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ABSTRACT. We find sufficient conditions for a self-map of the unit ball to converge uniformly
under iteration to a fixed point or idempotent on the entire ball. Using these tools, we establish
spectral containments for weighted composition operators on Hardy and Bergman spaces of the
ball. When the compositional symbol is in the Schur-Agler class, we establish the spectral radii of
these weighted composition operators.

1. INTRODUCTION

Let B denote the open unit ball on C* for a fixed integer k. The classical Hardy space H?(B) is
the Hilbert space of analytic functions h on the open unit ball B for which

) 1/2
Il = swp ([ Imo)Pdo©) " < oc.
o<r<1 \.JoB
Here do is the normalized surface area measure on the unit sphere 9B. It is well known that H?(B)
is a reproducing kernel Hilbert space with kernel
1
(1= (z,w)*’
Setting Ky (z) = K(z,w), we then have h(w) = (h, K,,) for all w € B.
For any real number v > —1, the weighted measure dV/, is defined by
L'(k+~y+1)
dv. =——>2
") = e D
where dV' is the normalized Lebesgue measure on B. Note that dV,, is a probability measure. The
Bergman space A% consists of all analytic functions on B that are square integrable with respect

K2 (z,w) = z,w € B. (1)

(1 - |22)7dV (2),

to dV,. It is also well known that A% is a reproducing kernel Hilbert space with kernel given by

1

(1= (z,w))H+1+7’

The reader is referred to [2, Section 2.1] and [11, Chapter 2] for more backgrounds on the Hardy
and Bergman spaces. Note that the kernel function (2) becomes (1) when v = —1. Consequently,
we shall identify H?(B) and A%, as usually done by other authors, and all results on Agy will be
for v > —1.

A composition operator Cy, on A% is given by C,, f = fop. We call ¢ the symbol of the associated
composition operator. While composition operators on the classical Hardy space of D are bounded

z,w € B. (2)

KA% (Za UJ) =
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whenever ¢ is analytic, the situation is more difficult on B. Composition operators on H?(DD)
(v = —1, and D instead of B) have been extensively studied for several decades; [2] and [10] are
seminal books on the subject. Progress has been made for composition operators on A?/ for other
values of v and for B instead of D, but it is much slower. In this paper, we will be adapting past
work on H?(D) to obtain results on A%.

Composition operators in several variables are not always bounded. For example, if (21, 22) =
(22122, 0) or ¢(21,22) = (22 + 23,0), then C,, is not bounded on the Hardy space over the unit ball
in C’f,. See [2, Section 3.5] for other examples and criteria for boundedness and compactness on
Hardy and Bergman spaces. Following Jury [5], we are interested in mappings ¢ that belong to
the Schur-Agler class. These are analytic functions ¢ : B — B for which

1 = (p(z2), p(w))
1—(z,w)

is a positive semidefinite kernel on B. [5, Theorem 4] shows that C, is bounded on A% whenever
¢ is in the Schur-Agler class. Spectral radii of such operators were computed in [5, 6].

The results so far on composition operators naturally motivate the study of weighted composition
operators as well. Let ¢ belong to H*°(B), the multiplier algebra of A%: then for any f € Ag,
vf e A% as well, so the multiplication operator Ty, is well defined. Then T,,C, = Wy, , is what we
call a weighted composition operator.

The spectrum of an operator 7' on a Hilbert space H, denoted o(T), is given by {A\ € C : T' —
Al is not invertible}. The spectral radius of T is r(T) = sup{|\| : A € o(T)}. A thorough treatment
of the spectrum of composition operators on H?(D) is given in [2, Chapter 7]. Determining the
spectra of weighted composition operators on H?(D) is still largely an open question. However,
new results were obtained in [1], under assumptions about ¢’s behavior on the open unit disk. The
Denjoy-Wolf Theorem guarantees that any analytic self-map of D not an elliptic automorphism,
will converge under iteration to a single point, and this convergence is uniform on compact subsets
of D. In [1], the authors assumed that ¢ converged uniformly on the entire open disk (not just
compact subsets of the disk). This property was then exploited to calculate the spectra for a
large class of weighted composition operators. This work was then extended in [4] to several other
analytic function spaces over . In this paper, we extend these same ideas to weighted composition
operators on A%, by studying uniform convergence of self-maps of B.

We use the phrase UCI (uniformly convergent iterates) to specifically indicate uniform conver-
gence of iterates on the whole domain. Define ¢, = p o --- 0 ¢, the composition of ¢ with itself n
times.

z,w € B

Theorem 1 (UCI in D with Interior Fixed Point [1]). Suppose ¢: D — D is analytic and continuous
on dD. If the Dengjoy-Wolff point w is in D, then ¢ has UCI with ¢, converging uniformly to w,
if and only if there is N > 0 such that N (D) CD.

If any successive image of the closed unit disk by ¢ is strictly contained within the open disk,
then uniform convergence of iterates follows. However, the situation with a boundary fixed point
is a bit more delicate.

Theorem 2 (UCI in D with Boundary Fixed Point [1]). Suppose ¢: D — D is analytic in D and
continuous on 0D and has Denjoy- Wolff point w with |w| =1 and ¢'(w) < 1. Ifon (D) € DU{w}
for some N > 0, then ¢ has UCI with @, converging uniformly to w.

In this note, we address the analogous questions in a several complex variables setting. The open
unit ball in C¥ is the set of all complex-valued vectors with k components that satisfy |z| < 1
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(where || - || is just the standard Euclidean norm), denoted
B={zecC" |z <1}.
In Section 2, we prove results analogous to Theorems 1 and 2 and address additional interesting
phenomena that can only occur in complex dimension greater than one.
As in [1], we use the UCI property to answer questions about operators. In Section 3, we
provide spectral bounds for weighted composition operators with composition operator symbol in

the Schur-Agler class, and in Section 4, we calculate spectral radii for for weighted composition
operators on A%. We then end with further questions related to our work.

2. WHEN ARE THE ITERATES OF ¢ UNIFORMLY CONVERGENT ON B?

There are many more possibilities for fixed point sets of analytic maps of unit ball in C*. Thus,
while there is still a Denjoy-Wolff theorem for self-maps of B, it looks quite different. To establish
it, we first need some preliminaries.

Definition (Affine subset of B). An affine subset of B (or B) is the intersection of B (or B) with
c+L={c+z:2z€L},
where ¢ € B and L is a complex linear subspace of CF.

Theorem 3 (Fixed point sets in B [9, Section 8.2]). If ¢: B — B is analytic, then the fixed point
set of ¢ is an affine subset of B.

In the following statement of the Denjoy-Wolff theorem for C*, the second case in the theorem
describes phenomena that do not arise in D.

Theorem 4 (Denjoy-Wolff in C* [7]). Let ¢: B — B be analytic. Then either
e There exists a point w € B such that ¢, converges uniformly to a on compact subsets of
BU{w}, or B
o The fized point set of ¢ is an affine subset A C B, and a subsequence ¢y, of ¢y converges
uniformly on compact subsets of B to a nonconstant idempotent h whose fixed point set

contains A. If A = {w}, a single point, then @, converges uniformly to a on compact
subsets of B.

For analytic ¢: B — B and w € 0B, define the radial derivative
1—[le(2)l

d(p,w) = liminf
a=w 1|z

Theorem 5 (Julia’s Lemma in (Ck). Suppose p: B — B is analytic, the sequence a, — w € OB
satisfies

and limy, o0 @(an) =n € 0B. Then for all z € B,

11— {p(2),m)|? < d )\1— (2, w)[?
L—lle)[> = 777 1=
As with the version of Julia’s lemma for C, there is an immediate, convenient geometric conse-
quence of this inequality. For w € dB, define the ellipsoid internally tangent to B at w:

E(w,\) ={z€B: |1 — (w,2)]> <A1 — ||z||})}.
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By Julia’s lemma with d(p,w) < 1 and w € B a fixed point, we have the following [2]:
P(E(w,A) € E(w, Ad(p, w)),

where the containment is strict except at the point w. Therefore, each image by ¢ of an ellipsoid
in B internally tangent at w is contained in another ellipsoid internally tangent at w whose size
is scaled by the radial derivative d(¢,w). However, if A, the fixed point set of ¢, has positive
dimension in B, then these ellipsoids necessarily intersect A, so we have the following corollary.

Corollary. Suppose p: B — B has fized point set A with dim A > 0. Then for all w € AN OB,

d(p,w) = 1.
Proof. If d(p,w) < 1, then ¢(E(w,\)) C E(w,Ad(¢,w)). This is a contradiction because A is
fixed. ]

In light of this corollary, we must impose a different condition on ¢ and h to guarantee UCI
when dim .4 > 0. We collect this with our UCI results when dim .4 = 0 into the following theorem,
and we now begin the work original to the authors.

Theorem 6 (Theorems 1 and 2 in C*). Suppose p: B — B is analytic and continuous on OB.
(1) If there is a unique Denjoy-Wolff point w € B, then p, converges uniformly to w on B if

and only if for some N >0, pn(B) C B.

(2) If there is a unique Denjoy-Wolff point w € 0B, d(p,w) < 1, and for some N > 0,
on(B) C BU{w}, then ¢, converges uniformly to w on B.

(3) If the fized point set of  is a nontrivial affine subset A C B, there is an idempotent function

h: B — B whose fized point set contains A, p(B) C BU(ANOIB), and there is an 0 < a < 1

such that ) )
lo(2) — h(z)|l < Nz = h(=)l]
1—[le(2)] 1 — ||zl
in some forward invariant neighborhood of AN JB, then p, — h uniformly on B.

(3)

The three distinct cases correspond to the three distinct possibilities that arise from the Denjoy-
Wolff theorem. Proof of parts (1) and (2) follow immediately from [1] by replacing modulus with
the C* norm. Part (3) regards the novel aspects of the Denjoy-Wolff theorem in more than one
variable. Note that with the additional hypotheses in part (3), we are able to prove uniform
convergence of ¢, to h, rather than uniform convergence of ¢,,, (along some specific subsequence).

Proof of Theorem 6. Let T be the forward invariant neighborhood defined by Equation (3). Note
that T contracts by a multiple of a with each iterate. As in [1], we have from Equation (3) that
forall z € T,
len(2) = R(2)|* < a™(1 = [lo(2)]),
so we have
lon(2) = h(2)|l < @™2(1 = [[@n(2)])'/? < ™2, (4)
It follows that ¢, converges uniformly on 7.

Now suppose {w,} C B is a sequence of points such that w, — w € AN IB. Since a < 1, it
follows that there is an N such that for all n > N, we have w, € T. Since oy (B) C BU (AN JB),
it follows that

K = pn(B)\T° C B,
where T° is the interior of 7', and K is compact. See Figure 1 for a picture of the real slice of this
situation when k = 2. Since K is a compact subset of B, it follows from the Denjoy-Wolff theorem
that ¢, converges uniformly on K.
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Since pn(B) C KU(TNB), ¢, converges uniformly on K, and ¢,, converges uniformly on "N,
pn also converges uniformly on B. [ ]

K

PN (E) A
bruce4_pspdftex.pdf
T

AN oB

FIGURE 1. The real slice of B when k = 2 with forward invariant neighborhood T’
of ANJB and K, a forward invariant compact subset of B

Example 7. Let ¢: B — B be defined by
©(z1,292) = (azf,azg)

for some d > 2 and |a| < 1, so 0 € B is the unique fized point. Note that p(B) C B if and only if
la| < 1. As in Theorem 6 part (1), we have that @, converges to 0 uniformly if and only if |a| < 1.

Example 8. Let ¢: B — B be defined by
1 11
90(21522) — <2Z1 + 57 2'2%) )
so w := (1,0) € 9B is the unique fized point with d(p,w) = 1/2. Also, the ellipsoids, E(w,\),
tangent to OB at w are forward invariant by ¢ and contract by a factor of d(¢,w) =1/2:
P(E(w, ) C E(w, Md(p,w)) = E(w, A/2).

Then by Julia’s lemma, we have

lp(z) = wil* < d(p, w)(1 = e(2)])* = %(1 = (=),

s0 upon iteration,

1 1
z)—w|| < —(1— z < .
len(z) — wl| ﬂn( le(2)1]) 7

It follows that @, converges uniformly to w on B.
Example 9. Let ¢: B — B be defined by

90(21,22) = (21,042’%)
for some fized |a] < 1. Note that A = {(21,0): z1 € D}, and as in Theorem 6 part (3), the
idempotent map to which ¢, converges is h(z1,z2) = (21,0).
Note first that for all w € AN OB, we have d(¢,w) = 1. Note also that for all (z1,22) € B, we
have
laz3]|* < | |21,
which implies

I 22

1—|l(z1, 22)II

|az3
1 — [Jp(21, 22)||

< |
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From this, we have that ¢ and h satisfy Equation (3). It follows that ¢ has UCIL

Cowen and MacCluer [3] investigated linear fractional self-maps of the unit ball and the corre-
sponding composition operators. In the case ¢(z) = Az+0b, where b € B and A is a linear operator,
we have the following necessary condition in order for ¢ map B into itself. Let z € B. Choose a
complex number A of modulus one such that

A(Az, by = |(Az,b)|.
We then have
1> lo(A2)[1? = [IMAz + bl|* = [ Az|* + 2/(Az, b)| + [[b]]* = [|Az]|* + [|b].
Since z € B was arbitrary, we conclude that
1AI* + Jlo]]* < 1.

It follows that ||A|| < 1, and b = 0 in the case |A|| = 1.
We now characterize affine maps whose iterates converge uniformly on B.

Theorem 10. Let o(z) = Az+b be a self-map of B, where b € B and A is a linear operator. Then
the following statements are equivalent.

(a) {pn} converges uniformly on B.
(b) {on} converges pointwise on B.

(c) o(A) c {1} UD.

Proof. 1t is clear that (a) implies (b). For the implication (b)—(c), we shall prove the contrapos-
itive. Suppose that o(A) ¢ {1} UD. Since ||A]| < 1, we conclude that A processes an eigenvalue «
with || =1 and « # 1. It follows that ||A|| = 1 and hence b = 0. Let v € B\{0} be an eigenvector
corresponding to «. For all integers n > 1, we then have @, (v) = av. As a consequence, {¢,(v)}
does not converge, which implies that {¢,} does not converge pointwise on B.

Now suppose that (c) holds. We consider two cases. First, assume o(A) C D. Then I — A is
invertible and since the spectral radius of A is strictly smaller than 1, we have nh_}rrgo |A"|| = 0. For

any integer n > 2 and z € B,
on(z) = A2+ (T + A+ + A" Db=A"2 4+ (I — A")(I — A)~'b.
Therefore,

lon() = (1 = )70 = || an (= = (1 = A7) || < - (1+ 1 = A) 7)) — 0.

Consequently, {¢,} converges uniformly on B to the point (I — A)~!b.

Now assume 1 € 0(A). Then [|A|| =1 and b = 0so p(z) = Az for z € B. Let M = ker(I — A).
Then M is a reducing subspace for A. Decompose C¥ = M @ M=+ and write A = Py + T, where
Py is the orthgonal projection from C* onto M and T' = A(I — Ppy). Note that TPy = PyT =0
and o(T) C D. For any integer n > 1 and any z € C¥, we have

on(z) = Pmz+1T"z.

Since lim ||T"] = 0, we see that {¢,} converges uniformly on B to the projection Prs. Note that
n—oo

M NB is the set of all fixed points of ¢ on B. |
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3. SPECTRAL BOUNDS FOR Wy,

Now that we have a sense of when self-maps of B converge uniformly under iteration, we wish
to use those results to establish facts about C;, when bounded on A%. Our results are somewhat
analogous to the results on I in [1], but the complexity of function theory on B necessitates new
proofs, and in some cases, our results are stronger.

Theorem 11. Suppose ¢ is an analytic self-map of B such that C, is bounded on Agy, and the
iterates {¢om} converge uniformly to some function h on B. Suppose that » € H*(B) is continuous
on B U m Then v o o, converges uniformly to 1 oh on B as well. Consequently, Wyop,, .o —
Wyoh,p n operator norm and we obtain the spectral inclusion:

U(Wwvw) - U(Wzboh,w)'

Proof. Put K = h(B), which is a compact subset of B. Let ¢ > 0 be given. The continuity of )
on the compact set K implies the existence of § > 0 such that whenever v € B and v € K with
|lu —v| < 0, we have [)(u) — 1 (v)| < e. Now since ¢y, converges uniformly to h on B, there exists
N > 1 such that for all m > N and all z € B, |gn(2) — h(z)| < §. Setting u = ¢,,(z) (which
belongs to B) and v = h(z) (which belongs to K), we obtain

Y(em(2)) —¥(h(2))| <€
for all z € B. Therefore, 1 o ¢, converges uniformly to @ o h on B. Since
Wopme = Wyoholl < 1Tpopm — Tyonll - [|Coll < ¢ 0 om — 9 0 hf|oo - [Coll = 0,

we conclude that Wy, o — Wiyon,, in operator norm.
To obtain the spectral inclusion, we follow the arguments as in the proof of [1, Theorem 8]. We
provide here some details. Consider first A € o(Wy, ,)\{0}. Then since Wy, , = T,C,,,

A€ 0(CpTy) = TyopCp = Wiop,p-

It follows that A € 0(Wiyep,,,») for all m > 1. Since (Wyop,,,, — AI) converges to (Wyon,, — Al)
in operator norm and each operator in the sequence is not invertible, we conclude that the limit is
not invertible either. That is, A € 0(Wyop ). We thus have showed

o(Wy,p)\{0} € 0(Won,e),
or equivalently,

o(Wy.o) € 0(Wyon,,) U{0}.
Now suppose that 0 ¢ 0(Wyon,). We claim that 0 ¢ o(Wy ) either. Since Wyop o is invertible,
Tyon is surjective. This implies that ¢ o h is not identically zero and so Ty, is injective (which is
a consequence of the identity theorem for analytic functions). As a consequence, T, is invertible
and hence C,, is invertible as well. It follows that ¢ is an automorphism of B. By a theorem
of H. Cartan (see [8, Theorem 4 (p. 78)]), either h is an automorphism of B or h is a constant
function. Since {y,,} converges uniformly to h on B and each ¢, is an automorphism, h cannot
be a constant (otherwise, for m sufficiently large, the range of all ¢, must be contained in a small
open ball strictly contained in B). Therefore, h is an automorphism. It now follows that

Wq/)#, = Ch—le,ohChC@

is invertible because all factors on the right hand-side are invertible. Therefore, 0 ¢ o (W, ).
The proof of the theorem is now complete.
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Theorem 12. Suppose that 1 is continuous on BUR(B) and Tiyop is bounded below on A%. Further-
more, assume Cy, is bounded on A,Qy. Let n be a complex number. Suppose there exists a sequence
of nonzero functions {gm} such that

Wwoh,go (gm) = NmY9m.

where each 1y, is a bounded function and 1y, — 1 uniformly on B. Then n € 04p(Wy o).
As a consequence,

op(Wyoh,p) € Tap(Wy,p)-
Proof. For each m > 1, define

Jfm = H P o pn.
n=0
We have
Wyofm =10 (fmo @) = (¥ © pmi1)fm- (5)
We then compute
Tl/)Ohwtp,so(gmfm) = (W¢oh,¢gm) : (Ww,@fm)
= NmGm * (¥ © Om11) fm
=Mm - (w © (Pm—l—l) : (gmfm)

Define G, = ||gg:fﬂ|2' Then [|G,,||2 = 1 and since Tyop, is bounded below, there exists a positive

constant § > 0 such that
5H(Ww,w - UI)GmH2 < || Tyon (Wy.p — UI)GmH2
= (nm (Yo pmyr) —mpo h)GmH2

< | @ o pmer) o b [1Gull

= nm'(woSOm-l-l)_m/}OhHoo-
Note that

N+ (¥ 0 @my1) =1 (Yoh)=(m—n) (Yo omp1—oh)+n-(Yopmyr—thoh)
+ (Mm —n)Y o h,

which converges uniformly to zero due to Theorem 11 and the fact that n,, — 7 uniformly on B.
As a consequence,

o -, 0
which means that 7 belongs to oq,(Wy ). [ |

Combining our previous two results, we obtain the following, our main result of this section:

Corollary 13. Suppose that ¢ € H>*(B) is continuous on B U h(B) and does not vanish on h(B),
and Cy, is bounded on A,Qy. Then

Up(Wwoh,w) - Uap(WdJ,so) - U(Wwﬁp) - U(Wlﬁoh,w)-
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Example 14. There are many Schur-Agler class maps that have an affine set of fixed points. An
ezample is ¢(z) = (21,%) on C?. Then ¢n(z) — h(z) = (21,0) uniformly on B. The fized point
set A of ¢ on B is the disk

A={(21,0) : || < 1}.
It is well known that o(Cy,) = 0,(Cy,) and
0p(Cyp) =1{277:j=0,1,2,...}.
Suppose 1) € H*®(B) is continuous on BUA. If is equal to a constant, say u on A, then Corollary

13 gives
Oap(Wypp) =Wy ) =0(pCy) = {pu277:j=0,1,2...}.

4. SPECTRAL RADII FOR Wy, ON A2

In the previous section, we established a series of containments between subsets of the spectrum
of Wy, and Wyop . Without knowing more information about ¢ or v, we cannot change those
containments into equality or establish anything about the spectral radii of Wy, ,. Fortunately,
when ¢ is in the Schur-Agler class, we can use prior work of Jury to establish the spectral radii for
Wi o

Lemma 15. Let ¢ be in the Schur-Agler class. For any ) € H*(B) that is continuous on BUA(B),
we have

r(Wyoh,p) = || 0 hlloo - 7(Co)-

Combining with Theorem 11, we conclude that
r(Wy,p) <7(Wyon,p) < [l 0 hljeo - 7(Clp)-
Proof. If h is a constant function, say h(z) = a for all z € B. Then

Wwoh,(p = Iﬂ(a)C@
As a result,
r(Wyon,e) = [¥(a)] - 7(Cyp) = [l o hlleo - 7(Clp)
since v o h is identically equal to 1 (a).
Now assume that h is not a constant function. In this case, ¢ has an interior fixed point. Then
r(Cy) = 1 (see [5, Theorem 9]). Note that hop = h so for any integer m > 1, (Wyony)" =
Wigpon)m - For any a € B, we then have

(W$h7@)*Ka = (W(¢Oh)m7¢7rL) Ka = [w(h(a))]m pm(a)s

where K, is the reproducing kernel at a, given by K,(2) = (1 — (z,a)) P with B =k +1+~. Tt
follows that

*

I(Wen,) Kal

K g ()l

W2 o) I I Kl
- 1K ()

o (@) 2
= !\(Wwoh,w)m\\(w)ﬁ,

1—laf?

[ (h(a))[™ =
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and hence,

(1= len(o)))

D)) < 1( W) "I (S 20

Note that ¢,,(a) = h(a), which satisfies |h(a)| < 1 since h is not a constant function. Therefore,

lim (MP"L(G)P))B/WL B

m—00 1— ‘a|2 B

It follows that
Bh(@)] < Tim [[(Wyong) ™[V = r(CyonCy).
Since a € B was arbitrary, we conclude that

[0 hlloo < 7(Wyoh,p)
and hence
19 0 h|oo - T(Cv) < T(thw)

because 7(C,) = 1. On the other hand, since (Wwoh’w)m = Wigohym o+ We have the estimate

[ (Wyone) ™Il < 10 lIZ | Copyal-

Taking mth root and letting m — oo, we conclude that
r(Wyoho) < [[¢ 0 hlleo - 7(Cop).-
Consequently,
r(Wyoh,e) = [[¥0 © hlleo - 7(Cop).- u

Theorem 16. Suppose ¢ is an analytic self-map of B in the Schur-Agler class such that {om}

converges uniformly to h on B. Let ) € H*(B) be continuous on B U h(B) and constant on h(B),
say, ¥(h(z)) = p for all z € B. Consider the bounded operator Wy, , on A%.

(1) If ¢ is elliptic or parabolic, then r(Wy, ,) = |pu|.
(2) If ¢ is parabolic with dilatation coefficient o, then r(Wy ,) = |ula=P/2, where = k+1+7.

Proof. Corollary 13 shows that

1op(Cp) S 0ap(Wy o) € 0(Wy,p) S po(Cy). (6)
>

Consider first the case ¢ is elliptic or parabolic. Since 1 € 0,(C,,), we conclude that (W, )
|t¢|. On the other hand, the last containment in (6) gives

r(Wy.e) <lul-r(Cy) = |p|

because r(C,) = 1 by [5, Theorem 10]. It then follows that r(Wy ,) = ||

Now assume that ¢ is parabolic with dilatation coefficient . By [6, Theorem 3.2], 7(C,) =
a~P2. By (6), we have r(Wy,,) < r(uC,) = |ula™P/2. Also by [6, Theorem 3.2], we know that
every value in the annulus o/2 < |A| < a=#/2 is an eigenvalue for Cy. Then we know by (6) again
that r(Wy,,) > |ula™?/2, and therefore we have r(Wy ) = |ula=8/% . [ |
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5. FURTHER QUESTIONS

We end with a set of natural questions that follow from our work above.

e Can we characterize exactly when iterates of self-maps of B converge uniformly to a fixed
point or an idempotent? To our knowledge, this has not yet been completely characterized
on D yet; we suspect that the problem on DD is significantly easier.

e When ¢ is in the Schur-Agler class, can we discover the spectrum of C, on Ag, instead of
just the spectral radius, and when doing so, will Corollary 13 immediately provide us with
the spectrum of Wy, .7

e Under what other conditions, beyond ¢ belonging to the Schur-Agler class, can Corollary
13 establish o(Wy, ) exactly?
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