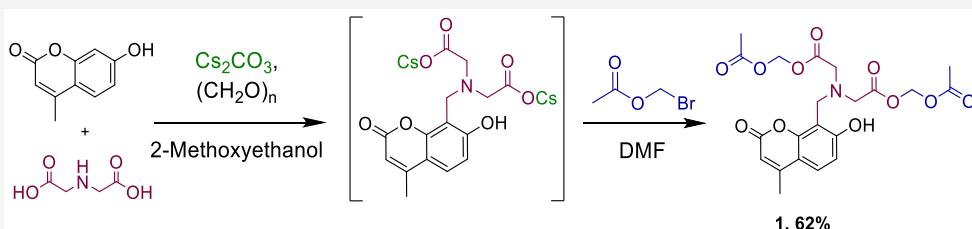


Base-Catalyzed Phenol-Mannich Condensation of Preformed Cesium Iminodiacetate. The Direct Synthesis of Calcein Blue AM and Related Acyloxymethyl Esters

Logan D. Mikesell and Tom Livinghouse*

Cite This: *J. Org. Chem.* 2023, 88, 12064–12068


Read Online

ACCESS |

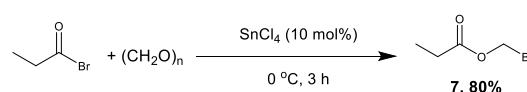
Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: A rapid and highly practical one-flask procedure for the *positionally selective* preparation of (acyloxy)methyl *N*-(2-hydroxybenzyl)iminodiacetate and related diesters from iminodiacetic acid and phenols is described. The key to this multicomponent phenol-Mannich condensation resides in the use of cesium iminodiacetate as the reaction partner. This protocol has been applied in an unusually direct synthesis of the intracellular fluorescent dye Calcein blue AM, for which scant experimental and spectroscopic data are presently available.

INTRODUCTION


Acyloxymethyl (AoM) esters serve as delivery and ultimately cellular entrainment vehicles for numerous intracellular fluorescent stains,^{1a–e} and are also utilized in the synthesis of bioreversible prodrug conjugates. Labile (acetoxy)methyl (AM) dyes passively cross the cell membranes of viable cells. They are converted into the corresponding iminodiacetates by esterase cleavage, which are retained within the cell as their Ca^{2+} chelates, without compromising the cell membrane.² Acyloxymethyl esters are typically prepared by the alkylation of precursor iminodiacetic acids [as their Ag(I) or $(i\text{-Pr})_2\text{EtNH}^+$ salts] with the appropriate halomethyl ester.^{1e,f} These alkylations often proceed in poor, to at best modest, isolated yields. We, therefore, sought an improved experimental protocol for anionic functionalization. Cesium carboxylates and *N*-sulfonamides have long been known to be excellent nucleophiles in $\text{S}_{\text{N}}2$ displacements,³ and we have found the former can serve in significantly improved routes to AoM esters.⁴ In this contribution, we report that dicesium iminodiacetate, generated *in situ* from iminodiacetic acid and inexpensive Cs_2CO_3 or 50% aqueous CsOH , undergoes efficient phenol-Mannich condensations with representative phenols, and that the resulting Cs salts can be directly alkylated with bromomethyl esters (or alternative halides) in DMF to furnish the corresponding diesters in respectable overall yields. A direct and highly efficient synthesis of the intracellular fluorescent dye Calcein blue AM, which relies on this method, is described (Scheme 1a). Significantly, although Calcein blue AM is commercially available, its price is exorbitant, ranging

Scheme 1. Efficient Synthesis of Calcein Blue AM and Bromomethyl Propionate

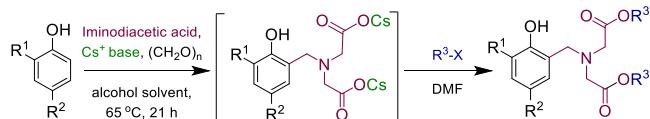
a) Synthesis of Calcein Blue AM

b) Synthesis of bromomethyl propionate

from \$115 to \$173/mg. Alternatively, Calcein blue^{7c} could be converted to 1 in comparable yield using Cs_2CO_3 /2-methoxyethanol followed by alkylation in DMF. In addition, we describe a markedly improved procedure for the preparation of bromomethyl esters, which involves the use of

Received: January 20, 2023

Published: August 9, 2023



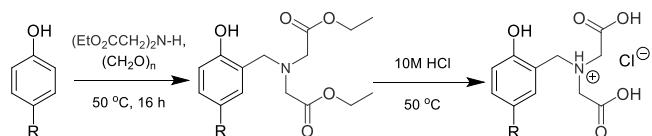
SnCl_4 as an efficient Lewis acid catalyst in place of ZnCl_2 (Scheme 1b).⁵

In a typical experimental procedure, iminodiacetic acid (1.2 equiv) was preliminarily converted to its cesium salt by pretreatment with Cs_2CO_3 (1.3 equiv) in 2-methoxyethanol at 80 °C, followed by the addition of the requisite phenol (1.0 equiv) and paraformaldehyde (1.1 equiv). The subsequent phenol-Mannich condensation was then conducted at 65 °C, followed by the removal of the solvent and water. Alkylation of the intermediate iminodiacetate dicesium salt was ultimately achieved in anhydrous DMF with the appropriate electrophile (2.5 equiv) to provide the desired *N*-(2-hydroxybenzyl)-iminodiacetate diester after standard column chromatography on silica gel.

As experimental notes, ethanol and methanol can serve as alternatives to 2-methoxyethanol as the initial solvent, but 2-propanol was found to be inferior. Temperatures of 65–80 °C were determined optimum for the initial dicesium salt formation as well as the subsequent phenol-Mannich condensation. In addition, the presence of excess water in the cases involving cesium hydroxide was found to slow the condensation reaction, resulting in decreased yields. A series of phenols were subjected to analogous base-catalyzed Mannich-type conditions using Cs_2CO_3 or commercial 50% aq. CsOH as bases, followed by alkylation of the resulting dicesium (arylmethyl)iminodiacetate salts in DMF. A compilation of these results is presented in Table 1.

Table 1. Scope of Sequential Phenol-Mannich Condensation/Alkylation

Entry	R ¹	R ²	R ³ -X	Yield (%) ^{a,b}
2a	-OMe	-Allyl	$\text{MeCO}_2\text{CH}_2\text{Br}$	69 ^a
2b	-OMe	-Allyl	$\text{EtCO}_2\text{CH}_2\text{Br}$ (7)	50, ^a 64 ^b
2c	-OMe	-Allyl	MEMCl	37, ^a 61 ^b
3a	-OMe	-CH ₂ NHCbz	$\text{MeCO}_2\text{CH}_2\text{Br}$	34, ^a 78 ^b
3b	-OMe	-CH ₂ NHCbz	$\text{EtCO}_2\text{CH}_2\text{Br}$ (7)	84 ^a
4a	-H	-Br	$\text{MeCO}_2\text{CH}_2\text{Br}$	50, ^a 62 ^b
4b	-H	-Br	MEMCl	49 ^a
5a	-H	-CH ₂ CH ₂ N ₃	$\text{MeCO}_2\text{CH}_2\text{Br}$	52 ^b
6a	-Allyl	-H	$\text{MeCO}_2\text{CH}_2\text{Br}$	36, ^a 51 ^b
6b	-Allyl	-H	$\text{EtCO}_2\text{CH}_2\text{Br}$ (7)	31, ^a 54 ^b


^a CsOH (6.2 M, 2.1 mmol) in EtOH (2.0 mL) was employed.

^b Cs_2CO_3 (1.3 mmol) in 2-methoxyethanol (2.0 mL) was employed.

In sharp contrast to sodium iminodiacetate, which gives inseparable mixtures of 2,6-di- and 2-monosubstituted products from 4-substituted phenols,^{7a–c} the corresponding cesium salt provided only products derived from 2-substitution under the forgoing conditions. Moreover, for 2-allylphenol, substitution occurred only at the 6-position to the exclusion of the 4-substituted product. We have independently confirmed that limited positional selectivity is observed when Na^+ is used as the counterion.^{7d} Previously, the use of diethyl iminodiacetate, although under aprotic conditions (PhMe, 110 °C), with 4-substituted phenols has also been reported to result in selective monosubstitution.^{7a} It is also worthy of note that the resultant diethyl esters were subsequently converted to the

desired iminodiacetic acids (as the HCl salts) using 10 M aqueous HCl under stringent conditions (Scheme 2).

Scheme 2. Previous Selective Synthetic Route to N-2-Hydroxybenzyl)iminodiacetic Acids^{7a}

In summary, we have developed an efficient method for the direct synthesis of (acyloxy)methyl *N*-(2-hydroxybenzyl)-iminodiacetate and related diesters from simple phenols and iminodiacetic acid. Cesium carbonate serves as the essential base and Cs^+ cation source for this Mannich-type condensation, involving paraformaldehyde as the electrophilic coupling agent. This procedure obviates the earlier three-step preparative sequence using diethyl iminodiacetate.

EXPERIMENTAL SECTION

General Information. All chemical reagents were purchased from commercial sources and used as received without further purification unless noted otherwise. Solvents were certified ACS grade. All reactions were carried out under nitrogen using oven-dried glassware. Thin-layer chromatography (TLC) was performed on Silicycle glass-backed TLC plates, silica gel F-254 over a glass support, 250 μm thickness. Visualization was accomplished with UV light (254 nm) and/or potassium permanganate. All ¹H NMR and ¹³C{¹H} NMR spectra were recorded on a Bruker 400 MHz Ascend AVANCE NEO NMR Spectrometer. Chemical shifts (δ) were reported in reference to solvent peaks (residue CHCl_3 at δ 7.28 ppm for ¹H and CDCl_3 at δ 77.0 ppm for ¹³C{¹H}). LC-MS experiments were performed on an Agilent 1290 Infinity UPLC coupled to an Agilent 6538 Q-TOF mass spectrometer using a 2.1 mm \times 100 mm Agilent Zorbax Eclipse Plus C18 column. Mobile phase A was 0.1% formic acid in water, and mobile phase B was 0.1% formic acid in acetonitrile. The gradient was as follows: initially 2% B, followed by a ramp to 98% B over 8 min, a hold at 98% B for 1.25 min before returning to 2% B, with a total run time of 10 min. The MS was operated in positive-ion electrospray mode with an *m/z* range of 50–1700 at 2 spectra/s.

General Procedure Using Cs_2CO_3 . A 25 mL round-bottomed flask equipped with a magnetic stirring bar and yellow poly cap was charged with iminodiacetic acid (1.2 mmol, 1.2 equiv), cesium carbonate (1.3 mmol, 1.3 equiv), and anhydrous 2-methoxyethanol (2.0 mL) under nitrogen. The resulting mixture was heated to 80 °C in an oil bath for 3 h and then cooled to room temperature. The phenol of interest (1.0 mmol, 1.0 equiv) was added with stirring, followed by paraformaldehyde (1.1 mmol, 1.1 equiv). The resulting mixture was then heated to 65 °C in an oil bath for 21 h. The solvent was then removed on a rotary evaporator in vacuo, and final drying of the resulting solid in high vacuum at 60 °C in an oil bath for 12 h provided the corresponding iminodiacetic acid dicesium salt. The original 25 mL round-bottomed flask equipped with a magnetic stirring bar was charged with anhydrous DMF (3.0 mL) under nitrogen. The stirred reactant mixture was cooled to 0 °C in an ice bath, and the corresponding halide (2.5 mmol, 2.5 equiv) was added dropwise. The reactant mixture was stirred for 30 min at 0 °C and then stirred for an additional 12 h at room temperature. The DMF was removed on a rotary evaporator under a high vacuum. The resulting mixture was dissolved in water (3 mL) and extracted with EtOAc (3 \times 5 mL). The organic layers were combined and washed with brine (1 \times 5 mL). The combined organic layer was dried over Na_2SO_4 and filtered. The filtrate was evaporated, and the residue was purified by silica gel flash chromatography.

General Procedure Using CsOH . A 25 mL round-bottom flask equipped with a magnetic stirring bar and yellow poly cap was

charged with iminodiacetic acid (1.0 mmol, 1.0 equiv) and anhydrous ethanol (2.0 mL) under nitrogen. Aqueous cesium hydroxide (6.2 M, 2.1 mmol, 2.1 equiv) was added dropwise with vigorous stirring. The phenol of interest (1 mmol, 1.0 equiv) was then added with stirring, followed by paraformaldehyde (1.1 mmol, 1.1 equiv). The resulting mixture was then heated at 65 °C in an oil bath for 21 h. Removal of the solvents in *vacuo* followed by azeotropic drying of the residue using anhydrous ethanol (3 × 5 mL) and final drying of the resulting solid in high vacuum at 60 °C in an oil bath for 12 h provided the corresponding iminodiacetic acid dicesium salt. The original 25 mL round-bottomed flask, equipped with its magnetic stirring bar, was charged with anhydrous DMF (3.0 mL) under nitrogen. The stirred reactant mixture was cooled to 0 °C in an ice bath, and the corresponding halide (2.5 mmol, 2.5 equiv) was added dropwise. The reactant mixture was stirred for 30 min at 0 °C and then stirred for an additional 12 h at room temperature. DMF was removed on a rotary evaporator under high vacuum. The resulting mixture was dissolved in water (3 mL) and extracted with EtOAc (3 × 5 mL). The organic layers were combined and washed with brine (1 × 5 mL). The combined organic layer was dried over Na₂SO₄ and filtered. The filtrate was evaporated, and the residue was purified by silica gel flash chromatography.

Calcien Blue AM (1). A 25 mL round-bottomed flask equipped with a magnetic stirring bar and yellow poly cap was charged with iminodiacetic acid (159 mg, 1.2 mmol, 1.2 equiv), cesium carbonate (424 mg, 1.3 mmol, 1.3 equiv), and anhydrous 2-methoxyethanol (2.0 mL) under nitrogen. The resulting mixture was heated at 80 °C in an oil bath for 3 h and then cooled to room temperature. 7-Hydroxy-4-methyl-2*H*-chromen-2-one (176 mg, 1.0 mmol, 1.0 equiv) was added with stirring, followed by paraformaldehyde (33 mg, 1.1 mmol, 1.1 equiv). The resulting mixture was then heated to 65 °C in an oil bath for 21 h. The solvent was then removed on a rotary evaporator followed by final drying of the resulting solid under high vacuum at 60 °C in an oil bath for 12 h to provide Calcien blue dicesium salt. To the original 25 mL round-bottom flask equipped with its magnetic stirring bar was added anhydrous DMF (3.0 mL) under nitrogen. The stirred mixture was cooled to 0 °C in an ice bath, and bromomethyl acetate⁴ (243 μL, 2.5 mmol, 2.5 equiv) was added dropwise. The reactant mixture was stirred for 30 min at 0 °C and then for an additional 12 h at room temperature. The DMF was removed on a rotary evaporator under high vacuum, and the residue was diluted with water (3 mL) and extracted with EtOAc (3 × 5 mL). The organic layers were combined and washed with brine (1 × 5 mL). The combined organic layer was dried over Na₂SO₄ and filtered. The filtrate was evaporated, and the residue was purified by silica gel flash chromatography (hexanes/EtOAc 1:1) to furnish Calcien blue AM (1) as a viscous, colorless oil (288 mg, 62%): TLC R_f = 0.30 (SiO₂, hexanes/EtOAc 1:1); ¹H NMR (400 MHz, CDCl₃) δ 10.12 (s, 1H), 7.46 (d, *J* = 8.8 Hz, 1H), 6.87 (d, *J* = 8.8 Hz, 1H), 6.08 (s, 1H), 5.81 (s, 4H), 4.23 (s, 2H), 3.62 (s, 4H), 2.40 (s, 3H), 2.13 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.6, 169.5, 161.2, 160.7, 153.1, 153.0, 125.4, 113.7, 112.6, 111.1, 108.1, 79.6, 54.0, 47.8, 20.7, 18.8; HRMS (ESI/Q-TOF) *m/z*: [M + H]⁺ calcd for C₂₁H₂₃NO₁₁H 466.1344; found 466.1346.

Bis(acetoxymethyl) 2,2'-(5-Allyl-2-hydroxy-3-methoxybenzyl)azanediyl)diacetate (2a). Subjection of 4-allyl-2-methoxyphenol (153 μL, 1.0 mmol, 1.0 equiv) to the general CsOH procedure with the addition of bromomethyl acetate (245 μL, 2.5 mmol, 2.5 equiv) as the electrophile afforded 314 mg of the title compound (69%) as a viscous, clear oil after silica gel flash chromatography. (hexanes/EtOAc 2:1): TLC R_f = 0.20 (SiO₂, hexanes/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃): δ 8.44 (s, 1H), 6.60 (d, *J* = 1.7 Hz, 1H), 6.37, (d, *J* = 1.7 Hz, 1H), 5.86 (ddt, *J* = 16.9, 10.3, 6.7 Hz, 1H), 5.70 (s, 4H), 5.02–4.96 (m, 2H), 3.90 (s, 2H), 3.80 (s, 3H), 3.54 (s, 4H), 3.21 (d, 2H, *J* = 6.7 Hz), 2.05 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.5, 169.4, 147.9, 144.5, 137.7, 131.0, 121.5, 121.0, 115.6, 112.3, 79.4, 56.0, 55.5, 53.4, 39.7, 20.7. Spectral data are consistent with those previously reported.⁴

((2,2'-(5-Allyl-2-hydroxy-3-methoxybenzyl)azanediyl)bis(acetyl))bis(oxy))bis(methylene) Dipropionate (2b). Subjection

of 4-allyl-2-methoxyphenol (153 μL, 1.0 mmol, 1.0 equiv) to the general Cs₂CO₃ procedure with the addition of bromomethyl propionate (243 μL, 2.5 mmol, 2.5 equiv) as the electrophile afforded 314 mg of the title compound (64%) as a viscous, clear oil after silica gel flash chromatography. (hexanes/EtOAc 3:1): TLC R_f = 0.20 (SiO₂, hexanes/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H), 6.69 (d, *J* = 1.7 Hz, 1H), 6.46 (d, *J* = 1.7 Hz, 1H), 5.95 (ddt, *J* = 16.9, 10.3, 6.7, 1H), 5.81 (s, 4H), 5.10–5.05 (m, 2H), 3.98 (s, 2H), 3.89 (s, 4H), 3.63 (s, 4H), 3.30 (d, *J* = 6.6 Hz, 2H), 2.41 (q, *J* = 7.6 Hz, 4H), 1.18 (t, *J* = 7.6 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 173.0, 169.5, 147.9, 144.6, 137.7, 130.9, 121.5, 121.0, 115.6, 112.3, 79.4, 56.0, 55.5, 53.4, 39.7, 27.3, 8.7; HRMS (ESI/Q-TOF) *m/z*: [M + H]⁺ calcd for C₂₃H₃₁NO₁₀H 482.2021; found 482.2022.

Bis((2-methoxyethoxy)methyl)-2,2'-(5-allyl-2-hydroxy-3-methoxybenzyl)azanediyl)diacetate (2c). Subjection of 4-allyl-2-methoxyphenol (153 μL, 1.0 mmol, 1.0 equiv) to the general Cs₂CO₃ procedure with the addition of 2-Methoxyethoxymethyl chloride (283 μL, 2.5 mmol, 2.5 equiv) as the electrophile afforded 296 mg of the title compound (61%) as a viscous, yellow oil after flash chromatography. (EtOAc/hexanes 2:1): TLC R_f = 0.30 (SiO₂, EtOAc/hexanes 2:1); ¹H NMR (400 MHz, CDCl₃) δ 8.83 (s, 1H), 6.59 (d, *J* = 1.7 Hz, 1H), 6.38 (d, *J* = 1.7 Hz, 1H), 5.85 (ddt, *J* = 16.8, 10.2, 6.7 Hz, 1H), 5.30 (s, 4H), 5.01–4.96 (m, 2H), 3.91 (s, 1H), 3.79 (s, 1H), 3.73–3.71 (m, 4H), 3.53 (s, 4H), 3.48–3.46 (m, 4H), 3.30 (s, 6H), 3.20 (d, *J* = 6.7 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.3, 148.0, 144.8, 137.8, 130.8, 121.5, 121.3, 115.5, 112.3, 89.8, 71.5, 69.8, 59.1, 56.0, 55.6, 53.6, 39.7. Spectral data are consistent with those previously reported.⁴

Bis(acetoxymethyl) 2,2'-(5-(((Benzyl)oxyl)carbonyl)amino)-methyl)-2-hydroxy-3-methoxybenzyl)azanediyl)diacetate (3a). Subjection of 8 (287 mg, 1 mmol, 1.0 equiv; see Supporting Information) to the general Cs₂CO₃ procedure with the addition of bromomethyl acetate (245 μL, 2.5 mmol, 2.5 equiv) as the electrophile afforded 447 mg of the title compound (78%) as a viscous, clear oil after silica gel flash chromatography. (hexanes/EtOAc 1:1): TLC R_f = 0.50 (SiO₂, hexanes/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 8.64 (s, 1H), 7.39–7.28 (m, 5H), 6.80 (s, 1H), 6.57 (s, 1H), 5.78 (s, 4H), 5.16 (s, 2H), 5.10 (s, 1H), 4.29 (d, *J* = 5.8 Hz, 2H), 3.98 (s, 2H), 3.86 (s, 3H), 3.62 (s, 4H), 2.13 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.6, 169.4, 156.3, 148.2, 145.7, 136.5, 129.4, 128.5, 128.2, 121.2, 120.9, 111.4, 79.5, 66.8, 56.1, 55.32, 53.4, 45.0, 20.7; HRMS (ESI/Q-TOF) *m/z*: [M + H]⁺ calcd for C₂₇H₃₂N₂O₁₂H 577.2028; found 577.2034.

((2,2'-(5-(((Benzyl)oxyl)carbonyl)amino)methyl)-2-hydroxy-3-methoxybenzyl)azanediyl)bis(acetyl))bis(oxy))bis(methylene) Dipropionate (3b). Subjection of 8 (287 mg, 1.0 mmol, 1.0 equiv) to the general CsOH procedure with the addition of bromomethyl propionate (243 μL, 2.5 mmol, 2.5 equiv) as the electrophile afforded 334 mg of the title compound (84%) as a viscous, clear oil after silica gel flash chromatography. (hexanes/EtOAc 1:1): TLC R_f = 0.30 (SiO₂, Hexanes/EtOAc 1:1); ¹H NMR (400 MHz, CDCl₃) δ 8.68 (s, 1H), 7.39–7.33 (m, 5H), 6.80 (s, 1H), 6.57 (s, 1H), 5.81 (s, 4H), 5.16 (s, 2H), 5.08 (s, 1H), 4.29 (d, *J* = 5.8 Hz, 2H), 3.98 (s, 2H), 3.87 (s, 3H), 3.62 (s, 4H), 2.41 (q, *J* = 7.5 Hz, 4H), 1.17 (t, *J* = 7.5 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 173.1, 169.4, 156.4, 148.2, 145.8, 136.5, 129.4, 128.5, 128.2, 121.2, 120.8, 111.4, 96.1, 79.5, 66.8, 56.1, 55.3, 53.4, 45.0, 27.3, 8.7; HRMS (ESI/Q-TOF) *m/z*: [M + H]⁺ calcd for C₂₉H₃₆N₂O₁₂H 605.2341; found 605.2340.

Bis(acetoxymethyl) 2,2'-(5-Bromo-2-hydroxybenzyl)-azanediyl)diacetate (4a). Subjection of 4-bromophenol (173 mg, 1.0 mmol, 1.0 equiv) to the general Cs₂CO₃ procedure with the addition of bromomethyl acetate (245 μL, 2.5 mmol, 2.5 equiv) as the electrophile afforded 288 mg of the title compound (62%) as a viscous, clear oil after silica gel flash chromatography. (hexanes/EtOAc 3:1): TLC R_f = 0.30 (SiO₂, hexanes/EtOAc 3:1); ¹H NMR (400 MHz, CDCl₃) δ 9.06 (s, 1H), 7.32 (dd, *J* = 2.5, 8.6 Hz, 1H), 7.1 (d, *J* = 2.5 Hz, 1H), 6.80 (d, *J* = 8.6 Hz, 1H), 5.81 (s, 4H), 3.97 (s, 2H), 3.61 (s, 4H), 2.16 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.5, 156.5, 132.5, 132.1, 122.8, 118.6, 111.1, 79.4, 55.5, 53.4, 20.7;

HRMS (ESI/Q-TOF) m/z : [M + H]⁺ calcd for C₁₇H₂₀BrNO₉H 462.0394; found 462.0397.

Bis((2-methoxyethoxy)methyl) 2,2'-(5-Bromo-2-hydroxybenzyl)azanediyl)diacetate (4b). Subjection of 4-bromophenol (173 mg, 1.0 mmol, 1.0 equiv) to the general CsOH procedure with the addition of 2-methoxyethoxymethyl chloride (283 μ L, 2.5 mmol, 2.5 equiv) as the electrophile afforded 241 mg of the title compound (49%) as a viscous, clear oil after silica gel flash chromatography. (hexanes/EtOAc 3:1): TLC R_f = 0.30 (SiO₂, hexanes/EtOAc 1:1); ¹H NMR (400 MHz, CDCl₃) δ 9.24 (s, 1H), 7.22 (dd, J = 2.4, 8.6 Hz, 1H), 7.03, (d, J = 2.4 Hz, 1H), 6.70 (d, J = 8.6, 1H), 5.32 (s, 4H), 3.89 (s, 2H), 3.74–3.72 (m, 4H), 3.51 (s, 4H), 3.50–3.47 (m, 4H), 3.31 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.4, 156.6, 132.4, 132.0, 123.2, 118.6, 111.0, 90.0, 71.5, 69.9, 59.1, 55.5, 53.7; HRMS (ESI/Q-TOF) m/z : [M + H]⁺ calcd for C₁₉H₂₈BrNO₉H 494.1020; found 494.1020.

Bis(acetoxyethyl) 2,2'-(5-(2-Azidoethyl)-2-hydroxybenzyl)azanediyl)diacetate (5a). Subjection of 4-(2-azidoethyl)phenol⁸ (163 mg, 1.0 mmol, 1.0 equiv) to the general Cs₂CO₃ procedure with the addition of bromomethyl acetate (245 μ L, 2.5 mmol, 2.5 equiv) as the electrophile afforded 235 mg of the title compound (52%) as a viscous, clear oil after silica gel flash chromatography. (hexanes/EtOAc 2:1): TLC R_f = 0.50 (SiO₂, hexanes/EtOAc 1:1); ¹H NMR (400 MHz, CDCl₃) δ 7.00–6.97 (s, 1H), 6.78–6.75 (m, 2H), 5.71 (s, 4H), 3.90 (s, 2H), 3.53 (s, 4H), 3.36 (t, J = 7.1 Hz, 2H), 2.71 (t, J = 7.1 Hz, 2H), 2.05 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.5, 169.4, 156.1, 130.05, 130.00, 120.8, 116.9, 79.4, 56.0, 53.3, 52.6, 34.5, 20.6; HRMS (ESI/Q-TOF) m/z : [M + H]⁺ calcd for C₁₉H₂₄N₄O₉H 453.1616; found 453.1622.

Bis(acetoxyethyl) 2,2'-(3-Allyl-2-hydroxybenzyl)azanediyl)diacetate (6a). Subjection of 2-allylphenol (130 μ L, 1.0 mmol, 1.0 equiv) to the general Cs₂CO₃ procedure with the addition of bromomethyl acetate (245 μ L, 2.5 mmol, 2.5 equiv) as the electrophile afforded 215 mg of bis(acetoxyethyl) 2,2'-(3-allyl-2-hydroxybenzyl)azanediyl)diacetate (51%) as a viscous, clear oil after silica gel flash chromatography. (hexanes/EtOAc 3:1): TLC R_f = 0.30 (SiO₂, hexanes/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 9.03 (s, 1H), 7.12 (dd, J = 7.4, 1 Hz, 1H), 6.87, (dd, J = 7.4, 1 Hz, 1H), 6.76 (dd, J = 14.9, 7.4, 1H), 6.06 (ddt, J = 16.9, 10.3, 6.7, 1H), 5.81 (s, 4H), 5.12–5.05 (m, 2H), 4.01 (s, 2H), 3.62 (s, 4H), 3.45 (d, J = 6.6 Hz, 2H), 2.15 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.6, 169.5, 154.9, 137.0, 130.1, 127.8, 127.6, 120.4, 119.2, 115.3, 79.4, 56.1, 53.4, 33.9, 20.7; HRMS (ESI/Q-TOF) m/z : [M + H]⁺ calcd for C₂₀H₂₅NO₉H 424.1602; found 424.1604.

(2,2'-(3-Allyl-2-hydroxybenzyl)azanediyl)bis(acetyl)bis(oxy)bis(methylene) Dipropionate (6b). Subjection of 2-allylphenol (130 μ L, 1.0 mmol, 1.0 equiv) to the general Cs₂CO₃ procedure with the addition of bromomethyl propionate (243 μ L, 2.5 mmol, 2.5 equiv) as the electrophile afforded 141 mg of the title compound (54%) as a viscous, clear oil after silica gel flash chromatography. (hexanes/EtOAc 3:1): TLC R_f = 0.30 (SiO₂, hexanes/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 9.04 (s, 1H), 7.11 (dd, J = 6.5, 1 Hz, 1H), 6.86, (dd, J = 6.5, 1 Hz, 1H), 6.76 (dd, J = 14.9, 7.5, 1H), 6.04 (ddt, J = 16.7, 10.1, 6.7, 1H), 5.82 (s, 4H), 5.11–5.05 (m, 2H), 4.01 (s, 2H), 3.62 (s, 4H), 3.45 (d, J = 6.6 Hz 2H), 2.42 (q, J = 7.5 Hz, 4H), 1.18 (t, J = 7.5 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 173.0, 169.6, 154.9, 137.1, 130.1, 127.8, 127.6, 120.5, 119.2, 115.3, 79.4, 56.0, 53.4, 33.9, 27.2, 8.7; HRMS (ESI/Q-TOF) m/z : [M + H]⁺ calcd for C₂₂H₂₉NO₉H 452.1915; found 452.1923.

Bromomethyl Propionate (7).⁹ A 25 mL round-bottomed flask equipped with a magnetic stirring bar and an N₂ inlet was charged with propionyl bromide (4 mL, 45 mmol, 1.0 equiv) and stannic chloride (60 μ L, 0.5 mmol, 0.1 equiv). Paraformaldehyde (1.3 g, 45 mmol, 1.0 equiv) was added in small portions to the stirred reactant mixture at 0 °C. The reactant mixture was allowed to stir in the ice bath for an additional 3 h while gradually warming to r.t. The resulting mixture was purified by flash distillation (12 Torr, 40 °C) to give 7 as a yellow liquid. (6.0 g, 80%): ¹H NMR (400 MHz, CDCl₃) δ 5.83 (s,

2H), 2.43 (q, J = 7.5 Hz, 2H), 1.19 (t, J = 7.5 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 172.3, 57.1, 27.5, 8.6.

ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published article and its Supporting Information.

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.joc.3c00155>.

Experimental procedure of 8, safety details, and NMR spectra of new compounds. (PDF)

AUTHOR INFORMATION

Corresponding Author

Tom Livinghouse – Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States; Email: livinghouse@montana.edu

Author

Logan D. Mikesell – Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States; orcid.org/0000-0002-5282-9975

Complete contact information is available at: <https://pubs.acs.org/10.1021/acs.joc.3c00155>

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by Thomas S. Livinghouse as a donation to the Montana State University Foundation. Support for MSU's NMR Center and the 400 MHz NMR spectrometer used in this research has been provided by the NSF (NSF-MRI: CHE-2018388) and MSU's office of the Vice President for Research and Economic Development. Funding for the Proteomics, Metabolomics and Mass Spectrometry Facility used in this publication was made possible in part by the MJ Murdock Charitable Trust, the National Institute of General Medical Sciences of the National Institutes of Health under Award Numbers P20GM103474 and S10OD28650, and the MSU Office of Research, Economic Development and Graduate Education. We also thank Ms. Isurika Wattegedara, a new graduate student, for checking selected experimental procedures.

REFERENCES

- (a) Sabnis, R. W. *Handbook of Biological Dyes and Stains*; John Wiley and Sons Inc: 2010. (b) Ellis, E. E.; Adkins, C. T.; Galovska, N. M.; Lavis, L. D.; Johnson, R. Decoupled Roles for the Atypical, Bifurcated Binding Pocket of the ybfF Hydrolase. *J. Chembiochem* **2013**, *14*, 1134–1144. (c) Izumi, S.; Urano, Y.; Hanaoka, K.; Terai, T.; Nagano, T. A Simple and Effective Strategy To Increase the Sensitivity of Fluorescence Probes in Living Cells. *J. Am. Chem. Soc.* **2009**, *131*, 10189–10200. (d) Komatsu, T.; Urano, Y.; Fujikawa, Y.; Kobayashi, T.; Kojima, H.; Terai, T.; Hanaoka, K.; Nagano, T. Nagano, Development of 2,6-Carboxy-substituted Boron Dipyrromethene (BODIPY) as a Novel Scaffold of Ratiometric Fluorescent Probes for Live Cell Imaging. *T. Chem. Commun.* **2009**, *7015–7017*. (e) Lavis, L. D.; Chao, T.-Y.; Raines, R. T. Raines, Synthesis and Utility of Fluorogenic Acetoxyethyl Ethers. *R. T. Chem. Sci.* **2011**, *2*, 521–530. (f) Schultz, C.; Vajanaphanich, M.; Harootunian, A.T.; Sammak, P.J.; Barrett, K.E.; Tsien, R.Y. Acetoxyethyl Esters of

Phosphates, Enhancement of the Permeability and Potency of cAMP.

J. Biol. Chem. **1993**, *268*, 6316–6322.

(2) Bratosin, D.; Mitrofan, L.; Palii, C.; Estaquier, J.; Montreuil, J. Montreuil, Novel Fluorescence Assay using Calcein-AM for the Determination of Human Erythrocyte Viability and Aging. *J. Cytometry. Part A: J. Int. Soc. Analyt. Cytol.* **2005**, *66A*, 78–84.

(3) Dijkstra, G.; Kruizinga, W. H.; Kellogg, R. M. An Assessment of the Causes of the “Cesium Effect. *J. Org. Chem.* **1987**, *52*, 4230–4234.

(4) Walsh, D. J.; Livinghouse, T.; Durling, G. M.; Arnold, A. D.; Brasier, W.; Berry, L.; Goeres, D. M.; Stewart, P. S. *Chem. Novel Phenolic Antimicrobials. Enhanced Activity of Iminodiacetate Prodrugs against Biofilm and Planktonic Bacteria. Biol. Drug Design* **2021**, *97* (1), 134–147.

(5) We have found that SnCl_4 is vastly superior to ZnCl_2 as a catalyst for the preparation of bromomethyl esters from various acyl bromides and paraformaldehyde under *solvent-free* conditions (see experimental procedure). When ZnCl_2 was used, CH_2Cl_2 was required as a reaction solvent. Repeated fractional distillations were then necessary to obtain pure bromomethyl acetate.⁶ We have confirmed this to be the case and therefore developed the improved procedure reported here.

(6) Sosnovsky, G.; Rao, N. U. M.; Li, S. W.; Swartz, H. M. J. Synthesis of Nitroxyl (Aminoxyl) Labeled Probes for Studies of Intracellular Environment by EPR and MRI. *Org. Chem.* **1989**, *54*, 3667–3674.

(7) (a) d'Hardemare, A. d-M.; Jarjayes, O.; Mortini, F. Solvent- and Catalyst-Free Selective Mannich Reaction on Catechols and Para Substituted Phenols: A Convenient Route to Catechol- and Phenol-Iminodiacetic Acid Ligands. *Synth. Commun.* **2004**, *34*, 3975–3988. (b) Schwarzenbach, G.; Anderegg, G.; Sallmann, R. Phenolatsauerstoff als Koordinationspartner. *Helv. Chim. Acta* **1952**, *35*, 1785–1793. (c) Huitink, G. M.; Poe, D. P.; Diehl, H. On the Properties of Calcein Blue. *Talenta* **1974**, *21*, 1221–1229. Limited site-selectivity was found for both 4-bromophenol and 2-allylphenol using the following conditions: (d) Marzec, B.; Zhang, L.; Zhu, N.; Schmitt, W. Bio-inspired Synthetic Approaches: From Hierarchical, Hybrid Supramolecular Assemblies to CaCO_3 -based Microspheres. *Dalton Trans.* **2017**, *46*, 6456–6463.

(8) Yadav, D.; Singh, N.; Kim, T. W.; Kim, J. Y.; Park, N.-J.; Baeg, J.-O. Highly Regioselective and Sustainable Solar Click Reaction: A New Post-synthetic Modified Triazole Organic Polymer as a Recyclable Photocatalyst for Regioselective Azide–alkyne Cycloaddition Reaction. *Green Chem.* **2019**, *21* (10), 2677–2685.

(9) Li, W.; Schultz, C.; Llopis, J.; Tsien, R. Y. Membrane-permeant Esters of Inositol Polyphosphates, Chemical Syntheses and Biological Applications. *Tetrahedron* **1997**, *53* (35), 12017–12040.