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Homomorphisms into simple Z-stable C *-algebras, 11
Guihua Gong, Huaxin Lin, and Zhuang Niu

Abstract. Let A and B be unital finite separable simple amenable C *-algebras which satisfy the
UCT, and B is Z-stable. Following Gong, Lin, and Niu (2020), we show that two unital homo-
morphisms from A to B are approximately unitarily equivalent if and only if they induce the same
element in KL(A, B), the same affine map on tracial states, and the same Hausdorffified algebraic
K1 group homomorphism. A complete description of the range of the invariant for unital homomor-
phisms is also given.

Dedicated to Professor Guoliang Yu on his sixtieth birthday.

1. Introduction

Let X and Y be two compact Hausdorff spaces, and denote by C(X) (or C(Y)) the C *-
algebra of complex-valued continuous functions on X (or Y). Any continuous map A :
Y — X induces a homomorphism ¢ from the commutative C *-algebra C(X) into the
commutative C*-algebra C(Y) by ¢(f) = f o A, and any homomorphism from C(X)
to C(Y) arises this way (in this paper, by homomorphisms or isomorphisms between C *-
algebras, we mean x-homomorphisms or *-isomorphisms). It should be noted that, by
the Gelfand transformation, every unital commutative C *-algebra has the form C(X) as
above. Therefore, studying continuous maps from Y to X is equivalent to studying the
homomorphisms from C(X) to C(Y).

We study the non-commutative version of this. In this paper, we consider only simple
C *-algebras. The paper is a continuation of [18]. The first part of the results can be stated
as follows: let A and B be unital finite separable simple amenable C *-algebras which
satisfy the UCT such that B is Z-stable. Let ¢, ¥ : A — B be two unital monomorphisms.
Then, there exists a sequence of unitaries {u,} C B such that

lim uyy(a)u, = ¢(a) foralla € A,
n—>o0
if and only if
[l = [¥1in KL(A. B). ¢r =yr and ¢Ff =y*,

where o, Y7 : T(B) — T (A) are the continuous affine maps induced by ¢ and v, T'(A4)
and T'(B) are tracial state spaces of A and B, and ¢* and y/* are induced homomorphisms
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from U(A)/CU(A) to U(B)/CU(B), respectively, U(A) and U(B) are unitary groups of
A and B, CU(A) and CU(B) are the closures of commutator subgroups of A and B,
respectively (see Theorem 4.3 and [18] for the cases in which A may not be simple, and
see earlier results in [16, 19]).

In the case that B is a unital purely infinite simple C*-algebra, T'(B) = @. Then,
o1 and Y are both trivial maps. Also, by [8, Corollary 2.7], U(B)/CU(B) = {0}. One
ignores the trivial maps ¢* and ¥*. Without assuming A is simple, the same result as
in Theorem 4.3, in the case that B is purely infinite simple, is known as stated in [11,
Theorem 6.7].

Theorem 4.3 is a generalization of [18, Theorem 5.8] at least in the case that A is
simple. The proof also follows the same lines as described in [18, Remark 5.7] using the
established results in [0, 7].

The second part of this research seeks the range of the invariant for the homomor-
phisms from A to B. Similar results were also obtained in [18]. Let k € KL(A, B) be
a strictly positive element (see Definition 2.6) with «([14]) = [1g], k7 : T(B) — T(A)
a continuous affine map, and «,, : U(A)/CU(A) — U(B)/CU(B) a continuous homo-
morphism. As in [18], not all compatible triples (k, kT, k) are proved to be reached by
unital homomorphisms. This is not just the limitation of the method. By the classifica-
tion theorem in [15, 17], there is a unital separable simple Z-stable C *-algebra A with a
unique tracial state which is locally approximated by sub-homogeneous C *-algebras such
that (Ko(A), Ko(A)+,[14]) = (Z,Z+,1) and K{(A) = Z/ pZ for some prime number
p > 1. By [18, Lemma 6.8], there is a unital homomorphism ¢ : A — Z which induces
identity on Ky(A). We found that, up to approximately unitary equivalence, ¢ is the
only homomorphism that induces KL(¢). However, there are other continuous homo-
morphisms y : U(A)/CU(A) — U(Z)/CU(Z) which are compatible to KL(¢) and the
identity map on the tracial state spaces (which has only one point for both C *-algebras).
In other words, there are compatible triples (k, k7, k) ) which cannot be reached by unital
homomorphisms.

This is by no means an accident. Fix a compatible pair (k, k7). Denote by

Hom, . (U(4)/CU(A),U(B)/CU(B))

the subset of those homomorphisms in Hom(U(A4)/CU(A), U(B)/CU(B)) which are
compatible to the pair («, k7). There is a bijection from

Homy ., (U(A)/CU(A),U(B)/CU(B))

to the group Hom(K;(A), T), where T = Aff(T(B))/pp(Ko(B)) and pp : Ko(B) —
Aff(T(B)) (the space of all real continuous affine functions on the tracial state space
T (B) of B) is the usual pairing of K¢(B) and T'(B).

Let Homy 7 ,app(A, B) be the approximately unitary equivalence classes of unital
homomorphisms ¢ such that ¢ induce the pair (KL(¢), ¢7) = (k, k7). We show that
Homy « app(A, B) is not empty. The uniqueness part of this paper gives an injective map
from Homy iy app(A, B) to a subgroup of Hom(K;(A4), T'). This subgroup is isomorphic
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to the group Hom(K{(A)/ Tor(K;(A)), T). Theorem 5.10 shows that there is a split-
ting short exact sequence which further describes this subgroup. It turns out that (see
Proposition 5.15), whenever Rpp(Ko(B)) # pp(Ko(B)) and K;(A) has a torsion, this
subgroup is a proper subgroup of Hom(K;(A4), T'). In those cases, there are compatible
triples (k, kT, k;,) which cannot be reached by unital homomorphisms. We also show that
there is another way to describe the range of the invariant of unital homomorphisms by
considering a sequence of compatible triples which complements the description of the
range of unital homomorphisms mentioned above (see Theorem 6.5 and Remark 6.6).
The group U(A)/CU(A) is also an essential part of the invariant set for the classification
of non-simple C *-algebras with ideal property (not just for homomorphisms); see [4, 5]
(see also [21] for general information about C *-algebras with ideal property).

2. Notations

Definition 2.1. Let A be a unital C*-algebra. Denote by A, the self-adjoint part of
A and A4 the set of all positive elements of A. Denote by U(A) the unitary group of
A and Uy(A) the normal subgroup of U(A) consisting of those unitaries which are in
the connected component of U(A) containing 14. Denote by DU(A) the commutator
subgroup of Uy(A) and CU(A) the closure of DU(A) in U(A).

Definition 2.2. Let A be a unital C*-algebra, and let 7(A) denote the simplex of tracial
states of A, a compact subset of A*, the dual of A, with the weak* topology. Denote by
Aff(T (A)) the space of real valued affine continuous functions on 7°(A4).

Let A be a unital stably finite C *-algebra with T(A) # @. Let t € T (A). For each
integer n > 1, we will continue to use 7 for its extension t ® Tr on M, (A4), where Tr is
the standard trace on M,,.

Denote by p4 : Ko(A) — Aff(T'(A)) the order-preserving homomorphism defined by
pa([p])(r) = t(p) for any projection p € M,,(A),n = 1,2,... (see the convention above).

Suppose that B is another C*-algebra with T(B) # @ and ¢ : A — B is a unital
homomorphism. Then, ¢ induces a continuous affine map ¢r : T(B) — T (A) defined by
or(7)(a) = t(p(a)) foralla € A and v € T(B). Denote by ¢y : Aff(T(A4)) — Aff(T'(B))
the continuous map induced by 7.

Definition 2.3. Let A be a unital C *-algebra, and let u € Up(A). Let u(t) € C([0, 1], A)
be a piecewise smooth path of unitaries such that #(0) = u and u(1) = 1. Then, the de La
Harpe—Skandalis determinant of the path {u(¢)}o<:<1 is defined by

1
Det ({u(t)}ogsl)(t) = ﬁ/(; t(dzgt)u(t)*)dt forall T € T(A),

which induces a homomorphism

Det : Up(A) — Aff (T(A))/pa(Ko(A)).

The determinant Det can be extended to a map from Uy (M (A)) into
AR (T(4)) /pa (Ko ().
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Definition 2.4. Suppose that A4 is a unital C *-algebra with 7(A) # @. Recall that CU(A)
is the closure of the commutator subgroup of Uy(A). Let u € U(A). We shall use u to
denote the image in U(A)/CU(A). It was proved in [25] that there is a splitting short
exact sequence

0 — Aff (T(A))/pa(Ko(A)) — U (Ma(4)/ | CU(M,(4)) N Ki(A) > 0.

n=1 n=1

For each A, we will fix one splitting map

o o
sa: Ki(4) - | U(Mu(4))/ | ) CU(Mn(4))
n=1 n=1
such that TT¢" o 54 = idg, (4)-
In the case that A has stable rank no more than k (k > 1), one may have

ch
0 — AfF(T(4))/pa(Ko(4) — U (Mic(4))/ CU (Mic(4)) < 2 > Ki(4) > 0. e2.1)

Definition 2.5. Let X4 : Aff(T(A)) — Aff(T'(A))/pa(Ko(A)) be the quotient map.

Definition 2.6. Let A be a unital separable C *-algebra and B a unital finite simple Z-
stable C *-algebra. Denote by KL, (A, B)T™ the subset of those elements « in KL (A, B)
such that k (Ko(4)+ \ {0}) C Ko(B)+ \ {0} and k([14]) = [15].

Suppose, in addition, 7'(A4) # @. Letkr : T(B) — T (A) be a continuous affine map.
Then, k7 induces an affine continuous map «y : Aff(7'(A4)) — Aff(T(B)). The pair (k,«7)
is compatible if

pB (k(x))(t) = pa(x)(k7 (7)) forallx € Ko(A), T € T(B).

In particular, «y4(p4(Ko(B))) C pp(Ko(B)). Thus, k4 induces a homomorphism

K 1 Aff (T(A))/pa(Ko(A)) — Aff(T(B))/ps(Ko(B)).
For convenience, let us also assume that A has stable rank at most n. Let
U(M,, (A))/CU(M,, (A)) — U(M,,(B))/CU(M,,(B))

be a continuous homomorphism. We say that (k, k7, k) is compatible if (k, k) is com-
patible, and the following diagram commutes

—_— Hﬁu
0 —s Aff (T(A))/pa(Ko(A)) — U(M,(A))/CU(M,(A)) = Ky (4) — 0

lﬁ ny llel(A) (e2.2)
HCM

0 — Aff (T(B))/pg(Ko(B)) — U(My(B))/CU(Myn(B)) —> K1(B) — 0,

where k7 is the homomorphism induced by k7.
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Letn > 1, and let

J 1 U(A)/CU(A) = U(My(A))/CU(My(A)),
Jjx : U(A)/ Up(A) — U(Mn(A))/ Up(Mn(A)),
ji 2 Uo(A)/CU(A) — Up(My(A))/CU (Mn(A))

be the homomorphisms induced by the map u + diag(u, 1,—1). Suppose that A has stable
rank one. Then, by [22, Theorem 2.9] and [8, Corollary 3.11], the maps j. and jy are iso-
morphisms. Moreover, K1(A4) = U(A)/Uy(A). Note that [[§* oj = j« o [14". It follows
that j is injective. Let u € U(M,,(A)). There is ug € U(A) such that u - diag(ug, 1,—1) €
Uo(M,, (A)). It follows that

u - diag(ug, 1p—1) € Up(Mn(A))/CU (My(A)).

By [8, Corollary 3.11], there is vo € Up(A) such that u - diag(ug, 1,—1) = diag(ve, 1p—1).
Thus, i = diag(uovo, 1,—1). In other words, the map z — diag(z,1,_1) from U(A) /C U(A)
to U(M,,(A))/ CU(M,,(A)) is an isomorphism.

Definition 2.7. Let A and B be unital C *-algebras with T(A) # @ and T(B) # @. Let
¢ : A — B be a unital homomorphism. Denote by KK(¢) and KL(¢p) the elements in
KK(A, B) and KL(A, B) induced by ¢, respectively. We also use [¢] for KL(¢) when-
ever it is convenient.

Note that gy maps 04 (Ko(A4)) to pp(Ko(B)) and ¢ maps CU(A) into CU(B). Denote
by ¢¥ : U(4)/CU(A) — U(B)/CU(B) the induced continuous homomorphism. Then,
(KL(9), o1, ¢¥) is compatible.

2.8. Let A and B be unital C*-algebras such that T(B) # 0. Let ¢, ¥ : A — B be two
unital homomorphisms such that 7 o ¢ = t o ¢ for all T € T(B). Consider the mapping
torus

Mgy = {(b,a) € C([0,1], B) & A : b(0) = ¢(a), b(1) = l/f(a)}.

Letu = (u(t),a) € Up(M,(Mgy,y)) (u(0) = @(a),u(1) = ¥ (a)) such that u(z) is piece-
wise smooth. Then, u = exp(if1) exp(ihy)---exp(ihy), where h; € My (Mg y )s.a.. More-
over, one may choose /;(¢) (t € [0, 1]) so that /;(¢) is piecewise smooth. One then
computes that, for each t € T(B) (since T o ¢ = t 0 V),

1 d
Rw,w(u(t))(f)_; O T( u(t) *(t))dt

27 dt
1 NG (dhi()
" 27 Jo ZT( )
j=1
1 m
= %Z(z (1;(0)) — z(h; (1)) =

j=1
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As in [15, Definition 3.2 and Lemma 3.3], Ry y : Ki(My,y) — Aff(T(B)) is a homo-
morphism. In fact, we have the following commutative diagram:

Ko(B) : Ki(My,y)

B
Ry.y

Aft (T(B)).

Definition 2.9. Let k € KL.(A, B)*" and k7 : T(B) — T(A) be a continuous affine
map such that (k, k7) is a compatible pair. Let Homy ., (U(A4)/CU(A), U(B)/CU(B))
be the set of homomorphisms y : U(A)/CU(A) — U(B)/CU(B) such that («, k7, y) is
compatible.

Fix g € Homy . (U(A)/CU(A), U(B)/CU(B)). Then, for any

B € Homy ., (U(A)/CU(A),U(B)/CU(B)),
¢ — 8 gives a homomorphism in
Hom (U(A)/CU(A),U(B)/CU(B))
which maps U(A4)/CU(A) to Aff(T(B))/pg(Ko(B)) and vanishes on
AT (T (4))/pa(Ko(A)).
Thus,
{¢ =B : B € Homg ., (U(4)/CU(A),U(B)/CU(B))}
= Hom (K1 (A), Aff (T(A))/pa(Ko(A)))-

Let I'# be the bijection  — g — B (8 € Homy ., (U(A)/CU(A), U(B)/CU(B))) which
gives a group structure on Hom, .. (U(A)/CU(A),U(B)/CU(B)). Note that the group
is independent of the choice of g. In this way, we may view

Hom, ., (U(A)/CU(A), U(B)/CU(B))

as an abelian group. Denote by Homy¢( K7 (A), Aff(T(B))/pp(Ko(B))) the subgroup of
homomorphisms h in Hom(K{ (A), Aff(T(B))/pp(Ko(B))) such that there is a sequence
of homomorphisms #, € Hom(K;(A), Aff(T(B))) such that 7 o h,|g, = ﬁ|G,,, where
G, C Gy4+1 C K1(A) is a finitely generated subgroup and K;(A) = U:il G,.

Let Homy ;. ,app(A, B) be the set of approximately unitary equivalence classes of
homomorphisms ¢ from A to B such that

(KL(9), ¢1) = (i, k7).
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Let Homy(K1(A), Rpp (Ko (B))/pp(Ko(B))) be the subgroup of homomorphisms h in
Homy¢(K1(A), Aff(T (B))/pp(Ko(B))) such that

h(K1(4)) € Rog(Ko(B))/ps(Ko(B)).

It is also a subgroup of those I’s in Hom(K1(A), Rpp(Ko(B))/pp(Ko(B))) such that
there is a sequence of homomorphisms h, € Hom(K;(A), Rpg(Ko(B))) such that 7 o
hnlG, = h|g,. where G, C G,4+1 C K;(A) is a finitely generated subgroup and K;(A4) =
Unz1 G-

Definition 2.10 ([6, Definition 9.2]). Let A be a unital simple C *-algebra. We say A has
generalized tracial rank at most one (gTR(A) < 1) if the following property holds: let
e>0,leta € A4 \ {0}, and let ¥ C A be a finite set. There exists a non-zero projection
p € A and a unital C*-subalgebra C which is a subhomogeneous C*-algebra whose
spectrum has dimension at most one and with 1¢ = p such that

1) |lxp — px|| < eforall x € ¥,

(2) dist(pxp,C) <eforallx € ¥,

B)1—-p=5a.

By [3, Theorem 4.10], every unital finite separable simple C*-algebra with finite
nuclear dimension which satisfies the UCT has the property that gTR(A ® U) < 1 (see
also [20, Theorem 3.4]) for every infinite-dimensional UHF-algebra U'.

Now let A be a unital finite separable simple amenable C *-algebra which satisfies the

UCT and U a UHF-algebra of infinite type (so U = U ® U). By [1], A ® U has finite
nuclear dimension. From the previous paragraph,

gTR(AQU) =gTR(A®U)®U) <1.
This fact will be repeatedly used throughout the paper.

Definition 2.11. Throughout the paper, Q is the UHF-algebra such that

(Ko(0). Ko(Q)+.[10]) = (Q. Q4. D).

Let r be a supernatural number. Denote by M, the UHF-algebra associated with .

Let p and g be a pair of relatively prime supernatural numbers of infinite type such
that M, ® My = Q. Let j, : My, — Q be defined by jy(a) =a ® 1y, and jq : Mg — Q
be defined by j4 (b) = b ® 1y, . Define

Zp,q = {(ﬁa7b) : (f’a?b) € C([07 1]7 Q) @ (Mp @ Mq) :
10) = jpa). f(1) = ja ()}
Definition 2.12. Let A be a unital separable amenable C *-algebra, and let x € A. Suppose

that |[xx* — 1]| < 1 and ||x*x — 1|| < 1. This “approximate unitary” is close to a unitary.
In fact, x|x| ™! is a unitary. Let us use (x) to denote x|x| ™.
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Let A and B be unital C*-algebras, and let ¢ : A — B be a homomorphism and
v € U(B). We refer to [6, Definition 2.14] for the definition of locally defined botty (¢, v),
bott (¢, v), and Bott(p, v) when ¢ and v almost commute. We also refer to [6, Defini-
tions 2.12 and 2.14] for other related terminologies.

3. Homotopy lemmas, restated

Lemma 3.1 ([7, Lemma 25.4]). Let A = Ay ® Uy, where gTR(A,) < 1 and satisfies the
UCT and U, is a UHF-algebra of infinite type. For any 1 > ¢ > 0 and any finite subset
F C A, there exist § > 0, 0 > 0, a finite subset § C A, a finite subset {p1, p2, ..., Pk,
q1.92.- - -.qk} of projections of A such that Q :={[p1] — [q1]. [p2] — [¢2]. . . .. [Pk] — [9k]}
generates a free abelian subgroup G, of Ko(A), and a finite subset P C K(A), satisfying
the following condition:

Let B = By ® Uy, where gTR(B1) < 1 and U, is a UHF-algebra of infinite type.
Suppose that ¢ : A — B is a unital homomorphism.

Ifu € U(B) is a unitary such that

|| [go(x), u]” <§ forallx €§, (e3.1)
Bott(p,u)|» =0, (€3.2)
dist (1 = @(pi)) + e(pu) (1 — ¢(g:)) + ¢(gi)u*)).1) <o, (e3.3)
dist(i1, 1) < o, (e3.4)

then there exists a continuous path of unitaries {u(t) : t € [0, 1]} C U(B) such that

u(0) =u, u(l)=1lg,

dist (u(r), CU(B)) <& forallt €10,1],

|| [(p(a),u(t)]“ <e forallae ¥,1te]0,1],
length ({u(1)}) <27 +«.

Remark 3.2. The original statement of [7, Lemma 25.4] assumes A; € By. However,
since Uy ® Uy =~ U;, we may assume A; = A; ® U;. If gTR(A,) < 1, by [6, The-
orem 19.2], A; ® Q € By. Then, by [20, Theorem 3.4] (see also [6, Theorem 3.20]),
A1 ® Uy € By. Thus, it suffices to assume that gTR(A1) < 1 as well as gTR(B) < 1.
Moreover, B does not need to be assumed to satisfy the UCT.

Let us also comment that the condition (e 3.4) may be dropped (if we choose suffi-
ciently large set {p1, p2, ..., Pk-41.92, - - -, gk} and sufficiently small o). To see this,
one notes that one can always assume [14] + x € G, for some x € K¢(A) with mx = 0
for some integer m > 1. Thus, m[14] € G,,. Suppose that m[14] = Zle m;([pj] —g;])
for some integers mj, j = 1,2,..., k. Once this is done, let K = (Zﬁ-‘:l |m;|). For any
1 > & > 0, choose 0 = ¢/K. Then, one checks that the condition (e 3.3) implies that
distw™,1) < Ko.
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We claim that dist(iz, 1) < &/m. In fact, there exists a unitary w. € CU(A) and o €
U(A) such that uw.w = 1 and ||w — 1| < Ko = ¢ < 1. Therefore, v = exp(iwa) with
a € As, and ||la| < &/m. Write w, = ]_[1122:1 exp(iby) forsome by € M, k =1,2,...,k>.
Define w¢ o = ]—[:"’:1 exp(iby /m) and wy = exp(ia/m). Then, (Wwe.owo)" = 1 € CU(A).
By [6, Corollary 11.7], U(A)/CU(A) is torsion-free. It follows that uw. owo € CU(A)
and w0 € CU(A). Hence,

dist(it, 1) < ||wo — 1]| < &/m.

Lemma 3.3 (cf. [7, Lemma 24.5]). Let A = A1y ® Uy, where A; is as in [6, Theo-
rem 14.10] and B = By ® U,, where By is a unital simple C *-algebra with gTR(B1) < 1
and Uy, U, are two UHF-algebras of infinite type. Let A = limp—00(Cy, 1) be as de-
scribed in [6, Theorem 14.10]. For any ¢ > 0, any o > 0, any finite subset ¥ C A,
any finite subset P C K(A), and any projections p1, p2, ..., Pk-q1-92,---,qk € A
such that {x1, X3, ..., Xg} generates a free abelian subgroup G of Ko(A), where x; =
[pil —lgil. i =1,2,... k, there exists an integer n > 1 such that x; € P C [1n,00](K(Cp))
(1 <i <k), there is a finite subset @ C K{(C,) which generates K;(Cy), and there
exists § > 0 satisfying the following condition: let ¢ : A — B be a unital homomorphism,
I': G - U(B)/CU(B) a homomorphism, and @« € KK(C, ® C(T), B) such that

a(B(2)) = NF (T ((n.oo)x0(g))) forallg €1, L,(G) (see (c2.2)),

(e3.5)
|‘c opB(ot(,B(x)))| <68 forallx € @, t € T(B).

Then, there exists a unitary u € B such that

|| [(p(x),u]” <egforallx € ¥, Bott ((p 0 [1n,00)s u) = a(f),

and, fori =1,2,...,k,

dist ((((1 — @(pi)) + e(pi)u) ((1 — ¢(gi)) + (gi)u*)), T(x;)) < o. (e3.6)

Proof. As in Remark 3.2, we may assume that B; € By. The lemma follows from [7,
Lemma 24.2 and Theorem 22.17]. In fact, for any 0 < &1 < ¢/2 and finite subset 1 D ¥,
by [7, Lemma 24.2], there exists an integer n > 1, a finite subset @ C K;(Cy), and § > 0
as described above, and a unitary u; € Uy(B), such that

|| [(p(x),ul]” < gy forall x € #7,
Bott(¢ © in,c0.u1) = a(B)|2.
Choosing a smaller ; and a larger %7, if necessary, we may assume that the class
(1 =) + e(pi)ur) (1 — ¢(@:)) + ¢(gi)ut)) € U(B)/CU(B)
is well defined forall 1 <i < k. Defineamap I'; : G — Uy(B)/CU(B) by

L) = (((1—e(p) + o(pur) (1 — ¢(g) + e(giut)). i =1.2.....k.
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Choosing a large enough n, without loss of generality, we may assume that there are pro-
jections pi, p5., .. .,pl’c, q’l,qz,’...,ql’c € C, such that 1, oo (p;) = p;i and 1, 0 (q}) = i,
i=1,2,...,k.Moreover, we may assume that ¥; C1, 00(Cy). Let I'2(x;) =1 (x;)*T'(x;),
i=1,2,...,k.By(e3.5), I'z(x;) € Up(B)/CU(B). Hence, ', defines a map from G to
Uop(B)/CU(B). It follows by [7, Theorem 22.17] that a unitary v € Up(B) such that
l[e(x).v]|| <e/2 forallx € ¥, (e3.7)

Bott(¢ 0 13,00, V) = 0, (e3.8)

dist ((((1 — @(pi)) + @(pi)v) (1 — ¢(g1)) + ¢(gi)v*)). T2(x:)) < o, (e3.9)

i=1,2,...,k.Defineu = uyv,

Xi = (((1 = e(p) + ¢(pur) ((1 — (g:) + ¢(gi)u})).
Y =(((1=¢(p) + e(p)v)((1 = 0(@:) + ¢(g:)v*))

i =1,2,..., k. We then compute that

I[e(x), u]| <e1+e/2<e forallx e F,

Bott(¢ 0 1n,00, u) = BOtt(¢ 0 15,00, u1) = a(B),

dist ((((1 — (pi)) + @(pu) (1 — ¢(g1)) + (gi)u*)). T'(x;))
< dist (X;Y;, T1(x:)Y:) + dist (01 (x;)Yi, T'(x;))
= dist (X;, [ (x;)) + dist (Y;, T2(x;)) <0+0  (by (€3.9)),

fori =1,2,...,k. [

Remark 3.4. Lemma 3.3 also holds if p;,q; € My (A) for some given integer N. Then,
(e 3.6) may be written as

dist ({((1v = ¢(pi)) + @(pi)(u ® 1)) ((1 = ¢(9:) + (1) (u* ® 1x))). T (1)) <o

(e3.10)
However, in (e 3.10), ¢(p;) 1= (¢ ® idpy ) (pi). i = 1,2,.... Note also that ¢(p;) approx-
imately commutes with ¥ ® 1 within any previously prescribed small number, say 7. By
[8, Theorem 4.6] (see also [6, Lemma 11.9]), there is z; € U(B) such that

diag(z;, In—1) = (((1x — @(pi)) + @(pi) @ 13))((1 — ¢(9i)) + ¢(g:) (u* @ 1n))).

In fact, by (e 3.6), we mean
dist (z7. T'(xi)) < 0.

By [8, Theorem 4.6], z; is unique.

To see that we can allow p;,q; € My (A), suppose that Uy = M, and U, = M,,
where p and g are supernatural numbers of infinite type. We identify Ko(M,) with the
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dense subgroup D, of QQ given by the supernatural number r. Choose N; > N such that
N% € Dy. There are mutually orthogonal and mutually unitarily equivalent projections
Dits---,Pi,N; € A® Uy such that p; = Zjvzll Di,j» and mutually orthogonal and mutu-

ally unitarily equivalent projections ¢; 1, . ..,qi N, € A ® U; such that

k
qi:ZQi’j’ i=1,2,...,N1.
Jj=1

Put x; := [pi,1] — [gi1]. i = 1.2,... k. Let G be generated by {x],x,"...,x; }. Then,
Gy is also a free abelian group.

Let 1 = £ U Gy. Choose larger n so that P; C [1,,00](K(Cp)). If T" is given and fits
a as (e3.5), choose y1, y2,.... vk € Ko(Cy) such that [, oo](yi) = x/,i =1,2,... k.
Let z; = a o B(y;). Then, [[5 (F'(x;)sp(z:)™N1) = 0 in K{(B) (see (e2.1) for sp). It
follows that f; 1= I'(x;)sp(z;)™™ € Uy(B)/CU(B). Recall that

Uo(B)/CU(B) = Aft (T(B))/p (Ko(B))
is divisible. Define Iy : Go — U(B)/CU(B) by
To(x}) = ((1/Ny1) fi)sB(zi), i=12,... k.

Then, To(x;) = NiTo(x}) = I'(x;),i = 1,2,..., k. Then, we apply the current Lemma
3.3. We apply this for G instead of G, I'y instead of T", and /2N, instead of o. We will
have, among other things,

dist ((((1 — @(pi,1) + @(pi,)u) (1 — ¢(gi,1)) + ¢(gi,)u*)). To(x])) < 0/2Ny,

1 <i < k. We also assume that gu ~,/sn,)2 ug for all g in a finite subset 7 such that
©(pi,j), ¢(qi,;) € F1. One has (with sufficiently large ¥7)

(((1=p(pi.0) + 9(piw) (1 = ¢(gi)) + o(ginu)) ™
=(((1x —e(p)) + 0P @ 13))((1 — ¢(i)) + ¢(g:) w* ® 1y))).

It follows that, fori = 1,2,...,k,

dist ({((1v — ¢(pi)) + @(pi)( ® 1n)) (1 = ¢(4:)) + ¢(g:)* ® 1n))). T (x1)) <o

Remark 3.5. Let A; be a separable amenable simple C *-algebra which satisfies the UCT.
Then, A; ® U; is Z-stable for any UHF-algebra U, . If U; is a UHF-algebra of infinite
type, then A = (4; ® U) ® U;. By the classification theorem (see [7, Corollary 29.10
and also Remark 29.11]) and [3, Theorem 4.10], A; ® U; can be written as 4; ® U; =
limy,—00(Cp, ty) as described by [6, Theorem 14.10]; namely, C, is a direct sum of a
homogeneous C *-algebra in H and a unital 1-dimensional NCCW complex (see notation
in [6, Section 14]). It follows that the assumption that A; is an inductive limit of the form
in [6, Theorem 14.10] can be replaced by the assumption that A; is a separable finite
amenable simple C *-algebra satisfying the UCT.
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The following is a slight improvement of [18, Lemma 6.6] for the current purposes.

Lemma 3.6 (cf. [18, Lemma 6.6]). Let C and A be two unital separable stably finite C*-
algebras, and let p, g be two relatively prime supernatural numbers of infinite type such
that Q = My ® M. Suppose that ¢, : C @ My — A ® M, are unital homomorphisms
such that

[(pp ® idMq] = [(pq ® ide] inKL(C® Q,A® Q) and ((pp ® idMq)# = ((pq ® ide)n,

r = p, a. Suppose that {U(t) : t € [0, 1)} is a continuous and piecewise smooth path of
unitaries in A ® Q such that U(0) = 1 and

lim U™ (0)((pp ® idu, ) ® 1)) U (1) = (pg ® ida,)(u ® 19)

for some u € U(C), and suppose that {Z(t, s)}s is a continuous and piecewise smooth
(piecewise smooth with respect to s) path of unitaries in A ® Zy 4 (that is, for each fixed
s€[0,1], Z(—,5) € A® Zypq) such that Z(t,1) = 1 and

Z(t,0) = U™ (1) ((¢p ®idp,)(u ® 1ar,))U@)(w* ® 1) ift €[0,1)

and Z(1,0) = (¢ ® idp,) (u)(w* ® 1g) for some w € U(A). Suppose also that there
existh € Aff(T(A ® Zp,q))r fo S PARM,, (Ko(A ® Mp)), and f] S PAR M, (K()(A ® Mq))
such that

Det(Z)(r ® §;) = h(r) + fi(r) forallt e T(A® Q), j =0,1, (e3.11)
where §; is the extremal tracial state of Zy o which factors through the point-evaluation
att € [0,1].

Suppose also that there is a continuous and piecewise smooth path of unitaries {z(s) :
s€[0,1]} in AQ My ® 1y, such that z(0) = ((¢p ®idpy, ) U R 1g))(W* ®19), z(1) =1,
and fy € pagm,(Ko(A ® My)), and

1! (dz(s)
— T

2mi Jo ds

Z(s)*)ds =h(z) + fp(r) forallt e T(A® Q). (e3.12)

Then, there is f € pagz, ,(Ko(A ® Zy q)) such that

(L /1 r(dzf’s)za,s)*)ds)(st) = h() + ft ®8,)
0 N

2mi
forallt € [0,1] and v € T(A).
Proof. Put ¢ := ¢, ® idpy, and ¢ 1= @q ® idpy, . Define
Ut —25)p(u @ 1)Ut —2s)(w* ® 1p) fors €[0,7/2)

Z1(t,s) = { p(u®1g)(w* @ 19p) fors € [t/2,1/2)
z(2s — 1) fors € [1/2,1]
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fort € [0, 1), and define

Y(u®lo)(w*®1p) fors =0
Z1(1,s) =3 U*(1 =25)p(u ® 19)U(1 —2s5)(w* ® lg) fors € (0,1/2)
z(2s —1) fors € [1/2,1].

Thus, {Z1(t,s) : s €[0,1]} C C([0,1], A ® Q) is a continuous path of unitaries such that
Z1(t,0) = Z(t) and Z(¢,1) = 1. This path may not be piecewise smooth (at s = 0). To
compute Det(Z;), we approximate it by a piecewise smooth path.

Let 1/2 > & > 0. Choose § € (0, 1/8) such that

[U* (e @ 10)U@)(w* ® 19) — ¥ (u ® 1) (w* ® 1g)| <&/64 forallr e (1-8,1)
and
U (D¢ & 1)U W™ & 1) = U™ (t)p(u @ 10)U(t)(w” ® 1o)| < &/64
whenever |t —t'| < 28. Thereis H € (A ® Q). such that
U*(1 =8 @ 1o)U(1 =) (w* ® 1g) = exp(iH) Y (u ® lg)(w* ® lg)

and | H|| < &/16. Define W(t) = U*(t)p(u ® 19)U(t)(w* ® 1g) if t € [0, 1 — §) and
Wit)y=vu®lg)(w* ®1g) exp(i(%)H) if € [1 — 8, 1]. Note that W(t) is a con-
tinuous and piecewise smooth path of unitaries in A ® Q and it is a unitary in A @ Z, 4.
Moreover,

sup {||W (1) — Z(t,0)| : 1 € [0, 1]} < &/16.

There is Hy € (A @ Zy q)s,4 such that Z(¢,0) = W exp(i Hp) with || Hp| < &/16. In fact,
Ho(t) =0ift € [0,1 — 8] and Hy(t) = ——H ifr e (1-6,1].
Define

W(t)exp (i (555) Ho(t)) fors €[0,8),

Zu(ts) = W —($5%)) fors € [8,(1/2 —8)t + §)
T e lg)wr @1g)  fors € [(1/2—8) +8,1/2)
z(2s —1) fors € [1/2,1]

fort € [0, 1), and define

W(1)exp (i (¢ 855 Ho(1)) fors € [0,4]
Z:(1,5) =3 W(l— (1/2 5)) fors € (8,1/2)
z(2s — 1) fors € [1/2,1].

Thus, {Z.(t,s) : s €[0,1]} C C([0,1], A ® Q) is a continuous and piecewise smooth path
of unitaries such that Z.(¢,0) = Z(¢) and Z.(¢, 1) = 1. Moreover,

1Ze = Z1]l < &/8.
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Thus, there is an element g € p400 (Ko(4A ® 0)) C Aff(T (A ® Q)) such that

gz ®8;) = —/ (dz(r S) Z(t, s)*)ds

1 Vo rdZ,(t,s)
- o 2=/
2mi ds

forall t € T(A) and ¢ € [0, 1], where §; is the extremal tracial state of C([0, 1], Q) factors
through the point-evaluation at .

On the other hand, for each ¢ € [0, 1), let V(t) = U(t)*¢o(u ® 19)U(¢) and V(1) =
Y(u ® 1g). For any s € [0, 1), since U(0) = 1, {U(?)}o<t<s € Uo(C([0, 5], A ® Q)).
There are ay,as, ...,ax € U(J0,5], A ® Q). such that

Z(ts))

Ui) = H exp (iaj(t)) for all ¢ € [0, s].
j=1

Then, a straightforward calculation (see [13, Lemma 4.2]) shows that, for each ¢ € [0, 1),

dVvi(t
r( dl( )V (t)) =0 forall t € T(A).
It follows that, for any a € [0, 1),
1 [* (dV(
—/ ‘L’( ()V (t))dt =0 forall T € T(A). (e3.13)
27i Jo dt

Hence, forz € [0,1 —8), W(t) = V()(w* ® 1p) and

1 §+(1/2-68)¢ dz t
— T Mzg(t,s)* ds
2mi ds

| psta=or sy S—§ . S—§
il G0 () (- (575)))
1 §+(1/2-6)¢ d §—8 §—8 J
— —(V{t— V(- =0.
2t Jy ’(ds( ( (1/2—5))) ( (1/2—5))) ’
If t € [1 — 48, 1], then, applying (e 3.13) again,
§+(1/2-8)t dz
/ t(ﬂZg(t,s)*)ds
s ds
§+(1/2=8)(t—1+8) §+(1/2—8)¢ 7 (t
(T )
5 §+(1/2-8)(1—1+5) ds

§+(1/2-8)(—1+6) i
= —  _H\d 0
/3 ’((1/2—8)8 ) |

-1

<egfl16 forallt e T(A® Q). (e3.14)
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Moreover,

1 1/2 dZ(ls)

§+8(1/2-6) 1/2 dZ.(1
(/ / / )I(MZS(I,S)*)ds
§+8(1/2—8) ds

< %(|1(H0(1))| + [t(H)| +0) < g/16x forall T € T(A). (€3.15)

One then computes that, for any 7 € T (4) and ¢ € [0, 1), by applying (e 3.14),

1 V' (dZ.(t,s)
2mi T( ds Zs(t:5) )

8§4+(1/2—8)t 1/2 1 dZ.(t
(/ / / +/ )T(JZS(I,S)*)dS
= 27 §+(1/2-8)t 1/2 ds
1 1/2 dZ.(t,s)
~e/om | — | Ho(t e 7t s)* )d
/32 (Zﬂi)(t(l 2 ))+/8+(1/2—8)t ( ds . s)) ’

! dzQ2s—1) .
+ fl/z T(—ds z(2s — 1) )ds)

1 1 (' [dz@2s—1)
—1(Hy(t 0+ — = Zz@2s—-1)*)d
21 T( 0())+ +27Tl 1/2T( ds Z(S )) s

d
s elto) + 5 [ o( B0 s mson b0+ o0

It then follows from (e 3.15) and (e 3.12) that

1 (! [dzZ.(1,

%/0 T(d—(SS)ZE(l,S)*)dS
L[ (Y2 (dZ.(.5) . L rdz(2s — 1) .
=5 |:/0 r(—ds Z:(1,s) ds) + /1/21(—51’3 z(2s — 1) )dsj|

1
~eter / (dz(s)z< ) )ds = h(D) + fo(o).

2mi

Note that if Z,(¢, s) is any continuous and piecewise smooth path of unitaries in
C([0,1], A ® Q) with Z5(¢,0) = Z1(¢,0) and Z,(¢t,1) = Z1(¢,1) =1 as well as

|Z2— Z1| <&,

then Z,Z7 is a trivial loop and Det(Z2)(t ® &;) = Det(Z,)(t ® &;).
It follows that

1 ’(de(t,s)
[ ¢425)
0

i ds

37 Zz(t,s)*)ds =h(t) + fpo(r) forallt e T(AQ® Q).
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Thus, there is an element g € p400 (Ko(4A ® 0)) C Aff(T(A ® Q)), such that

(e ®8) = _/ (dZ(t s)Z(M)*)dS

_ 1 2(_‘%“’”

Zz(t,s)*)ds

2mi ds
forall Tt € T(A) and ¢ € [0, 1]. Thus, for any ¢ € [0, 1],
dZ(t,s)
| ( 200.5)" )ds = h(e) + £o(6) + 50 9 ),

Put f(t ® &:) == fo(7) + g(r ® 8:) € pc(po,11,400)(Ko(C([0, 1], A ® Q))). Then, for
fixedt € T(A® Q), f is constant on [0, 1]. By (¢ 3.11),

fr®é) = fi(r) foralteT(A® Q),i =0,1.
Recall fo € pagm, (Ko(A ® Mg)) and f1 € pagm, (Ko(A ® My)). It follows that

f € paozpq (Ko(A® Zpg)).

Then the lemma follows. [ ]

4. Approximate unitary equivalence

Lemma 4.1 (cf. [18, Lemma 5.1]). Let Cy and A; be unital separable simple C*-algebras,
and let C = Cy @ Uy and A = Ay @ Uy, where Uy and U, are UHF-algebras of infi-
nite type. Suppose that C satisfies the UCT and gTR(A1) < 1. Suppose further that
C = lim, 50 (Cy, tn) as described in [6, Theorem 14.10]. If there are monomorphisms
0, ¥ : C — A such that

lo] = [Y]in KL(C, A), ¢y =1z ¢F =yt

then, for any 2>¢&>0, any finite subset ¥ CC, and any finite subset of unitaries P CU(C),
there exists a finite subset § C K{(C) with P C § (where P is the image of P in K1(C))
and § > 0 such that, for any map n : G(§) — Aff(T(A)) (where G(§) is the subgroup
generated by §) with |n(x)(t)| < 6§ for all t € T(A) and n(x) — Ewp(x) € pa(Ko(A))
forall x € G, there is a unitary u € A such that

”go(f)—u*@h(f)u” <& foral f € F,

and
z(ﬁ log ((¢ ® idpr, (X)) (u ® 1yg,)* (¥ ® idg, (X)) (u ® 1M,,))) = (n(lx]))

forall x € P and t € T(A).
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Proof. Without loss of generality, one may assume that any element in ¥ has norm at
most one. Let ¢ > 0. Choose 6 with ¢ > 6 > 0 and a finite subset ¥ C Fy C C satisfying
the following: For all x € 7, r(ﬁ log(¥ (x*)w* ¥ (x)w)) is well defined and
1
1(2— log (W(x*)w*W(x)w)) = 7(botty (w, ¥ (x))) forall T € T(B),
i

whenever w € U(B) and

||ww(f)—w(f)w|| <6 forall feFy

(see the Exel formula in [9]), and for any unitaries zy, z; in any unital C *-algebra D,
which satisfy

lz1 =1l <0, |z2—1] <86,
then

‘E(L 10g(2122)) = r(L log(zl)) + r(L log(zz)) forall t € T(D)

2mi 2mi 2mwi

(see [12, Lemma 6.1]).

Let ng > 1 (in place of n), § > 0 (in place of §), and §' € K;(C,,) (in place of @)
the constant and the finite subset with respect to C (in place of A), %y (in place of ¥), &
(in place of #), ¥ (in place of ¢), and k = 1, p; = 1, g1 = 0, and 0 = 1, required by
Lemma 3.3. Put § = §'/2.

Fix a decomposition (tnq,00)%1(K1(Cry)) = 7¢ & Tor((tng,00)#1(Cng)) (for some inte-
ger k > 0). Let §” C U(C) (recall that, by [6, Theorem 9.7], C has stable rank one) be
a finite subset containing a representative for each generator of Z*. Without loss of gen-
erality, one may assume that » € §”. By [6, Theorem 12.11 (a)], the maps ¢ and ¥ are
approximately unitary equivalent. Hence, for any finite subset @ and any &, there is a
unitary v € A such that

lo(f) —v* ¥ (fv] <é. Vfea.

By choosing @ D %y sufficiently large and §; < 6/2 sufficiently small, the map

1
[x] — ‘L’(—_ log ((p*(x)v*W(x)v)), xe€¥§g’,
2mi
induces a homomorphism

n - (Lno,oo)*l(Kl (Cno)) — Aff (T(A))

(note that 71 (Tor((tny,00)%1(K1(Cry)))) = {_0}), and |71 (x)|| < § forall x € ‘5;

By [18, Lemma 3.8], the image of 111 — Ry v is in p(Ko(A)). Since n(x) — Ry 4 (x) €
pa(Ko(A)) for all x € g, the image (7 — 71)((tng,00)+1(K1(C"))) is also in pg(Ko(A)).
Since 1 — 11 factors through Z*, there is a homomorphism

h: (tno,oo)*l(Kl(Cno)) — Ko(4)
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(which maps Tor((tny,00)%1(K1(Cry))) to zero) such that 7 — n; = pg o h. Note that
[t(h(x))] <28 =& forallt € T(A)and x € §.
By the universal multi-coefficient theorem (see [2]), there is

k € Homyp (K(Cp, ® C(T)), K(A4)) such thatk o Blki(Cyy) = 1o (D1
Applying Lemma 3.3, there is a unitary w such that

I[w.w(N]| <6/2. V[ e F,

and Bott(w, ¥ o t) = «. In particular, bott; (w, ¥)(x) = h(x) for all x € L.
Set u = wv. One then has

le(f) —u*y(fHul| <6, Vf e

and for any x € & and any 7 € T(A),

2mi

t(L log ((p(x*)u*w(x)u))

1 * *
= r(% log ((p(x)v w W(z)wv))

=1 (L log (<p(x*)v*w(x)vv*W(x*)w*lﬂ(x)wv))

2mwi

2mwi

= 1 ([x1) (@) + A ([x]) () = n([x]) (). =

— T(L log ((p(x*)v*w(x)v)) + r(% log (W(X*)W*W(x)w))

The proof of the following lemma is long and is taken from the proof of [18, Lemma
5.6]. The only modification has been outlined in [18, Remark 5.7]. Since the statements in
Section 3 are slightly different from what were used in the proof of [18, Lemma 5.6], we
provide a full proof for the convenience of the reader.

Lemma 4.2 (cf. [18, Lemma 5.6]). Let A be a unital finite separable simple amenable
C*-algebra which satisfies the UCT, and let B be a separable simple C *-algebra. Suppose
that gTR(A® Q) < land gTR(B® Q) < 1.

Suppose that there are two unital monomorphisms ¢, : A — B with

[p] = [¥]in KL(A, B), ¢4 =y of =yt

Let p and q be a pair of relatively prime supernatural numbers of infinite type with M, ®
Mgy = Q. Then, for any finite subset ¥ C A Q@ Zy 4, there exists a unitaryu € B ® Zy 4
such that

|| (p®1z,,)(x)— u*((w ® lzp_’q)(x))u” <e forallx € ¥.
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Proof. Let r be a supernatural number. Denote by i, : A — A ® M. the embedding defined
by iy(a) = a ® 1 for all @ € A. Denote by j, : B - B ® M, the embedding defined by
jr(b) = b ® 1 for all b € B. Without loss of generality, one may assume that

F=F10F =xQy:xefF, ye )}

where 1 C A and 7, C Z,, 4 are finite subsets and 14 € ¥ and 1z, , € 2. Moreover,
one may assume that any element in ¥ or ¥, has norm at most one.
We will also write D, = Ko(M,) which is identified with a dense subgroup of Q.
Let0 =1ty <t; <--+ <ty = 1 be a partition of [0, 1] such that

[b() —b@w)| <e/4, VbeF, Vi, b] i=1,....m. (e4.1)
Consider

8={a®b(t,-);ae371,besz,izO,...,m}gA@)Q,
Ep=1{a®bto);acF,.beF} CAQM,C AR Q,
Eg={a®blm):acFi.beFH} CAM; CAR Q.

By [20], gTR(A ® M,) < 1 for any (infinite) supernatural number r. By [7, Theo-
rem 21.9], we may write A ® Q = lim,—+,(Cy,, J,) as described in [6, Theorem 14.10].
In particular, each C, is isomorphic to a direct sum of a homogeneous C *-algebra in H
and an Elliott-Thomsen algebra with trivial K;-group, and J, is unital and injective.

Let ¥CARQ (inplace of §), PCK(ARQ),and @ ={x1,X2,...,Xm} CKo(AR Q)
which generates a free abelian subgroup of K¢(A ® @), where we may assume that x; =
[pi] —[gi] and p;,q; € A ® Q are projections, and § > 0 and y > 0 are the constants of
Lemma 3.1 and Remark 3.2 (so condition (e 3.4) is not needed in Lemma 3.1) with respect
to & (in place of ) and /8 (in place of £). We may assume @ C & and § < ¢/4.

Let G;) o, € Ko(A ® Q) be the subgroup generated by Q.

Note that we may assume that P C [J,,,00] (K (Cp,)) for some 1y and

€.6,.6,C K.

Denote by oo the supernatural number associated with Q. Let 2 = # N K; (A ® Q),
i =0, 1. There is a finitely generated free subgroup G(#); 0 C K;(A) such that if one
sets
G(P)ico0 = G({g7 1 g € too)wi (G(P)i). T € Do}).

where Dy C Q (1 € Dy) is a finite subset, then G(); 0,0 contains the subgroup generated
by #;,i = 0, 1. Moreover, we may assume that if r = k/m, where k and m are non-zero
integers, and r € Do, then 1/m € Dy. Let P/ C K;(A) be a finite subset which generates
G(P)i0,1 = 0, 1. In addition, denote ' = P{ U P].

Write the subgroup generated by the image of @ in Ko(4 ® Q) as Z* (for some
integer k > 1). Choose {x/l,...,x,’c} C Ko(A) and {rij; 1 <i<m, 1<j<k}CQ
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such that
k
xi=Y rij(oo)wo (X)), 1<i<m 1<j<k,
j=1
and {x], ..., x; } generates a free abelian subgroup G;, of Ko(A) of rank k. Choose pro-

jections p}.q} € My (A) (for some integer N > 1) such that x} = [pi] —[¢;]. 1 = j <k.
Choose an integer M such that M r;; are integers for | <i <mand 1 < j < k. In par-
ticular, M x; is the linear combination of ( joo)*o(x]’.) with integer coefficients.

Let p; be an orthogonal direct sum of Mr; ; copies of joo( p;) in My, (A ® Q) for
some integer N; > 1. One can find M mutually orthogonal and mutually equivalent pro-
jections eq , ..., ep,; such that Zfil e1,; = p;. Since p; € A® Q, by replacing p]’. by
a unitarily equivalent projection, we may assume that e; ; = p;. In other words, we make
the arrangement so that p; is the direct sum of M copies of p;.

Note also that the subgroup of K¢(A4 ® Q) generated by

{(loo)*O(xi)’ LR (loo)*O(x]/c)}
is isomorphic to Z¥ and the subgroup of Ko(A ® M,) generated by

{(lr)*O(xi)s cee (lr)*O(xllc)}

has to be isomorphic to Zk, where r = p, . We assume that xj’- € fPé, j=12,... k.
Since gTR(A ® M,) < 1, by [6, Theorem 21.9], one may write

A® M, = lim (C;, J,

as described in [6, Theorem 14.10]. In particular, each J,; : C;; — C,, | is a unital embed-
ding. We may assume that, for sufficiently large n’., &, C J;, o (C,f, ) and there are projec-

tions
1

PV oo Pl @ e G} € M (CE)
such that forany 1 < j <k, with p} = J;,r,oo(p]’-’,r) andgq; . = J;,r,oo(q]’.”r),

17 @ Taa, — pjcll < v/2N (64(1+ Y IMripl)) < 1, (e42)
i,j’

lg; ® 1m, — g}l < y/2N (64(1 +3 |Mr,-_,-/|)) <1, (e4.3)
i,j’

andr=porr=q.

Denote x}, = [p;.] —lq},] and x7, = [p},] —1lg],], 1 < j =<k, denote by G
the subgroup of Ko(Cnr/r) generated by {x{ ., ... ,x]/c’,r}, and write G, = Z" & Tor(G-).
Since G, is generated by k elements, one has that r < k and r = k if and only if G,
is torsion-free. Note that the image of G, in Ko(A ® M,) is the group generated by
P} ® Ia] — 9} ® g, ... [P} ® lar,] — [q) ® 1pr.]}, which is isomorphic to Z*
{[p} ® 1y, ] — [q} ® 1pm,]; 1 < j <k} as the standard generators. Hence G is torsion-
free and r = k.
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Without loss of generality, one may assume that 1,.(P’) C [J}f,r ,oo](ﬁ (C;/r ).

Assume that J is sufficiently large and § is sufficiently small such that for any homo-
morphism / from A ® Q to B ® Q and any unitary z; (j = 1,2,3,4),if [|[2(x), z;]|| <
for any x € J¢, then the maps Bott(/, z;) and Bott(s, w;) are well defined on the subgroup
generated by J# and

Bott(h, w;) = Bott(h,z;) + --- + Bott(h, z;)

on the subgroup generated by &, where w; = z;---z;, j = 1,2,3,4.
By choosing larger # and smaller §, one may also assume that

I[h(pi). zi]| < 1/16, |[A(gi).z;]| < 1/16, 1<i<m, j=1,23.4, (c44)

and, forany 1 <i <m,

k

dist (Efﬁp H(é},zl)M " ) < y/64N, (e4.5)

j=1

where (with 1 := l4g0)

Cioy = (1= h(pi) + h(pi)z1) (1 = h(gi) + h(g:)z})),
o = (1= h(pi) + h(pi)z1) (1= h(gi) + h(gi)zE) @ 1y—1),

and (with 1 := l(4g0))

éﬂj/',21 =

*
(1v—h(p; ®1ag0) +h(p;®1ag0)z") (In —h(q} ® Lao) +h(q; ® 140)z{" ).
where ziN) =z1 ® ly.

By choosing even smaller 8, without loss of generality, we may assume that
H=H® H"® HE,

where #° C A, #P C My, and H® C M, are finite subsets, and 1 € #°, 1 € J*, and
1 € #%.

Moreover, choose K9, JP, and J¢ even larger and & even smaller so that for any
homomorphism %, : A® M, — B® M, and unitaries z1, z, € BQ M, with ||h(x), z; | <6
for any x € #Ho ® H,, one has

I[7e(Pi o).z ]| < 1/16,  |[heg] ). 2] < 1/16, 1<i <k, j =12,

and

dist (6121220 (Lpont ) < dist(z1. 8iza) + v/ (64N (14 Y 1M1 ).
i’,j
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where

izt = ((lN - hr(p,/',r) + hr(pl{,r)z/) (lN - hr(qlf,r) + hr(ql{,r)(z/)*))v

and
' =2122@ In. 2] @ Iy, 22 ® 1y.

Let us apply Lemma 3.3 to the sets A ® Q and B ® Q (playing the role of A and B,
respectively), the homomorphism ¢ ® idg (playing the role of ¢), the positive constant
8/4 (playing the role of ¢), the subsets # C A ® Q and P C K(4A ® Q) (playing the
role of ¥ and J, respectively), and the free abelian subgroup [150](G{}) of Ko(4A ® Q)
(playing the role of G in Lemma 3.3). Then Lemma 3.3 tells us the existence of an integer
n (assumed to satisfy n > ng), a constant 6, (replacing § in Lemma 3.3) and a finite subset
§ C K;(Cp) (replacing Q) with the stated properties. Without loss of generality, we may
write that n = ny.

Let J#/ € A ® Q be a finite subset, and assume that &, is small enough such that for
any homomorphism 4 from A ® Q to B ® Q and any unitary z; (j = 1,2, 3, 4), the maps
Bott(h, z;) and Bott(h, w;) are well defined on the subgroup [J;,,00](K(Cy,)) and

Bott(h, w;) = Bott(h,z;) + --- + Bott(h, z;)

on the subgroup [Jy,,00] (K (Cyy)) if ||[A(x), z;]|| <82 for any x € H', where w; =z; --- z;,
j = 1,2,3, 4. Furthermore, as above, one may assume, without loss of generality, that

g =" @ I @ K,

where J0 C JY C A, JP C ¥¥ € M, and H¢ C HY M, are finite subsets.

Let 8, > 0 be a constant such that for any unitary with ||u — 1|| < &5, one has that
| log u|| < 8,/4. Without loss of generality, one may assume that §; < §,/16 < ¢/16 and
8, < 8.

Let ny € N (in place of n) be the integer, R C K;1(C, ) (in place of @) and &y (in
place of ) the finite subset and constant required by Lemma 3.3 with respect to A ® M,
(in place of A), B ® M, (in place of B), ¢ ® idps, (in place of h), HO @ H* (in place
of ) and (1x)«x0(Py) U (1x)«1(P]) (in place of £) and §5/8 (in place of ¢), [1:](G]) (in
place of G), and p}’r, qj/.,r (in place of p;, gj—see also Remark 3.4), r = p or r = q. Let
,RS) = (tr)xi (Jnp,00(Ki(Cy; ), i = 0, 1. There is a finitely generated subgroup G 0,r C
Ki(A) and a finitely generated subgroup Do » € D. so that

Gz{,O,r = G({gr -8 € (lr)*i(Gi,O,r)» r e DO,r})

contains the subgroup ﬁg), i = 0, 1. Without loss of generality, one may assume that
Doy = {mip; keZ}and Dog = {m%; k € Z} for an integer m,, divides p and an integer

mg divides q, and n’, = n.. It follows that

[t](x) C [L](P) € RV, j=1.2,... k. (e4.6)
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In what follows, we also use ¢g and ¥¢g for ¢ ® idg and ¥ ® idg, respectively.
Moreover, if 1 is a supernatural number, we also use ¢, and ¥, for ¢ ® idps, and ¥ ® idpy,.,
respectively. Let R C K(A ® Q) be a finite subset which generates a subgroup containing

((’p,oo)*(G(/),o,p U G;,O,p) U (lq,oo)*(G(/),o,q U Gll,O,q))
MpMg
in K(A ® Q), where 1, o is the canonical embedding A ® My - A ® O, r = p, q.
Without loss of generality, we may also assume that R 2 (J4,00) %1 ().
Let #, C A ® M, be a finite subset and §3 > 0 such that for any homomorphism %
from A ® M, to B ® M, (r = p or r = q) and any unitary z; (j = 1,2, 3, 4), the maps
Bott(h, zj) and Bott(h, w;) are well defined on the subgroup [J,; ,|(K(C, )) and

Bott(h, w;) = Bott(h,z1) + --- + Bott(h, z;)

on the subgroup generated by [J,; .  J(K(C, ) if [|[(x), z;]|| < 85 for any x € Hy, where
w; =z1---zj, j = 1,2,3,4. Without loss of generality, we assume that HOQ HP C Hyp
and H° ® H C H, . Furthermore, we may also assume that

Hy = Hoo @ Ho,r (e4.7)

for some finite subsets # o and Ho with HO Ho,0 C A, J¥ Ho,p C My, and
HY C Ho,q- In addition, we may also assume that §3 < §,/2.

Furthermore, one may assume that §3 is sufficiently small such that, for any unitaries
71, Z3, z3 in a C*-algebra with tracial states, r(ﬁ log(zizj’f)) i, j =1,2,3)is well
defined and

1 1 1
‘C(% log(zlz;)) = r(% log(zlz;)) + T(E log(23z;))

for any tracial state T, whenever ||z; — z3|| < 83 and ||z — z3]|| < 63.
To simplify notation, we also assume that, for any unitary z; (j = 1,2, 3, 4), the maps
Bott(h, z;) and Bott(h, w;) are well defined on the subgroup generated by (R and

Bott(h, w;) = Bott(h, z1) + --- + Bott(h, z;)

on the subgroup generated by R if ||[2(x), z;]|| < 83 for any x € H”, where w; =z -+ -z;,
j =1,2,...,4, and assume that

H" = Hoo ® Hop @ Hog-

Let R = RN K;(A ® Q). There is a finitely generated subgroup G; ¢ of K;(A), and
there is a finite subset D, C Q such that

Gioo := G({gr : g € (1cc)+i (Gi) and r € Dy})
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contains the subgroup generated by R, i = 0, 1. Without loss of generality, we may
assume that G; « is the subgroup generated by R'. Note that we may also assume that
Gio D G(P)io and 1 € Dy D Dy. Moreover, we may assume that if r = k/m, where
m, k are relatively prime non-zero integers, and r € Dy, then 1/m € Dj. We may also
assume that G; 0 € G0 forr =p,qandi =0, 1. Let R C K; (A) be a finite subset
which generates G; o, i = 0, 1. Choose a finite subset U C Uy, (A) for some n; such that
for any element of RY', there is a representative in U. Let S be a finite subset of A such
thatif (z; ;) € U, thenz; ; € S.

Denote by 84 and @, C K1(A ® M,) =~ K;(A) ® D, the constant and finite subset
of Lemma 4.1 corresponding to &, U #, ® 1 U 1,,(S) (in place of F), 1,(U) (in place
of ), and n—lz min{85/8,83/4} (in place of ¢) (r = p or r = g). We may assume that
Q={x®r:xec@andr e D!}, where @ C K;(A) is a finite subset and D)) C Q,
is also a finite subset. Let K = max{|r| : r € D;j U D{}. Since [p] = [y] in KL(A, B),
@4 = Yy, and p* = ¥, by [18, Lemma 3.5], Ry 4 (K1(A)) < pr(Ko(B)) C Aff(T(B)).
Therefore, there is amap 1 : G(Q") — pp(Ko(B)) C Aff(T(B)) such that

84
1+ K
Consider the map ¢, = ¢ ® idpys, and ¥, = ¢ ® idpys, (v = p or v = q). Since 7

vanishes on the torsion part of G(Q'), there is a homomorphism

e 0 G((1r)51(Q)) = prem, (Ko(B ® M) C Aff (T(B ® M,))

(n— Ryy)([z]) € pa(Ko(B)), In(@)] < forall z € @'. (e4.8)

such that

Ny © (ix)x1 = 1. (e4.9)
Since ppeum, (Ko(BQ®M:)) = Rpp(Ko(B)) is divisible, one can extend 71, so it is defined
on K;(A) ® Q.. We will continue to use 7, for the extension. It follows from (e 4.8) that
ne(z) — Ewr,% (z)eppem,. (Ko(B®M,)) and ||n:(z)|| <84 forall ze @,. By Lemma 4.1,
there exists a unitary u, € B ® M, such that

[y (e ® idpg, ) ()up — (¥ @ idpg,)(0) | < niz min{8}/8, 83/4} (e4.10)
1

forallc € &, U Hy U1,(S), and

f(% log (% (¢ ® idy) (s (¥ ® idp)(z*))) — () @)

for all z € 1,(U), where we also use ¢ and ¥ for ¢ ® idps, and ¥ ® idps, and u, with
up @ 1y, , respectively. Note that

“u:(w ® idpr, ) (2)up — (¥ ® idpr,)(z)| < 83 forany z € U.

The same argument shows that there is a unitary uq € B ® M, such that

1
|uz (e @ idar, ) (©)ug — (¥ ®idar, ) ()| < el min{85/8, §3/4} (e4.11)
1
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forall ¢ € &5 U #HU1,(S), and (recall ¢, = ¢ ® idpys, and ¥y = ¥ ® idpy,)

t(% log (“:(‘Pq)(Z)uq(wq)(z*))) = 74 ([2]) (x)

for all z € 44 (U), where we identify ¢ and ¥ with ¢ ® idy, and ¥ ® idy, and ug with
ug ® ly,, respectively. We will also identify uy, with up ® 1y, and ugq with ug ® 1y,
respectively. Then, upu; € A ® Q, and one estimates that for any ¢ € Hoo ® Ho p ® Hy,

Jugui(po()upul — (po) ()] < 8.

and hence Bott(pg, upuz)(z) is well defined on the subgroup generated by &R. Moreover,
for any z € U, by the Exel formula (see [9]) and applying (¢4.9),

‘c(bottl (po. upu;)((lOO)*l ([Z])))
— <(bot . (15

= ¢ (557 108 (03 00 12t 00) 2

= r(ﬁlog (“Z(¢Q)(loo(2))“q(1/fQ)(lw(z*))))

_ f(%log (u;;<¢Q>(zm<z>)up<wg>(1m<z*>)))

= g ((e)x1([21)) (®) = 15 (1)1 ([2])) (0)
= n([z])(’c) — n([z])(t) =0 forall t € T(B),

where we also use ¢ and Yo for ¢ ®idyy, and Yo ®idps, and up and ug with u, ® 1y,
and ugq ® 1p,, respectively.

Now suppose that g € G1,00. Then, g = (k/m)(1c0)x1([z]) for some z € U, where
k, m are non-zero integers. It follows that

r(bottl((pQ, upu:)(mg)) = kr(bottl(goQ, upu:)([z])) =0
for all T € T(B). Since Aff(T(B)) is torsion-free, it follows that
7(bott; (¢g, upu:)(g)) =0

for all g € G100 and T € T(B). Therefore, the image of R! under bott (pg, upy) is in
ker ppg . One may write

Gio=2Z"®L/p\Z®---® L/ psZ,

where r is a non-negative integer and pj, ..., ps are powers of prime numbers. Since p
and g are relatively prime, one then has the decomposition

Gi,0 = Z" @ Torp(G1,0) @ Torg(G1,0) € Ki(A),



G. Gong, H. Lin, and Z. Niu 860

where Tor, (G1,0) consists of the torsion-elements whose order divides p, and analogously
for g instead of p. Fix this decomposition.

Note that the restriction of (ip)«1 to Z" @ Torq(G1,0) is injective and the restriction
to Tory (G1,0) is zero, and the restriction of (14)«1 to Z" @ Tor,(G1,0) is injective and the
restriction to Torg (G1,0) is zero.

Moreover, using the assumption that p and g are relatively prime again, for any ele-
ment Kk €(1q)«1(Z"®Tor,(G1,0)) and any non-zero integer ¢ which divides g, the element
k/q is well defined in K(A ® M,); that is, there is a unique element s € K; (4 ® M)
such that gs = k.

Denote by ey, ..., e, the standard generators of Z". It is also clear that

(100)#1(Torp(G1,0)) = (100)1(Torg (G1,0)) = 0.

Recall that Do, = {k/my; k € Z} C Dy and Do g = {k/mg; k € Z} C Dy for an
integer my, dividing p and an integer mq dividing q. Put meo, = mpymy.
Consider ﬁZr C K1(A® Q), and for each e¢;, 1 <i < r, consider

1 .
p— bott; (¢ ® idg. upuy)((ico)«1(ei)) € ker ppgo-

oo

Note

kerppgo = (kerpp) ®Q, ker ppgm, = (kerpp) ® Dy, and ker ppgum, = (kerpp) @Dy .

Since ker pag is torsion-free, bott; (Y ® idg, upu;) maps Tory(G1,0) to zero. Suppose
that (ﬁ) bott; (¥ ® idg, upuy) maps ieo(e;) to 37, X; j ® ri,j, where x;,; € ker pp
andr;; €Q, j=1,2,...,myandi =1,2,...,r. Since p and q are relative prime,
any rational number r can be written as r = rp, — rq with r, € Qp and ry € Qq4 (see,
for example, [18, Section 2.6]). Hence, there are r; j, € Qp and r; j 4 € Qq such that
Ti,j =Tijp—Tijaq> j=12,....omjandi =1,2,...,r. Choose gip= Z;nél Xi,j Qi jp
and gjq = Z;";l Xi,j ®ri,jq- Then, g; » € ker ppou, and g; 4 € ker ppe, - Moreover,

1
bott; (¢ ® idg, upu;)(m_((loo)*l(ei))) = (Jp)xo(gip) — (Ja)xo(giq), (e4.12)

where g; , and g; o are identified as their images in Ko(4A ® Q).

Note that the subgroup (15)+1(G1,0) in K1(A ® M;) is isomorphic to Z" @ Torg
and mLp(Zr @ Torg) is well defined in K;(4 ® My), and the subgroup (i14)«1(G1,0)
in K1(B ® M,) is isomorphic to Z" @ Tor, and qu(Z’ @ Torp) is well defined in
Ki(A ® My). One then defines the maps

1 1
Op : —(1p)«1(G1,0) = ker ppem,, O 1 —(1q)+1(G1,0) — ker ppom,
My mqy

by
1 1
Oy (m_p(Lp)*l(ei)) = Mqg&ip; eq(m_(Lq)*l(ei)) = Mp&iq

q
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forl <i <rand

Op | Tor(tp) a1 (G1.00) = 00 Og|Tor(tg)u1(G10)) = O-

Then, for each ¢;, by (e4.12), one has
(Jp)=o © 913 o (lp)*l(ei) —(Jg)xo0© eq o (1g)x1(ei)
1 . I .
- mp(—up)*o 06,0 <zp)*1(ei>) —mq (—uq)) 0 04 0 (1g)e1 (€1)
My Mg *0
= mpmq((jp)*O(gi,p) - (jq)*o(gi,q))
= Moo bott1 (Pg, Uptty) © (10o)x1(€i /Meo)
= bott; (po. upu:) 0 (1oo)1(€i),

where pg =@ ®idg. Since the restrictions of 650 (1) x1, 04 0 (1q)«1 and botty (pg, upug) o
(100)#1 to the torsion part of G o are zero, one has

bott; (goQ,upu:) 0 (1)1
= (Jp)x0 0 Op © (1p)s1 — (Jg)x0 © O © (1g)x1 on Gy . (e4.13)

The same argument shows that there also exist maps

1
Oy : m_p((lp)*O(GO,O)) — Ki1(B® M),

1
g m—q((lq)*o(Go,O)) — Ki(B® M,)

such that
botto(pg, Uptty) © (10o)x0
= (Jp)s1 0 ap 0 (1p)x0 — (Jg)x1 0 &g © (1g)x0 0on Gop. (e4.14)

Note that G; 0+ € Gi,i = 0,1, r = p, q. In particular, one has that

(12)#i (Gi0,r) S (1r)4i (Giy),

and therefore
Glop S (lp)*O(Gl 0, Gloq S (lq)*o(Gl 0)-

Then, the maps 6, and 8, can be restricted to G1 0.p and Gi,O,q’ respectively. Since the
group G/ {0, contains (J,; Oo)*, (Ki(C,.)), the maps 6, and 6, can be restricted further to
(I, oo)*l(Kl(Cr?p)) and (S, oo)*l(Kl (Cal,)), respectively.

For the same reason, the maps &y, and 4 can be restricted to (J,} s oo)*O(KO(C,’fp 0))
and (J,7 Mas 00)%0(Ko(Cyt +,00)), Tespectively. We keep the same notation for the restrictions
of these maps oy, g, 6y, and 6.
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By the universal multi-coefficient theorem (see [2]), there is

Kp € Homp (K(C}fp ® C(T)), K(B ® My))

such that .
Kplpkichy = —p o (U, 00)s1 0B,
» (€4.15)
kolpkocc,n =~ © (i, 00)x0 0 B,
where 8 : K(-) - K(- ® C(T)) is defined by the identification
K(-®C(T)) = K() & B(K(")).
Similarly, there exists kq € Homa (K(Cy, ® C(T)), K(B ® Mg)) such that
Kalpkicpy = —0a 0 (J5f o)s1 0B,
e 7 o0 410
Kalp(ko(csy) = ~% © (Sl 00)x0 0 B
Define
gx]’-,u,b

= ((Iv — 0o (P} ® 10) + 0o (P)upug)(In — ¢o(q; ® lo) + ¢0(q; ®10)ugus)).
Recall that we use up := (up ® 1p,) ® Iy and uq := (uq ® lpr,) ® 1y above. Choose
the unique Cx;_,u,b € U(B)/CU(B) which is represented by a unitary Zxlu € U(B) such

that diag(zxjr_,u,b, Iy—1) = é'xj’.,u,b (see [6, Theorem 11.10]). Choose Zx)x € UB ® M,)
such that

[zx]r_’p] = ap(x] ), [ij’.,q] = —0g (X} ) (e4.17)

Then, by (e 4.14),
i = un o, ® 1) Gy ® Lag,)* € Uo(B ® Q)/CU(B ® Q).

Identify Uy(B)/CU(B) with

Aff(T(B ® Q))/peo(Ko(B ® Q)) = Aff (T(B ® My))/ppem,(Ko(B ® My)).

So we may also view f; € Up(B ® M,)/CU(B ® M,). Define

ij/-,p,up = (ijxJ’.,p)s ij/.,q,uq = Zx;,q'

Note that
é'x]’-,u,b = (jpi(zx}p,up)) (jqi(é'xj’-’q,uq)) (e4.18)

Define the map I'; : Z¥ — U(B @ M,)/CU(B ® M.) by

Fr(x]’.’r) = g'x_}’r,ur’ 1< ] < k.
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Note that, by (e4.6), (e4.15), (e4.16), and (e 4.17),

Nem, (Ty (x]/',p)) = —kp 0 B(x7,), NEem, (T (x}’q)) = kg 0 B(x] ),

where the map HCB”® M, is defined in Definition 2.4. Since g; . € ker p4agm,, we have
kr(B(K1(Cy.))) € ker ppem,, v = p or v = g. By Lemma 3.3, there exist unitaries wy, €
B ® M, and wq € B ® M, such that

[[we. oo (0)]| < 82/8, [[wa, ea ]| < 85/8, (¢4.19)
forany x € #9 ® #* and y € #° @ H?,

Bott(¢p, wy) © [J,fp’oo] =kpo B, Bott(ps,wy)o [J,?q,oo] =kq 0B, (e4.20)

and
dist (¢, wg- Tr(x) ) < y/<64N<1 +3 M1y |)) (e4.21)
i,j
dist (81, - Te(] ) < y/(64N(1 +y |Mr,-,-|)) 1</ <k, (€4.22)
i,j
where
Cxr ot
= (v = @) (P} + (@) (P} ) wi)* (A = (@2)(q)) + () (@) wi™)),
where wﬁN) = wy ® ly and r = p, q. Define

e wr = (v = (@)(P) + (2:(P))wi™) " (In = (20 (@) + () (g)))wi™)),

s

where wﬁN) = wy ® 1y, and define (with wyp 1= wp @ 1y, and wq 1= wq & lp,)

o = (1 =0 (pi) + 0o (p)wE) (1 — 0o (gi) + 9o (gi)we)),

Loz = (1= 00(pi) + 0o (pi)w?) (1 — 0o(q:) + 9o (gi)w:) & 1y_1).

r = p, q. Also, define

Lo = (1= 00 (pi) + @ (pupud) (1= 9o(q:) + 9o (gi)uguy))),

Lo = (1= 00 (p) + 9o (pi)upu3) (1 - w0 (@) + ¢o(giuguy) & 1v-1))
By the choice of # and §, and by (e 4.5) (see also [6, Lemma 11.9]),

k
dist (g% I1 gi‘f;jj,;) <y/32, (e4.23)
j=1
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and, together with (e 4.21), (e4.22), (e 4.2), and (e 4.3),

dlst( ]_[;M’” ) < /8, dist( M ]—[ gM'” ) <y/8. (e4.24)

Put v, = wyuy. In what follows, we will also write vy, for vy, ® 1y, € A ® Q and vq

forvg ® 1y, € A ® Q, whenever it is convenient.
We have, by (e4.24), (e4.23), and (e 4.18),

dist ({1~ (v ® ido) (1) + (v ® ido) (pr)pv3) (1 — (¢ ® id0) (4 + (¢ @ i) (a)vav3)] - (1500))
= dist (é‘)jcl,lwpé‘){ct,luggwg lB®Q)

(o e ) Lo ) (L) )

k
. —Mr; j . Mri, Mri, 1e0
Sdlst(Zf,wp’fo;p,;‘f) +dlst((l_[§‘x i lfx] Hf . 4 /) 13®Q)
j= : j=1
+d1§t( HZ Airlujq)
<y/8+y/32+ y/8 <vy/3.

That is,
dist(¢ Y e  The) < /3.

where

Cxiwgvs = (1= 00 (pi) + 90 (Pi)vavy) (1 — 00 (4i) + 9o (gi)vpvy)).

By the second part of Remark 3.2,

dist($x; vqv%» 13®Q) = dlst(g“x” 13®Q) <vy/3. (e4.25)

Then, by (e 4.7) and the line below it and by (e 4.10), (e 4.11), and (e 4.19), one also has

vq Uy’

|v ®ido(x) — vi(p ®ido)(x)vy| <85/4, VxeH @K @HY,  (e4.26)
|v ®ido(x) —vi(p ®ido)(x)vg| <8/4. VxeH'@HF @HT.  (e4.27)
Hence,
[lvpvy.@ ®idpl| < 85/2 <85, Vx et

Thus, Bott(¢g, vpv *) is well defined on the subgroup generated by #. Moreover, a direct
calculation shows that

bott; (¢ ® idg, Upv;) 0 (10)*1(2)

= bott; (¢ ® idg. wy) © (1c0)1(2) + botty (¢ ® idg. upug) o (100)1(2)
+ bott; (¢ ® idg, wy) © (o) «1(2)
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= (Jip)xo 0 bott; (¢ ® idp,,, wp) © (1p)«1(2) + botty (¢ ® idg, upug) © (1c0)1(2)
+ (Jg)xo0 0 botti (¢ ® idpy, , wg) © (16)x1(2)

= _(jp)*o o ep ° (lp)*l(z) + ((jp)*o ° ep © (lp)*l - (jq)*O o Gq ° (lq)*l)
— (= (Ja)xo 0 05 0 (19)«1(2))  (see (¢4.20), (e4.13), (e4.16))

=0 forallz € G(P)1,0-

The same argument shows that botto(¢ ® idg, vpvg) = 0 on G()o,0. Now, for any
g € G(P)1,00,0, there is z € G(P)1,0 and integers k, m such that (k/m)z = g. From the
above,
bott; (¢ ® idg, vpvy)(mg) = k bott; (¢ ® idg, vpvg)(z) = 0.

Since Ko(B ® Q) is torsion-free, it follows that
bott; (¢ ® idg, vyvy)(g) =0
for all g € G(£)1,00,0- Therefore, it vanishes on $ N K;(A ® Q). Similarly,
botto(¢ ® idg, vpvy)|PnKo(a®0) =0

on P N Ky(A® Q).
Since K; (B ® Q,7Z/mZ) = {0} for all m > 2, we conclude that

Bott(p ® idg, va:)|gp =0

on the subgroup generated by .
Since [¢] = [¥]in KL(A, B), ¢y = ¥y, and ¢+ = y¥, one has that

¢ ®idg] = [¥ ®idg] in KL(A® Q0,B ® Q),
(p®idg)y = (Y ®idp)y. (¢ ®idp)* = (¥ ®idg)*.

Therefore, by [6, Theorem 12.11 (a)], ¢ ® idp and ¥ ® idp are approximately uni-
tarily equivalent. Thus, there exists a unitary u € B ® Q such that

[u* (¢ ®idg)(c)u — (¥ ®idg)(c)| < 85/8 forallc € J'. (e4.28)
It follows from (e 4.26) that
[uvy (e ® idg)()vpu™ — (¢ @ idg)(c)| < 85/2+68,/8 Ve e H'.

By the choice of 65 and #’, Bott(¢ ® idg, vyu*) is well defined on [J,,00] (K (Cyy)),
and
|7(botty (¢ ® idg, vpu*)(2))| < 82/2, VT € T(B),Vz € 4.

For each 1 <i < m, define (see (¢ 4.4))

Cx vy = (1= (00)(pi) + ((90) (p))uvy) (1 — (90)(q:i) + ((90)(gi))vpu*)),
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and define the map I' : Z™ = G, ., > U(B ® Q)/CU(B ® Q) by I'(x;) = {x; uvr -
Note that H?@Q ol'(x;) = Bott(¢g, vpu*)(x;). By Lemma 3.3, there exists a unitary
Yp € B ® O such that

[[ye.00M]| <8/2, Vhek, (€4.29)
Bott(pg. yp) = Bott(pg, vpu™)
on the subgroup generated by &, and
dist (gxi,y;a F(xi)) =< )//2,

where

oy = (1= (00)(Pi) + (00)(Pi)y}) (1 = (00)(ai) + (£0)(gi) yp))-
Considering the unitary v = y,u, one has that
||[vv;, (¢ ®idg)(h)]| <8, forallh € ¥, Bott(p ® idg, vvy) =0
on the subgroup generated by &, and for any 1 <i < m,
dist(S, voz- 1) < ¥/2. (e4.30)

where

Carwg = (1= (00)(Pi) + () (p))vo3) (1 = (90)(gi) + ((90)(gi))vpv™)).

Applying Lemma 3.1 to A ® Q and ¢g = ¢ ® idg, one obtains a continuous path of
unitaries z,(¢) in B ® Q such that z,(0) = 1 and z,(#;) = vv}, and

I[zp(0). (¢ ® ido)(c)]| < &/8 Vc e &, Vit e0,1]. (e4.31)
Note that

Bott(pg, v4v™) = Bott(¢g, vavpvpv™)
= Bott(pg, vqvy) + Bott(pg, vyv™)
=0+0=0

on the subgroup generated by &, and for any 1 <i < m,
dist(Cx; vques 1) < dist(Cy, gvz- 1) + dist(Cx 0. 1) = 7 (by (€4.25), (€4.30)),

where

Cxiwgrt = (1= 90(pi) + (90)(Pi)vav*) (1 — (90)(4i) + (90)(gi)vvy)).
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Since
||[vv;,(<p ®idQ)(c)]|| <38, VYceH,
Lemma 3.1 implies that there is a continuous path of unitaries z4(?) : [t,;—1, 1] > U(B® Q)
such that zq (tm—1) = vvg, z¢(1) = 1, and

[[z4(0). (¢ ®ido)(c)]| < &/8. Vi € [tm—1.1], Ve € 6.

Consider the unitary

zp(t)vp, if0 <t <1,
v(t) = { v, ifty <t <ty-1,

Za(D)vg, iftmoy <t <ty

Then, forany ¢;,0 <i <m — 1 by (¢4.29) and (¢ 4.28) (recall & C H C H’), one has
that, for any ¢ € &,
[v* ) (@o)(e)v(ti) = (Vo) ()| = [u"yy(9o) () ypu — (Yo)(e)|
< [u*(po)()u — (wo) ()| + /2
<8,/8+68/2 < 3e/4.
Thus, for any ¢ € [t;,¢j4+1] with 1 < j < m — 2, one has, by (e4.1), for any a € #;
and b € 53,
Hv*(l)((p ®id(a ® b(1)))v(r) — ¥ ®id (a ® b(1)) ||
= [v()* (p@) ® b(1))v(t;) — ¥ (a) @ b(1) |
< [v@)* (@) ® b(1j))v(t;) — ¥ (a) @ b(t)| + /4
<3g/d+c¢e/d <e.

Forany t € [0,1;], by (e4.1), (e4.31), and (¢4.26) (note that §; < ¢/16 and &, C H),
one has that, forany a € ¥; and b € %3,
[v () (¢ ®id (a ® b(1)))v(1) — ¥ ®id (a ® (1))
= [vpzp () (9(@) ® b(1))zp(1)vp — (@) ® b(1) |
< [vyz5 (@) ® b(10))zp(1)vp — (@) ® b(to) | +¢/2
< Hv;(ga(a) ® b(to))vy — ¥ (a) ® b(to) || +¢/8+¢/2
<efl6+ 5¢/8 < &.

The same argument shows that, for any ¢ € [t,,—1, 1], one has that, for any a € %7 and
b e ?2,

[o* @) ((p ®idg)(a ® b([)))v(1) - (¥ ®idg)(a @ b(1))| <.

Therefore, one has

[v(e ®id(f))v — ¥ ®id(f)| <& forall f € F. n
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Theorem 4.3. Let A and B be unital separable simple C*-algebras. Suppose that A is fi-
nite and amenable and satisfies the UCT, and suppose that B is Z-stable and gTR(BQ® M)
< 1 for all supernatural number v of infinite type. Let ¢, ¥ : A — B be two unital
monomorphisms. Then, there exists a sequence of unitaries {u,} C B such that

lim uyy(c)u, = ¢(c) forallc € A
n—oo

if and only if
[l = Wlin KL(A.B). ¢z =z ¢F =y

Proof. Note that, by the remark at the end of Definition 2.10, gTR(A ® M,) < 1 for any
supernatural number r of infinite type. In what follows, we let B = B ® Z. Choose a pair
of relatively prime supernatural numbers p and q of infinite type. Let u : Z ¢ — Z and
A Z — Z, 4 be unital embeddings given by [24, Proposition 3.5]. Then, pod: 2 — Z
is a unital embedding. Therefore, 1 o A and idgz are approximately unitarily equivalent
(see [10, Theorem 7.6]). Let jp : D — D ® Z be the unital embedding d +— d ® 1z,
and let Ep : D — D ® Z; 4 be the unital embedding d +— d ® 1z, , for any unital
C*-algebra D.

Then, jp o¢ = (p ®idz) o j4 and (idp ®A) 0 jpo g = (¢ ®idz, ) o E4. In addi-
tion, (idg ®A) o jp o ¥ = (Y ®idz,,) o Ea.

By Lemma 4.2 (together with the remark at the end of Definition 2.10), (idg ®A1) o
jB o ¢ and (idp ®A) o jp o i are approximately unitarily equivalent. It follows that
(idp ®u) o (idg ®A) o jp o p and (idp ®u) o (idg ®A) o jp o Y are approximately uni-
tarily equivalent. As y o A is approximately unitarily equivalent to idz, jp o ¢ and jp ® ¥
are approximately unitarily equivalent.

Recall B = B ® Z and the unital embedding jz : Z — Z ® Z is approximately unitar-
ily equivalent to idz. We conclude that ¢ and v are approximately unitarily equivalent. =

Remark 4.4. The condition that g7TR(B ® M,) < 1 in Theorem 4.3 may be replaced by
the condition that B is amenable and satisfies the UCT (see [3]).

5. The range

Theorem 5.1. Let A be a separable amenable C*-algebra which satisfies the UCT with
a fixed splitting map s4 as in Definition 2.4, and let B be a unital C*-algebra such that
T (B) # @. Suppose that there are two unital homomorphisms ¢,V : A — B such that
top =to forallt € T(B).
(1) Suppose that KK (¢) = KK(). Then, there is a homomorphism § : K;(A) —
Aff(T (B)) such that
(¢F —y¥ oss = Zp o8,

where X p : Aff(T'(B)) — Aff(T(B))/pp(Ko(B)) is the quotient map.



Homomorphisms into simple Z-stable C *-algebras, I 869

(2) Suppose that KL(p) = KL(y). Let K1(A) = Ur—, Gu, where G, C Gp41 C
K1 (A) is a finitely generated subgroup. Then, for each n, there is a homomorphism §,, :
K1(A) — Aff(T(B)) such that

@* =y osulg, = Zp o 8la,-

Proof. Let z € K1(A) be represented by a unitary u € M, (A) for some integer n > 1.
As before, we will continue to use ¢ and ¥ for the extensions ¢ ® idps, and ¥ ® idyy,,
respectively. Then, [p(u)y (u)*] = 0 in K;(B). By replacing u by u & 1; in M, 4 for
some integer k € N and n by n + k, without loss of generality, we may assume that
o)y (u)* € Up(M,(B)). It follows that there is a continuous and piecewise smooth
path {v(¢) : t € [0, 1]} C M, (B) such that v(0) = ¢(u)¥ (u)* and v(1) = 1p,(B). Put
w(t) = v(t)Y(v). Then, w(0) = p(u) and w(l) = ¥ (u).
Then, in Aff(T(B))/p5 (Ko(B)),

1

1 d -
(@F =y osa(lz) = 5 | r( Z(t’)v*(n)dwa(Ko(B))

1 1(dw(t)
()

27i Jo dt

w*(t))dt +os(Ko(B)  (zeT(B).
Let

Mgy = {(b,a) € C([0,1]. B) & A : b(0) = ¢(a), b(1) = 1,//(a)}

be the mapping torus. Since 7 0 ¢ = 7 0 ¥, as in 2.8,

1 L rdw(t)
R nl)=-— —w*(r) |dt
rlw) = 5 [ (St )
gives a homomorphism Ry, v : Ki(My ) — Aff(T(B)).

If KK(¢) = KK(v), as in [15, Definition 3.4], there is a splitting map 0 : K;(A) —
K1 (My,y) such that 8(z) — [w(t)] € t+1(Ko(B)), where t : B — My, y is the embedding
(see also [15, Lemma 3.3]). Then,

Ry (0(2) — [w(1)]) € pr(Ko(B)).

Define
8 := Ry 00 : Ki(A) > Aff (T (B)).

One then has
(¢* =y 0s4(z) = Tp 0 8(2).

This proves case (i).

For case (ii), let KL(p) = KL(y). Then, for each n, there is a homomorphism 6, :
G, — K1(My,y) such that (¢ )« 0 6, = idg,, where , : M, y — A is the quotient map,
n=1,2,.... Since Aff(T(B)) is divisible, there is 6, : K;(A4) — Aff(T(B)) such that
8nlG, = Rpy 00p,n =1,2,.... Note thatif z € G, then 0, (z) — [w(?)] € tx1(Ko(B)).
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The computation above shows that

Ry,y (6n(2) — [w(1)]) € pB(Ko(B)).
It follows that
(¢F =¥ os4(2) = g 0 8u(2).
This proves case (ii). [
Lemma 5.2 (cf. [18, Lemma 6.8]). Let A and B be unital separable simple C*-algebras
such that A is finite and amenable and satisfies the UCT, and gTR(B ® M) < 1 for
any supernatural number v of infinite type. Suppose also that B is Z-stable. Let k €

KL.(A, B)™™" and A : Aff(T(A)) — Aff(T(B)) an affine homomorphism, Then, there
exists a unital homomorphism V : A — B such that

W] =k, (¥)=A.

Moreover, if y € Une; UMy (A))/CU(My(A)) — U(B)/CU(B) is a continuous homo-
morphism which is compatible with k and A, then one may also require that

Yy cuwmy = vlvmo/cuwy. () osg=yoss—h.

where s4 : K1(A) — U(A)/CU(A) is a splitting map (see Definition 2.4), and

h: Ki(A) = Rpg(Ko(B))/ps(Ko(B))
is a homomorphism.

Recall that B has stable rank one (see [23, Theorem 6.7]). By the last part of Defi-
nition 2.6, the map i — diag(i, 1,,) : U(B)/CU(B) — U(M,,(B))/CU(M,,(B)) is an
isomorphism.

In the following proof and rest of the paper, we will use Ep to denote the homo-
morphism Ep : D — D ® Z, 4 defined by d > d ® 1z, for all d € D and for any
C*-algebra D.

Proof. Let p and g be two relative prime supernatural numbers of infinite type such that
O=M,@M;.LetAy =AQ My, Aqgq =AMy, By =B M,,and By = B ® M,.
Note, by the second part of Definition 2.10, gTR(A,) < 1 for any supernatural num-
ber r, and by the assumption, gTR(By) < 1. Let k, € KL(Ay, By), Ay : Aff(T'(4y)) —
Aff(T(By)), and y, : U(Ay)/CU(Ay) — U(By)/CU(B,) be induced by «, A, and v,
respectively (see [18, Lemma 6.1] for y,) for infinite supernatural number r, including
the supernatural number oo (recall Mo, = Q). Moreover, M, = M, ® M, for any super-
natural number v of infinite type. It follows from [7, Corollary 24.4] that there is a unital
homomorphism ¢, : A, — By such that

[@p] = Kp in KL(Ap’ Bp)s (‘Pp)i = Vp» (‘/’p)# = Ap- (e5.1)



Homomorphisms into simple Z-stable C *-algebras, I 871

For the same reason, there is also a unital homomorphism 4 : Aq — B such that

[Va] = kg in KL(Aq, By), (W) =va, (V) = Aq- (€5.2)

Define ¢ = ¢ ® idy, and ¥ = Y4 ® idpy, : A ® Q@ — B ® Q. From above, one has
that

[l =[W]inKLA®Q.B® Q). ¢r=vy ¢ ==y (e5.3)

Since both K; (B ® Q) are divisible (i = 0, 1), one actually has

[p] =[¢] inKK(A® Q.B® Q).

As in the proof of [7, Theorem 28.7] (see also [7, the proof of Theorem 28.3 and (e.28.6)]),
thereis B € Inn(Y (A ® Q), B® Q) with KK(B) = KK (1448 0)) (Where 1 (4g0) is the
embedding of ¥(4 ® Q) into B ® Q), (Bo¥)r = ¥r, (Boy) =T, and Ry goy =
—EW,,. It follows that E(p’ﬁow = 0 (see also [7, the proof of Theorem 28.7]). Then, by
[7, Theorem 27.5], ¢ and B o Y are asymptotically unitarily equivalent. Since K{(B ® Q)
is divisible and K¢(A ® Q) is torsion-free, H;(Ko(4A ® 0), K1 (B ® Q)) = K1(B ®
Q) (see [7, Definition 28.10] for a notation). It follows that ¢ and § o ¥ are strongly
asymptotically unitarily equivalent.
Note that one may identify 7'(Bg), T(Byp), and T(B ® Q). Moreover,

pBoo(Ko(B ® Q)) = Rpp(Ko(B)) = pa, (Ko(Bs)).

Denote by 1, : B — B ® O the embedding a — a ® 1, (where 1, := 1,4,), and note
that the image of 1, o ¥4 is in the image of . Thus, by [18, Lemma 3.5], Rﬁmpoqu,tpowq
is

Hom (K1 (Mgor,opq tpove): PBq (Ko(By)))-
Note that

[Botpos] =[ipovs] in KK(Ag, Bg).
By [7, Theorem 28.3], there exists & € Inn(yq(Aq), By) such that

[0] = [tyq(aq] in KK(wq(Aq),Bq), (e5.4)

where 1y, (4,) is the embedding of ¥4 (44) into By, and

Ra”\ﬁa(Aq) = _Rﬁ°lv°1ﬁq,lv°¢a'
One computes (just as [18, Lemma 6.5]) that
[lpoaoyy] =[Boiyoyy] in KK(Aq, B® Q).
(tpoaoyg)y =(Bopoygly (poao Wq):t =(foipo Wq)iv

and
Rlv°°‘°‘/’q Borpoyg = 0.
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It follows from [7, Theorems 27.5 and 28.13] that 1, o o 0 Y, and B o 1, o V¥, are
strongly asymptotically unitarily equivalent.

We will show that B o ¥ and (& o V¥q) ® idp, are strongly asymptotically unitarily
equivalent. Define 8; = (Boip o) ®idy, : AQ My @ My - B O @ M,. Let
Jj 0 — QO ® M, bedefined by j(b) = b ® 1,. Consider the C *-subalgebra

C=Bov(lagm, ® Mp) ® My =(lp, @ My) @ My CB® Q ® My. (e5.5)

Note ¥ (lagm,) = 1B, and ¥ (lagm, ® Mp) = 1p, ® My. Since K{(C) = {0},in C,
(idp ®Jj) o (B1 8, ®M,) and jo are strongly asymptotically unitarily equivalent, where
Jo : My — C is defined by jo(a) = 1pgp ® a for all a € M. In particular, there exists
a continuous path of unitaries {v(¢) : t € [0, 1)} C C such that

llin} Adv(t) o (idp®j)o(Boy)(ly, ®a) = 1pgo ®a foralla € M.

Note that, for a; € Aq, (idp ®j)(B o ¥(ag ® 1)) = B(¥y(ay) ® 1) ® 1. Then, by
(€5.5), v(t) commutes with (idp ® j)(B o ¥ (ag ® 15)). It follows that (idg ® j)of o ¥
and B are strongly asymptotically unitarily equivalent. Since 1, o o ¥, and B o1, 0 Yy
are strongly asymptotically unitarily equivalent, one concludes that (idp ® j) o B o ¥ and
(1p o @@ 0 Yy) ® idpy, are strongly asymptotically unitarily equivalent. There is a homo-
morphism 6 : 0 ® M, — Q suchthatf o j : Q — Q is strongly asymptotically unitarily
equivalent to idg. Consequently, (idg ®6) o (idp ® j) o B o ¥ is strongly asymptotically
unitarily equivalent 8 o ¥, and (idgp ®0) o ((1p © & 0 Y¥y) ® idyyg,) is strongly asymptot-
ically unitarily equivalent (& o ¥) ® idpy, . Therefore, 8 o ¥ and (x o ¥q) ® idpy, are
strongly asymptotically unitarily equivalent.

Finally, we conclude that (« o 4) ® idps, and ¢ are strongly asymptotically unitarily
equivalent. Note that, by (¢ 5.4), @ o V4 is an isomorphism which induces I';.

Thus, there is a continuous path of unitaries {u(z) : ¢ € [0, 1)} in B ® M, ® M, (it
can be made piecewise smooth—see [15, Lemma 4.1]) such that #(0) = 1 and

th_r)r} adu(t) o p(a) = ((a oYs) ® ide)(a) foralla e A® Q.

Note thatif a € A ® Zp 4, then a(0) € A @ M, ® 1q4, ¢(a(0)) € B, ® 14, a(l) €
A® My ® 1, and
(@ 0 ¥g) ®idp, )(a(l)) € By ® 1;.
This provides a unital homomorphism ® : A ® Z, 4 — B ® Z, 4 such that, for each
t€(0,1),
70 ®(a) =adu(t) o (p(a(t)) foralla € A® Zy q.

Denote by C; a commutative C*-algebra with Ko(Cx) = Z/kZ and K;(Cr) = {0},
2,3,...,and Cy = C. Therefore, one identifies K; (A ® Cy) with K;(A,Z/k7Z) (i =0, 1).
Note that [E4] : K(A) — K(A ® Z, 4) is an isomorphism in

Homp (K(A), K(A ® Zyq))
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(recall Ko(Zp4) = Z and K1(Zp4) = {0}). Denote by [E4]™! the inverse of [E4] and
k? e KL(A® Zp.q, B ® Z, ) the composition [Eg] o k o [E4]~!. One computes, apply-
ing the Kiinneth formula, that

KZ (g & [IZp,q]O) =k(g)® [lzv,q]o

forallg € K;(A® Cy), k =0,2,...andi =0, 1.
Thus, we have the commutative diagrams

[Eaec; ] .
Ki(A®Co) B K(A® Cr ® Zoa) 9 Ki(A® Ch ® My) & Ki(A® Ce ® M)

klko(4,2/k7) k2K (48 CL®Zp.q) Kkp®Kg (e5.6)

[EBecy] .
Ki(B® Cr) 2B Ki(B® Cx ® Zp.a) 205 Ki(B ® Cp ® My) & Ki(B ® Ci ® M),

Ki(A® Ck ® Zpa) T Ki(A® Cr ® My) ® Ki(A® C ® My)
l@llxou,mm l{wple[wa €5.7)

[7ze]

Ki(BRCr®Zyg) — Ki(B® Cr @ My) @ Ki (B ® Cr @ My)
(recall that Ep : D — D ® Zy 4 is defined by Ep(d) = d ® 1z, ), where
Te : D®Zpg > (DOMp)® DR M,

denotes the quotient map (for D = A ® Cx and D = B ® Cy). Recall, by (e5.1) and
(€5.2), [pp] = kp and [4] = Kkq. Note (since p and g are relatively prime) that [r,]
is injective (see [26, Proposition 5.2]) and [jp] is an isomorphism. Therefore, from the
commutative diagrams (e 5.6) and (e 5.7), one concludes that KL () = KZ.

Let n : Zp,q — Z be the unital embedding given by [24, Proposition 3.3]. Define
U:A— B® Zby (idpg ®n) o ® o E4. Note [idg ®n] = [Ep]~". Then, ¥ is a unital
homomorphism such that KL(¥) = [Eg]™' o k4 o E4 = k. For each ¢, and v € T(B),
7(®;(a)) = A(a)(z) forall a € A. One then checks that t(¥(a)) = A(a)(z) foralla € A,

and all t € T(B). In fact, one has that
Dy(a @ b)(t® ) = )L(a(r)),u(b) foralla € Ag,, b € (Zpg)sa (e5.8)

forany v € T(B) and u € T(Zyp q).
Note that it follows from (e 5.8) that

(@ 0 E)|upay/cucy = Ej 0 7 luyay/cuay- (e5.9)
Then, one has, fort € (0, 1),
(ntoCI)oEA)i:yQ =liQoy,
where1p : B — B ® Q is defined by

1pla)=a®lg, yo:UA®Q)/CUARQO)—>UB®Q)/CUB®XQ)
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(see [18, Lemma 6.1]). On the other hand, for each z € U(M} (A))/ CU(My (A)) for some
integer k > 1, let wo € U(B) be such that its image wo = y(z). Putw; = wo ® 1z, , €
B ® Zy 4 and w = diag(wy, 1x—1).
In what follows, we will use H for H ® idys, (foramap H)and U(¢) for U(t) @ 1, ;
in particular, this includes the case H = ¢.
Then,
w:(w) = 7 (w) forall 7, € [0,1], Eg oy(z) = w.

Since 7;(w) € B is constant, one may use w for its evaluation at z. Let vg € U(My(A))
be such that vg = z.
Let Z = ®(E4(vg))w*. Then, for any ¢ € (0, 1),

Z(t) = m; 0 D(Eq(vo))w™* = u(t)*p(vo)u(r)w*.
Since (k, A, y) is compatible, in K1 (B @ Zp 4),
12] = [®(Ea(v))w"]
= [«?(Ea(v0)][wg ® 1z,,,]
= [K([UO]) ® lzp,q][w; ® lzv,q] = 0.

It follows that diag(Z, 1,,) € Up(Mpm+1(Mi(B) ® Zy,4)). Let Z1(¢, s) be a piecewise
smooth continuous path of unitaries in Uy (M1 (My(B) ® Zy 4)) such that Z;(¢,0) =
Zi(t) and Z(¢t, 1) = 1. Denote by 7( the unique tracial state in T(Q), where r is a
supernatural number. For each s, € T(Z; 4), one may write

1
@) = [ wofa(0)dpto),

where p is a probability Borel measure on [0, 1].
To apply [18, Lemma 6.6], put

V(t) = diag (u(7). L),
¢ () = diag (p(a). p(a), ..., ¢(a)),
wy = diag (w, ¢(vo), ..., ¢(vo))

as well as (fora € A)
Y (a) = diag (((@ o Yq) ® ida, )(@). @(a). . ... ¢(a)).
Then, Z,(t) = V(t)*o" D (vo) V(t)w forall ¢ € [0, 1), and

lim V(1)* "D (vo) V(0w = diag (u(t)*¢(vo)u(t)w*. Ln).
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Then, for T € T(B) and s, € T(Zy,4), by applying [18, Lemma 6.6],
Det(Z1)(r ® sy) (e5.10)

_ 27“/_/ (t® M)(dz‘(t S)Zl(t,s)*)ds

2”\/— / (r®to)( Z1(t,s) )d,u(t)ds

le(t 5)
[ (e oo (22 o

:/0 Det (¢(vo)wg)(t)dju(t) + f(r) for some f € pp(Ko(B ® Q))

= Det (¢(vo)wg)(z) + f(), (e5.11)

where p is a Borel probability measure on [0, 1] associated with s,,. Note that if p,g €
M, (B ® Q) are two projections, then there are projections pg, go € M,,(B) (for some
integer m) and r € Q such that [p] — [¢] = r([po] — [¢o]). By (e 5.3), for any & > 0, there
are projections pg, qo € M, (B) and r € QQ such that

sup {|g(x) —r(r(p)—1(9))|: T € T(B)} <¢

where g(7) =Det(¢(vo)wg)(z) forall t€ T(B). Put p1=po®1z,, andq1 =qoR1z, .
By (e5.11), for g1(r ® s,,) = Det(Z;1)(r ® s;,),

|g1(t @ 5) —r((r ®5,)(p1) + (T @ s)(q1))| <€

forallt e T(B)ands, € T(Zy,q)-
Therefore, the map

T(B® Zpg) 3T ® s, > Det(Z1)(tr ® s,) = Det (¢(vo)wg ) (r) + f(7)
defines an element in m CAff(T(B ® Zyp,4))-
Thus,
(®o Ex)*(2)(Ep o y(2)*)
defines a homomorphism from the group U(A4)/CU(A) into Rpp(K¢(B))/pp(Ko(B))
which will be denoted by h¢. By (¢5.9),

holug(ay/cucay = 0.
Thus, —hg induces a homomorphism h: Ki(A) — Rpp(Ko(B))/pp(Ko(B)). Since all
unital endomorphisms on Z are approximately inner (see [10, Theorem 7.6]),
WH(s4(0)7 (54) " = (¢ @ m) 0 Do Ea) (54(x)))y (s4()7")
= —h(x) forall x € K;(A).

In other words,

\PiosA:yosA—h. [ ]
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Lemma 5.3. Let A and B be two unital separable simple C*-algebras such that A is finite
and amenable and satisfies the UCT, and gTR(B ® M.) < 1 for any supernatural number
v of infinite type. Suppose that B is Z-stable. Let  : A — B be a unital homomorphism.
Suppose that

h € Hom (K1(4). Rpg(Ko(B))/p5(Ko(B)))

such that there exists h € Hom(K1(A),Rpp(Ko(B))) with h = Sg o h. Then, there exists
a homomorphism ¢ : A — B such that

KL(y) = KL(p), Vr =91, YF—gHoss=n.

Proof. First, recall, by the second part of Definition 2.10, that gTR(A ® M,) < 1 for any
supernatural number r of infinite type. Fix a splitting map

541 Ki(4) = U(Mo(A))/CU (Moo (A))

as defined in Definition 2.4. Let y : U(Moo(A))/CU(Mx(A))— U(B)/CU(B) be homo-
morphism such that

VI ase(r Ay foaRota) = 1/fi|Aff(T(A))/pA(KO(A))’ yosa=ytosg+hosy.
Therefore,
( ®idz, ) o Elosy=Ejoyosa—h, M§oyoss=yu. (€512

In what follows, we will identify 7'(B) with T(B ® M,) whenever it is necessary. There
is a homomorphism /4, : K1(A4 ® My) — pp(Ko(B ® M,)) = Rpp(Ko(B)) such that

h = hyo(t4,r)x1, (e5.13)

where 14+ : A > A ® M, is the embedding so that 14 y(a) =a ® 1, foralla € A(risa
supernatural number, including oo which corresponds to Q).

Choose a pair of relatively prime supernatural numbers p and g of infinite type. We
also require that M, ® My = Q. Put A, = (¢ ® idpr,) (A ® M), where 1 is a supernatural
number.

It follows from [7, Theorem 28.3] that there is a monomorphism By € E(A;, By)
such that

[Bo] = [1a ) in KK(4. By).  (Bo)e = tay,. By = 1a,F, (e5.14)
Rigy po = ho + (0B, © o). (e5.15)
where 14 is the embedding of A; and f, € Hom(K;(A4yp), Ko(B ® My)). Recall, here,
Ei% By € Hom (K (A4y). Aff (T(By)))/Ro.
where R is the subgroup of those A € Hom(K(A4;), Aff(T'(By))) such that

)L() € Hom (K1 (Ap), K()(Bp))
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and A = pp, o Ag (see [15, Definition 3.4]). Put
fy = pB, © fy € Hom (K1(4p). pB, (Ko(By)))-
Denote by 1/7r : A — B, the map defined by
@r(a) = ®idy,)(a ® 1p,) forallae A, r=1p,q.

Thus,

Rtpoﬁp,tpoﬂooz’}p =h+ (fp/ © (lA,D)*l)v (e 5.16)
where 1, : By — B ® Q is the embedding defined by 1,(b) = b ® 1y, . Note that
po (¥ ®idy,) =¥ ®idg .

Similarly, there is a monomorphism B; € Inn(4/,, B,) such that

[B1] = [ta] in KK(AG. Bg),  (B1)g = 1, BT = 1, ¥,
Elq°$q’lq°,31°1;q =h+ fq, 0 (14,q)%1»

where 1q : Bq — B® Q is the embedding defined by 14 () =b® 1u,,, and f; := pp, o f4
for some f; € Hom(K;(A4q), Ko(Bg)).
Denote Yo = tp 0 Bo o (Y ®idp,,) and Y1 = 14 0 By o (¥ ® idpy, ). Consider

YoQidy, : Ap @ My(= AR Q) —> B® QO My(=BR®Q),
V1 ®idy, : Ag ® My(= A® Q) > B® 0 ® My(= B ® Q).
We have
KK(Yo ®idu,) = KK(Y1 ® idp,). (Vo ® idy,)y = (V1 ® idpy,),

and
(Yo ® idu, ) = (Y1 ® idu, )*.

We also compute that

Rl//0®idMq,¢1®ide = R'/f0®idMq,1//®idQ + Ri/f®idQ,1,//1®idMq = —hoo + hoo = 0.

It follows from [7, Theorems 27.5 and 28.13] that there is a continuous path of unitaries
{U():te€[0,1)} CUB ® Q) with U(0) = 0 such that

lim U(1)" (Yo ® idy, ) (@)U (1) = (Y1 ® idp, ) (@).

By [15, Lemma 4.1], we may also assume that {U(¢) : ¢ € [0, 1)} is piecewise smooth.
Let®: A® Zyq — B ® Z, 4 be defined by

®(a ® b)(t) = U*(1)((¥o ® idm, ) (a ® b(1)))U(1) forallz € [0, 1),
®(a @ b)(1) = ¥ ®idy, (a ® b(1)),
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foralla ® b € A ® Z, 4. Exactly the same argument in the proof of Lemma 5.2 around
(e5.6) and (e 5.7) shows that

KL(®) = [Eg]o KL(y) o [E4]"". (e5.17)
We claim that
@ o E 054 = (Ep)f oy osa. (€5.18)

To compute ®*, let x € s4(K1(A)) and vy € U(My(A)) (for some integer k > 1) such
that 99 = x. Let wo € U(B) such that its image wo = y(x). Put w; = wo ® 1z, , €
B ® Z, . Then, w(t) = w(t’) forallz,¢" € [0, 1] and

E; oyosq(x) =w.

Put w := diag(w, 1x—1). In what follows, we will use H for H ® idy, (foramap H) and
Ut) for U(t) ® 1py,. Let Z = (P o E4(vo))w™ € My (B) ® Zp 4. By the second part
of (e5.12) and by (e 5.17), [Z] = 0. Suppose that there is a piecewise smooth continuous
path {Z(t,s) : s € [0, 1]} C Mp41(My(B) ® Z,,4) such that Z;(z,0) = diag(Z(¢), 1,,)
and Z1(¢,1) = 1yy+1. Then, in Aff(T(B ® Zyp )/ pB2Z,.4 (Ko(B ® Zy 4)), by (€5.12)
and wo = y(x),

Det (Z1(t,5))
= Det (Z1(t,5)(w(¢ ®idz, , (E4(v0)*)))) + Det (¥ ® idz, ,)(E4(vo))(Er(wg)))
= Det (Z1(2.5)(w(¥ ®idz, , (E4(v0)*)))) + h o ([vo]). (€5.19)

where we identify T'(B) with T(B ® Q), and (h o s4(x))(t ® §;) = h([ve])(z) for all
1€ T(B® Q) and ¢ € [0, 1]. By (e5.15) (see also (e 5.16)), there is a continuous and
piecewise smooth path {z(¢) : t € [0, 1]} in Up(My (B ® My) ® 1p,) such that

2(0) = (Bo(¥ (vo) ® 1) ® 1ar, ) (¥ (v0) ® 1ar,) ® 1) z(1) =1,

and

1
ﬁ 0 r(dz(ss)z(s)*)ds = —h([vo]) (¥) + (L)) (x) forall € T(A® M,).

Define Z»(t,5) = Z1 (¢, s)(w(¥ ®idz, , (v0)*)(E4(vo)*)). We also have
Z(t,0) = diag (U* (1) ((Bo(¥ (v0) ® 1a1,)) ® 1ag, )U0) (¥ (v0) ® 10) ", 1),
Z5(0,0) = diag (((Bo(¥ (o) ® 11,)) ® Lz, ) (¥ (v0) ® 10)", L),
Z5(1,0) = diag (((81 (¥ (v0) ® 11,)) ® g, ) (¥ (v0) ® 10)" 1)
Note that
Det(Z>)(r ® 80) = —/([vo]) (v) + hoo(7),
Det(Z2)(t ® 81) = —h([vo])(t) + h1,0(7)
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for some hoo € pp,(Ko(By)) and hyo € pp,(Ko(Bg)). Recall that we have identified
T(B) with T(B ® M,) as well as T(B ® Q). It follows from Lemma 3.6 that (see also
the lines above (¢ 5.10)) there is f € ppgz, , (Ko(B ® Zy 4)) such that, foreach z € [0, 1],

Det (Z1 (1. 9)w((¥ ® idz, ) (E4(v0)*)))(r ® &)
1
— Det(Z,)(x ® b;) = (% [0 r(%zz(m)*)ds)(m
= —h(sa(x)) (D) + f(x ® &),
Therefore, by (e 5.13) and (e 5.19), the map

T(B® Zyq4) 3T ®sy, (where T € T(B), sy € T(Zp,g)) > Det (Z1(t,5))(t ® 5,1).

where © € T(B), s, € T(Zp,q), defines an element in ppgz, . (Ko(B ® Zy 4)). Hence,
ot o Ej(x) = = (Ep)* o y(x). This proves the claim.
Denote by : Z,, 4 — Z the unital embedding given by [24, Proposition 3.3]. Consider

¢ = (idp ®n) o Do Ey.
One then checks that
[p] = [y] in KL(A,B), ¢g= .

Since B is Z-stable, Z itself is strongly absorbing and every unital endomorphism of Z is
approximately inner [10, Theorems 7.6 and 8.7], (idp ®n)* o Ei =1id. By (e5.18),

(pi osq4 = (idp ®77)"t o dto Ej‘ osq = (idp ®n)fF o (EB)i oyosq =7V osy,
which implies p* = y. ]

Theorem 5.4. Let A be a unital finite separable amenable simple Z-stable C*-algebra
which satisfies the UCT. Then, there exists a sequence of unital separable amenable simple
Z-stable C*-algebras A, such that K;(A) are finitely generated (i =0, 1) and a sequence
of homomorphisms ¢y, : Ay — Ap41 such that

A= lim (An,¢n)s @nyi * Ki(An) = Ki(An+1)
is injective.
Proof. Let G C Ko(A) be a sequence of finitely generated subgroups satisfying
4 eGVcGIc---CcGdc---, Ko(4) =UGY,
and let G} C K;(A) be a sequence of finitely generated subgroups satisfying

GicGyC--CG,C--, Ki(Ad)=UG,.



G. Gong, H. Lin, and Z. Niu 880

Recall that the Elliott invariant of A is described as

((Ko(A), Ko(A)+, [La]), K1(A), T(A), r4),

where r4 : T(A) — S(Ko(A)) is the canonical map. Let A = T(A) and r = r4. Define
i A — S(GY) by ry(r) = r(0)lge-

By [6, Corollary 13.51], there is a separable simple amenable unital Z-stable C*-
algebra A, such that

((Ko(An). Ko(An)+. [14,]). K1(An), T (An). 14,)
= ((GY. G2 N Ko(A)4.[14]). G, A 7).

By Lemma 5.2 above, there is a homomorphism ¢, : A, — A,+1 such that

(@n)x.0 : Ko(An) = G — Ko(Ant1) = GJ, 1.
(@n)e1 2 Ki(An) = G} — Ki(Ant1) = G iy

are the inclusion maps, and (¢,)7 : T(Ap+1) = A — T(A,) = A is the identity map.
Let B := lim,_, o0 (Ay, ¢n). Then, from the construction, A and B have the same Elliott
invariant and therefore are isomorphic to each other by [6, Corollary 29.9] and [3, Theo-
rem 4.10]. [

Theorem 5.5. Let A and B be unital finite separable simple Z-stable C*-algebras. Sup-
pose that A is amenable and satisfies the UCT and gTR(B ® Q) < 1. Fix a splitting map
sq : K1(A) = U(A)/CU(A). For any ¢ > 0 and any finite subset ¥ C A, there exists
a finite subset P C K(A) and a finite subset U C U(A) such that, for any two unital
homomorphisms ¢, : A — B, if

KL(p)lp = KLW)lp. or =9, (€5.20)

(@* o sa)lpnki ) = (U o sa)lpnk, (), (e5.21)
then there exists a unitary u € B such that

[u*(a)yu —y(a)| <& forallac¥F.

Proof. Tt follows from Theorem 5.4 that we may write A = lim,_, (A, t,), where each
A, is a unital separable amenable simple Z-stable C *-algebra with finitely generated
Ki(A,) (i =0,1),and ¢, : A, — A, 41 is a unit monomorphism. Therefore, there exists
an increasing sequence ¥1 C ¥, C --- C ¥, C Fp41 C --- of finite subsets of A such
that there are finite subsets §, C A, with the property t, 00 (5,) = ¥, (n = 1,2,...) and
Un2; Fn is dense in A.

Let ¢ > 0 and a finite subset ¥ C A be given. Without loss of generality, we may
assume that ¥ C ¥, for some integer n > 1. Since K; (Ay) is finitely generated (i = 0, 1),
by [2, Corollary 2.11], there is a finitely generated subgroup F C K(A) such thatif x1,x2 €
KL(Apn, B) andk1|F = k2| F, then k1 = k. Let @ C F be a finite generating set. Define
P = [inoo)(@).
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Now suppose that ¢, ¥ : A — B are two unital homomorphisms which satisfy (e 5.20)
and (e 5.21). Then,

KL(@0tnoo) = KL(Y 0 tnoo), (9 0tnoo)y = (¥ Olnoo)ss 90U o=V 0Lf

It follows from Theorem 4.3 that there exists a unitary u € B such that

Hu*(p 0 ln,00(8)U — V¥ 0 1y,00(8) ” <g¢ foralla € °G,.

It follows that
lu*o(@u —y(a)| <& foralla € F,. .

Theorem 5.6. Let A and B be two unital finite separable simple amenable Z-stable C*-
algebras which satisfy the UCT. Let ¢ : A — B be a unital homomorphism. Suppose that

h € Homyy (K1 (A). Aff (T(B))/pg(Ko(B)))

(see Definition 2.9 for the notation). Then, there exists a homomorphism \y : A — B such
that

KL(y) = KL(p), V1 =or, (p*—yH)osa=h.

Proof. Lety :=¢¥ —ho IT5¥. Then, ([¢], ¢T, y) is compatible. By Lemma 5.2 (see also
the second part of Definition 2.10), there is a unital homomorphism ¥’ : 4 — B such that

KL(') = KL(p). (')t = ¢r. and

ho := ((¥')* —y) 054 € Hom (K1(4). Rpg(Ko(B))/p5(Ko(B))).

Then,

(@) =¥ osa = (W) = (v +hoT}")) 054 = ho — h.
It follows from Theorem 5.1 that g — i € Homye( K1 (A), Aff(T(B))/pp(Ko(B))). Since
I is in Homy(K 1 (A), Aff(T(B))/ps(Ko(B))), s0 is hg.

Let K1(A) = UZO=1 G,, where G,, C G4 is an increasing sequence of finitely gen-
erated subgroups. Since ho € Homue(K1(A), Aff(T(B))/pp(Ko(B))), there are homo-
morphisms %, : K1(A) — Aff(T'(B)) such that X o hy|g, = —/;o|G,,, n=12,...(see
Definition 2.5 for Xg). Since ho € Hom(K;(A), Rpp(Ko(B))/pr(Ko(B))), hulg, €
Hom(G,, Rpp(Ko(B))). Since Rpp(Ko(B)) is divisible, there exists homomorphism
hon - K1(A) — Rpp(Ko(B)) such that ho |G, = hnlc,-

By the second part of Definition 2.10, gTR(A ® My) <1 and gTR(B ® M,) <1
for any supernatural number r of infinite type. By Lemma 5.2, there is a homomorphism
¢n © A — B such that

KL(pn) = KL(Y') = KL(@). @ar =¢r. W —@Dosa=h,. (522

Let ¥, C F,+1 be a sequence of finite subsets of A such that Uf,ozl F, is dense in
A. By applying Theorem 5.5, we obtain a subsequence {¢,, } and a sequence of unitaries
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{ug} of B such that
H“lt+1¢nk+1(a)“k+l - 1//k(a)” < 1/28*1 foralla € i,

where 1 = ¢1,and ;41 = Adujqq 0 Onjys ] = 1,2,

Then, {Y (a)} is a Cauchy sequence for each a € A. Let ¥ (a) = limg_, o Y (a) for
a € A. Then, ¥ defines a unital homomorphism from A to B. Since KL(¢,) = KL(p)
and ¢, 7 = ¢r for alln € N, one concludes that

KL(y) = KL(p), VY1 =gr.
Note that i, |G, = holg,. By (¢5.22),
W'* -y osalg, = —holg,» n=12,....

It follows that .
W =yt oss = —ho.

Finally,
@t —yHosa= (@ —yvHosa+ W —yHosa=—(ho—h)—ho=h. m

Definition 5.7. Let A be a unital separable C *-algebra with stable rank at most n such
that T(A) # 0. Let

J A (T(4))/pa(Ko(A4)) = Up(Mn(A4))/CU (M (A)) C U(My(A4))/CU(My(A))

be the embedding.
Define R? := j(Rp4(Ko(A))). Denote by U(A)/ CU(A)R the quotient group

(U(Mn(4))/CU (Mn(4)))/R°
and
nff’c" : U(My(A))/CU(My(A)) - U(My(A))/R° = U(M,(A)) /CU(Mn(A))R

is the quotient map. Denote by n}“‘ : UM, (A))/CUM,(A)R — K,(A) and )L}f :
Aff(T(A)) — Aff(T(A))/Rpa(Ko(A)) the quotient map. Since Rp4(Ko(A)) is a divisi-
ble subgroup (a real subspace of Aff(T(B)), in fact), there is a splitting map

s1 U (My(A))/CU(My(A)X = U(M,(A))/CU(My(A)) (e5.23)

such that T o 3 = idyu, 4/ c U, (4=

If B is another separable C *-algebra with stable rank at most n such that 7(A) # @
and ¢ : A — B is a unital homomorphism, then ¢ induces a continuous homomorphism
PR L UMy (4)/ CUMy (AR — UMy (B))/CU(My (B))¥.

Letk € KL.(A, B)™" and k7 : T(B) — T(A) be a continuous affine map.
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Let yR : UM, (A))/CUM,(A)R — UM, (B))/CU(M,(B))® be a homomor-
phism. We say («, k7, y®) is compatible if («, x7) is compatible, y&| AR(T(A))/ R (Ko (A))

is induced by k7, and 7156“ oyR =klg, (4) © n}c".

Denote by Homy ., (U(M,(A))/CU(M,(A))R, UM,(B))/CU(M,(B))®) the set
of all homomorphisms

YR L U (My(4))/CU (Mu(A))", U (Mu(B))/CUMu(B))"
which are compatible with (k, k7). Fix
g € Hom o (U(My,(4))/CU(M,(A)%, U (M,(B))/CU (Myn(B))¥).
Then,
{8~ B : B € Homeye, (U(Ma(A))/CU(Mu(A)X, U(Ma(B))/CU(Mu(B)))}
= Hom (K1 (A), Aff (T(B))/Rpz (Ko(B)))-

We use the notation I'¢ for the bijection § — g — B. Thus, we will view it as an abelian
group.
For the simplicity of notation, we will use U(A4), CU(A), and CU(A)R for U(M,,(A)),

CU(M,(A)), and CU(M,(A))R, or simply assume that the algebras A and B have stable
rank 1, and therefore n = 1.

Proposition 5.8. Let (k, k1) be a compatible pair. Then, there is a splitting short exact
sequence:

0 — Hom (K1 (A4), Rpp(Ko(B))/ps(Ko(B)))
— Homy 4, (U(A)/CU(A), U(B)/CU(B))
— Homy e, (U(A)/CUAR, U(B)/CU(B)®) — 0.
Proof. For each { € Homy ., (U(A)/CU(A), U(B)/CU(B)), consider T1§* o {(x) for
all x € U(A)/CU(A). Since
§(Rpa(Ko(A))/pa(Ko(A))) C Rpa(Ko(B))/pa(Ko(B))

as { is compatible with (k, k1), I1§* o ¢ vanishes on Rp4(Ko(A))/pa(Ko(A)) which
uniquely defines a homomorphism

7R (¢) € Home ke, (U(A)/CUAR, U(B)/CU(B)R).
Fix
g € Homy ., (U(A)/CU(A),U(B)/CU(B))
and let g := MAR(g) € Homy ,, (U(A)/CU(A)R, U(B)/CU(B)®). Using ' and T'¢

and viewing

Hom ., (U(A)/CU(A),U(B)/CU(B)), Homg, (U(A)/CUAR, UB)/CUB)R)
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as abelian groups as described in Definitions 2.9 and 5.7, then

%R : Homy ., (U(A)/CU(A),U(B)/CU(B))
— Homy ., (U(A)/CUA)R, U(B)/CU(B)®)

defines a homomorphism. If H%’C” o(g —¢&) =0, then

g(x) = &(x) € Rpa(Ko(B))/pa(Ko(B)) forallx € U(A)/CU(A).

884

Since g and ¢ are both compatible with (k, k1), g — ¢ defines a homomorphism from
K1(A) to Rpg(Ko(B))/pa(Ko(B)). Conversely, if g — ¢ defines a homomorphism from
K1 (4) into Rpa(Ko(B))/pa(Ko(B)) (not just into Aff(T(4))/4(Ko(B))), then

n#Rg—¢) =o.

It follows that

ker TR = Hom (K (4), Rpg (Ko(B))/p5(Ko(B))).

For each £ € Homy (U(A)/CU(A)R, U(B)/CU(B)R), define a homomorphism
t:U(A)/CU(A) - UB)/CU(B) by ¢ = s}; ofo HE’C". Since (see the line below

(€5.23))
My (¢) = (M5 o sp)(E o TLI™) = § o .

we have
MR (s o g0 TIP™) = &.

HH,R

This implies that is surjective. Define

SHR : Homy ., (U(A)/CUA®, U(B)/CU(B)F)
— Homy ., (U(A)/CU(A),U(B)/CU(B))
by SR (g) = sp o Hlﬂf’cu. Then, by (¢ 5.24), TR s the splitting map.
Proposition 5.9. Consider (see Definition 2.9 for the notations)
Homys (K1(A4), Aff (T'(B))/ps(Ko(B)))
= Hom (K, (A)/ Tor (K1(A)), Aff (T(B))/pz(Ko(B))),
Homg (K1(A), Rpg(Ko(B))/ps(Ko(B)))
= Hom (K (4)/ Tor (K1 (4)). Rps (Ko(B))/ p5 (Ko (B)))-

Proof. Suppose that £ € Homy( K1 (A), Aff(T(B))/pp(Ko(B))). Write

o0
Ki(4) = | Ga,
n=1

(e5.24)
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where G, C G,41 and each Gy, is finitely generated. For any x € Tor(K;(A)), there is an
integer n > 1 such that x € G,. Choose h,, : K;(A) — Aff(T(B)) such that ¥ o h,|g, =
€|, Since Aff(T (B)) is torsion-free, /1, (x) = 0. It follows that £ (x) = 0. In other words,
€| or(k, (4)) = 0. Therefore, £ gives a unique homomorphism £€in

Hom (K1 (A)/ Tor (K1 (A)), Aff (T(B))/pg (KO(B))).
The map

G : Homy (K1(A), Aff(T(B))/pg(Ko(B)))
— Hom (K (A)/ Tor (K1(A)). Aff (T(B))/pr(Ko(B)))

given by £ € is an injective group homomorphism.

To see the surjectivity, let ¢ € Hom(K;(A)/ Tor(K1(A)), Aff(T(B))/ps(Ko(B))).
Define

¢ : Ki(4) — Aff(T(B))/pz(Ko(B))

by ¢ := ¢ ogq, where ¢ : K1(A) — K;(A4)/ Tor(K;(A)) is the quotient map.

For each n € N, let G, be the image of G,, in K (A)/ Tor(K;(A)). Then, G, is a free
abelian group. Therefore, there exists a homomorphism A, : G, — Aff(T(B)) such that
Ypold, = E|5n. Since Aff(T(B)) is divisible, there is an extension

A 0 K1(A)/ Tor (K1 (A)) — Aff (T(B))

such that In |5n =A,.
Define y, : K1(A) — Aff(T(B)) by y, := A, o q. Then,
¢le, = XB o vnla,-

This implies that
¢ € Homys (K1 (A). Aff (T(B))/ps(Ko(B))).

However, G () = ¢. Therefore, the map is surjective.
The second identity follows from the first one. ]

Theorem 5.10. Let A and B be unital finite separable simple amenable Z-stable C*-
algebras which satisfy the UCT. Then, for every compatible pair (k,KkT), where k €
KL.(A,B)*" andkr : T(B) — T(A) is an affine continuous map, there exists a splitting
short exact sequence

0 — Hom (K1(A)/ Tor (K1(4)). Rps(Ko(B))/pr(Ko(B)))
— Homy x7 app (A4, B)
— Homy ., (U(A)/CUAR, U(B)/CUA)R) — 0.
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Proof. By Theorem 4.3 and Lemma 5.2, for each compatible pair («, k7), there is a one-
to-one map

I' : Homy xp app (A, B) — Homy ;e (U(A)/CU(A), U(B)/CU(B)) (e5.25)
which is not void. Hence, I"(Homy ;- ,app (A4, B)) is a subset of
Homy i (U(A)/CU(A), U(B)/CU(B)).

Choosing a splitting map s} : U(A)/C U(A)R - U(A)/CU(A), by Lemma 5.2 and Propo-
sition 5.8, the quotient map
7R . Hom, ., (U(A)/CU(A),U(B)/CU(B))
— Hom,; (U(A)/CUAR, U(B)/CU(B)F)

restricting on I'(Homy e, app (A4, B)) is surjective. Fix [¢p] € Homy cp app(A4, B). If [Y/] €
Homg ;. .app (4, B) and THR(T([¢])) — TIZR(T(([y]))) = 0, then, by Theorem 5.1,

i :=T(l¢]) — T([¥]) € Homy (K1 (A), Rpg(Ko(B))/ 05 (Ko(B))).

By Theorem 5.6, there is ¥; : A — B such that

KL(y1) = KL(p), Vip =kr, (@*—yHosa=rh.

This implies, applying Theorem 4.3, that Hom;(K1(A4), Rpg (Ko(B))/ps(Ko(B))) is a
subgroup in the subset I'(Homy 7 app(A, B)) of an abelian group. Since

7R o T'(Homy ey app (A, B))
is a group, we conclude that I'(Homy «; app (4, B)) is a subgroup of
Homy ., (U(4)/CU(A),U(B)/CU(B)).

Thus, we obtain the short exact sequence, applying also Proposition 5.9.
To show that the short exact sequence splits, it suffices to show that

Hom (K (4)/ Tor (K1(4)). Rpp (Ko(B))/ps(Ko(B)))

is divisible. However, this is immediate since Rpp(Ko(B))/pp(Ko(B)) is divisible. m

Corollary 5.11. Let A and B be two finite separable simple amenable Z-stable C*-
algebras which satisfy the UCT. Then,

Homye, (U(4)/ CU(A), U(B)/CU(B))/ Homy.cr app(A. B)

= Hom (K (4). Rps (Ko(B)) /o5 (Ko(B))) / Homar (K1 (4). Rps (Ko(B)) /o5 (Ko(B))).
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Theorem 5.12. Let A and B be finite unital separable simple amenable Z-stable C*-alge-
bras which satisfy the UCT. Suppose (k,kT) is a compatible pair, where k € KL,(A, B)*+
and k7 : T(B) — T(A) is an affine continuous map. Then, there exists a unital homomor-
phism ¢ : A — B such that (KL(¢), 1) = (k, kT). Moreover,

Homy iy app(A. B) = Hom (K1 (A)/ Tor (K1(A)). Aff (T'(B))/ps(Ko(B))).
Proof. By Lemma 5.2, there exists a unital homomorphism ¢ : A — B such that

(KL(9),¢r) = (k,KT).

Let I' : Homy 7 app (A, B) — Homy . (U(A)/CU(A), U(B)/CU(B)) be the one-to-one
map introduced in (e 5.25). Put g := I'(¢). If ¢ : A — B is another unital homomorphism
with (KL(¥), ¥1) = (k, k1), Then, by Theorem 5.1,

g — ¥+ € Homyr (K1(A), Aff (T(B))/p5 (Ko(B)))-
In other words,
I'éo F(HomK,KT,app(A, B)) C Homy; (K1 (A), Aff (T(B))/,oB (KO(B))).

Note that I'¢ is also one-to-one. It follows from Theorem 5.6 that ' o I" is surjective.
Hence,
Homy iy app (A, B) = Homy¢ (KI(A), Aff(T(B))/pB (KO(B))).

Applying Proposition 5.9, one obtains
Homy «r app(A4, B) = Hom (K1 (A)/ Tor (Kl(A)), Aff (T(B))/,oB (KO(B))). |

Corollary 5.13. Let A and B be unital finite separable simple amenable Z-stable C*-
algebras which satisfy the UCT. Then, for any compatible triple (k, KT, ky), where k €
KL.(A, B)tT, kr : T(B) — T(A) is an affine continuous map, and

ky 1 U(A)/CU(A) — U(B)/CU(B)
is a continuous homomorphism, there is a unital homomorphism ¢ : A — B such that
KL(p) =k, ¢r=«kr, ¢'=x
if one of the following holds:
(1) TR(B) <1,

(2) pB(Ko(B)) = Rpp(Ko(B)),

(3) Hom(K1(4), Rp(Ko(B))/p5(Ko(B)))
= Homyr(K1(A4), Rpp(Ko(B))/pp(Ko(B))),
(4) Ki(A) is torsion-free.




G. Gong, H. Lin, and Z. Niu 888

Proof. Note that (2) follows from Theorem 5.10 immediately. Therefore, by [14, Propo-
sition 3.6], (1) follows.
Moreover, (3) follows from Corollary 5.11 and (4) follows from Theorem 5.12. [

Remark 5.14. There are plenty of examples of

Hom(K1(A4),Rpg(Ko(B))/ps(Ko(B)))/ Homus(K1(A), Rpr(Ko(B))/ps(Ko(B)))
# {0}.

In those cases, there are compatible triples (k, kT, ky) which cannot be represented by
homomorphisms from A4 to B.

To illustrate this, let us consider a simple example. By [6, Theorem 13.50], there is
a unital separable simple amenable Z-stable C *-algebra A with a unique tracial state 74
satisfying the UCT such that (K¢ (A4), K1(A)+,[1]) = (Z,Z+,1) and K1(A) = Z/mZ for
some prime number m > 2. Note that one has the following splitting short exact sequence:

0—>R/Z — U(A)/CU(A) - Z/mZ — O.

Let B = Z be the Jiang—Su algebra. Note that KL(A, B) = KK(A, B) = Hom(Z,Z) &
Ext(Z/m,Z). Let k € KL.(A, Z)™ with «([14]) = [lgz] (there are m such elements,
and we will fix one). By Lemma 5.2, there is a unital homomorphism ¢ : A — Z. Then,
¢+ : U(A)/CU(A) — R/Z is a homomorphism which is compatible with («, 1), where ¢
induces the identity map on R. It follows that ker ¢ = 7 /mZ. One may also write

U(A)/CU(A) = R/Z & ker ¢¥.
Note that
Hom,,, (U(A)/CU(A),U(Z)/CU(Z)) = Hom(Z/mZ,R/Z) = 7/ mZ.
Since K1(A) = Z/mZ is a torsion group,
Homy,¢ (Kl(A), R/Z) = Hom (Kl(A)/ Tor (Kl(A)), R/Z) = {0}.
Therefore, by Theorem 5.10, Hom, ,(A, B) has only a single point. Thus,
Homy,, app(A, B) # Homy,, (U(A)/CU(A),U(Z)/CU(Z)).

Proposition 5.15. Let B be a unital finite separable simple amenable Z-stable C*-algebra
which satisfies the UCT such that Rpg (Ko(B)) # pp(Ko(B)). Then, for any unital sep-
arable simple amenable Z-stable C*-algebra which satisfies the UCT with Tor(K(A))
# {0}, and for any compatible pair («,kT), where kK € KLo(A, B)Y ' and kr : T(B) —
T (A) is a continuous affine homeomorphism, there is a compatible triple (k, kT, Ky ), such
that no unital homomorphism ¢ : A — B has the property that

(KL(p). 7. 9%) = (k. k7. Ky).
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Proof. Fix a compatible triple (k, k), where k € KL.(A, B)™" and k7 : T(B) — T(A)
is a continuous affine homeomorphism. It follows from Lemma 5.2 that there is a unital
homomorphism v : A — B such that KL(¥) = « and Y7 = k.

Let x € K1(A) \ {0} such that px = 0 for some prime number p > 1.

Since Rpp(Ko(B)) # pp(Ko(B)), there is y # 01in pg(Ko(B)) such that

{r e Q:ry € pp(Ko(B))}

is not dense in R. Note D, = {I'}”—,, :n € NU{0}, m € Z} is dense in Q. Therefore, there
must be an integer n € N such that

(1/p" Yy & pa(Ko(B)), (1/p")y € ps(Ko(B)).

Put zo = (1/p"*1)y. Then,
pzo € p(Ko(B)).

Let z be the image of zg in Rpp(Ko(B))/pp(Ko(B)). Then, z # 0 and pz = 0. Let Gy
be the subgroup of K;(A) generated by x. Then, Gy = Z/pZ. Define a homomorphism
hx : Gx — Rpp(Ko(B))/pp(Ko(B)) by hx(x) = z. Since Rpp(Ko(B))/pp(Ko(B))
is divisible, there is a homomorphism 4 : Ky (4) — Rpp(Ko(B))/pp(Ko(B)) such that
hlg, = hx.

Now define

Ky : U(A)/CU(A) — U(B)/CU(B)

by k) 1= vitho I1§". Then, (k, kT, kyy) is compatible. If there was a unital homomor-
phism ¢ : A — B such that ¥ = Ky, then, for a fixed splitting map s4,

(¢* —y*) 054 € Homye (K1 (A), Rpp(Ko(B))/pr(Ko(B))).

However, . .
((pi—lﬁi)oSA =holl{*osqg=h
which is not in Homy¢(K1(A), Rpp(Ko(B))/pp(Ko(B))). A contradiction. [

Remark 5.16. Note that if A is a unital separable simple C *-algebra such that
gTR(A® M) <1

for some supernatural number p of infinite type, then A as a C*-subalgebra of A ® M,
must have a finite faithful trace. In particular, A is stably finite.

Theorems 5.6, 5.10, and 5.12, Corollaries 5.11 and 5.13, and Proposition 5.15 all hold
if we replace the condition that B is amenable and satisfies the UCT by gTR(B) < 1, since
we only use that before Theorem 5.6. If we further assume that K; (A) is finitely generated
(i =0, 1), then the condition that A4 is Z-stable can be replaced by gTR(A ® Q) <1 as
we do not need Theorems 5.4 and 5.5.
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6. The sequence of maps, another description

Definition 6.1. Set
={f € Co((0.1], Mg) : f(1) € Cly}.
Put A® = 4 ® I and A®, the unitization of A%). We may identify

AB Z (feC((0.1.A® My): f(0) € Cly, f(1) € A® 11},

Note that K; (A ® I) is identified with K;1(A4,Z/kZ) (see [2, 1.2]). Let n : A®) — A
be the homomorphism defined by 1 (f) = f(1) forall f € A% Consider the short exact
sequence

0— S(Mi(4)) > AR T =5 A4 — 0,

where S(M(A)) = {f € C([0,1], My) : £(0) = f(1) = 0}. It gives the following six-
term exact sequence (see [2, equation (1.6)]):

Nk x1

Txk lxk (6.1)

Nk %0

Ko(A) «—— K1(A,Z/kZ) +— K1 (A).
One also has a (unnaturally) splitting short exact sequence
0 — Ko(A)/kKo(A) — Ko(A,Z/kZ) — Tor (K1(A),Z/kZ) — 0,
where Tor(K;(A),Z/kZ) = {y € K1(A) : ky = 0}. Fix a splitting map
Jik : Tor(K1(A),Z/kZ) — Ko(A,Z]kZ).
Then, combining (e 6.1),
Nkx1 © Jk = 1dtor(k,(4),2/kZ) - (€6.2)

Let 7€ 4 - : A®) — C be the quotient map and

(xS aio)" UM (4P)) > U (M, (©))

the induced group homomorphism. Define, for any n > 1,
U(Ma(A®1p))" = ker (my; )" = {u € My (A®) : 7 7S ® idn (1) = 1}

Denote CU(My(A ® ) := CUMp(A ® Ix)) N U(Mp(A ® Ix))".

Deﬁnition 6.2. Let D be a non-unital C *—algebra with T'(D)#@. For each fe€Aff(T (D)),

define LD Aff(T (D)) — Aff(T(D)) by lD (fHatc+(1—a)r) =1 — oz)f(r) for all

0 <a<l,teT(D),andtc € T(D) such that tc|p = 0, where tc ;=1 o 7TD such that
: D — Cisthe quotient map and ¢ is the unique tracial state on C. Put

AFF(T(D)) = {5 (f) : f € AfE(T(D))} C Aff(T(D)).
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Definition 6.3. Letk =0,2,.... Suppose that A is a unital C *-algebra and has stable rank
at most n — 1. Note that since Ko((A ® Ik)) is a torsion group, p (k)(Ko(A ®RI)) =
Z - 17, where 17 represents the constant affine function on T(A(k)) with value 1. Then,

p%(KO(A ® ]Ik)w) =7Z-1r.

One then checks that Aff(7 (A ® I;))' N 5 —(Ko((A ® 1)) = {0}.
On the other hand, let x € K1(A ® ]Ik) and u € UM, (A ® Ig)) aunitary which rep-
resents x. Suppose that

¢ — W)=z

M, (A®)) _
which is a scalar unitary. Let Z € M, (C - 1/-?,5) be the same scalar matrix in M, (4%®)).
Putv =uZ*. Then, [v] = [u] in K1(A ® ;) and v € U(A ® [;)". This implies that 56
the restriction of H% on U(AQ® ;) /CU(A ® I), is surjective. Thus, from the short

exact sequence
Ccu

Pl

—= - - ®
0 — Aff (T(A%))/Z — U(Mu(A®))/CU (Mn(A®)) = K,(4A®) — 0,
one obtains the following short exact sequence:

0— Aff(T(A® 1)) — U(My(A® k)" /CU(Mu(A ® Iy))'

cu
I

A Ki(A® ) — 0. (e6.3)

Let A and B be unital C *-algebras of stable rank no more than n — 1. Fix a compat-
ible pair (k, k7). Then, k7 induces an affine continuous map t ® s — x7(7) ® s from
T(B ® 1) to T(A ® Ix) which in turn induces an affine continuous map

B AF(T(A ® L)' — AFE(T(B ® 1)

Letiy” : UMn(A® 1))/ CUM(A® L))" — UMy (B ®11))'/ CUMu(B ® 1))
be a continuous homomorphism. We say that (k, kT, KJ(,k)) is compatible if the following
diagram commutes:

-
0—— AFF(T(A ® I) —— U(Mp(A® 1)) /CU(My(A ® T)) —2 Ky (A@ ;) —— 0

JE;") l“f/k) JK‘KQ(A,Z/kZ) (e 64)

e
0—— AfE(T(B ® Ix))' —— U(Mu(B ® Ix)) /CU (My(B ® Tp))' —25 Ky (B ® ) —— 0.

Recall that Aff(7T (A ® 1x))" is identified with Aff(7T (A ® [))"/p—~— "G (Ko(A®Ix™)).
Note that the homomorphism 7 also gives the following commutatwe diagram:

00— Aff(T(A® ) ——— UMu(A ®1}))/CU(My(A® 1)) L Ki(A®Ix) ——0

Mk 77}: [mellkoa.2/k7)
mex

0 —— Aff(T (A))/ pa(Ko(A)) —————— U(My(A))/ CU(M,(A))

K1(A) 0.
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a sequence of homomorphisms. We say (k, k7, kr) is

0,2,...

Denote by «r := {Kl(,k) Yk

, the following diagram commutes:

i

if, foreach k > 2

totally compatible i

0 (@Y

\

0— (p@)'Y

E]

0 V)
|
[

(@D"m)nd/ (@) "win

\

{(p@)"M)ND /(@) "N

[

A
@

0 (MY < ()M /(Y)W

k3

Ay

(M “m)no/ (V) *mn

T

()93 q9/((g) LBV < 0

\

(@) LBV < 0

H x

((P)o3)VI/ (V) LBY < 0

\5

(V) DBV <0

i
o’
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Note that the assumption that C *-algebras have finite stable rank is not necessary. We
put it here for convenience so we do not need to draw infinite matrices.

Proposition 6.4. (1) The short exact sequence of (e 6.3) splits uniquely for k > 2.
(2) Suppose («,kr, k) and (k, kT, k) are totally compatible, where k. = {k,,, I()(,k) :
k > 2} and k{. = {K;,/,K;(,k)” tk =2}, and
Ky Ky U(My(A))/CU(Mu(A)) - U(Mu(B))/CU(M,(B))
and

k8 kB U (Mg (AP))' ) CU (M (AR)) — U (M (B®))' /) CU (M (B®))'
are continuous homomorphisms. Then, (K;, — /c;,’) induces a homomorphism in
Hom (K1 (A)/ Tor (K1(A)), Aff (T(B))/ o5 (Ko(B))).
(3) In (2), if k,, = Ky, then kT = K.

Proof. (1) The fact that the short exact sequence splits follows from the fact that
Aff(T (A ® Ix))" is divisible. Let s 40 be a splitting map. Then, IT9%, o 540 = idg, (4.
Suppose that s : K1(A ® I) - UM,(A ® 1)) /CU (M, (A ® I))" is another split-
ting map. Then, s4&) — s maps K; (A%) to Aff(A ® I;)'. However, Aff(T(A ® I;))" is
torsion-free and K1(A® ;)= Ko(A,Z /kZ) is a torsion group. It follows that s 4&) —s = 0.
(2) Let x € Tor(K1(A)). Choose an integer k > 2 such that kx = 0. Let
Tor(Kl(A),Z/kZ) = {y € Ki(A) 1 ky = O}.
Recall that K1 (A ® ) = Ko(A,Z/kZ). Let
sa00 : Ki(A @ Tg) = U(My(A® L))/ CU (Mn(A ® L))’

be the unique splitting map.
Suppose that («k, kT, Kf) and (k, kT, K{—/‘) are totally compatible. Then,

k ! k 1 .
(e = .5 i can mrckocan = O- (€6.5)

Moreover, the map
(Kl(/k)’ _ Kﬁk)”) o540 1 Ki(A® ;) — Aff (T(A ® L))"

has to be zero, as Aff(T(A ® I;))" is torsion-free. In particular, for any element z with
finite order,
/ "
(/cl(,k) — Kl(,k) )osym(z) =0.

By the 12-term commutative diagram above at the end of Definition 6.3, for any y €
U(My(A®Ig))/CUM,(A® 1)), one has

i "
(<), — k) o miF(y) = mieg (" = 7)Y (),
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where r]f : B ® Iy — B is defined by nf(f) = f(1) forall f € B ® [} as n; defined.
As mentioned above, since Aff (T (B ® I;))" is torsion-free, if y has finite order,

/ "
(i, = k) omF () = mif (k57 =527 () = 0.

By the 12-term diagram above, again, since s %) 1S unique,
Ny = TG 0 0k 0 540
Therefore (recall (e 6.2)),
TG (ker(x;, — k) D Tor (K1 (A), Z/kZ).
Consequently, for any splitting map s4 (see also (e 6.5)),
J (A (T(4))/pa(Ko(A))) + sa(Tor (K1 (A4). Z/kZ)) C ker(i, — &},

where J : Aff(T'(A))/pa(Ko(A)) = U(A)/CU(A) is given by the (inverse of) determi-
nant map. This implies that (k, — «})(x) = 0. Hence,

(i, — k) | Tor(k, (4)) = O
This proves (2).
(3) For any k > 2, by (1), since s4«) is unique, the diagram (e 6.4) becomes

R
0—— Aff(T(A® ) —— AfF(T(AR ;) ® Sq0 (K1(A ® 1)) LN Ki(A®Iy) ——0

_(k
J("n( ) lxl(,k) JHKU(A,Z/kZ)
cu

IT
0 —— Aff(T(B ® Ix))' — AF(T(B ® Ix))' ® spi (K1(B ® Ix)) —% K1(B ® I) — 0.

Then, as Aff(T (A ® I;))* and Aff(T (B ® I;))" are torsion-free, and K;(A4 ® ;) and
Ki(B ® L)) are torsion, we may write the decomposition /c)(,k) = K_ﬂ(k) @ |k, a0
which is uniquely determined by « and x7. Thus, (3) follows. |

Theorem 6.5. Let A and B be unital finite separable simple amenable Z-stable C*-
algebras such that A and B satisfy the UCT. Then, for any totally compatible triple
(k, kT, kr), where k € KL.(A, BT, kr : T(B) — T(A) is a continuous affine homo-
morphism, and kr = {Ky, " }k=o0,2,... is as defined in Definition 6.3, there is a unital homo-

yeee

morphism ¢ © A — B such that (K L(¢), (pT,<pl'E) = (k,KT,KT).

Proof. Fix a compatible pair («, k7). By Lemma 5.2, there is a unital homomorphism
Y : A — B such that KL({) = «, and Y7 = k7. Clearly, (KL(Y¥), ¥, wl;-t‘) is totally
compatible.

Suppose that (k, k7, kT) is totally compatible. Then, by Proposition 6.4, ¥+ — Ky
induces a homomorphism h € Hom(K; (A)/ Tor(K;1(A)),Aff(T(B))/pp(Ko(B))). It fol-
lows from Theorem 5.12 that there is a unique (up to approximately unitarily equivalent)
unital homomorphism ¢ : A — B such that KL(¢) =k, 7 = k7, and ¢ —pt = h. 1t fol-
lows that p* = ky. Since (k,KT, <p1§) is totally compatible, by Proposition 6.4, <p1{ =Kkr. =
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Remark 6.6. Theorem 6.5 provides a complement to Theorem 5.12 and is a consequence
of Theorem 5.12 as the proof presented. It also provides a seemingly more functorial
description. However, (pf‘ is really a sequence of maps, and, by (3) of Proposition 6.4,
most of the data are redundant. It does not appear to fit Theorem 4.3, the uniqueness
theorem, well enough as Theorem 4.3 only requires one map ¢* from the list of (pi‘E.

By (1) of Proposition 6.4 (and its proof), for k > 2, the splitting map

saw : Ko(AZ/kZ) = Ky(A® L) = U(Ma(A® 1))/ CU (My(A ® I))'
is a natural map. It follows that the composition
(=1t o sy Ko(A, Z/kZ) — U(My(A))/CU(My,(A))

is also natural. By the last large diagram in Definition 6.3, in which («, k7, k) is totally
compatible, it is equivalent to say that (k, k7, k) is compatible together with

;‘f 0 K|Ko(A,2/kZ) = Ky © é‘,‘f for each k > 2.

In Section 5, we state that, for a fixed compatible pair («, k1), Homy scr app(A, B)
is a subset of Homy . (U(A)/CU(A),U(B)/CU(B)). Theorems 5.10 and 5.12 provide
a complete description of this subset. One advantage of Theorems 5.10 and 5.12 is that
they provide Corollary 5.13 which could not be seen from Theorem 6.5 as easily. More
importantly, they reveal that it is the subgroup Rpp(Ko(B))/pp(Ko(B)) that prevents
some of the compatible triples (x, kT, k,,) from being realized by homomorphisms (see
also Proposition 5.15).

Theorem 6.7 (cf. [7, Theorem 29.5]). Let A and B be unital finite separable simple
amenable Z-stable C*-algebras which satisfy the UCT. Suppose that there is an isomor-
phism y; : Ki(A) — K;(B) (i =0, 1) and an affine homeomorphism kt : T(B) — T(A)
such that yo([14]) = [18] and (pp © yo(x))(t) = pa(x) (k) for all x € Ko(A) and t €
T (B). Then, there exists an isomorphism ® : A — B such that ® induces y; (i = 0,1)
and k. Moreover, if there is a totally compatible triple (k, kT, kr), where k € KL(A, B)
such that k ([14]) = [18], « induces isomorphisms from K;(A) onto K;(B) (i =0,1), k1
is an affine homeomorphism, and Kkt = {K}(,k)}k:(),z’_“ is as defined in Definition 6.3, then
there is an isomorphism  : A — B such that (KL({), YT, I//I:E) = (K,KT,KT).

Proof. The first part of the statement follows from [7, Theorem 29.5] (and the last two
sentences of the proof). However, the first part also follows from the second part which
can be proved using the results of this paper. In fact, there is k € KL(A, B) which induces
yi (i = 0,1). By Lemma 5.2, there is a unital homomorphism ¢ : A — B such that
(KL(9), o1, (piE) = (k,KkT, qolji), which is totally compatible. Hence, the first part follows
from the second part.

For the second part, by the UCT, thereisak ' € KL(B, A) sothatk x k! = KL(idy)
and («71, K;l) is compatible. It follows from Lemma 5.2 again that there is a unital
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homomorphism W : B — A such that KL(¥) = ! and W7 = Kr 1. Consider the endo-
morphism W o ¢ : A — A. Then, KL(W o ¢) = KL(id4) and (¥ o ¢)7 = id7(4). By
Theorem 5.1, there is & € Homy¢(K1(A), Aff(T'(A))/pa(Ko(A))) such that

(id —(W o)) 054 = h.

It follows from Theorem 5.6 that there is a unital homomorphism H' : A — A such that
KL(H')= KL(idy), Hy =id7(4),and ((H")* - idi) osq4=nh.Then, KL(H oW o) =
KL(idy), (H' oW o ¢)7 = idr(4), and

(H' oW o)t = idyaycuca) -

Put H := H oW :B — A. Then, KL(H) = «~ !, Hr = /c;l, and H¥ = /c;l. It fol-
lows from Theorem 4.3 that H o ¢ is approximately unitarily equivalent to id4 and ¢ o H
is approximately unitarily equivalent to idp. By the standard Elliott approximately inter-
twining argument, one obtains an isomorphism v : A — B such that KL(y¥) = KL(p),
or = kT, and ¥ = ky. It follows from (3) of Proposition 6.4 that (pli; = KT. ]

Remark 6.8. Our method heavily depends on [6, 7] and is in the same lines of those
of [18]. Two ingredients of the proof are Winter’s deformation method [26] and the asymp-
totic unitary equivalence of homomorphisms (see [15]). As this note was being drafted,
we were aware that a general result of this type has been announced by J. Carrion, J.
Gabe, C. Schafhauser, A. Tikuisis, and S. White which we understand do not use Winter’s
deformation method [26] and the asymptotic unitary equivalence of homomorphisms.
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