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Abstract

Competition between traditional platforms is known to im-
prove user utility by aligning the platform’s actions with user
preferences. But to what extent is alignment exhibited in data-
driven marketplaces? To study this question from a theoretical
perspective, we introduce a duopoly market where platform
actions are bandit algorithms and the two platforms compete
for user participation. A salient feature of this market is that
the quality of recommendations depends on both the bandit
algorithm and the amount of data provided by interactions
from users. This interdependency between the algorithm per-
formance and the actions of users complicates the structure
of market equilibria and their quality in terms of user util-
ity. Our main finding is that competition in this market does
not perfectly align market outcomes with user utility. Interest-
ingly, market outcomes exhibit misalignment not only when
the platforms have separate data repositories, but also when
the platforms have a shared data repository. Nonetheless, the
data sharing assumptions impact what mechanism drives mis-
alignment and also affect the specific form of misalignment
(e.g. the quality of the best-case and worst-case market out-
comes). More broadly, our work illustrates that competition in
digital marketplaces has subtle consequences for user utility
that merit further investigation.1

1 Introduction
Recommendation systems are the backbone of numerous
digital platforms—from web search engines to video shar-
ing websites to music streaming services. To produce high-
quality recommendations, these platforms rely on data which
is obtained through interactions with users. This fundamen-
tally links the quality of a platform’s services to how well the
platform can attract users.

What a platform must do to attract users depends on the
amount of competition in the marketplace. If the market-
place has a single platform—such as Google prior to Bing
or Pandora prior to Spotify—then the platform can accumu-
late users by providing any reasonably acceptable quality of
service given the lack of alternatives. This gives the platform
great flexibility in its choice of recommendation algorithm.
In contrast, the presence of competing platforms makes user
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participation harder to achieve and intuitively places greater
constraints on the recommendation algorithms. This raises
the questions: how does competition impact the recommen-
dation algorithms chosen by digital platforms? How does
competition affect the quality of service for users?

Conventional wisdom tells us that competition benefits
users. In particular, users vote with their feet by choosing the
platform on which they participate. The fact that users have
this power forces the platforms to fully cater to user choices
and thus improves user utility. This phenomenon has been
formalized in classical markets where firms produce homoge-
nous products (Baye and Kovenock 2008), where competition
has been established to perfectly align market outcomes with
user utility. Since user wellbeing is central to the healthiness
of a market, perfect competition is traditionally regarded as
the “gold standard” for a healthy marketplace: this concep-
tual principle underlies measures of market power (Lerner
1934) and antitrust policy (Gellhorn 1975).

In contrast, competition has an ambiguous relationship
with user wellbeing in digital marketplaces, where digital
platforms are data-driven and compete via recommendation
algorithms that rely on data from user interactions. Informally
speaking, these marketplaces exhibit an interdependency be-
tween user utility, the platforms’ choices of recommendation
algorithms, and the collective choices of other users. In partic-
ular, the size of a platform’s user base impacts how much data
the platform has and thus the quality of its service; as a result,
an individual user’s utility level depends on the number of
users that the platform has attracted thus far. Having a large
user base enables a platform to have an edge over competitors
without fully catering to users, which casts doubt on whether
classical alignment insights apply to digital marketplaces.

The ambiguous role of competition in digital
marketplaces—which falls outside the scope of our
classical understanding of competition power—has gained
center stage in policymaking discourse. Indeed, several pol-
icy reports (Stigler Committee 2019; Crémer, de Montjoye,
and Schweitzer 2019) have been dedicated to highlighting
ways in which the structure of digital marketplaces differs
from that of classical markets. For example, these reports
suggest that data accumulation can encourage market
tipping, leaving users vulnerable to harm (as we discuss at
the end of Section 1.1). Yet, no theoretical foundation has
emerged to formally examine the market structure of digital
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marketplaces and assess potential interventions.

1.1 Our Contributions
Our work takes a step towards building a theoretical foun-
dation for studying competition in digital marketplaces. We
present a framework for studying platforms that compete on
the basis of learning algorithms, focusing on alignment with
user utility at equilibrium. We consider a stylized duopoly
model based on a multi-armed bandit problem where user
utility depends on the incurred rewards. We show that com-
petition may no longer perfectly align market outcomes with
user utility. Interestingly, there can be multiple equilibria, and
the gap between the best equilibria and the worst equilibria
can be substantial.

Model. We consider a market with two platforms and a
population of users. Each platform selects a bandit algorithm
from a class A. After the platforms commit to algorithms,
each user decides which platform to participate on. Each
user’s utility is the (potentially discounted) cumulative reward
that they receive from the bandit algorithm of the platform
that they chose. Users arrive at a Nash equilibrium. Each plat-
form’s utility is the number of users who participate on that
platform, and the platforms arrive at a Nash equilibrium. The
platforms either maintain separate data repositories about
the rewards of their own users, or the platforms maintain a
shared data repository about the rewards of all users.

Alignment results. To formally consider alignment, we
introduce a metric—that we call the user quality level—that
captures the utility that a user would receive when a given
pair of competing bandit algorithms are implemented and
user choices form an equilibrium. Table 1 summarizes the
alignment results in the case of a single user and multiple
users. A key quantity that appears in the alignment results
is RA′(n), which denotes the expected utility that a user
receives from the algorithm A′ when n users all participate
in the same algorithm.

For the case of a single user, an idealized form of alignment
holds: the user quality level at any equilibrium is the optimal
utility maxA′ RA′(1) that a user can achieve within the class
of algorithms A. Idealized alignment holds regardless of the
informational assumptions on the platform.

The nature of alignment fundamentally changes when there
are multiple users. At a high level, we show that idealized
alignment breaks down since the user quality level is no
longer guaranteed to be the global optimum, maxA′ RA′(N),
that cooperative users can achieve. Nonetheless, a weaker
form of alignment holds: the user quality level nonetheless
never falls below the single-user optimum maxA′ RA′(1).

More formally, consider the setting where the platforms
have separate data repositories. We show that there can be
many qualitatively different Nash equilibria for the platforms.
The user quality level across all equilibria actually spans
the full set [maxA′ RA′(1),maxA′ RA′(N)]; i.e., any user
quality level is realizable in some Nash equilibrium of the
platforms and its associated Nash equilibrium of the users
(Theorem 2). Moreover, the user quality level at any equilib-
rium is contained in the set [maxA′ RA′(1),maxA′ RA′(N)]
(Theorem 3). When the number of users N is large, the gap
between maxA′ RA′(1) and maxA′ RA′(N) can be signifi-

cant since the latter is given access to N times as much data
at each time step than the former. The intuition behind this
result is that the performance of an algorithm is controlled
not only by its efficiency in transforming information to ac-
tion, but also by the level of data it has gained through its
user base. Since platforms have separate data repositories,
a platform can thus make up for a suboptimal algorithm by
gaining a significant user base.

What if the platforms were to share data? At first glance,
it might appear that with data sharing, a platform can no
longer make up for a suboptimal algorithm with data, and the
idealized form of alignment would be recovered. However,
we construct two-armed bandit problem instances where ev-
ery symmetric equilibrium for the platforms has user quality
level strictly below the global optimal maxA′ RA′(N) (The-
orems 4-5). The mechanism for this suboptimality is that the
global optimal solution requires “too much” exploration. If
other users engage in their “fair share” of exploration, an
individual user would prefer to explore less and free-ride off
of the data obtained by other users. To formalize this, we
establish a connection to strategic experimentation (Bolton
and Harris 1999). We further show that although all of the
user quality levels in [maxA′ RA′(1),maxA′ RA′(N)] may
not be realizable, the user quality level at any symmetric
equilibria is guaranteed to be within this set (Theorem 6).

Connection to policy reports. Our work provides a math-
ematical explanation of phenomena documented in policy
reports (Stigler Committee 2019; Crémer, de Montjoye, and
Schweitzer 2019). The first phenomena that we consider is
market dominance from data accumulation. The accumula-
tion of data has been suggested to result in winner-takes-all-
markets where a single player dominates and where market
entry is challenging (Stigler Committee 2019). The data ad-
vantage of the dominant platform can lead to lower quality
services and lower user utility. Theorems 2-3 formalize this
mechanism (see also the discussion in Section 4.2). The sec-
ond phenomena that we consider is the impact of shared
data access. While the separate data setting captures much
of the status quo of proprietary data repositories, sharing
data access has been proposed as a solution to market dom-
inance (Crémer, de Montjoye, and Schweitzer 2019). Will
shared data access deliver on its promises? Theorems 4-5
show sharing data does not solve alignment issues.

1.2 Related Work
We discuss the relation to research on competing platforms,
incentivizing exploration, and strategic experimentation.

Competing platforms. Aridor et al. (2020) examine the
interplay between competition and exploration in a duopoly
bandit setup with fully myopic users. They show that plat-
forms must both choose a greedy algorithm at equilibrium
and thus illustrate that competition is at odds with regret
minimization. In contrast, we take a user-centric perspective
and investigate alignment with user utility. Interestingly, the
result in Aridor et al. (2020) can be viewed as alignment
(since the optimal choice for a fully myopic user results in re-
gret), and our results similarly recover idealized alignment in
the special case when users are fully myopic. Going beyond
the setup of Aridor et al. (2020), we investigate non-myopic
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Single user Multiple users

Separate data repositories maxA′ RA′(1) [maxA′ RA′(1),maxA′ RA′(N)]

Shared data repository maxA′ RA′(1)
subset of [maxA′ RA′(1),maxA′ RA′(N)]
(strict subset in safe-risky arm problem)

Table 1: User quality level of the Nash equilibrium for the platforms. A marketplace with a single user exhibits idealized
alignment, where the user quality level is maximized. A marketplace with multiple users can have equilibria with a vast range of
user quality levels, and there are subtle differences between the separate and shared data settings.

users and allow multiple users to arrive at every round, and
we show that alignment breaks down in this general setting.

Outside of the bandits framework, another line of work has
also studied the behavior of competing learners when users
can choose between platforms. Ben-Porat and Tennenholtz
(2017, 2019) study equilibrium predictors chosen by compet-
ing offline learners in a PAC learning setup. Other work has
focused on the dynamics when multiple learners apply out-
of-box algorithms, showing that specialization can emerge
(Ginart et al. 2021; Dean et al. 2022) and examining the role
of data purchase (Kwon, Ginart, and Zou 2022); however,
these works do not consider which algorithms the learners
are incentivized to choose to gain users. In contrast, we in-
vestigate equilibrium algorithms chosen by online learners.

Other aspects of competing platforms that have been stud-
ied include competition under exogeneous network effects
(Rysman 2009; Weyl and White 2014), experimentation in
price competition (Bergemann and Välimäki 2000), dueling
algorithms which compete for a single user (Immorlica et al.
2011), competition when firms select innovation levels whose
cost decreases with more data (Prüfer and Schottmüller 2021),
and measures of a digital platform’s power in a marketplace
(Hardt, Jagadeesan, and Mendler-Dünner 2022).

Incentivizing exploration. This line of work has exam-
ined how the availability of outside options impacts bandit
algorithms. Kremer, Mansour, and Perry (2013) show that
Bayesian Incentive Compatibility (BIC) suffices to guarantee
that users will stay on the platform. Follow-up work (e.g.,
(Mansour, Slivkins, and Syrgkanis 2015; Sellke and Slivkins
2021)) examines what bandit algorithms are BIC. Frazier
et al. (2014) explore the use of monetary transfers.

Strategic experimentation. This line of work has inves-
tigated equilibria when a population of users each choose a
bandit algorithm. Bolton and Harris (1999, 2000) analyze
equilibria in a risky-safe arm bandit problem: we leverage
their results in our analysis of the shared data setting. Strate-
gic experimentation (see (Hörner and Skrzypacz 2017) for a
survey) has investigated exponential bandit problems (Keller,
Rady, and Cripps 2005), the impact of observing actions in-
stead of payoffs (Rosenberg, Solan, and Vieille 2007), and
the impact of cooperation (Brânzei and Peres 2021).

2 Model
We consider a duopoly market with two platforms performing
a multi-armed bandit learning problem and a population of N
users, u1, . . . , uN , who choose between platforms. Platforms

commit to bandit algorithms, and then each user chooses a
single platform to participate on for the learning task.

2.1 Multi-Armed Bandit Setting
Consider a Bayesian bandit setting where there are k arms
with priors DPrior

1 , . . . ,DPrior
k . At the beginning of the game,

the mean rewards of arms are drawn from the priors r1 ∼
DPrior

1 , . . . , rk ∼ DPrior
k . These mean rewards are unknown to

both the users and the platforms but are shared across the two
platforms. If the user’s chosen platform recommends arm
i, the user receives reward drawn from a noisy distribution
DNoise(ri) with mean ri.

Let A be a class of bandit algorithms that map the informa-
tion state given by the posterior distributions to an arm to be
pulled. The information state I = [DPost

1 , . . . ,DPost
k ] is taken

to be the set of posterior distributions for the mean rewards of
each arm. Each algorithm A ∈ A is represented as a function
mapping the information state I to a distribution over [k].

Running example: risky-safe arm bandit problem. To
concretize our results, we consider the risky-safe arm ban-
dit problem as a running example. The noise distribution
DNoise(ri) is a Gaussian N(ri, σ

2). The first arm is a risky
arm whose prior distribution DPrior

1 is over the set {l, h},
where l corresponds to a “low reward” and h corresponds to
a “high reward.” The second arm is a safe arm with known
reward s ∈ (l, h) (the prior DPrior

2 is a point mass at s). In
this case, the information state I permits a one-dimensional
representation given by p(I) := PX∼DPost

1
[X = h].

We construct a natural algorithm class as follows. For a
measurable function f : [0, 1] → [0, 1], let Af be the asso-
ciated algorithm defined so Af (I) is a distribution that is 1
with probability f(p(I)) and 2 with probability 1− f(p(I)).
We define Aall := {Af | f : [0, 1] → [0, 1] is measurable}
to be the class of all randomized algorithms. This class con-
tains Thompson sampling (AfTS is given by fTS(p) = p),
the Greedy algorithm (AfGreedy is given by fGreedy(p) = 1
if ph + (1 − p)l ≥ s and fGreedy(p) = 0 otherwise), and
mixtures of these algorithms with uniform exploration.

2.2 Platforms, Users, and Data
The interactions between the platform and users impact the
data that the platform receives for its learning task. The plat-
form action space A is a class of bandit algorithms that map
an information state I to an arm to be pulled. The user action
space is {1, 2}. For 1 ≤ i ≤ N , we denote by pi ∈ {1, 2}
the action chosen by user ui.
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Order of play. The platforms commit to algorithms A1

and A2 respectively, and then users simultaneously choose
their actions p1, . . . , pN prior to the beginning of the learning
task. We emphasize that user i participates on platform pi

for the full duration of the learning task. (In the full version,
we discuss the assumption that users cannot switch platforms
between time steps.)

Data sharing assumptions. In the separate data reposito-
ries setting, each platform has its own (proprietary) data
repository for keeping track of the rewards incurred by
its own users. Platforms 1 and 2 thus have separate infor-
mation states given by I1 = [DPost

1,1 , . . . ,DPost
1,k ] and I2 =

[DPost
2,1 , . . . ,DPost

2,k ], respectively. In the shared data repository
setting, the platforms share an information state Ishared =
[DPost

1 , . . . ,DPost
k ], which is updated based on the rewards

incurred by users of both platforms.2

Learning task. The learning task is determined by the
choice of A1 and A2, user actions p1, . . . , pn, and specifics
of data sharing between platforms. At each time step:

1. Each user ui arrives at platform pi. The platform pi rec-
ommends arm ai ∼ Ai(I) to that user, where I denotes
the information state of the platform. (The randomness of
arm selection is fully independent across users and time
steps.) The user ui receives noisy reward DNoise(rai).

2. After providing recommendations to all of its users, plat-
form 1 observes the rewards incurred by users in S1 :={
i ∈ [N ] | pi = 1

}
. Platform 2 similarly observes the re-

wards incurred by users in S2 :=
{
i ∈ [N ] | pi = 2

}
.

Each platform then updates their information state I with
the corresponding posterior updates.

3. A platform may have access to external data that does
not come from users. To capture this, we introduce back-
ground information into the model. Both platforms ob-
serve the same background information of quality σb ∈
(0,∞]. For each arm i, the platforms observe the same
realization of a noisy reward DNoise(ri).

In other words, platforms receive information from users (and
background information), and users receive rewards based on
the recommendations of the platform that they have chosen.

2.3 Utility Functions and Equilibrium Concept
User utility is generated by rewards, while the platform utility
is generated by user participation.

User utility function. We follow the standard discounted
formulation for bandit problems (e.g. (Gittins and Jones
1979; Bolton and Harris 1999)), where the utility incurred
by a user is defined by the expected (discounted) cumula-
tive reward received across time steps. The discount fac-
tor β parameterizes the extent to which agents are myopic.
Let U(pi;p−i, A1, A2) denote the utility of a user ui if
they take action pi ∈ {1, 2} when other users take actions
p−i ∈ {1, 2}N−1 and the platforms choose A1 and A2. For
clarity, we make this explicit in the case of discrete time setup

2In web search, recommender systems can query each other,
effectively building a shared information state.

with horizon length T ∈ [1,∞]. Let ati = ati(A1, A2,p) de-
note the arm recommended to user ui at time step t. The util-
ity is defined to be U(pi;p−i, A1, A2) := E

[∑T
t=1 β

trat
i

]
,

where the expectation is over randomness of the incurred
rewards and the algorithms. In the case of continuous time,
the utility is U(pi;p−i, A1, A2) := E

[∫
e−βtdπ(t)

]
, where

the β ∈ [0,∞) denotes the discount factor and dπ(t) denotes
the payoff received by the user. In both cases, observe that
the utility function is symmetric in user actions.

The utility function implicitly differs in the separate and
shared data settings, since the information state evolves dif-
ferently in these two settings. When we wish to make this
distinction explicit, we denote the corresponding utility func-
tions by U separate and U shared.

User equilibrium concept. After the platforms commit
to algorithms A1 and A2, the users end up at a pure strategy
Nash equilibrium of the resulting game. More formally, let
p ∈ {1, 2}N be a pure strategy Nash equilibrium for the
users if pi ∈ argmaxp∈{0,1} U(p;p−i, A1, A2) for all 1 ≤
i ≤ N . The existence of a pure strategy Nash equilibrium
follows from the assumption that the game is symmetric and
the action space has 2 elements (Cheng et al. 2004).

One subtlety is that there can be multiple equilibria in
this general-sum game. For example, there are at least 2
(pure strategy) equilibria when platforms commit to the same
algorithm—one equilibrium where all users choose the first
platform, and another where all users choose the second
platform. We denote by EA1,A2

the set of pure strategy Nash
equilibria when the platforms choose algorithms A1 and A2.
We simplify the notation and use E when A1 and A2 are clear
from the context. In the full version of the paper, we discuss
our choice of solution concept in greater detail.

Platform utility and equilibrium concept. The utility of
the platform roughly corresponds to the number of users who
participate on that platform. This captures that in markets
for digital goods, where platform revenue is often derived
from advertisement or subscription fees, the number of users
serviced is a proxy for platform revenue.

When formalizing platform utility, the fact that there can
be several user equilibria for a given choice of platform al-
gorithms creates ambiguity. To resolve this, we consider the
worst-case user equilibrium for the platform, and we define
platform utility to be the minimum number of users that a
platform would receive at any pure strategy equilibrium for
the users. More formally, when platform 1 chooses A1 and
platform 2 chooses A2, the utilities are given by:

v1(A1;A2) := min
p∈E

N∑
i=1

1[pi = 1], v2(A2;A1) = min
p∈E

N∑
i=1

1[pi = 2].

(1)

The equilibrium concept for the platforms is a pure strategy
Nash equilibrium, and we often focus on symmetric equilibria.
We discuss the existence of such an equilibrium in Sections 4-
5. We note that at equilibrium, the utility for the platforms is
typically 0. Platforms earning zero equilibrium utility in our
model mirrors firms earning zero equilibrium profit in price
competition (Baye and Kovenock 2008). However, there is
an important distinction: platform utility ex-post (after users
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choose between platforms) may no longer be 0 and may be as
large as N , while firm profit in price competition is 0 ex-post.

3 The Alignment of a Market Outcome
The alignment of an equilibrium outcome for the platforms
is measured by the amount of user utility that it generates. In
Section 3.1 we introduce the user quality level to formalize
alignment. In Section 3.2, we show an idealized form of
alignment for N = 1 (Theorem 1). In Section 3.3, we turn to
the case of multiple users and discuss benchmarks for the user
quality level. In Section 3.4, we describe mild assumptions
on A that we use in our alignment results for multiple users.

3.1 User Quality Level
Given platform algorithms A1 ∈ A and A2 ∈ A, we intro-
duce the user quality level Q(A1, A2) to capture the utility
that a user would receive when the platforms choose A1 and
A2 and when user choices form an equilibrium. When formal-
izing this, the potential multiplicity of user equilibria creates
ambiguity (like in the definition of platform utility in (1)), and
different users potentially receiving different utilities creates
further ambiguity. We again take a worst-case perspective
and formalize the user quality level as the minimum over
equilibria p ∈ E and over users 1 ≤ i ≤ N .
Definition 1 (User quality level). Given algorithms A1 and
A2 chosen by the platforms, the user quality level is defined
to be Q(A1, A2) := minp∈E,1≤i≤N U(pi;p−i, A1, A2).
As we discuss in the full version, our insights about alignment
would remain unchanged if we were to define the user quality
level based on an arbitrary user equilibrium and user, rather
than taking a minimum.

To simplify notation in our alignment results, we introduce
the reward function which captures how the utility that a
given algorithm generates changes with the number of users
who contribute to its data repository. For an algorithm A ∈ A,
let the reward function RA : [N ] → R be defined by:

RA(n) := U separate(1;pn−1, A,A),

where pn−1 is a vector with n− 1 coordinates equal to one.

3.2 Idealized Alignment Result: A Single User
When there is a single user, the platform algorithms turn
out to be perfectly aligned with user utilities at equilibrium.
To formalize this, we consider the optimal utility that could
be obtained by a user across any choice of actions by the
platforms and users (not necessarily at equilibrium): that
is, maxp∈{1,2},A1∈A,A2∈A U(p; ∅, A1, A2). Using the setup
of the single-user game, we can see that this is equal to
maxA∈A U(1; ∅, A,A) = maxA∈A RA(1). We show that
the user quality level always meets this benchmark.
Theorem 1. Suppose that N = 1, and consider either the
separate data setting or the shared data setting. If (A1, A2)
is a pure strategy Nash equilibrium for the platforms, then
the user quality level Q(A1, A2) is equal to maxA∈A RA(1).

Theorem 1 shows that in a single-user market, two firms
is sufficient to perfectly align firm actions with user utility—
this stands in parallel to classical Bertrand competition in the
pricing setting (Baye and Kovenock 2008).

3.3 Benchmarks for User Quality Level
In the case of multiple users, this idealized form of alignment
turns out to break down, and formalizing alignment requires
a nuanced consideration of benchmarks. We define the single-
user optimal utility to be maxA∈A RA(1). This corresponds
to maximal possible user utility that can be generated by a
platform who only thus relies on a single user for all of its
data. On the other hand, we define the global optimal utility
to be maxA∈A RA(N). This corresponds to the maximal
possible user utility that can be generated by a platform when
all of the users are forced to be on that platform.

3.4 Assumptions on A
When there are multiple users, we require mild assumptions
on A. Information monotonicity requires that an algorithm
A’s performance in terms of user utility does not worsen with
additional posterior updates to the information state. Our
first two instantations—strict information monotonicity and
information constantness—require that the user utility of A
grow monotonically in the number of other users participating
in the algorithm. Our third instantation—side information
monotonicity—requires that the user utility of A not decrease
if other users also update the information state.
Assumption 1 (Information monotonicity). For any given
discount factor β and number of users N , an algorithm
A ∈ A is strictly information monotonic if RA(n) is strictly
increasing in n for 1 ≤ n ≤ N . An algorithm A is infor-
mation constant if RA(n) is constant in n for 1 ≤ n ≤ N .
An algorithm A is side information monotonic if for every
measurable function f mapping information states to distri-
butions over [k] and for every 1 ≤ n ≤ N − 1, it holds that
U shared(1;2n, A, f) ≥ RA(1) where 2n ∈ {1, 2}n has all
coordinates equal to 2.

Utility richness requires that the set of user utilities
spanned by A is a sufficiently rich interval.
Assumption 2 (Utility richness). A class of algorithms A
is utility rich if the set of utilities {RA(N) | A ∈ A} is
a contiguous set, the supremum of {RA(N) | A ∈ A} is
achieved, and there exists A′ ∈ A such that RA′(N) ≤
maxA∈A RA(1).

Discussion of assumptions. Utility richness holds (almost)
without loss of generality, by taking the closure of an algorith-
mic class under mixtures with exploration. However, not all
algorithms are information monotone. We nevertheless show
the information monotonicity of several algorithms for the
risky-safe arm setup, including any algorithm under undis-
counted rewards and Thompson sampling under discounted
rewards. These results are of independent interest and are
stated in the full version. More broadly, understanding in-
formation monotonicity is crucial for studying the incentive
properties of bandit algorithms: indeed prior work (e.g. Ari-
dor et al. (2020)) has explored variants of this assumption.

4 Separate Data Repositories
We investigate alignment when the platforms have separate
data repositories. In Section 4.1, we show that there can
be many qualitatively different equilibria for the platforms
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and characterize their alignment. In Section 4.2, we discuss
factors that drive the level of misalignment in a marketplace.

4.1 Multitude of Equilibria and Alignment
In contrast with the single user setting, the marketplace can
exhibit multiple equilibria for the platforms. As a result, to
investigate alignment, we investigate the range of achievable
user quality levels. Our main finding is that the equilibria
can exhibit a vast range of alignment properties. In particu-
lar, every user quality level in between the single-user opti-
mal utility maxA′∈A RA′(1) and the global optimal utility
maxA′∈A RA′(N) can be realized by some equilibrium.

Theorem 2. Suppose that each algorithm in A is either
strictly information monotonic or information constant (As-
sumption 1), and suppose that A is utility rich (Assumption 2).
For every α ∈ [maxA′∈A RA′(1),maxA′∈A RA′(N)], there
exists a symmetric pure strategy Nash equilibrium (A,A) in
the separate data setting such that Q(A,A) = α.

Nonetheless, there is a baseline (although somewhat weak)
form of alignment achieved by all equilibria. In particular,
every equilibrium for the platforms has user quality level at
least the single-user optimum maxA′∈A RA′(1).

Theorem 3. Suppose that each algorithm in A is either
strictly information monotonic or information constant (see
Assumption 1). In the separate data setting, at any pure strat-
egy Nash equilibrium (A1, A2) for the platforms, the user
quality level lies in the following interval:

Q(A1, A2) ∈
[
max
A′∈A

RA′(1), max
A′∈A

RA′(N)

]
.

An intuition for these results is that the performance of an
algorithm depends not only on how it transforms information
to actions, but also on the amount of information to which it
has access. A platform can make up for a suboptimal algo-
rithm by attracting a significant user base: if a platform starts
with the full user base, no single user may want to switch
to the competing platform, even if the competing platform
chooses a stricter better algorithm. However, if a platform’s
algorithm is highly suboptimal, then the competing platform
will indeed be able to win the full user base.

Proof sketches of Theorem 2 and Theorem 3. We first
show pure strategy equilibria for users take a simple form.
In particular, we show that every pure strategy equilibrium
p∗ ∈ EA1,A2 is in the set {[1, . . . , 1], [2, . . . , 2]}. The reward
functions RA1(·) and RA2(·) determine which of these two
solutions are in EA1,A2 .

This characterization of the set EA1,A2
enables us to reason

about the platform equilibria. To prove Theorem 2, the key
ingredient is that (A,A) is an equilibrium for the platforms
as long as RA(N) ≥ maxA′ RA′(1). To prove Theorem 3,
the key insight is that platforms can’t both choose highly
suboptimal algorithms at equilibrium.

4.2 What Drives the Level of Misalignment?
The multiplicity of equilibria makes it subtle to reason about
the alignment in a marketplace. The level of misalignment de-
pends on two factors: first, the size of the range of realizable

user quality levels, and second, the selection of equilibrium
within this range. We explore each of these factors.

How large is the range of possible user quality levels?
Both the algorithm class and the structure of the user utility
function determine the size of the range of possible user
quality levels. We informally examine the role of the user’s
discount factor on the size of this range.

First, consider the case where users are fully non-
myopic. The gap between the single-user optimal
utility maxA′∈A RA′(1) and global optimal utility
maxA′∈A RA′(N) can be substantial. For example, consider
an algorithm A′ whose regret grows according to

√
T

where T is the number of samples collected, and let
OPT := Er1∼DPrior

1 ,...rk∼DPrior
k

[max1≤i≤k ri] be the expected
maximum reward of any arm. Since utility and regret are
related up to additive factors for fully non-myopic users, we
know RA′(1) ≈ OPT−

√
T while RA′(N) ≈ OPT−

√
NT .

At the other extreme, consider all fully myopic users. The
range collapses to a single point: in particular, RA′(1) is
equal to RA′(N) for any algorithm A′ ∈ A. To see this, we
observe that user utility is fully determined by the algorithm’s
behavior at the first time step, which is determined before it
receives any information from users. When users are partially
non-myopic, the range is no longer a single point, but is
intuitively smaller than in the undiscounted case.

Which equilibrium arises in a marketplace?. When the
gap between the single-user optimal and global optimal utility
levels is substantial, it becomes ambiguous what user quality
level will be realized in a given marketplace. Which equilibria
arises in a marketplace depends on several factors.

One factor is the secondary aspects of the platform objec-
tive that aren’t fully captured by the number of users. For ex-
ample, suppose that the platform derives other sources of rev-
enue from recommending certain types of content (e.g. from
recommending advertisements). If these additional sources
of revenue are not aligned with user utility, then this could
drive the marketplace towards lower user quality levels.

Another factor is the mechanism under which platforms ar-
rive at equilibrium solutions. We informally show that market
entry can result in the the worst possible user utility. When
one platform enters the marketplace before another platform,
all users will initially choose the first platform. The first plat-
form can lose users only if RA1

(N) is below the single-user
optimal. Thus, the worst possible user quality level can arise,
and this problem only worsens if the first platform accumu-
lates data beforehand. This finding illustrates barriers to entry
in digital marketplaces (Stigler Committee 2019).

5 Shared Data Repository

What happens when data is shared between the platforms?
We show that both the nature of alignment and the forces
that drive misalignment change. In Section 5.1, we show a
construction where the user quality levels do not span the full
set [maxA′ RA′(1),maxA′ RA′(N)]. Despite this, in Section
5.2, we establish that the user quality level at any symmetric
equilibrium continues to be at least maxA′ RA′(1).
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5.1 Construction Where Optimal Is Not Realizable
In contrast with the separate data setting, the set
of user quality levels at symmetric equilibria for
the platforms does not necessarily span the full set
[maxA′ RA′(1),maxA′ RA′(N)]. To demonstrate this, we
construct bandit setups where every symmetric equilibrium
(A,A) has user quality level Q(A,A) below maxA′ RA′(N).

Theorem 4. Let the algorithm class Acont
all ⊆ Aall consist

of the algorithms Af where f(0) = 0, f(1) = 1, and f is
continuous at 0 and 1. In the shared data setting, there exists
an undiscounted risky-safe arm bandit setup such that the set
of realizable user quality levels for algorithm class Acont

all is
equal to a singleton set:

{Q(A,A) | (A,A) an equilibrium for the platforms } = {α∗}

where maxA′∈A RA′(1) < α∗ < maxA′∈A RA′(N).

Theorem 5. In the shared data setting, for any discount
factor β ∈ (0,∞), there exists a risky-safe arm bandit setup
such that the set of realizable user quality levels for algorithm
class Aall is equal to a singleton set:

{Q(A,A) | (A,A) an equilibrium for the platforms } = {α∗}

where maxA′∈A RA′(1) ≤ α∗ < maxA′∈A RA′(N).

Theorems 4 and 5 illustrate examples where there is
no symmetric equilibrium for the platforms that realizes
the global optimal utility maxA′ RA′(N)—regardless of
whether users are fully non-myopic or discounted. These
results have interesting implications for shared data access
as an intervention in digital marketplace regulation (e.g. see
(Crémer, de Montjoye, and Schweitzer 2019)). At first glance,
it would appear that data sharing would resolve the alignment
issues, since it prevents market dominance from data accumu-
lation. However, our results illustrate that the platforms may
still not align their actions with user utility at equilibrium.

Comparison of separate and shared data settings. We
show fundamental differences in alignment when the plat-
forms have a shared data repository and have separate data
repositories. We focus on the undiscounted setup analyzed
in Theorem 4; in this case, the algorithm class Acont

all satisfies
information monotonicity and utility richness so the results
in Section 4.1 are also applicable.

The first difference is that there is a unique symmetric
equilibrium for the shared data setting, which stands in con-
trast to the range of equilibria for the separate data setting.
Thus, while the particularities of equilibrium selection impact
alignment in the separate data setting (see Section 4.2), these
particularities are irrelevant for the shared data setting.

The second difference is that the user quality level in the
shared data setting is strictly within the range of realizable
user quality levels for the separate data setting. Alignment in
the shared data setting is strictly better than the alignment of
the worst possible equilibrium in the separate data setting. On
the other hand, alignment in the shared data setting is strictly
worse than the alignment of the best possible equilibrium
in the separate data setting. This means that data sharing is
worse for users than maintaining separate data and applying
a well-designed equilibrium selection mechanism.

Mechanism for misalignment. Perhaps counterintuitively,
the mechanism for misalignment in the shared data setting is
that a platform must perfectly align its choice of algorithm
with the preferences of a user (given the choices of other
users). In particular, the algorithm that is optimal for one user
given the actions of other users is different from the algorithm
that would be optimal if the users were to cooperate. This is
because exploration is costly to users, so users don’t want
to perform their fair share of exploration, and would rather
free-ride off of the exploration of other users. A platform who
chooses an algorithm with the global optimal strategy thus
cannot maintain its user base. We formalize this phenomena
by establishing a connection with strategic experimentation,
drawing upon (Bolton and Harris 1999, 2000).

Proof sketches of Theorem 4 and Theorem 5. We relate
the equilibria of our game to the equilibria of the following
game G. Let G be an N user game where each user chooses
an algorithm in A within the same bandit problem setup as
in our game. The users share an information state I . At each
time step, all N users arrive at the platform. Each user i
pulls the arm drawn from Ai(I) and updates I. We show
that the solution (A,A) is in equilibrium if and only if A is a
symmetric pure strategy equilibrium of the game G.

To show Theorem 5, it suffices to analyze structure of
the equilibria of G. The global optimal algorithm A∗ =
argmaxA′∈A RA′(N) corresponds to the cooperative solu-
tion for the users, which may not be an equilibrium solu-
tion in G due “free-riding”. Interestingly, Bolton and Harris
(1999, 2000)—in the context of strategic experimentation—
formalized freeriding in a game similar to G. We provide a
recap of the relevant aspects in the full version of the paper.
We can adopt these results to analyze the equilibrium user
utility in G. The full proof is deferred to the full version.

5.2 Weak Alignment
Although not all values in [maxA′ RA′(1),maxA′ RA′(N)]
can be realized, we show that the user quality level at any
symmetric equilibrium is always at least maxA′ RA′(1).
Theorem 6. Suppose that every algorithm in A is side in-
formation monotonic (Assumption 1). In the shared data
setting, at any symmetric equilibrium (A,A), it holds that
Q(A,A) ∈ [maxA′∈A RA′(1),maxA′∈A RA′(N)].

Theorem 6 demonstrates that free-riding cannot drive the
user quality level below the single-user optimal. Theorem 6
parallels Theorem 3 from the separate data setting: in both
cases, the market outcomes exhibit a weak form of alignment.

6 Discussion
We present a framework for analyzing competition between
2 multi-armed bandit learners interacting with a population
of users. We analyze the user quality level to measure the
alignment of market equilibria. We show that competition
does not lead to perfect alignment, both when the platforms
maintain separate data repositories and maintain a shared data
repository. More broadly, our work provides a mathemati-
cal explanation of phenomena documented in policy reports
and reveals that competition in data-driven marketplaces has
subtle consequences that merit further inquiry.
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