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ARTICLE INFO ABSTRACT

Keywords: Bladder cancer (BC) is frequent cancer affecting the urinary tract and is one of the most prevalent malignancies
Bladder cancer worldwide. No biomarkers that can be used for effective monitoring of therapeutic interventions for this cancer
Biomarker have been identified to date. This study investigated polar metabolite profiles in urine samples from 100 BC
;2‘:;;1;1223; patients and 100 normal controls (NCs) using nuclear magnetic resonance (NMR) and two methods of high-
NMR resolution nanoparticle-based laser desorption/ionization mass spectrometry (LDI-MS). Five urine metabolites

were identified and quantified using NMR spectroscopy to be potential indicators of bladder cancer. Twenty-five
LDI-MS-detected compounds, predominantly peptides and lipids, distinguished urine samples from BC and NCs
individuals. Level changes of three characteristic urine metabolites enabled BC tumor grades to be distinguished,
and ten metabolites were reported to correlate with tumor stages. Receiver-Operating Characteristics analysis
showed high predictive power for all three types of metabolomics data, with the area under the curve (AUC)
values greater than 0.87. These findings suggest that metabolite markers identified in this study may be useful for
the non-invasive detection and monitoring of bladder cancer stages and grades.

Laser mass. spectrometry

1. Introduction

Over the past decades, cancer mortality has been increasing. Ac-
cording to GLOBOCAN 2020, the number of new cancer cases diagnosed
in 2020 will be 19.3 million, with over 10.0 million dying as a result of
cancer [1]. Bladder cancer (BC) remains one of the most common types
of cancer worldwide, and the most common malignancy of the urinary
tract [1]. The scale of the problem is so high that, in 2020, nearly 200,
000 people died of bladder cancer and three times more suffered from
the disease [1]. This type of cancer is also more common in men. To
date, data indicate that BC in females are 70% less frequent than in
males, and among male and female BC patients, the mortality rate is
reduced by one-third in females compared to males [2]. The increasing
incidence and high mortality rate due to bladder cancer is a significant
burden on health systems worldwide [3].

Another challenge is the high frequency of disease recurrence and
recurrent progression following transurethral resection. This challenge
is compounded by the high costs of cystoscopy examinations which are
needed for early detection and to monitor BC patients following cancer
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treatment. Moreover, early detection of the disease depends signifi-
cantly on the knowledge and experience of the pathologist, especially in
the case of early stages of BC, which may not be readily apparent in
cystoscopic examination [4]. Early detection has another advantage, as
it reduces health care costs compared to the costs of treating BC patients
in the advanced stages of the disease.

Currently, the primary methods to detect BC include urine cytology,
cystoscopy, biopsy, and computed tomography, all displaying low
sensitivity for cancer detection. Based on worldwide reports, the most
common symptoms of BC involve hematuria, pain and burning, painful
frequent urination, feeling of an incompletely empty bladder. Cystos-
copy is the most common detection method for patients suffering from
these conditions. Given the invasive character of these procedures, there
exists a strong need for less aggressive and more quantitative approaches
to detect, diagnose, and monitor disease progression of bladder cancer
[5].

Fortunately, research activities aimed at identifying new biomarkers
of BC have increased recently [6]. The Food and Drugs Administration
has approved a few biomarker kits for disease detection so far, which
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consist mainly of protein detection [7]. Regrettably, due to the high
costs of identifying these markers in new patients and the relatively low
predictable power for BC, none of these approved kits have been
employed for general use, despite the fact that some of them are used to
monitor the recurrence of bladder cancer, including the UroVysion
bladder cancer kit. The problem is compounded by the fact that many of
procedures needed to identify these protein markers are cumbersome
and difficult to use in the clinic [8]. In addition, identification and
quantification of these recently approved BC protein markers require
sophisticated instrumentation which is not readily available to most
clinicians. Due to growing knowledge in the field of oncology, many
studies have focused on biomarker discovery to facilitate the diagnosis,
screening, and follow-up of communities susceptible to bladder cancer
[4].

Metabolomics is part of the field of systems biology, which aims to
characterize metabolic changes at a global level, and to inform on
metabolome changes, i.e., small molecule profiles, of complex organ-
isms underlying their cellular phenotypes [9]. Metabolomics studies on
human subjects focus primarily of metabolites measured in body fluids
or extracted from cells or tissues. The development and progression of
many types of cancer is reflected in changes of the metabolomes
analyzed from human biospecimens, including urine and serum [10]. In
cases of BC, the most useful analyses may be from the analysis of urine.
Although urine metabolomics may be influenced by dilution, it is more
readily available and non-invasive than serum or tissue analysis. [11]. In
recent years, numerous comprehensive reviews have been published
that provide detailed information on the various metabolomics ap-
proaches utilized for the detection and identification of biomarkers in
bladder cancer [12-15]. However, none of the identified biomarkers to
date can ensure 100% detection of cancer at an early stage, and their
high detection characteristics come with a substantial cost that global
health services cannot afford. Nonetheless, scientists should continue
researching new biomarkers to increase the proportion of early bladder
cancer detection cases.

Most metabolomics studies of BC patient urine samples have used
non-targeted approaches including gas chromatography (GC)- or liquid
chromatography (LC)- coupled MS [16-19]. Only few of these studies
have used NMR [20,21] approaches.

In 2010, one of the initial reports on metabolomic profiling of urine
from patients with BC using NMR was published [20]. The research
included samples from 33 non-muscle invasive BC patients, 31 in-
dividuals with benign conditions such as urinary tract infection, 2 with
bladder stones, and 37 healthy individuals. The study identified five
metabolites including citrate, dimethylamine, phenylalanine, taurine
and hippurate that specifically reflected biochemical changes in cancer
cell metabolism. The findings suggested that NMR-based urine analysis
had the potential to serve as a non-invasive early detection test for a
range of pathological conditions, including BC. Another NMR-based
study was published in 2019 that focused on urine and tissue
profiling. [21]. The study analyzed urine samples collected from 35
patients before and after transurethral resection. The results showed a
correlation between taurine and other amino acid metabolic pathways
perturbed in bladder cancer tissue samples and those observed in the
urine samples.

There are many publications in the literature regarding the untar-
geted analysis of urine extracts using mass spectrometry to identify
potential small-molecule biomarkers for early detection of BC [16,
22-24]. However, to date, only two papers have been published that
include a large group of more than one-hundred patients and have un-
dergone external validation [18,25]. Additionally, there is a limited
number of reports on the analysis of urine from patients with BC, taking
into account the division into different stages and grades of cancer, as
well as gender and age [26,27].

To the best of our knowledge, there are currently no published
metabolomics studies that have employed both NMR and laser desorp-
tion/ionization mass spectrometry (LDI-MS) to analyze the metabolite
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profiles of urine samples of BC patients. NMR provides information
about the molecular structure of metabolites and can identify a wide
range of metabolites with high accuracy and reproducibility with easy
and reliable quantification. On the other hand, LDI-MS provides com-
plementary information to NMR as it is much more sensitive and can
detect a wider range of metabolites. In addition, the use of silver
nanoparticles (AgNPs) in laser desorption/ionization mass spectrometry
(LDI-MS) has been reported to enhance the detection of lipids. AgNPs
can interact with the lipid molecules in the sample, increasing their
ionization efficiency and sensitivity. By combining these two tech-
niques, the study can obtain a more comprehensive view of the metab-
olite profile of BC patients’ urine samples. This can provide a more
accurate and detailed understanding of the metabolic changes associ-
ated with BC, which can lead to the development of more specific and
sensitive biomarkers for early detection, diagnosis, and treatment of BC
[28,29].

Herein, we report results from targeted and non-targeted metab-
olomics analyses of 199 urine samples acquired from 99 patients diag-
nosed with BC and 100 healthy controls. This study successfully
identified specific alterations in the urine metabolomes of BC patients
compared to those of control individuals. In addition, metabolite profile
changes were found to be informative reporters of the stage and grade of
bladder cancer. This study was conducted using high-resolution 'H NMR
and two laser desorption/ionization mass spectrometry (LDI-MS) tech-
niques, and resulting data were validated using both multivariate and
univariate statistical analyses.

2. Materials and methods
2.1. Materials and equipment

All solvents were of high quality ‘LC-MS’ grade and purchased from
Sigma Aldrich (St. Louis, MO, USA). Deuterium oxide (D20) and DSS
(4,4-dimethyl-4-silapentane-1-sulfonic acid) were purchased from
Sigma Inc. (Boston, MA, USA).

2.2. Collection of human urine samples

Urine samples were collected from BC patients and normal controls
at Kolbuszowa’s John Paul Il Hospital (Poland). NMR and MS metabolite
profile datasets collected on cancer and control urine samples were each
randomly divided into two groups for analysis. The two groups consisted
of a training set which included 70% of the data (either NMR or MS), and
a validation set which included the remaining 30% of the data.
Following detailed clinical questioning and laboratory testing, all pa-
tients underwent transurethral resection of bladder tumor (TURBT). The
study was approved by the local Bioethics Committee (permission no.
2018/04/10). A little more than half of the patients (n = 54) displayed
low-grade bladder cancer and papillary urothelial neoplasm of low
malignant potential (PUNLMP) (n = 3), while the remaining patients (n
= 41) had high-grade disease. Both high- and low-grade neoplasms were
found in two cases. Most of these patients (n = 69) had noninvasive
papillary carcinomas (pathologic stage Ta, pTa), 19 had submucosal
invasive tumors (pathologic stage T1, pT1), and 12 had muscle invasive
bladder cancer (pathologic stage T2, pT2). The average age of diagnosed
BC patients was 74 £ 10 years, while the average age of NCs was 64 +
12. Each participant provided 10 ml of urine which was stored at — 60°C
until further use. The sample collection period extended from October
2020 to November 2021. Subsequently, in December 2021, NMR and
MS measurements were performed on the collected urine samples.
Table 1 and table S1 in supplementary data provides an overview of the
clinical characteristics of the patients included in the study.

2.3. Analysis of tissue samples

Urine extracts were analyzed using high-resolution *H NMR and gold
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Table 1
Participant characteristics.
BC Control
Training Validation Training Validation
Number
General 69 30 70 30
Male 54 26 46 24
Female 15 4 24 6
Age (mean/SD) 71(9) 74(11) 60(14) 62(12)
Grade®
High grade 30 11 -

Low grade 34 19 -
LG (70%) and HG (30%) 1 -
LG (85%) and HG (15%) 1 - -

PUNLMP 3 - -
Stage

pT1 13 6 -
pT2 9 3 -
pTa 47 21 -
Type of surgery

TURBT 68 29 -
Cystectomy 1 1 -
Tumor origin

Primary 41 15 -
Recurrent 28 15 -
Hematuria

At diagnosis 68 30 -
At sampling 44 26 -
Tumor size

<1 7 0 -
2-3 27 18 -
>3 14 7 -
Multifocal/flat 11/2 5/0 -
Multifocality

0 1 0 -
1 47 21 -
2-3 8 3 -
>3 13 7 -
Previous treatment

BCG 10 4 -
Tumor histology

Papillary 67 29 -
Concomitant CIS 1 0 -
Solid, non-papillary 1 1 -
Tobacco smoking

Non smoking 47 25 -
Currently smoking 12 2 -
Prevoius smoking 9 3 -

¢ Tumors were classified according World Health Organization (WHO)/Inter-
national Society of Urological Pathology (ISUP) classification criteria; BC —
bladder cancer; LG - low-grade; HG - high-grade; PUNLMP - papillary urothelial
neoplasm of low malignant potential; pT1 and pTa - high risk non-muscle
invasive bladder cancer; pT2 — muscle invasive bladder cancer; pT- the stage
has been based on pathological or microscopic findings; SD: standard deviation.

and silver-109 nanoparticle-based laser desorption/ionization mass
spectrometry (AuNPs- and 1OgAgNPs—LDI—MS). Gold and silver-109
nanoparticles (AuNPs and '°°AgNPs) were generated with pulsed fiber
laser (PFL) 2D galvoscanner (2D GS) laser synthesis in solution/sus-
pension (LASiS) as described in our previous publication [30]. Supple-
mentary data detail the acquisition and processing of NMR and MS
spectra (S1-S4).

2.4. Preparation of urine metabolite extracts for 'H NMR metabolomics

As stated in our recent publication (and detailed in the Supplemen-
tary data), metabolites whose polarity ranged from medium-to-high
were analyzed from urine samples (Supplementary data, section S1)
[31-33].

2.5. Preparation of urine samples for LDI-MS studies

Thawed urine samples were diluted in methanol 500 times (v/v).
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After that, 0.3 ul volumes were directly placed on target plates: 1°°Ag
and Au PFL-2D GS LASiS [30]. Following solvent evaporation in air, the
Autoflex Speed apparatus was used to measure the plates containing the
samples.

2.6. Data processing and spectral acquisition

A comprehensive explanation of the acquisition and processing of
NMR and MS spectra can be found in the supplementary material, spe-
cifically in sections S2 to S4.

2.7. Multivariate statistical analysis

MetaboAnalyst version 5.0 online software was used to analyze all
metabolite datasets [34]. The statistical multivariate analysis used here
is similar to the one described in our recent publications [27,32,35].
Briefly the metabolite data obtained from each analytical technique was
log-transformed and auto-scaled. The resulting metabolite profiles were
then subjected to unsupervised Principal Component Analysis (PCA) and
Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA). To
identify metabolites that differentiated between the groups, we utilized
a comprehensive approach. Specifically, we applied (i) variable impor-
tance in projection (VIP) from OPLS-DA model (VIP > 1.0), (i)
two-sample t-tests & Wilcoxon Rank-Sum Tests with Mann-Whitney and
Bonferroni correction (FDR < 0.05, p-values < 0.05), (iii) fold change
(FC) analysis (FC > 2.0 or < 0.5), and (iv) area under the curve (AUC)
receiver operating characteristics (ROC) analysis with random forest
modeling (AUC > 0.7). Subsequently, we validated the potential bio-
markers meeting these criteria in an independent cohort (validation set)
to confirm their reproducibility. In the validation set, we used the same
statistical criteria as in the training set to test for significance. Impor-
tantly, the potential biomarkers that were significant in the training set
were also significant in the validation set, confirming their reproduc-
ibility. To test the robustness and avoid overfitting of the OPLS-DA
model we performed random permutation analysis with 2000 repeats
and 7-fold cross-validation. The overall performance of the OPLS-DA
model was assessed by evaluating the goodness of ft (RY) and the
predictive ability of the model (Q2). A metabolic pathway impact
analysis was performed using MetaboAnalyst version 5.0 [34] and the
Kyoto Encyclopedia of Genes and Genomes [36] to identify metabolic
pathways that are in all likelihood impacted by bladder cancer. One-way
analysis of variance (ANOVA) was used to compare differences between
different stages and grades of BC, with Tukey’s post-hoc testing used if
the ANOVA revealed significant differences. MS and NMR data were
analyzed using the same statistical method.

3. Results

In this work, the urine metabolite profiles of BC patients were
examined to identify urine-specific metabolic indicators of BC. The
study involved 100 patients diagnosed with BC and 100 patients in
whom urinary tract cancers were excluded. However, data from 99 urine
samples from BC patients were used for the statistical analysis of the
NMR results. For one sample, readable NMR spectra could not be ob-
tained. With the much more sensitive laser desorption/ionization mass
spectrometry (LDI-MS), this was no longer a problem and data from all
100 BC samples were included in the statistical analysis. In this case 400
of LDI-MS spectra were collected using 1°°Ag and Au PFL-2D GS LASiS
targets.

3.1. Differentiation between BC and control urine based on 'H NMR data

Urine metabolites from patients with BC (99 samples) and controls
(100 samples) were analyzed using high-resolution 1D 'H NMR. Alto-
gether, 39 metabolites were identified and quantified in each urine
sample following published protocols [31]. Fig. 1 depicts an overlay of
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Fig. 2. Cancer and control urine metabolite profiles obtained from 'H NMR data distinguish BC and NCs samples in the training set. (A,B) The tumor (violet) and
control (orange) urine samples were evaluated using (A) 2D PCA, and (B) OPLS-DA scores. (C) ROC curves of five distinct metabolites: trigonelline, hippurate, urea,
mannitol and 4-hydroxyphenylacetate. (D-H) Box-whisker plots of selected metabolites levels in urine samples from NCs and BCs. AUC: area under the curve; PC:
primary component; ROC: the receiver operator characteristic.
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(n =30 BC and n = 30 NCs). Metabolite concentrations from both
groups were statistically analyzed to assess whether differences in
metabolite levels between the patient and control groups were signifi-
cant. Findings from this analysis are reported in Supplementary data
Tables S2 and S3. 2D PCA score plots from both subsets of data revealed
a clear distinction between BC and NC patient groups. In the training set,
the best group separation was observed along principal components 1
and 2 (i.e., PC1 and PC2), which accounted for 41.3% and 7.5% of the
variance, respectively (Fig. 2 A). Separation of cancer and control urine
samples was also observed in validation set, with PC1 and PC2 ac-
counting for 44.6% and 6.5% of the variance, respectively (Fig. S1A).
Fig. 2B and S1B (Supplementary data) show the corresponding 3D PCA
plots for the training and validation sets, respectively. Next, a supervised
OPLS-DA analysis was performed to investigate the extent of the meta-
bolic differences between the BC and NC groups in both the training
(Fig. 2 C) and validation (Fig. S1C) data sets. Resulting score plots
indicated significant separate clustering of the two groups in the OPLS-
DA modeling conducted using both the training and validation data sets.
To evaluate the statistical robustness of the OPLS-DA modeling, two
thousand permutation tests were performed (Fig. S2). In the training set,
good discrimination was detected between the two groups (Q* =0.633,
R2Y:0.728, P-value 5E-04 (0/2000)), revealing substantial differences
in the metabolic profiles of BC versus NC urine samples (Fig. S2A,
Supplementary data). The permutation test validated that the group
separations observed in the OPLS-DA modeling of the validation NMR
metabolite dataset is not overfit (Q2 =0.412, RZY:O.603, P-value 5E-04
(0/2000)) (Fig. S2 C, Supplementary data).

Area under the curve AUROC analysis was performed on both the
training and validation data sets to assess the diagnostic performance of

Table 2
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the OPLS-DA models, together with the examination of VIP plots
resulting from the OPLS-DA modeling. These analyses were used to
identify potential urine metabolite biomarkers of bladder cancer. Next,
to examine the statistical significance of metabolite level differences, the
paired parametric t-test with Mann-Whitney and Bonferroni correction
was utilized. Fifteen urine metabolites were found to be significant
discriminators of BC versus NC, and were identified from a combined
analysis of VIP scores (> 1.0), t-tests (FDR corrected p-values < 0.05),
and area under the curve ROC analysis (AUC > 0.7) of training set
metabolite data (Table 2, Supplementary data). In turn, sixteen metab-
olites were deemed significant from a similar analysis of the validation
data set (Supplementary data, Table S2). In both the training and vali-
dation sets, these analyses revealed twelve metabolites that were
consistently found to be significant discriminators of the BC versus NC
groups. Finally, 5 metabolites were identified as being statistically sig-
nificant based on fold change ratios greater than 2 or less than 0.5. These
included trigonelline, hippurate, urea, mannitol and 4-hydroxyphenyla-
cetate. The diagnostic value of these five identified metabolites was
evaluated using receiver operating characteristic curve (ROC) analyses
and random forest modeling. The classification ROC model, (Fig. 2E and
Supplementary data Fig. S1E) indicated that including these five me-
tabolites was a good discriminator (AUC > 0.828) of the two groups in
both data sets. The ROC model was validated (See Supplementary data
Fig. S3) and a permutation test using 1000 permutation steps provided a
p-value of 0.009, supporting the validity of the ROC analysis. The best
ROC analyses with the highest significance (AUC > 0.8) were obtained
in the training set for trigonelline (AUC = 0.887, specificity = 75%, and
sensitivity = 80%), urea (AUC = 0.858, specificity = 86, and sensitivity
= 80), mannitol (AUC = 0.806, specificity = 84, and sensitivity = 69)

Results of targeted quantitative study of potential BC biomarkers derived from 'H NMR data of urine samples (P-value 0.05; VIP > 1.0; AUC > 0.70, FC > 2.0 or < 0.5).

Comparison mode Metabolite VvIP? P-value® FDR? FC* AUC Spec. [%] d Sens. [%] ¢
BC 4-Hydroxyphenylacetate 1.57 5.32E-10 5.45E-09 0.485 0.805 72 80
vs. Hippurate 1.59 4.03E-09 2.75E-08 0.360 0.789 81 67
NCs Mannitol 1.46 4.53E-10 5.45E-09 0.238 0.807 84 69
Trigonelline 2.09 3.28E-15 1.34E-13 0.196 0.887 75 89
Urea 1.62 3.41E-13 6.98E-12 0.390 0.858 86 80
HG BC Trigonelline 1.88 6.74E-10 2.76E-08 0.179 0.897 81 79
vS. Hippurate 1.37 1.46E-05 5.43E-05 0.342 0.779 67 76
NCs Mannitol 1.29 1.10E-06 9.05E-06 0.222 0.813 80 72
LG BC Trigonelline 1.94 6.53E-10 2.68E-08 0.226 0.869 88 75
vs. Hippurate 1.55 2.58E-06 1.76E-05 0.400 0.781 71 81
NCs Mannitol 1.41 1.21E-06 1.24E-05 0.254 0.790 68 83
pTa BC Trigonelline 1.98 9.37E-12 3.84E-10 0.234 0.872 88 77
vs. 4-Hydroxyphenylacetate 1.56 8.79E-08 8.02E-07 0.499 0.792 80 71
NCs Hippurate 1.56 2.76E-07 1.61E-06 0.395 0.780 68 81
Mannitol 1.45 9.74E-09 1.33E-07 0.228 0.813 68 85
1-Methylhistidine 1.41 9.79E-08 8.02E-07 0.494 0.791 71 79
Creatine 1.28 1.07E-06 4.37E-06 0.476 0.766 75 73
pT1 BC Trigonelline 1.85 7.61E-09 3.12E-07 0.130 0.920 91 84
vs. NCs 1,3-Dimethylurate 1.66 1.08E-07 2.22E-06 0.210 0.886 81 920
Urea 1.59 2.09E-07 2.86E-06 0.455 0.877 82 79
Hippurate 1.52 1.81E-06 1.48E-05 0.248 0.847 79 79
4-Hydroxyphenylacetate 1.43 1.74E-06 1.48E-05 0.368 0.847 80 79
Glycine 1.31 0.0002 0.0007 0.461 0.775 81 74
Citrate 1.30 1.97E-05 0.0001 0.436 0.810 88 68
Acetate 1.25 0.0003 0.0008 4.930 0.762 71 74
Formate 1.24 0.0002 0.0007 0.499 0.768 75 74
Mannitol 1.15 2.21E-05 0.0001 0.209 0.808 79 68
pT2 BC Urea 2.21 2.53E-05 0.0008 0.454 0.874 87 83
vs. NCs 1-Methylhistidine 2.11 0.0012 0.0097 0.420 0.788 71 75
Creatinine 1.82 0.0019 0.0132 0.497 0.775 920 67
Trigonelline 1.77 3.92E-05 0.0008 0.201 0.865 76 83
Hippurate 1.50 0.0009 0.0093 0.323 0.795 80 67
Creatine 1.32 0.0065 0.0297 0.469 0.742 89 58
Mannitol 1.23 0.0009 0.0093 0.215 0.795 82 67

2 VIP scores derived from OPLS-DA model; "P-value and FDR determined from Student’s t-test, “fold change between cancer and control urine calculated from the
concentration mean values for each group — cancer-to-normal ratio; “ROC curve analysis for individual biomarkers. AUC: area under the curve; FC: fold change; FDR:
false discovery rate; NCs: normal controls; pT1 and pTa — high risk non-muscle invasive bladder cancer; pT2 — muscle invasive bladder cancer; Sens.: sensitivity; Spec.:

specifity; VIP: variable importance in projection scores.



K. Ossolinski et al.

and 4-hydroxyphenylacetate (AUC = 0.805, specificity = 72, and
sensitivity = 80). Fig. 2D-H present the box-whisker plots for all five
selected metabolites whose levels differed significantly in the urine
samples of BC versus NC individuals. Table 2 reports the statistical pa-
rameters for these 5 metabolites identified by 'H NMR as potential
biomarkers of BC. These results indicate that, when considered together,
these five metabolites have increased diagnostic potential and may be
useful discriminators of malignant versus healthy phenotypes for in-
dividuals with bladder cancer.

3.2. Differentiation between grades of BC and control urine based on 'H
NMR metabolite profiles

PCA, non-parametric OPLS-DA, and one-way ANOVA analyses were
performed on training and validation data sets to investigate whether 'H

Journal of Pharmaceutical and Biomedical Analysis 233 (2023) 115473

NMR metabolite profiles of urine extracts could differentiate between
bladder cancer tumor grades and controls. The BC grade analysis
included 95 urine samples from patients with high-grade (HG) and low-
grade (LG) cancer, with three samples from papillary urothelial
neoplasm of low malignant potential (PUNLMP) patients excluded. NMR
datasets were divided like previously into two subsets: a training data set
to train a model (n = 29 HG, n = 36 LG, and n = 69 NCs) and a vali-
dation data set to assess the validity and robustness of the learned model
(n =11 HG, n = 18 LG and n = 30 NCs). In both the training and vali-
dation sets, PCA and OPLS-DA scores plots indicated a good separation
between control and cancer groups with different grades of tumors (LG
vs. NCs and HG vs. NCs) (Fig. 2). However, in the PCA scores plot, the
difference between the LG and HG BC patients was marginal (data not
shown). In the LG BC vs. NCs OPLS-DA model, 3 metabolites were
considered significant (VIP > 1, P-value, FDR < 0.05, FC < 0.5 or >2.0,
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AUC > 0.7) including trigonelline, hippurate, mannitol, for both the
training set and the validation set (Table 2). All three metabolites were
found in higher concentrations in the urines of NCs group compared to
the BC patients. Analysis of HG BC vs. NCs in the training and validation
sets of the OPLS-DA model indicated that these three metabolites were
significant to separating the HG BC from the NC group (Table 2). Fig. 3
displays PCA and OPLS-DA scores plots resulting from this analysis, and
illustrates the extent of the separation of HG, LG, from NCs, resulting
from the differential urine metabolite profiles in the training and in
validation datasets. Although unsupervised PCA analysis did not clearly
separate the groups based on distinct tumor grades, the cancer groups
separated clearly from the NC group.
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3.3. Differentiation between stages of BC and control based on 'H NMR
metabolite profile analyses of patient and control urine samples

To differentiate between the various stages of bladder cancer, the
complete metabolite concentration dataset obtained from the NMR
studies and measured in the urine samples of patients with different
stages of BC and normal controls was subjected to PCA, OPLS-DA, and
non-parametric one-way ANOVA analyses. The complete set of metab-
olite profiles was used to evaluate whether differences in metabolite
concentrations could be used to separate urine samples based on distinct
BC tumor stages. 87 patients with non-muscle invasive bladder cancer
(pTa and pT1) and 12 patients with muscle invasive bladder cancer
(pT2) provided urine samples that were used in this analysis. A training
data set was created with n = 48 pTa and n = 69 NCs. A validation data
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set with n = 20 pTa, and n = 30 NCs was then used to evaluate the
validity and robustness of the trained model. Due to the limited number
of samples, analysis of the pT1 and pT2 stage of BC was performed
without dividing it into two sets (70 NCs, 12 patients with pT2 and 34
with pT1). The PCA and OPLS-DA score plots indicated a good separa-
tion between NCs and the various stages of BC (pTa vs. NCs, pT1 vs. NCs,
and pT2 vs. NCs, Fig. 4). The performance of three models to differen-
tiate between pTa, pT1, and pT2 bladder cancer stages and NCs was then
evaluated using ROC curve analysis. Based on the cut-off criteria (FC > 2
or < 0.5, VIP > 1; AUC > 0.7, P-value and FDR < 0.05), 6, 10, and 7
metabolites were found to be most significant for sample distinction
between pTa BC vs. NCs, pT1 BC vs. NCs, and pT2 BC vs. NCs, respec-
tively (Table 2). However, the urine metabolomes could not themselves
distinguish between the three cancer stage groups (pT1 versus pTa
versus pT2), as no metabolite pattern differences were found to be sta-
tistically significant (Fig. 4G-4 J).

3.4. Untargeted metabolic profiling of urine with PFL-2D GS LASiS
AuNPs and 1%°AgNPs LDI-MS

Both gold and silver-109 nanoparticle-coated targets were utilized
for laser mass spectrometry-based profiling of urine metabolites
collected from patients diagnosed with bladder cancer and control in-
dividuals. PFL-2D GS LASiS AuNPs and '°°AgNPs LDI-MS (pulsed fiber
laser ablation synthesis of gold and solver-109 nanoparticles in solution
with the use of a 2D galvoscanner) were employed for the analysis of 200
urine samples, which resulted in the identification of 690 differentially
regulated mass spectral features. The data was randomly split into two
subsets for statistical analysis. The training data set consisted of n = 70
BC and n = 70 NCs and the validation data set was comprised of n = 30
BC and n = 30 NCs. 2D-PCA and OPLS-DA scores plots were generated
from multivariate statistical analysis of PFL-2D GS LASiS AuNPs and
109AgNPs LDI-MS mass spectral features. These analyses provided a clear
separation of the BC group from the NC control group, as a result of their
distinct MS-based urine metabolite profiles (see Supplementary data
Figs. S6, S7). OPLS-DA VIP scores > 1.0, associated with the OPLS-DA
models, were selected to identify mass spectral features that were
most discriminatory of the BC and NC groups. For the training dataset,
the validation of the OPLS-DA model using 2000 permutations resulted
in R%Y and Q? values of 0.926 (p < 5E04) and 0.971 (p < 5E04)
(Fig. S6), while R?Y and Q2 values of 0.867 (p < 5E04) and 0.965
(p < 5E04), respectively, were measured when analyzing the MS
metabolomics data present in the validation dataset. This analysis was
followed by univariate ROC analysis for both training and validation
datasets. Only m/z values with an AUC greater than 0.7 were chosen for
the next step of the analysis. Seventy-four features were common be-
tween the training and the validation datasets, and exhibited VIP values
> 1.0, FDR-corrected p-values < 0.05, fold change (FC) less than 0.5 or
greater than 1.8, and AUC > 0.7. Of these 74 common mass spectral
features, were more abundant in the urine of BC patients to control in-
dividual, while 48 exhibited the opposite trend. Multivariate ROC plot-
based exploratory analysis, based on Random Forest algorithm, was then
carried out to identify which m/z spectral features were most discrimi-
natory between the BC and control groups. Supplementary data Fig. S10
presents a summary of all the ROC curves generated from analysis of the
training and validation datasets, using a range of feature counts (five,
ten, fifteen, twenty-five, fifty, and one hundred), together with associ-
ated AUC values and confidence intervals. The 50-feature panel of model
5 in the training set and the 100-feature panel of model 6 in the vali-
dation set provided a very good discrimination power for BC diagnosis
(AUC > 0.97) (Fig. S8, Supplementary material).

The data generated from untargeted PFL-2D GS LASiS AuNPs LDI-MS
experiments were also analyzed using PCA and OPLS-DA to identify the
mass spectral features that most differentiated control from BC tumor
groups, using both training and validation datasets. In both instances,
PCA and OPLS-DA scores plots separated clearly BC from control, in both
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training and validation data subsets, suggesting that PFL-2D GS LASiS
AuNPs LDI-MS-based metabolite profiling of urine can also be used to
effectively to identify characteristic metabolic differences that separate
bladder cancer from control groups (see Supplementary data Fig. S11
and S12). Validation of the OPLS-DA model using 2000 random per-
mutation steps resulted in R%Y and Q2 values of 0.836 (p < 5E04) and
0.881 (p < 5E04), respectively for the training dataset (see e Supple-
mentary data Fig. S9, and values of 0.720 (p < 5E04) and 0.879
(p < 5E04) for the validation dataset (Supplementary data Fig. S10).
After completing this analysis, univariate as well as multivariate ROC
analyses were carried out. In the analysis of both subsets (training and
validation sets), 98 common features were found with VIP scores > 1.0,
FDR-corrected P-value < 0.05, an FC < 0.5 or > 1.8, and AUC > 0.7. Of
these 98 features, 49 spectral features were more abundant in urine
samples of bladder cancer patients compared to control individuals, and
49 features exhibited the opposite trend (less abundant in BCs than NCs).
Fig. S11 provides a comprehensive summary of all the ROC curves
generated from the training and validation datasets using a range of
feature counts (five, ten, fifteen, twenty-five, fifty, and one hundred),
along with corresponding AUC values and confidence intervals for each
curve. The 100-feature panel of model 6 of the training dataset yielded
the highest accuracy, while the 10-feature panel of model 2 of the
validation dataset displayed the highest accuracy. Next, putative com-
pound identification of select mass spectral features observed in the PFL-
2D GS LASiS °Ag and AuNPs LDI-MS spectra were performed by
searching against various metabolite databases, such as the Human
Metabolome Database (HMDB) [37], the MetaCyc Metabolic Pathway
Database [38], and the LIPID MAPS® Lipidomics Gateway [39].
Twenty-five mass spectral features were assigned to putative metabolite
IDs by comparing the spectral features observed in PFL-2D GS LASiS
1OQAgNPs and AuNPs LDI-MS mass spectra with those of compounds
present the databases mentioned above. All this information is reported
in Supplementary data Table S4.

3.5. Biomarker candidates in cancer: a pathway analysis

A metabolic pathway impact analysis was conducted using Metab-
oAnalyst 5.0 to identify metabolic pathways that are most likely impli-
cated in the observed differences in urine metabolite levels between BCs
and NCs. Pathway analysis and quantitative pathway enrichment anal-
ysis were performed on thirty-nine metabolites that were identified by
NMR or LDI MS. Sixteen of these metabolites were found in the KEEG
database and determined to be endogenous, while others may have
come from various exogenous sources or gut microbe activity. Two
different metabolic pathways were found to be significantly impacted,
and included pathways involved in glyoxylate and dicarboxylate meta-
bolism, and glycine, serine and threonine metabolism. Each of these
pathways displayed an impact value > 0.1 and a p-value < 0.05. Fig. 5A
and Supplementary data Table S5 summarize the findings resulting from
these metabolic pathway impact analyses.

In order to broaden the extent of metabolic pathways impacted in
bladder cancer, a quantitative enrichment analysis was employed using
the MetaboAnalyst 5.0 metabolite route enrichment module and its
associated Small Molecule Pathway Database (SMPDB). The pathway
involved in arginine and proline metabolism was found to be third
impacted pathway with p-values < 0.05 and to be relevant to bladder
cancer (Fig. 4B and Table S6 in Supplementary data).

4. Discussion

Analysis of the metabolite profiles of urine samples obtained from BC
patients and control individuals using NMR, ICP-OES, and LDI-MS with
both 1°°AgNPs and AuNPs-based targets indicated significant changes in
metabolite levels between patients with BC and controls. In this study,
39 small molecules were identified that may serve as diagnostic in-
dicators of bladder cancer. Twelve of these compounds were present in
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higher concentrations and twenty-seven at lower concentrations in the
urine of BC patients compared to controls (see Tables 52,3 in Supple-
mentary data). The higher concentration of these 15 metabolites may
reflect the increased production of tumor metabolites that are secreted
into the urine or may arise from the breakdown or change in the
structure of non-malignant tissue caused by tumor invasion through the
epithelial wall. Inflammatory responses due to the presence of the tumor
may also lead to increased levels of some urine metabolites. The 'H NMR
metabolomics data revealed 5 compounds that were in higher concen-
tration in the urine of NCs than in the BC subjects and significantly
discriminated between BC and NC groups. These included 4-hydroxy-
phenylacetate, hippurate, mannitol, trigonelline and urea,

One of the metabolites that separated the NC and BC groups, and
exhibited a high VIP value included trigonelline, a product of niacin
(vitamin B3) metabolism which is excreted in the urine. This compound
occurs also in plants and many foods [40]. Trigonelline has been shown
to affect the activity of crucial glucose and lipid metabolism enzymes.
Moreover, this compound has been tested for anticancer activity. Trig-
onelline had an inhibitory effect on the invasion of hepatoma cancer
cells [41]. Trigonelline is also an effective Nrf2 inhibitor in anticancer
activity and increases the sensitivity of chemoresistant pancreatic cell
lines to anticancer drugs [42]. Research has shown that almost 50% of
the dietary intake of trigonelline is excreted in urine within 8 h
following food ingestion [43]. In our studies, the urine level of trig-
onelline was lower in BC patients compared to NCs. This compound has
also been previously detected in lower amounts in the urine of BC pa-
tients and suggested to be a potential bladder cancer biomarker [44-46].
Analogous results, whereby trigonelline levels were found to be reduced,
have been reported in metabolomics studies of urine samples obtained
from lung cancer patients and individuals suffering from acute kidney
injury [47,48].

Urea, formed in the liver from ammonia via the urea cycle, was
another metabolite whose level differences contributed to the separation
of the BC group from the NC group. Urea is also the end product of
protein catabolism and is excreted in the urine. High urea concentra-
tions can cause gastrointestinal bleeding and dehydration in the human
body, while lower urea levels can cause liver failure, nephrotic syn-
drome, and cachexia [49]. Furthermore, it was found that supplying
urea to cancer cells and blocking the breakdown of urea while accu-
mulating ammonium can effectively kill cancer cells. Our research found

a significantly lower amount of urea in the urine of BC patients
compared to controls. Similar results were obtained in blood serum
analysis from patients with BC, where urea was found to be a good
discriminator of BC versus control sample groups, and was present in
much greater amounts in the control group [50].

Hippuric acid is a product of the aromatic compound metabolism
and also excreted in the urine. Hippuric acid negatively affects blood
pressure, liver ailments, and Crohn’s disease [51]. In our study, the
levels of hippuric acid were reduced in the urine of BC patients
compared to the levels found in NCs, which is consistent with previous
reports [20]. This relation has also been confirmed by several untargeted
metabolomic profiling studies of BC urine and serum samples [44,50,52,
53].

4-Hydroxyphenylacetate is a common human, fungal, and plant
metabolite. In our study the urine level of 4-hydroxyphenylacetate was
lower in BC patients, which is consistent with a prior NMR study [54].
Furthermore, 4-hydroxyphenylacetate has also been shown to be
excreted at lower levels in the urine of kidney cancer patients compared
to the amount excreted by control individuals [55,56].

Another potentially important marker of BC is the polyhydroxy sugar
alcohol, mannitol. Urine mannitol levels have been measured using
various analytical methods [57-59]. In one study, human plasma and
urine samples were collected from individuals suffering from impaired
GI function, where mannitol was reported to be a potential biomarker of
impaired intestinal permeability [60]. Our analysis found that the urine
level of mannitol is higher in NC patients than BCs. Similarly, Lee et al.
has shown that mannitol levels differ significantly in patients with uri-
nary cancers compared levels found in urine samples of control in-
dividuals [54]. Mannitol has previously been reported to be in much
lower concentrations in the urine of patients with various stages of BC
[61], which is consistent with our findings.

Using modified gold and silver-109 targets in LDI-MS experiments
made it possible to measure urine samples directly without separating
and extracting analytes first. Using these methods, MS analysis of urine
metabolites identified 16 compounds that were in higher concentration
in urine samples of BC patients compared to controls, and 10 compounds
that were lower in concentration. Most of these compounds were puta-
tively identified as peptides and lipids. Two of the four lipids found to be
elevated in the urine of BC patients belonged to the fatty acyl class, while
the other two lipids belong to the class of sphingolipids and were found
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in higher concentrations in the urine of NCs. These findings validate our
earlier research results, which focused on the metabolite profiling of
blood serum samples from BC patients and NC individuals [32].

In many processes associated with cancer cells, lipid metabolism
plays an important role. Fatty acids are the fundamental components of
complex lipids, which can be utilized for energy storage or can serve as
fundamental components of cellular membranes [62]. Changes in lipid
metabolism have been linked to both the early stages and progression of
BC [63], as documented by a number of investigators [64]. Sphingoli-
pids are lipids comprised of sphingoid bases, which are aliphatic amino
alcohols and include sphingosine. Sphingolipids are known to play a
significant role in the regulation of a variety of cellular processes,
including cellular apoptosis, proliferation, angiogenesis, senescence,
and cellular transformation [65]. The significance of sphingolipids in
the control of cancer growth and the development of cancerous pa-
thology has been extensively discussed in the scientific literature [88]. It
has been suggested that sphingolipids metabolism plays a role in cancer
aggressiveness and motility of cancer cells in muscle-infiltrating bladder
cancer [66].

In an effort to identify cellular markers that could distinguish be-
tween the various grades of BC, several articles have been published that
report on the metabolomics studies of urine and blood of BC patients
[12,13]. To our knowledge, however, only three studies have investi-
gated the connections between changes in metabolite levels in urine and
the distinct stages of tumor development (Ta/Tis, T1, and >T2) [18,19,
67]. In our study, slightly higher concentrations of trigonelline, hippu-
rate, and mannitol were measured in the urine of NCs compared to the
levels found in HG and LG BC groups (Fig. 3, Table 2).

Our study demonstrated that urine-based metabolite profiling can
accurately discriminate different stages of BC (pTa, pT1, and pT2) from
NCs (Table 2, Fig. 4). In the urine of patients with pTa, pT1, and pT2
stages of BC, we identified 13 significant metabolites that were good
discriminators of the different cancer stage groups from the control
group. Our research identified 6 compounds that distinguished BC pa-
tients with pTa from the control group, which included trigonelline, 4-
hydroxyphenylacetate, hippurate, mannitol, 1-methylhistidine, crea-
tine. In addition to the previously described compounds, 1-methylhisti-
dine and creatine deserves attention. Differential levels of 1-
methylhistidine in the urine of BC patients compared to healthy con-
trols has been associated with increased risk of BC recurrence [61,68].
Previous studies have shown that creatinine levels are lower in the
serum and urine of BC patients compared to healthy controls [50,53].
However, there have been studies suggesting that this compound is
present in elevated level in the urine and tissues of BC patients compared
to controls [69,70]. The reason for these contradictory findings is un-
clear, although our results are consistent with previous studies that
found lower levels of this compound in the urine of BC patients.

Of all ten potential urine-derived bladder cancer of pT1 stage
markers identified by our team, acetate deserves attention. Recent
studies have shown that acetate is a key substrate in tumor bio-
energetics. At the heart of acetate utilization in cancer is the enzyme
ACSS2, responsible for converting acetate to acetyl-CoA. Acetyl-CoA
production is critical for maintaining fatty acid synthesis in cancer cells.
Fatty acid metabolism is a critical aspect of cancer metabolism because
cancer cell proliferation requires the synthesis of numerous cellular
building blocks. It is also interesting to note that in bladder cancer there
may also be changes in lipid or fatty acid metabolism. Glucose-derived
endogenous acetate contributes to fatty acid synthesis in cisplatin-
resistant cells [71]. In addition, the increasing use of c acetate posi-
tron emission tomography in clinics provides supporting evidence for
the importance of acetate metabolism in cancer. !'C-acetate is used in
PET/MRI imaging and displays moderate accuracy in primary BC stag-
ing and limited sensitivity in detecting metastatic lymph nodes and
response to neoadjuvant chemotherapy [72]. Moreover, PET/MRI im-
aging is able to reach specificity and sensitivity levels of 50% and 80%,
respectively, for detecting lymph node metastasis [73]. Our study
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reports a clear correlation between the level of acetate in the urine and
grade of bladder cancer tumor malignancy.

5. Conclusion

We have demonstrated that multivariate statistics, together with
high-resolution NMR and gold/silver-109-based high-resolution LDI-MS
metabolomics, are powerful analytical techniques to investigate urine
metabolomes and changes in metabolite profiles in BC patients. 'H NMR
metabolomics was employed to assess the urine metabolite patterns of
99 patients with BC and 100 NCs. This led to the identification of five
potentially robust metabolic indicators of BC, which include 4-hydroxy-
phenylacetate, hippurate, mannitol, trigonelline, and urea. The combi-
nation of these metabolites predicted BC with potentially excellent
predictive power as revealed by AUC values greater than 0.82. Most of
these compounds have been previously linked with bladder cancer,
however until now, they have not been reported in such a combination
as a potential set of discriminating markers of this disease. In addition,
metabolite profiling using gold and silver-109 nanoparticle-based laser
desorption/ionization mass spectrometry (LDI-MS) identified 26 addi-
tional compounds, the majority of which were lipids, which helped
differentiate between cancer and control urine samples. In addition,
three additional metabolites were found to be potentially valuable dis-
criminators of LG versus HG bladder cancer, and thirteen were potential
reporters of pTa/pT1 and pT2 phases of BC. The distinct metabolite
profiles observed in the urine of patients with BC compared to those of
NCs may thus serve as diagnostic markers of BC and may help distin-
guish between the various stages and grades of BC. Results of this study
also suggest that evaluating disease severity and progression in BC using
a combination of urine metabolites has better predictive potential than
using either metabolite alone.
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