y,Dm
\widehat \scrV N (t,m,y))m(dy)\leq \widehat \scrF (m) in (0, T )\times \scrP 1(Rd),\widehat \scrV N (T,m) = \widehat \scrG (m) in \scrP 1(Rd).

Then, as in the proof of Lemma 3.7, it is possible to use It\^o's formula for conditional
measures (see, for example, [8, Book 2, Chapter 4]) to infer that, for any solution
(m,\alpha ) to (2.11),

\widehat \scrV N (t0,m0)\leq E

\Biggl[ \int T

t0

\biggl( \int 
Rd

L(x,\alpha t(x))mt(x)dx+ \widehat \scrF N (mt)

\biggr) 
dt+ \widehat \scrG N (mT )

\Biggr] 
.

Using the same argument as in the proof of Lemma 3.7 with Lemma 4.1 replacing
Lemma 3.10, we arrive at

\scrV N (t0,m
N
x0
)\leq \scrU (t0,mN

x0
) +C(1 +M

1/2
2 (mN

x0
))N - \beta .

We now turn to the opposite inequality. As before, for \theta ,\lambda \in (0,1), let

M : = max
(t,x),(s,y)\in [0,T ]\times (Rd)N

\bigl( 
es(\scrU (s,mN

y ) - \scrV N (t,x))

 - 1

2\theta N

\sum 
i

| xi  - yi| 2  - 1

2\theta 
| s - t| 2  - \lambda 

2N

N\sum 
i=1

| yi| 2,

and denote by ((t0,x0), (s0,y0)) a maximum point in the expression above.
As in (3.17) we have

1

N

N\sum 
i=1

| xi0  - yi0| 2 + | t0  - s0| 2 \leq C\theta 2,
1

N

N\sum 
i=1

| yi0| 2 \leq C\lambda  - 1.(4.1)

Next, for \delta > 0, we use the partition (Cj)j\in \{ 1,...,J\} of \{ 1, . . . ,N\} constructed in
Lemma 3.9.

We set \alpha k = \alpha j if k \in Cj and let

Xk
s0+\tau = xk0 + \tau \alpha k +

\surd 
2Bk

\tau +
\surd 
2a0B0

\tau , Y k
s0+\tau = yk0 + \tau \alpha k +

\surd 
2Bk

\tau +
\surd 
2a0B0

\tau ,

and mj
Ys0+\tau 

=
1

nj

\sum 
k\in Cj

\delta Y k
s0+\tau 

,

and mj is the solution to\Biggl\{ 
dmj

t =
\Bigl[ 
(1 + a0)\Delta mj

t  - \alpha j \cdot Dmj
t

\Bigr] 
+
\surd 
2a0Dm

j
t \cdot dB0

t in (s0, T ]\times Rd,

mj
s0 =mj

y0
in Rd.

Finally, we set ms =N - 1
\sum 

j\in J n
jmj

s, and claim that, for all h\geq 0 and j \in \{ 1, . . . , J\} ,

E
\Bigl[ 
d1(m

j
s0+h,m

j
Ys0+h

)
\Bigr] 
\leq C(1 +M

1/2
2 (mj

s0))h
\beta /(nj)\beta ,(4.2)
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3366 CARDALIAGUET, DAUDIN, JACKSON, AND SOUGANIDIS

and

E
\Bigl[ 
d1(ms0+h,m

N
Xt0+h

)
\Bigr] 
\leq C\theta +C\delta  - d\beta (1 + \lambda  - 

1
2 )h\beta /N\beta .(4.3)

The proof follows from Lemma 3.10 and estimate (4.1). Indeed, to establish (4.2), we
first note that the process (mt)t\in [s0,T ] solves (2.11) in the sense of distributions (with

B0 replacing W ) if and only if the process \widetilde mt = (Id  - 
\surd 
2a0(B0

t  - Bt0))\sharp mt solves,
P-a.s. in the (classical) sense of distributions, with \widetilde \alpha t(x) = \alpha t(x+

\surd 
2a0(B0

t  - B0
t0),

the equation

d\widetilde mt(x) = [\Delta \widetilde mt(x) - div(\widetilde mt\widetilde \alpha t(x))]dt in (t0, T ]\times Rd, \widetilde mt0 =m0 in Rd.(4.4)

Next, we consider

\widetilde mj
t0+\tau = (Id - 

\surd 
2a0B0

\tau )\sharp m
j
t0+\tau and \widetilde Yk

t0+\tau =Yk
t0+\tau  - 

\surd 
2a0B0

\tau ,

and notice that \widetilde mj and \widetilde Yk solve the same equations as in Lemma 3.10, and, hence,
(4.2) holds with \widetilde mj

t0+h replacing mj
t0+h and mj\widetilde Yt0+h

replacing mj
Y\bft \bfzero +\bfh 

.

Since

mj
t0+r = \widetilde mj

t0+\tau \ast \delta \surd 2\alpha 0B\tau 
,

and

mj
Y\bft \bfzero +\tau 

=
1

nj

\sum 
k\in Cj

\delta \widetilde Yk
t0+\tau +

\surd 
2aoB0

\tau 
=

\Biggl( 
1

nj

\sum 
k\in Cj

\delta \widetilde Yk
s0+\tau 

\Biggr) 
\ast \delta \surd 2aoB0

\tau 
= \widetilde mj

Y\bfs \bfzero +\tau 
\ast \delta \surd 2aoB0

\tau 
,

we can conclude that

E
\Bigl[ 
d1(m

j
s0+h,m

j
Ys0+h

)
\Bigr] 
=E

\Bigl[ 
d1(m

j
s0+h \ast \delta \surd 2\alpha 0B0

h
, mj

Ys0+h
\ast \delta \surd 2\alpha 0B0

h
)
\Bigr] 

=E
\biggl[ 
d1(\widetilde mj

s0+h,m
j\widetilde Ys0+h

)

\biggr] 
,

and so (4.2) holds. The proof for (4.3) is similar.
We proceed with the proof noticing that the dynamic programming principle in

Lemma 3.11 still holds but with an expectation, since now the measures are random,
and with Proposition 2.3 replacing Proposition 2.2.

Moreover, since the conclusion of Lemma 3.12 also holds as already pointed out,
we can argue as in the proof of Proposition 3.8 (the time-regularity provided by
Lemma 4.1 replacing that in Lemma 3.3) that \scrU (t,mN

x )  - \scrV N (t,x)) \leq CN - \beta (1 +
1
N

\sum N
i=1 | xi| 2). The conclusion then follows as in the proof of Theorem 2.5.

5. Appendix. We adapt some technical results from [13] and [14] to our setting.
Most importantly, we infer the dynamic programming principle (Proposition 2.3) in
our setting from the dynamic programming principle which is stated in Theorem 3.1
of [14]. Most of the arguments are straightforward adaptations of the superposition
and mimicking results achieved in [23], and so the proofs are only sketched.

Following Definition 2.1 in [13] and Definition 2.3 in [14] we define, for each
(t0,m0) \in [0, T ]\times \scrP 2(Rd), the set of weak controls \scrA w(t0,m0) to be the set of tuples
\scrR = (\Omega ,\scrF ,P,F = (\scrF t)0\leq t\leq T ,G = (\scrG )0\leq t\leq T ,X,B,W,m,\alpha ) such that the following
hold.
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RATE FOR CONTROLLED MCKEAN--VLASOV DYNAMICS 3367

1. (\Omega ,\scrF ,P) is a probability space equipped with filtrations G, F such that, for
all 0\leq t\leq T , \scrG t \subset \scrF t and \scrF t \vee \scrF B

T \bot \scrG T | \scrG t.
2. X = (Xt)0\leq t\leq T is a continuous, F-adapted Rd-valued process.
3. \alpha = (\alpha t)t0\leq t\leq T is a bounded, F-predictable process taking values in Rd.
4. (B,W ) is a Rd \times Rd-valued standard F Brownian motion, W is G-adapted,

and \scrF t \vee \sigma (B)\bot \scrG T .
5. m= (mt)t0\leq t\leq T is a G-predictable process taking values in \scrP 2(Rd) and such

that mt =\scrL (Xt| \scrG t) for dP\otimes ds-a.e. (s,\omega )\in [t, T ]\times \Omega .
6. For all t0 \leq t\leq T

Xt =Xt0 +

\int t

t0

\alpha sds+
\surd 
2(Bt  - Bt0) +

\surd 
2a0(Wt  - Wt0), \scrL (Xt0) =m0.

We also let

\scrU w(t0,m0) := inf
\scrR \in \scrA w(t0,m0)

EP

\Biggl[ \int T

t0

(L(Xt, \alpha t) +\scrF (mt))dt+ \scrG (mT )

\Biggr] 
.

In our context, a superposition principle is a result asserting the following: given
a control rule \scrR = (\Omega ,\scrF ,F,P,W,m,\alpha ) \in \scrA \in \scrR (t0,m0), we can find an extension
(\widetilde \Omega , \widetilde \scrF ,G) of (\Omega ,\scrF ,F) hosting another Brownian motion B independent of F and a
process X such that dXt = \alpha t(Xt)dt+

\surd 
2dBt +

\surd 
2a0dWt such that mt = \scrL (Xt| \scrF t).

We refer the reader to [23] for details. The superposition results of [23] are useful to us
because we need to apply some technical results from [13, 14], and the superposition
allows us to check that our formulation is equivalent to the one used in [13, 14].

In what follows, for technical reasons, that is, to have the coercivity condition on
the cost appearing in Assumption 2.1 of [14], we will work with a truncated version of
the weak formulation defined here. Namely, we define \scrA R

w(t0,m0) just as \scrA w(t0,m0),
but with the controls \alpha required to take values in BR \subset Rd. Then, we write

\scrU R
w (t0,m0) := inf

\scrR \in \scrA R
w(t0,m0)

EP

\Biggl[ \int T

t0

(L(Xt, \alpha t) +\scrF (mt))dt+ \scrG (mT )

\Biggr] 
.

We also truncate the original form of the problem, by defining \scrU R just like \scrU , but
with controls \alpha required to take values in BR \subset Rd.

The following can be obtained using the superposition and following results of
[23], as in the proof of Theorem 8.3 of [23].

Proposition 5.1. For each R, \scrU R
w = \scrU R.

It is also useful to note that the regularity results of Lemma 3.1, which holds also
in the case a0 > 0, can be used to infer that \scrU R = \scrU for all R\geq R0.

Lemma 5.2. There exists R0 depending on the data such that, for each R \geq R0,
\scrU R = \scrU .

Proof. Theorem 3.1 and Theorem 3.6 in [14] together with Proposition 5.1 yield
that, for all t\in [0, T ], m\in \scrP 2(Rd), and xi \in Rd such that

sup
N

1

N

N\sum 
i=1

| xi| 2 <\infty and
1

N

N\sum 
i=1

\delta xi
\rightarrow 

N\rightarrow \infty 
m in \scrP 2(Rd),

we have, for xN = (x1, . . . , xN )\in (Rd)N ,

lim
N\rightarrow \infty 

\scrV R,N (t,xN ) = \scrU R(t,m).(5.1)
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3368 CARDALIAGUET, DAUDIN, JACKSON, AND SOUGANIDIS

Next, notice that, by (3.1) (see Remark 3.2), there is R0 depending only on the
data such that, for all R\geq R0, \scrV N,R = \scrV N . Thus (5.1) actually gives, for all R\geq R0,
limN\rightarrow \infty \scrV N (t,xN ) = \scrU R(t,m). It follows that \scrU = \scrU R0 . Indeed, clearly \scrU \leq \scrU R0 .

For the other inequality, for any (t0,m0), we can choose \scrR = (\Omega ,\scrF ,F,P,W,m,\alpha )
to be \epsilon -optimal in the definition of \scrU (t0,m0). Since \alpha is bounded by hypothesis, there
exists R \geq R0 such that \scrR \in \scrA R(t0,m0), and, hence, \scrU R0(t0,m0) = \scrU R(t0,m0) \leq 
\scrU (t0,m0) + \epsilon . Letting \epsilon \rightarrow 0 gives \scrU (t0,m0) = \scrU R0(t0,m0).

Now, we turn to the dynamic programming principle, that is, Proposition 2.3.

Proof of Proposition 2.3. We combine Theorem 3.1 of [13] with Proposition 5.1
to conclude that, for all 0\leq t0 \leq t1 \leq T and any R\geq R0,

\scrU (t0,m0) = \scrU R(t0,m0)

= \scrU R
w (t0,m0) = inf

\scrR \in \scrA R
w(t0,m0)

EP
\biggl[ \int t1

t0

(L(Xt, \alpha t) +\scrF (mt))dt+ \scrU R
W (t1,mt1)

\biggr] 
= inf

\scrR \in \scrA R
w(t0,m0)

EP
\biggl[ \int t1

t0

(L(Xt, \alpha t) +\scrF (mt))dt+ \scrU R(t1,mt1)

\biggr] 
= inf

\scrR \in \scrA R
w(t0,m0)

EP
\biggl[ \int t1

t0

(L(Xt, \alpha t) +\scrF (mt))dt+ \scrU (t1,mt1)

\biggr] 
.

Since R can be arbitrarily large, it is easy to see that the above imply

\scrU (t0,m0) = inf
\scrR \in \scrA w(t0,m0)

EP
\biggl[ \int t1

t0

(L(Xt, \alpha t) +\scrF (mt))dt+ \scrU (t1,mt1)

\biggr] 
,

and, using the superposition and adapting arguments from [23], Proposition 2.3 fol-
lows.
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