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Abstract

The study presented in this paper applies Hidden Markov Modeling (HMM) to uncover the
recurring patterns within a neural activation dataset collected while designers engaged in a
design concept generation task. HMM uses a probabilistic approach that describes data (here,
fMRI neuroimaging data) as a dynamic sequence of discrete states. Without prior assumptions on
the fMRI data’s temporal and spatial properties, HMM enables an automatic inference on states
in neurocognitive activation data that are highly likely to occur in concept generation. The states
with a higher likelihood of occupancy show more activation in the brain regions from the
executive control network, default mode network, and the middle temporal cortex. Different
activation patterns and transfers are associated with these states, linking to varying cognitive
functions, for example, semantic processing, memory retrieval, executive control, and visual
processing, that characterize possible transitions in cognition related to concept generation.
HMM offers new insights into cognitive dynamics in design by uncovering the temporal and
spatial patterns in neurocognition related to concept generation. Future research can explore new
avenues of data analysis methods to investigate design neurocognition and provide a more

detailed description of cognitive dynamics in design.
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1. Introduction

Design cognition has been a significant area of interest in design research. Traditional
approaches to studying design cognition typically relies upon subjective and qualitative
techniques. Researchers need to infer, or participants need to report, the internal processes in the
designer's mind that align with design behavior through observation, questionnaires, or
interviews (Chiu & Shu, 2011; Dinar et al., 2015). Such approaches allow the research to be
performed in-situ or in controlled experiments. However, these approaches are limited by their
intrinsic subjective nature and extensive qualitative data processing requirements (Chiu & Shu,
2011; Hay et al., 2017). To overcome some of these limitations and combine more quantitative
methodologies in design cognition research, an emerging research area in the design research
community, often referred to as “design neurocognition”, is seeking to apply techniques from
cognitive neuroscience to measure brain activity related to design and advance knowledge of
design cognition (Balters et al. 2022; Gero & Milovanovic, 2020; Goucher-Lambert et al., 2019;
Hay et al., 2022; Hu & Shealy, 2019; Liu et al., 2018; Vieira et al., 2020; Zhao et al., 2020).

Functional magnetic resonance imaging (fMRI) is one of the neuroimaging techniques used to
measure design neurocognition. fMRI offers a more direct understanding on the whole-brain
neurocognitive processes that correlate with design behavior and support design activity.
Classical analysis of fMRI data usually focuses on a pre-specified “event” (e.g., event-based
design matrix) or time points (e.g., specific time window or sliding window). Significant
assumptions are required in the pre-specification relating temporal and spatial information to
uncover meaningful links between brain activity and participant behavior in response to
experimental tasks. Additionally, this type of analysis leads to a loss of information from the
entire dataset, especially the dynamics in the process. In this work, an unsupervised machine
learning technique, Hidden Markov Modeling (HMM), is used to automatically infer states
and their spatial and temporal patterns in underlying fMRI data related to design cognition
without prior specifications on event-based design matrix or time window for fMRI data

analysis.

HMM is a generative model that describes data in a temporal sequence of a finite number of
discrete states. Prior research in both design and neuroscience domains has demonstrated that

using HMM provides valuable insights into temporal patterns in varying types of data, for



example, a short-timescale sequence in design behavior data (McComb et al., 2016, 2017a,
2017b), and dynamic patterns (states) of neural activation in large-scale resting-state fMRI data
(Vidaurre et al., 2017, 2018). A prior study by the authors also used HMMs to extract distinct
states in the fMRI data and find differences in neurocognitive patterns between participants with
different performance levels (Goucher-Lambert & McComb, 2019). In that prior work,
participants were assigned to high- and low-performing groups based on idea fluency (i.e., the
number of concepts generated in a fixed time). Half of the designers with higher design fluency
were assigned into the high-performing group while the other half were assigned into the low-
performing group. Significant differences were found between these two groups in the number of
solutions generated in every 15-second block. Differences were also observed in the state
occupancy between the high- and low-performing designers (Goucher-Lambert & McComb,
2019).

However, the neural activation patterns associated with the distinct states identified in the prior
work (Goucher-Lambert & McComb, 2019) are still unknown. There is a lack of understanding
of the specific brain regions involved in each neurocognitive pattern plus corresponding
cognitive functions. The current work builds on (Goucher-Lambert & McComb, 2019) by
investigating the patterns of neural activity, linking them to physical locations in the brain, and
inferring the cognitive functions associated with each of the 12 states discovered in prior

work. The findings suggest that the states extracted from fMRI data using HMM are linked to
varying brain regions and associated with different cognitive functions that provide meaningful

explanations for different performance in concept generation.

2. Background

This work employs neuroscience experiments (i.e., fMRI) and a machine learning technique (i.e.,
Hidden Markov Modeling, HMM) to explore dynamic neurocognitive patterns related to design
concept generation. This section first introduces design research that applied fMRI to understand
brain activities during design and concept generation. Then, critical brain regions and large-scale
networks associated with the concept generation process are summarized. This section also

discusses HMM and its application to neuroimaging data and design research.

2.1. fMRI and design neurocognition



A growing body of research is using neuroimaging techniques to investigate brain activities
relevant to design in multiple phases, for example, design concept generation (Fu et al., 2019;
Goucher-Lambert et al., 2019; Hay et al., 2019; Hu et al., 2019, 2021; Shealy et al., 2020),
design decision-making (Goucher-Lambert et al., 2017b; Hu & Shealy, 2020, 2022), and open
design or problem-solving (Vieira et al., 2022b; Zhao et al., 2020). A variety of neuroimaging
techniques have been employed to measure design neurocognition, such as
electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and functional
magnetic resonance (fMRI). EEG and fNIRS are portable in data collection but limited in spatial
resolution. EEG cannot pinpoint the specific brain regions where the electrical signal comes from
(Burle et al., 2015). NIRS usually has a limited number of light sensors and a shallow
penetration depth, so it is restricted to cover only the outer cortex (Quaresima & Ferrari, 2019).
In contrast, fMRI provides excellent spatial resolution and rich information on brain activity
through whole-brain scanning. However, a limited number of fMRI studies have investigated
design or concept generation considering the lack of mobility and high cost of operation in an

fMRI experiment (Hay et al., 2022).

One of the first fMRI study related to design was performed by Goel & Grafman, (2000) which
explored the difference between architects with and without lesion to the prefrontal cortex, and
found that the right dorsolateral prefrontal cortex was necessary for ill-structured representation
and computation in room space design. Another early study that adopted fMRI to investigate
design was by Alexiou et al., (2009). This study found distinguishing cognitive functions and
brain networks when performing architectural room layout tasks in two forms (1) ill-defined and
open design and (2) well-defined and constrained problem-solving. The study also identified that
higher activation in the right dorsolateral prefrontal cortex (PFC) was associated more with open
design than problem-solving (Alexiou et al., 2009), which was confirmed by a recent EEG study
that extended Alexiou et al.,( 2009)’s work by investigating the open design tasks at three
distinct stages and found increased activation in ideation stages in alpha 2 and beta 3 band in the
PFC (Vieira et al., 2022b). Another two fMRI studies related to design decision-making include
Sylcott et al., (2013) and Goucher-Lambert et al., (2017) that used fMRI to understand product
preference judgment when users made trade-offs between different design variables (e.g., form,
function, and environmental impact) and found varied brain regions associated with each of the

decision attributes.



Design concept generation, or design ideation, is arguably the most critical phase for injecting
creative inspiration and shaping the creativity of subsequent design phases (Cross, 2001; Yang,
2009; Hay et al., 2019). The design research community is increasingly interested in using
neuroimaging methods to understand performance (e.g., quantity, quality, creativity, etc.) and
cognitive processes related to design concept generation. Ellamil et al., (2012) used fMRI to
investigate the cognitive difference between creative generation and evaluation. The results
found the medial temporal lobe was central to the generation of novel ideas while evaluation
mainly involved the executive regions for affective and visceropathies evaluative process. Hay et
al.,( 2019) compared the neurocognitive activation during concept generation between open-
ended and constrained design ideation tasks but found no significant difference between the two
conditions. However, they did identify increased activation in the left cingulate gyrus and right
superior temporal gyrus during ideation. Fu et al., (2019) studied the neurocognitive patterns
associated with design fixation in concept generation. They found increased activation in areas
associated with visuospatial processing (e.g., left middle occipital gyrus and right superior
parietal lobule regions). Goucher-Lambert et al., (2019) investigated design concept generation
with and without the support of inspirational stimuli (e.g., text-based analogies) and identified
two separate patterns of brain activation: one is associated with the successful application of
inspirational stimuli to generate design solutions via insight in the temporal and parietal lobes,
and the other is the currently unsuccessful and external search for insights in the primary visual

processing-related brain regions.
2.2. Important brain regions and networks for ideation and insights

Even though only a limited number of fMRI studies have been performed to understand design
concept generation (Alexiou et al., 2009; Ellamil et al., 2012; Fu et al., 2019; Goucher-Lambert
et al., 2017b; Hay et al., 2019; Sylcott et al., 2013), ideation (i.e., concept generation) and
insights are widely studied in the neuroscience literature that used fMRI (Beaty et al., 2016;
Benedek et al., 2014; Benedek & Fink, 2019; Blumenfeld et al., 2011; Green et al., 2015;
Heinonen et al., 2016; Shen et al., 2018) or design neurocognition studies that used other
neuroimaging techniques (Vieira et al., 2022a, 2022b; Shealy & Gero, 2019; Hu et al., 2021).
The process of generating insights and new ideas requires complex cognitive processes of
attention, cognitive control, and memory (Benedek et al., 2018; Benedek & Fink, 2019; Fink et

al., 2007). Some brain regions and large-scale brain networks have been shown to play critical



roles in supporting ideation and insight. Prior research highlights activity within the brain regions
from the default mode network (DMN) and executive control network (ECN) as being
particularly influential (Beaty et al., 2016; Ellamil et al., 2012; Heinonen et al., 2016). DMN-
ECN interactions also occur during cognitive tasks that involve generating and evaluating
creative ideas (Beaty et al., 2016; Ellamil et al., 2012), and the dynamic transitions between
default and control network are facilitated by the salience network (Beaty et al., 2018; Uddin,
2015).

DMN predominantly includes the medial prefrontal cortex (mPFC), posterior cingulate cortex
(PCC), and medial and inferior parietal cortex. DMN activity may engage in spontaneous and
associative processes, such as self-generated and internally-directed thought during mind
wandering, mental stimulation, and episodic memory retrieval (Beaty et al., 2020). Such self-
generated and internal-directed cognition contributes to concept generation by deriving useful
information from long-term memory (Beaty et al., 2016, 2020). Prior neuroimaging studies
found strong activation within the DMN related to creative processing by analogy (Beaty et al.,
2016, 2020; Benedek & Fink, 2019). For instance, the mPFC shows higher activation during the
novel generation of words with analogies (Green et al., 2015). Likewise, activation in the PCC is

associated with creative idea generation through metaphor production (Benedek et al., 2014).

The ECN mainly comprises the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate
cortex (ACC). The ECN has been linked to the support of internal representation, working
memory, and relational integrations in creative cognition literature (Beaty et al., 2016; Gilhooly
et al., 2007; Heinonen et al., 2016). The prefrontal cortex (PFC), especially the dorsolateral PFC,
is heavily involved in encoding of relational information and executive control when retrieving
information from working memory (Blumenfeld et al., 2011; Green et al., 2010). Working
memory is necessary to focus attention on and maintain executive control over elements related
to concept generation (De Dreu et al., 2012). A prior study found activation in the dorsolateral
PFC, especially in the left hemisphere, is dominant in concept generation (Shealy & Gero, 2019).
ACC activity is also a consistent finding in creative analogical thinking tasks for executive
processes of response conflict and response selection between different ideas (Green et al.,

2015).



Insights also rely on memory. The temporal cortex, a brain region in charge of semantic and
episodic memory, is often involved in creative insight (Shen et al., 2017). Temporal regions,
especially the medial temporal lobe, have been closely linked to the function of breaking mental
sets and establishing remote and novel associations, which then can trigger insight experience
(Shen et al., 2018; Q. Zhao et al., 2013). Prior design neurocognition research also found higher
activation in the temporal regions during creative ideation (Ellamil et al., 2012; Hay et al., 2019)
and concept generation with inspirational stimuli (Goucher-Lambert et al., 2019). Other brain
regions, such as the primary visual processing-related brain region in the occipital lobe, show
activation in creative processing as well. While it is usually connected to participants being
unable to solve problems with insights (Kounios et al., 2006), design fixation without new ideas
(Fuetal., 2019), or a continued external search without insights (Goucher-Lambert et al.,

2019) in design cognition.
2.3. Application of HMM in neuroscience research

Previous research in design neurocognition (mentioned in Sections 2.1 and 2.2) provides
valuable information related to concept generation. However, most studies followed classical
fMRI data analysis methods that depend on significant assumptions. The temporal and spatial
information regarding the fMRI data needs to be assumed beforehand to extract meaningful
statistics linking brain activity to participant behavior in response to tasks (e.g., a design matrix
that specifies time of event in general linear model methods). These analysis techniques are
locked to specific time points (e.g., when the neural process of interest occurs) and do not
uncover connections between brain regions that may be correlated in space and time. These
methods might be limited when the neural process of interest (e.g., ideation) is complex and not
easy to pre-specify. In addition, the dynamics in the fMRI data are hard to capture when using
classical methods. To catch the dynamic information in design cognition without making
assumptions on the structure of the data, HMM is adopted in this work to automatically infer

states in fMRI data related to design cognition without prior assumptions.

HMM uses a probabilistic approach to describe the data as a dynamic sequence of discrete states
with a flexible definition of distribution (e.g., Gaussian, Wishart, or any other family of the

probability of distribution). HMM can model time-series fMRI data in a temporal structure of the
inferred brain states, each with specific spatial activation patterns. Applying HMM to fMRI data



assumes that: (1) fMRI data can be reasonably modeled in a discrete number of states with
Markovian dynamics; (2) At each point in time, these states are reflective in the form of
probabilities, and only one active state is assigned based on probability; (3) The current state
being occupied is only dependent on the last state, not the previous history of state activation
(Vidaurre, 2021; Vidaurre et al., 2017). The model allows for the analysis of how likely a state
being occupied at a particular time point, how much time is being spent in each state, and how
certain a state is transitioning to another state. Such recurrent patterns and dynamics in brain
activation data throughout entire datasets can be uncovered using HMM. It provides a more
reliable estimation of brain activation patterns and overcomes the insufficiency when a short
time window is pre-specified for classical statistical analysis (Vidaurre et al., 2018). Another
benefit is that HMM enables the detection of the transient occurrence of a state and switches
between the states when the visits of the states are relatively short in time, which is usually
missed in classic analysis methods (Vidaurre et al., 2018). Based on the flexibility and analysis
power, HMM has been applied to fMRI data (Anderson, 2012; Anderson et al., 2010, 2016;
Baldassano et al., 2017; Meer et al., 2020; Suk et al., 2016; Vidaurre, 2021; Vidaurre et al., 2017,
2018).

The earliest fMRI studies that adopted HMM were by (Anderson, 2012; Anderson et al., 2010,
2016). This study used HMM to distinguish the period of time and mental states (e.g., encoding,
planning, solving, and responding) when students engaged in mathematical problem-solving
(Anderson et al., 2016). Baldassano et al., (2017) applied HMM to fMRI data and detected event
boundaries during narrative perception through shift between brain activation states without
stimulus annotations. HMM was also applied to decode brain states in resting-state fMRI data for
clinical application (Suk et al., 2016). Vidaurre et al., (2017) used HMM with the large datasets
(resting-state fMRI data from 820 subjects) in the Human Connectome Project (HCP) to achieve
richer and more robust conclusions about the dynamic nature of brain functional connectivity.
Here, the results demonstrated that activation data can be well represented in discrete states
which are hierarchically organized in time, and the dynamic transitions between these states are
far from random. More recently, Meer et al., (2020) applied HMM to fMRI data collected during
movie viewing. The HMM captured a sequence of well-defined functional states plus dynamic
transitions that were temporally aligned to specific features of the movie in the study. In

summary, previous research has demonstrated HMM as a viable approach to represent brain



activation data in a variety of contexts for which information regarding recurrent patterns of
activity is of interest. The goal of the current work in this paper is to uncover brain activation
patterns and cognitive functions that emerge and transit between different states during design

concept generation.
2.4.Application of HMM in design research

Another critical motivation for applying HMM to neuroimaging data on design ideation comes
from prior work that has demonstrated HMM as a valuable tool for capturing patterns and
sequence in design behavior data. HMM was adopted by the authors in prior work to represent
and stimulate sequential patterns of design behaviors when designing for additive manufacturing
(Mehta et al., 2020) and solving configuration problems, including the design of truss structures
or internet-connected home cooling systems (Brownell et al., 2021; McComb et al., 2016, 2017a,
2017b). Design is a dynamic process in a sequence of stages or activities (Cramer-Petersen et al.,
2019; Gericke & Blessing, 2011; Howard et al., 2008). In engineering design, the capacity of
designers to learn and employ sequences (temporal patterns of activity) has long been of interest
to design researchers (McComb et al., 2016, 2017b; Cramer-Petersen et al., 2019; Gericke &
Blessing, 2011). Prior research explored sequence in design at different levels of abstraction
(McComb et al., 2016). The level of abstraction refers to the sequencing levels in design based
on the ordering of design stages (more abstract and generalized), specific tasks, or design
operations (less abstract and more detailed-specific). For example, the higher level of abstraction
as design stages that tend to occur at the longer timescales (e.g., customer needs assessment,
conceptual design, detailed design) (Atman et al., 2007; Goldschmidt & Rodgers, 2013), and a
lower degree of abstract at a shorter timescale as specific design tasks and operations (e.g.,
adding a member, adding a joint, resizing a member, etc., in the design of truss structures)
(Brownell et al., 2021; Rogers, 1996; Sen et al., 2010). Sequencing at short timescales and low
abstraction directly impact design proficiency (Brownell et al., 2021) or performance (McComb
etal., 2016, 2017b). However, this level of abstraction and timescales has not well studied in the
engineering design literature (McComb et al., 2017a). The current work presented in this paper
aims to fill this gap by exploring the states in neurocognition as imaged through fMRI. The
spatial and temporal patterns are investigated from a neurocognitive aspect. The results identify
and assess a short-timescale sequence of difference states in neurocognition that has not

previously been examined in engineering design research. Here sequence refers to the temporal



patterns and transitions in neurocognitive activation and functions. This intersection of
neuroimaging, design concept generation, and analysis using HMM provides a novel

contribution to design cognition literature.

3. Methods

This study investigates the patterns of neural activation and possible cognitive functions
associated with each of the 12 states related to design concept generation identified in prior work
(Goucher-Lambert & McComb 2019). The fMRI datasets, data processing procedures, and
Hidden Markov modeling (HMM) are introduced in Sections 3.1, 3.2, and 3.3, respectively.
Section 3.4 describes the method for localizing the brain activations and inferring possible

cognitive functions associated with each state.
3.1. Design concept generation task and fMRI experiment

This study used the fMRI dataset collected in a prior design by Goucher-Lambert et al. (2019) in
which participants engaged in concept generation tasks with or without the assistance of
inspirational stimuli. Inspirational stimuli are examples provided to designers to enhance
creativity and innovation during conceptual ideation (Goucher-Lambert & Cagan, 2019). These
stimuli were sourced in prior work by extracting common and uncommon words from
crowdsourced solutions using a text-mining technique. Their distance to the problem (near or far)
was determined based on word frequency and bi-directional path length textual similarity

(Goucher-Lambert & Cagan, 2019).

In the fMRI experiment, designers (i.e., engineering and design students) completed the 12
design problems and developed as many solutions as possible in an MRI scanner. For each
design problem, designers were given a total of two minutes, separated into two 60-second
blocks, and asked to develop as many solutions as possible in each block. From the beginning of
each block, all designers were presented with word sets drawn from inspirational stimuli
(inspirational stimuli condition, near or far stimuli) or containing words from the design problem
without inspirational stimuli (control condition). A total of five inspirational stimuli were
displayed: three words displayed at the same time (Word Set 1) from the beginning of the first

block and the remaining two words displayed simultaneously (Word Set 2) from the beginning of



the second block. The purpose is to make the presentation of inspirational stimuli

alternate throughout the task and provide new stimuli if participants had exhausted their use of
the inspirational stimuli presented in the first block. An example problem and inspirational
stimuli can be found in Figure 1. Each of the twelve design problems had a unique set of
inspirational stimuli for all three conditions (near, far, control). The experiment conditions were
counter-balanced to provide an even distribution of problem-condition pairs for each designer.
Figure 1 shows the experiment process. Only fMRI images collected during the whole session of
the design concept generation periods (highlighted in Figure 1, without any specification on the
time points of Word Set 1 or Word Set 2) were included in the HMM. The full details of the
design problems, inspirational stimuli, and fMRI experiment can be found in Sections 2.2 in

Goucher-Lambert et al., (2019).

A device that disperses a light
‘Consider the following design problem: coating of a powdered substance
over a surface.

A device that disperses a light
coating of a powdered
substance over a surface. | | ~ =====
shake squeeze

spray blow fan

Recorded!

(60sec) (60sec)

l Repeat x 12

A device that disperses a light
coating of a powdered substance
over a surface.

spray  blow  fan

Press 2 each time you think of a new idea.

Figure 1 Design concept generation experiment process with an example problem and
corresponding inspirational stimuli

3.2. fMRI data collection, pre-processing and brain parcellations

A total of 21 engineering students were recruited and completed the fMRI experiment. Figure 2
illustrates the steps for the fMRI data collection, pre-processing, and preparation for HMM

training. fMRI data collection and pre-processing were performed in the prior work. Detailed



information on participants, fMRI equipment, data acquisition, and data pre-processing (Step A
and B in Figure 2) can be found in Sections 2.3 and 2.4 in Goucher-Lambert et al., (2019). Data

processing in the current work includes Steps C, D, and E in Figure 2.

A B C D E
fMRI timeseries  Data pre-processing Preparing training data Parcellation and timeseries data Hidden Markov modelling

Slice scan-time Downsample from
correction 54x64x50 voxels to

27x32x25 voxels

3D rigid-body motion
» correction » Principal component

analysis (PCA) to 50

High-pass temporal parameters
filtering

Group aggregated fMRI data

Emission X,
Xe-x X, Kooy Emission Probability
P,
Independent - o
i i component analysis (5:-415¢ Hidden State 5,
Spatial smoothing (1CA) - 0)— o — -} Transiton Probabilty
PUS:-11S))

Figure 2 fMRI data pre-processing and preparing. Steps A and B were performed in the
prior work. The current study processed and analyzed the fMRI data in Steps C, D, and E

A multi-stage process was applied to prepare the pre-processed fMRI time-series data into lower-
order spatial representations for the purpose of more rapid HMM training, illustrated in Figure 2
(C) and (D). The first step was down-sampling each fMRI image from the resolution of
54x64x50 (in a total of 172,800 ) voxels to 27x32%25 (in a total of 21,600) voxels to avoid
overfitting (Anderson, 2012). Then the processing pipeline and techniques used by (Smith et al.,
2014; Vidaurre et al., 2017, 2018) were applied in this study to prepare HMM inputs. Principal
component analysis (PCA) was used to reduce fMRI data to its dominant constituents with a
dimension of 50 parameters for each subject. The last step was to perform independent
component analysis (ICA) with pre-specified constraints (i.e., parcellation in Figure 2 (D)). The
max-kurtosis ICA algorithm was applied to project the data into a 50-dimension time-series
using the 50-parcellation template from the Human Connectome Project (HCP). The whole-brain
fMRI data was parcellated into the activation data within 50 functional distinct areas using the
pre-validated spatial maps (Medolic_IC) from HCP, which include spatial information of the 50
spatially independent components in the brain (Beckmann, 2012). Previous researchers used the
large-scale resting-state fMRI data in the HCP and provided this data-driven functional
parcellation of human brains with high stability (Beckmann & Smith, 2004; Smith et al., 2014,

2015). A final standardization was performed to the 50-dimension time-series fMRI data



aggregated among all participants so that the training data for the following HMM have a mean

of 0 and a standard deviation of 1.
3.3. Hidden Markov Modeling

The normalized fMRI time-series datasets from all participants were concatenated in the
temporal dimension and used to train HMM to generate a group-level sequence of a finite
number of states with varying patterns in neural activation. Specifically, the HMM was trained
with emissions in Gaussian distribution, which was used in prior fMRI studies (Vidaurre et al.,
2017, 2018) and is appropriate for the fMRI data used in this study. Here each state was
represented by the average modes of brain activation that are emitted or enacted with some
degree of variance in Gaussian distribution. The HMM-MAR (Hidden Markov Model -
Multivariate Autoregressive) toolbox (Vidaurre et al., 2016) was used to accomplish the analysis.
Estimations on parameters of state distributions, progression through states, and transition
probability matrix, were conducted by using the HMM-MAR toolbox. A state matrix (S 12 x 50)
showing the state distribution across the 50 brain parcellations for the 12 states was calculated

for further activation localization (detailed in Section 3.4).

The appropriate number of states for a hidden Markov model is usually determined within an
iterative procedure (McComb et al., 2017b; Pohle et al., 2017). A range of varying numbers of
hidden states from 2 to 32 was tested for the HMM training, and log-likelihood values were
compared among all the models. Here, log-likelihood is a measure of model accuracy, describing
the probability that the observed data was produced by the trained model. The resulting
differences in log-likelihood values between models was negligible, providing no basis on which
to choose the number of states. As a result, 12 was determined as the number of states and used
for model training in prior work (Goucher-Lambert & McComb, 2019) and the current study to
align with previous literature in neuroscience applying 12-state HMM to neuroimaging data

(Vidaurre et al., 2017, 2018).
3.4.Localizing the brain activation in each HMM state

The 12 HMM states from (Goucher-Lambert & McComb, 2019) were used in the current work
for the investigation of the brain activation patterns related to concept generation. As mentioned
in Section 3.3, each state was represented by the average mode of brain activation, so a state

matrix (S 12 x 50) with mean values of activation was calculated and used. The state matrix has 12



row vectors that stand for 12 states. Each row vector contains 50 contributing indices, which are
mean values from a Gaussian distribution and represent the average contribution from the
corresponding parcellation. The state matrix was used to project the activation back into a
higher-dimension activation matrix with more voxel elements. The mathematics is represented in

Equation (1).
X=SxA (1)

A mixing matrix (A 5o« 32767) including the voxel compositions of the 50 parcellations was
provided by the HCP (Ugurbil & Van Essen, 2017) and applied to the states matrix (S) here for
the generation of high-dimension and whole-brain activation matrix (X 12 x 32767) associated with
the 12 states. Here 32767 represents the dimension length of the standard 32k surface meshes
provided by HCP mixing matrix template (16-bite integers and limited to 32767 in each
dimension) (Elam et al., 2013). Then the activation for each state (a row vector in X) was coded
and converted into appropriate CIFTI-2 format files. Doing so enabled the visualization of each
HMM state in an activation heatmap using the HCP visualization and discovery tool wb_view

(Marcus et al., 2013).

An investigation of the physical locations in the brain and possible cognitive functions associated
with the HCP 50 parcellations was performed to better understand the activation patterns of the
HMM states. Specific Montreal Neurological Institute and Hospital (MNI) coordinates for the
center point of each parcellation were extracted in the wb_view tool. The extracted MNI
coordinates for each parcellation were localized into brain regions and Brodmann areas using the
Biolmage Suite tool (Papademetris et al., 2006). Then a meta-analytical database of fMRI
studies, NeuroSynth, was used to map between the parcellation MNIs and associated cognitive
functions (Yarkoni et al., 2011). NeuroSynth operates by using combined text-mining, meta-
analysis, and machine-learning techniques to generate probabilistic mappings between cognitive
functions and neural activation in the brain region with corresponding MNI coordinates (Yarkoni
et al., 2011). The cognitive functions in NeuroSynth are coded into specific psychological terms,
such as working memory, retrieval, visual, or large-scale brain networks. A total of 14371 fMRI
studies have been used in NeuroSynth for a robust and reliable inference mapping between brain
regions and cognitive functions (Yakoni, 2022; Yarkoni et al., 2011). NeuroSynth has been used

in previous research to localize brain regions of interest and identify common cognitive functions



in fMRI datasets related to design (Goucher-Lambert et al., 2017a). This coordinate-to-term
mapping approach was used in the present work to infer cognitive functions associated with each
parcellation and then each HMM state. The psychological terms with a high likelihood of
associating with the activation in the MNI coordinate (represented by a posterior probability
P(term | activation) from Naive Bayes Classification higher than 0.75) were selected as cognitive
functions associated with the parcellation. Eventually, for each state, the key parcellations (i.e.,
parcellations with top 3 contributing indices to the state in the state matrix) and their associated
cognitive functions (i.e., psychological terms extracted from NeuroSynth) were identified for

further interpretation of the state.

4. Results

Using the methodologies outlined in Section 3, this study investigates the patterns of neural
activation that are associated with each of the states discovered by Goucher-Lamber & McComb
(2019). Cognitive functions associated with each of the HMM states were inferred based on
meta-analysis from NeuroSynth. State transfers between the HMM states were also uncovered

and interpreted.
4.1. Patterns of neural activation associated with the 12 states

The 50 parcellations acquired from the Human Connectome Project (HCP) were localized to
specific brain regions and Brodmann areas for further interpretation. Six parcellations were
removed from the summary since the activation (i.e., z-scores) were negligible. A summary of
associated brain regions for the other 44 active parcellations can be found in Table Al in the
Appendix. In addition, possible cognitive functions described by the psychological terms

extracted in NeuroSynth, associated with each parcellation, are also listed in Table Al.

To directly illustrate the neural activation patterns associated with each HMM state, brain
activation heatmaps of the 12 states were created using the wb_view tool and presented in Figure
3. The activation map for each state was generated by projecting the state matrix for the 50
parcellations back to high-dimension activation within each voxel element, which is described in
Section 3.4. As shown in the activation heatmap, distinct locations in the brain and patterns of

activation are associated with the 12 HMM states. State 4 has significantly higher activation than



other states, mainly in the prefrontal cortex and motor cortex. States 1, 7, and 11 show negative
activation in a wide range of brain regions. Other states show strong activation in either the
prefrontal cortex (PFC), temporal cortex, or occipital cortex. For example, State 2, 8, and 10

show strong activation in the occipital and temporal cortex, while State 6 mainly involves
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When using the HMM approach, the activation pattern for each state has a linear relationship
with the activation in the brain parcellations, represented in the state matrix. Figure 4 below uses
a color-coded state matrix to represent the contribution indices of the 44 active parcellations to

each state. The 44 parcellations were reordered and clustered based on the cortex they are in to



more clearly show the activated cortex for each state. A few parcellations include more than one

cortex in the human brain, and therefore appear along the y-axis of the figure multiple times.
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Figure 4. Contribution indices of the parcellations to each state. The color represents the
value of contribution from the parcellation to the state. The parcellations are reordered
and clustered based on the cortex

As shown in Figure 4, State 4 shows higher activation levels than other states, including in the
prefrontal cortex, temporal cortex, parietal cortex, and motor cortex. Another finding is that
some states show stronger activations in one or two cortexes than other brain regions. For
example, States 2 and 5 are more involved in the occipital and temporal cortex; State 6 has
stronger activations in the prefrontal cortex than other regions. State 3 and 10 show their major
activation in the occipital cortex. States 1 and 11 are less activated but have major activation in
the occipital cortex; State 7 also shows less activation in most brain regions except for activation

in the occipital cortex, cingulate cortex, and prefrontal cortex.



4.2. Key parcellations for each state and possible cognitive functions

To identify physical brain locations of major activation for each state and infer cognitive
functions, the top 3 parcellations of the state (ranked by the contributing indices in the state
matrix) were identified. Cognitive functions of the parcellations, coded as concise physiological
terms, were extracted using a coordinate-to-term approach based on the meta-analysis from
NeuroSynth (Section 3.4). Table 1 here lists the top 3 parcellations for each inferred state, plus

their physical location in the brain, and associated cognitive functions from meta-analysis.

Table 1 Key parcellation to each state and possible cognitive functions

State Key parcellations and brain Cognitive functions based on meta-analysis
regions (Brodmann areas: BA)

State 1 40, 29, 43
R lateral occipital gyrus (BA 19) Sight, visual, eye movement

State 2 39, 37, 42

L/R middle temporal gyrus (BA 21) | Word, semantic, verb, encoding
L/R rostrolateral PFC (BA 10) Rules, retrieval, reasoning
L/R lateral occipital gyrus (BA 18) | Visual, eye movement

State 3 42,2,33
L lateral occipital gyrus (BA 18) Visual, eye movement, reading, real world
L supplementary area (BA6) Finger tapping, hand movement
State 4 19,23, 11
L/R supplementary area (BA6) Finger tapping, motor task
L/R dorsolateral PFC (BA 9) ECN, mnemonic, language, semantics, solving

L/R posterior parietal cortex (BA 7) | ECN, calculation, memory load
L/R middle temporal gyrus (BA 37) | Word, semantic, encoding/retrieval, intentional
State 5 39, 42,41
L/R middle temporal gyrus (BA 21) | DMN, word, semantic, verb, encoding
L/R rostrolateral PFC (BA 10) Rules, retrieval, reasoning
L lateral occipital gyrus (BA 18) Visual, eye movement

L supplementary area (BA6) Motor, movement, tapping, imagery
State 6 35,28,9
L ventromedial PFC (BA 10) Beliefs, reward
L inferior frontal gyrus (BA 44) Semantic, verb, comprehension
L dorsolateral PFC (BA 46) ECN, working memory, demands, rules
L supramarginal gyrus (BA 40) Verb, sentences, language, comprehension
State 7 43,29, 18

R lateral occipital gyrus (BA 19) Sighted, visual, eye movement
L/R posterior cingulate area (BA 31) | DMN, episodic, retrieval, self-referential
L orbitofrontal cortex (BA 10) Memories, retrieval; recollection



State 8 42,10, 30
L lateral occipital gyrus (BA 18) Visual, eye movement

R Front eye field (BA 8) Memory load, demand, front-parietal
R angular gyrus (BA 39) Attention, theory of mind, social cognition
State 9 2,41, 30
L lateral occipital gyrus (BA 18) Reading, visual
L supplementary area (BA 6) Motor, movement, tapping, imagery
R angular gyrus (BA 39) Theory of mind, social cognition
State 10 25,3,41
L lateral occipital gyrus (BA 18) Visual, eye movement, action observation
L supplementary area (BA 6) Motor, movement, tapping, imagery
State 11 39,41, 42

L lateral occipital gyrus (BA 18) Visual, eye movement
L/R medial temporal gyrus (BA 21) | DMN, word, semantic, verb, encoding
L/R orbitofrontal cortex (BA 10) Rules, retrieval, reasoning

L supplementary area (BA 6) Motor, movement, tapping, imagery
State 12 32,11,27
L/R anterior PFC (BA 10) Noxious
L/R dorsolateral PFC (BA 9) ECN, mnemonic, language, semantics, solving

L/R posterior parietal cortex (BA 7) | ECN, calculation, memory load

L/R inferior temporal gyrus (BA 37) | Word, semantic, encoding retrieval, intentional
Note: DMN = default mode network, CEN = central executive network
Table 1 shows distinct patterns and physical locations of activation in the 12 HMM states. The
physical locations of the top 3 parcellation for each state provide a consistent mapping with the
state activation heatmap in Figure 3 and the color-coded state matrix in Figure 4. For example,
State 4 shows higher activation in a wide range of brain regions. To be more specific, the major
activation is in the dorsolateral PFC and posterior parietal cortex from the executive control
network (ECN), which is generally associated with executive control of working memory
(Chatham et al., 2011), middle temporal cortex, and bilateral supplementary areas for motor
tasks (Chu & Black, 2012). Another example is State 6 that mainly involves activation in the
PFC. The major activated brain regions of State 6, shown in Table 1, are predominately in the
PFC, including the dorsolateral PFC, ventromedial PFC, and inferior frontal gyrus, which are
usually involved in rule-based reasoning (O’Bryan et al., 2018; Rudorf & Hare, 2014),
comprehension (Gernsbacher & Kaschak, 2003), and the executive control function from the

ECN (Chatham et al., 2011).

In addition to the consistent mapping, Table 1 also filters the major activated brain regions in the

states that are less active and hard to notice. For instance, State 1 shows significant activation in



the occipital cortex that is critical for visual processing (Clarke & Miklossy, 1990). State 7
involves activation in the occipital, orbitofrontal, and posterior cingulate cortex from the default
mode network (DMN). DMN usually engages in rest state or spontaneous and associative
processes (Beaty et al., 2020). For State 2, except for the activation in the temporal and occipital
cortex, the rostrolateral PFC is also a major brain region of activation. The restrolateral PFC is

generally associated with rule-based reasoning (Hobeika et al., 2016; Paniukov & Davis, 2018).

Regardless of the specific activation patterns, most states combine collection of widespread brain
regions that are functionally connected within large-scale networks. The associated networks
here mainly include ECN, DMN, visual network, and motor network. The 12 inferred states
share some consistent cognitive functions related to these brain networks. For instance, semantic
processing and memory retrieval are two frequent functions listed in Table 1. Semantic
processing refers to a human’s ability to use, manipulate and generalize knowledge to support
verbal and non-verbal behaviors (Ralph et al., 2017). Memory retrieval is the process that
involves the interactions of triggers/cues and stored memory traces (Frankland et al., 2019). Most
states, except for States 1, 3, and 10, involve activations that are closely associated with either
executive control of working memory or spontaneous associative processing for semantic and

retrieving processes.

Another shared cognitive function in multiple states here is visual processing. All states, except
for States 4, 6, and 12, show major activation in the primary visual processing-related brain
regions. Finger tapping is also a common cognitive function in a few inferred states, including
States 3, 4, 5, 9, and 10. This function from the motor network is involved because the
experiment asked participants to click on a button when they generated a concept. A baseline
correction with the fMRI data during the n-back task was used to remove the noise associated
with movement in the experiment. However, there can still be activation associated with

motivational or imaginary finger movement before or when designers clicked the button.
4.3. Likelihood of state occupancy and state transitions

Among the 12 states identified in (Goucher-Lambert & McComb 2019) for the aggregated fMRI
data related to concept generation, seven states, the state probability matrix suggests States 1, 2,
3,4,6,7,and 11, show a higher probability of occupancy than the rest states (i.e., States 5, 8, 9,

10, and 12). These less-occupied states might represent random activation patterns less relevant



to the design task. Figure 5 shows the time-varying occupancy probability of the seven states that
are highly likely to occur in the process of concept generation . Among these states, States 2, 4,
6, 7, and 11, are more likely to be occupied, especially State 4, with the highest likelihood of

being occupied than other states.
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Figure 5 The probability of occupancy in the seven states that are more likely to be
occupied in the process of concept generation.
The dynamic pattern between the 12 states was represented using possible switches between the
12 states. Only strong transitions with a probability higher than 10% were included in Figure 6(A).
Strong diagonal elements suggest that participants are likely to stay in a single state across several
brain image acquisitions. Other strong off-diagonal elements show a dynamic pattern and
transitions between different states. These transition paths with a transition probability greater than

10% are highlighted and included in Figure 6(B).
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Figure 6 Strong transitions (probability > 10%) between states (A) and transition paths
with high probability between states (B)

As shown in Figure 6(B), the states that are least likely to be occupied (i.e., States 5, 8, 9, 10, and
12) have a high probability of transitioning to States 4, 6, 7, and 2, but not to States 1, 3, and 11.
As mentioned, these less-occupied states might represent random activation patterns less relevant
to the design task. This transition might represent a shift from a random state back to the active
states for concept generation, especially to States 2, 4, and 6. These states involve activations in
the lateral PFC from the ECN. The executive control functions associated with these states can
inhibit cognitive processing on irrelevant information and amplify attention for internal
representation of insights. Among other active states, there are some state switches with higher
probability, for example, State 6 to State 4 (31%), State 1 to State 6 (22%), State 2 to State 11
(21%), State 11 to State 6 (17%), and State 7 to State 2 (16%). These transition paths between
the key states suggest possible dynamic and recurring patterns in neurocognition related to

concept generation.

5. Discussion



This study used a Hidden Markov Modeling (HMM) approach to uncover the spatial and
temporal patterns in fMRI data related to design concept generation. Using this approach, 12
distinct states, with dynamic switches between each other, were automatically inferred from the
data. Specific activation patterns in each state were linked to different physical locations in the
brain and varying cognitive functions based on meta-analysis. Furthermore, the state transition
routes and difference in state occupancy between the high- and low-performing designers can

provide meaningful explanations to their different design performances.
5.1. Associations and distinctions between the key states

Among the 12 distinct states, several key states showed a higher likelihood of being occupied
and transiting than the other states, including States 2, 4, 6, and 7. Consistent cognitive functions
associated with these states are semantic processing and memory retrieval (Burianova and Grady
2007; Goldberg et al. 2007). These two cognitive functions echo the associative theory of
creativity (Mednick, 1962) and a common view on analogical reasoning (Forbus et al., 1995) that
support the creative process. Here analogical reasoning is the inference inspired by the source,
and applied to a target (Chan & Schunn, 2015; Forbus et al., 1995; Goucher-Lambert et al.,
2019). Semantic processing supports the generation of new ideas by offering a semantic
knowledge base of facts and concepts for screening and selection (Beaty et al., 2020; Gerver et
al., 2022; Mednick, 1962). According to the associative theory of creativity, people who have a
loosely structured semantic knowledge base are better at creative tasks because they are more
capable of forming associations with remote semantic distance (Mednick, 1962). Considering the
semantic nature of inspirational stimuli provided in the design task, semantic processing can play
a critical role for participants to cognitively process the semantic similarity and making
associations between the inspirational stimuli and the design solutions. Memory retrieval is an
essential step that enables searching and recognizing a useful and relevant concept stored in
designers' memory (Gomes et al., 2006). Successful retrieval of memory can then be used in the
subsequent generation of solutions to the design problem. The findings emphasize the
importance of semantic processing and memory retrieval to design concept generation with
inspirational stimuli. More specific characteristics of semantic processing and memory retrieval,
for instance, semantic similarity, divergent or convergent semantic processing, and memory
retrieval cues, plus their correlates with ideation performance can be studied with more details in

future research.



Even though these states have shared cognitive functions, they involve varying physical
locations of activation in the brain. Figure 7 illustrates the key brain regions (Brodmann areas) of
activation for the four major States. The differentiated activation patterns of these states suggest
potentially different roles for semantic and retrieving processing. Considering the temporal
patterns in occupancy likelihood, these states might represent difference sequences in cognition

related to concept generation.
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Figure 7. Key brain regions of activation for States 6, 4, 7, and 2. The brain regions
(Brodmann areas, BA) with the top 3 contribution indices (shown in Table 1) for the states
are highlighted in corresponding locations with the BA number.

State 6 might be responsible for stimuli encoding and goal defining

The activation pattern of State 6 is mainly within the inferior frontal gyrus (Brodmann area—BA
44) and supramarginal gyrus (BA 40), which are mainly involved in semantic and (specifically)
verb comprehension (see Table 1), and dorsolateral PFC (BA 46) for rule and demand
processing. Activation in the BA 44 and BA 40 is often linked to verb processing, especially for
comprehension (Bak et al., 2001; Giraud et al., 2004; Newman et al., 2009; Sahin et al., 2006).
Dorsolateral PFC is critical for representing and maintaining information related to goals and
rules to guide behavior (Bunge et al., 2003; Wallis & Miller, 2003). Considering the distinct

increase in the likelihood of occupancy of State 6 directly after the introduction of the



inspirational stimuli (Word Set 1 at 0 seconds and Word Set 2 at 60 seconds), a possible

interpretation of State 6 is to comprehend and encode the stimuli for goal defining.

State 4 appears to be generating new concepts inspired by the stimuli

In contrast, State 4 mainly shows activation from the executive control network (ECN, including
the dorsolateral PFC and posterior parietal cortex). Activation within the ECN is heavily
involved with executive controls of internal retrieving information from working memory and
relational integration (Curtis & D’Esposito, 2003; Gonen-Yaacovi et al., 2013). Several
neuroimaging studies found significant higher activations in the dorsolateral PFC and posterior
parietal cortex in support of relational integration (Blumenfeld et al., 2011; Green et al., 2010)
and creative generation task (Gonen-Yaacovi et al., 2013; Kowatari et al., 2009). The middle
temporal gyrus (BA 37), in charge of semantic and episodic memory in creative insight (Shen et
al., 2017) and formation of novel associations from analogy (Hao et al., 2013) is also activated in
State 4. Prior work that applied the general linear modeling (GLM) approach to the same fMRI
data as the current study found that temporal brain activation were closely associated with
insights inspired by the stimuli as well (Goucher-Lambert et al., 2019). A possible interpretation
of State 4 is generating new concepts with the inspirational stimuli. The activation in the motor
network of State 4 might be associated with motivational or imaginary finger movement before
designers confirmed the insights in their minds and planned to report the generation of a new

concept.

State 7 might switch between internal and external attention

The main brain regions involved in State 7 include the inferior occipital gyrus for external visual
processing (Clarke & Miklossy, 1990), orbitofrontal cortex for internal memory retrieving
(Farovik et al., 2015; Young & Shapiro, 2011), and posterior cingulate cortex (PCC), a core
backbone for default mode network (DMN). The PCC is typically linked to a central role in
supporting internal-directed attention for episodic memory retrieving and future planning
(Buckner et al., 2008). However, there are still debates regarding the exact functions of PCC in

the neuroscience literature. A comprehensive review on the role of the PCC in neuroimaging



studies found its possible role associated with switching between internal and external attention
(Leech & Sharp, 2014). State 7 might serve to sustain insightful thoughts by flexibly switching
from the external visual process to internal retrieval of memory to generate concepts or a reverse

switch from the internal controlled process to external attention to the design space.

State 2 seems to contribute to solution evaluation and goal monitoring

Like State 6, a critical function for State 2 is rule-based reasoning. The specific brain region is
the rostrolateral PFC. Rostrolateral PFC has been identified as a brain region in support of high-
order cognitive functions in rule-based analogical reasoning (Christoff et al., 2001; Hobeika et
al., 2016), and memory retrieval (Westphal, Reggente, Ito, & Rissman, 2016). In particular,
rostrolateral PFC plays an evaluative role in rule-based reasoning (Hobeika et al., 2016;
Paniukov & Davis, 2018). This evaluative role seems to hold true when designers assess whether
their associations are appropriately made, or their solutions meet the demand when generating
concepts with the support of inspirational stimuli. State 2 might represent concepts assessments
and evaluations. Additionally, higher activation in the occipital cortex is also involved in State 2

which suggests external attention to the design problem or stimuli.

It should be noted that these interpretations of states were made based on reverse inference. The
claims about particular cognitive processes were inferred from reasoning backward from the
observed brain activity rather than directly testing. However, the meta-analytic framework
applied in this work using NeuroSynth can potentially address possible problems of reverse
inference by enabling researchers to conduct quantitative reverse inference on a large scale of
studies. These interpretations of states only represent possible explanations based on the state
occupancy, associated brain regions and cognitive functions. Future research should investigate
this link between design cognitive processing and neurocognitive patterns more directly to
examine the interpretations. Another possible limitation is that only group-level inference was
performed using temporal concatenation for group-level analysis on states occupancy and
transitions. Subject-level analysis can be reconstructed in future research to explore individual
characteristics in neurocognition related to concept generation. More detailed and richer
descriptions on the dynamic patterns and transitions among the key states can be also explored

based on individual data analysis.



5.2. Performance-differentiated characteristics in state occupancy and cognitive functions

States 6, 4, 7, and 2 represent recurring patterns in neurocognition related to the use of the
stimuli and generating new concepts. The prior research also found high-performing designers
(i.e., designers with higher idea fluency) showed higher occupancy probability in these states.
Figure 8 shows the differences in state occupancy likelihood averaged in every 15 seconds
between the high- and low-performing designers. High-performing designers show a higher
likelihood of occupancy in States 2, 4, 6, and 7, which are mainly associated with activation in
the brain regions from the large-scale networks of ECN and DMN. ECN and DMN are two brain
networks widely studied in creative cognition literature (Beaty et al., 2016). ECN and DMN, plus
their coupling activation, are believed to play inevitable roles in tasks that demand creative
processing, such as divergent thinking (Heinonen et al., 2016), analogical reasoning (Hobeika et

al., 2016), creative idea generation (Beaty et al., 2015), and art creating (Kowatari et al., 2009).
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Figure 8 Likelihood of state occupancy difference between the high-performance and low-
performance designers

On the contrary, low-performing designers showed a higher likelihood in States 1, 3, and 11 in
the duration of concept generation after introducing the stimuli. State 1 mainly shows activation
in the occipital cortex, so its possible role is visual processing for external information when
there is no clue or insight from internal processing or participants are unable to generate new
concepts under time or other constraints. State 3 also involves activation in the occipital cortex.

Prior research has linked an increase in visual processing with participants being unable to solve



problems with insight (Kounios et al., 2006), design fixation without new ideas (Fu et al., 2019),
or an unsuccessful external search without insights (Goucher-Lambert et al., 2019). The state
might represent a continued external search for inspiration when participants cannot retrieve
helpful information from memory. State 11 seems to have similar activation patterns as State 2.
However, the level of activation has significantly decreased. This diminished activation pattern
in State 11 might render the corresponding cognitive functions not as effective as State 2

Other less-occupied states, including States 5, 8, 9, 10, and 12, might represent random

activation patterns less relevant to the design task and are not discussed here.

The performance differentiated characteristics in neurocognition suggest potential leverage
points in design fluency and creativity training. For instance, training or interventions in
education can target improving neurocognitive ability in the ECN and DMN for semantic
processing and memory retrieval while controlling unnecessary visual processing or eye
movements. More research in design and education can take advantage of neuroimaging methods
to shed light on strategies or practices that improve design performance by offering a new layer

of data and insightful knowledge of hidden brain activities related to design cognition.

Noticeably, the classification of high- and low-performing designers was based on idea fluency,
which means high-performing designers generate new concepts more quickly and fluently. High-
performing designers might be quicker to encode the stimuli and define the goal, and then
retrieve information from memory and generate the targeted concepts through reasoning. Idea
fluency is a critical measure for creativity in ideation (Mirabito & Goucher-Lambert, 2021; True,
1956). However, a limitation is that only idea fluency was compared, while other metrics, such
as novelty, quality, and feasibility, are not included in this analysis. This can be seen as a
challenge posed by utilizing fMRI as a method for studying design, as capturing full design
concepts (e.g., through think aloud protocols, or drawing/typing) is quite challenging in the MRI
environment. Future research should explore mechanisms to capture the generated concepts and
explore how other creativity metrics correlate with dynamics of design neurocognition, while
accounting for possible data quality concerns that may emerge (e.g., via motion artifacts).
Additionally, this work mainly investigates design neurocognition related to concept generation,
which is believed to be a key activity in the design process shaping the creativity of subsequent
design phases (Cross, 2001; Yang, 2009; Hay et al., 2019). However, design is a complex

process involving multiple stages and activities, and spanning in varying time durations. There is



substantial need for more design research to explore behaviors and neurocognition related to

different stages of design and the dynamic patterns in this process as well.
5.3. Possible transition routes related to concept generation

Several possible transition routes can be observed from the transition matrix in Figure 6 (B) plus
the temporal sequence of occupancy for each state in Figure 5. Three possible routines are
highlighted in Figure 9. There is a distinct increase of likelihood in States 1, 6, and 11 right after
introducing the stimuli (shown in Figure 5), and the transition probability is high from State 11
to State 1 (10%), State 1 to State 6 (22%), and State 11 to 6 (17%) (shown in Figure 6 and 9).
There seems to be a transition route (path 1 in Figure 9), including States 11 — 1 — 6 or States 11
— 6. Considering the activation patterns and cognitive roles of these states, this route might be
associated with a process that participants catch sight of the stimuli/verbs, then pass the visual
information to the prefrontal cortex for encoding the stimuli and defining the goal of the

problem.
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Figure 9 Three possible transition routines with high transiting probabilities between the
different states



After stimuli encoding and goal defining, the information will transit from State 6 to State 4
(31%) for analogical reasoning and generation of concepts. Then another transition route, a loop
including State 4 — 7 — 2 — 4, might represent a recurring process of insights. Once an insight
occurs, a switch from State 4 to 7(13%) might help designers achieve a quick shift from the
internal retrieving process to external attention to the stimuli. Then the transition from State 7

to 2 (16%) suggests the cognitive processing of solution evaluation and goal monitoring to
initiate a new round of concept generation in State 4. This transition route (path 2 in Figure

9) may represent the successful use of the stimuli, leading to insights and generating new

concepts

In addition to the transition from State 2 to 4, the transition from State 2 to 11 also has a high
probability (21%, see Figure 7). Thus, there is a high probability that the transition loop State 6 —
4 -2 intersects with the other transition path of State 11 —1 —6. There can be another transition
cycle including State 4 —7 —2 —11 —1 — 6- 4 in the process of concept generation (see path 3 in
Figure 9). States 11 and 1 here represent an extended processing in the external attention system
and visual-related regions. State 6 is involved for re-encoding the stimuli and redefining the goal
for the problem. This transition route might happen when participants are at an impasse during
problem solving. When they are not able to retrieve more useful information and new insights
from internal search, they switch their attention systems and attempt to pay more attention to the
external environment for insights with visual processing. They might even need to re-encode the
stimuli and re-define the goals to generate other concepts. This transition route appears to be

indicative of a continued and less successful external search process for inspiration.
5.4. Implications for future work combining HMM and design neurocognition

Overall, the findings presented in this work demonstrate that HMM is a well-suited approach to
recognizing the recurring patterns of both spatial and temporal dynamics in design
neurocognition. HMM can capture rich information contained in the entire fMRI dataset. It also
bypasses some problems and statistical limitations in classical methods for fMRI analysis.
Classical methods usually rely on significant assumptions regarding the timing of activation and
brain regions of interest. For example, the sliding window approach assumes a pre-specification
of the timescale at which the neural activation occurs. This pre-defined temporal window limits

its statistical power to detect the dynamics in neurocognition (Hindriks et al., 2016; Vidaurre et



al., 2018). In contrast, there are no assumptions related to the underlying model structure when
using the HMM approach. Therefore, latent patterns (states) can be automatically inferred in a
completely unsupervised way, which makes HMMs suitable for exploratory analyses of

neurocognition data relative to design.

Using HMM leads to the findings that echo prior design neurocognition literature and show
consistency regarding the highly activated brain regions associated with concept generation and
insights (Gerver et al., 2022; Goucher-Lambert et al., 2019; Rudorf & Hare, 2014; Shen et al.,
2017). Here the data-driven functional parcellation of human brains from a large dataset provides
more stability in the HMM inputs. Additionally, the HMM methodology enriches knowledge in
design neurocognition by unveiling the dynamic switches between the states with varying spatial
and temporal patterns related to design concept generation. Prior neuroscience studies have used
a similar HMM approach to investigate resting-state fMRI data and found that the transitions
between states or networks are far from random (Baker et al., 2014; Vidaurre et al., 2017, 2018).
The current work used HMM and captured the transient and dynamic switches between the
discovered states that meaningfully characterized possible sequences in cognition for generating
concepts. The state switches also offer insightful explanations of the dynamic neural patterns that

influence performance in concept generation.

A limitation of the HMM inference used in this work is the prior specification on the number of
states K. The log-likelihood values with different selections of K (e.g., from 2 to 32) did not
significantly change when performing the model selection. So the choice of 12 states was chosen
to better align with prior neuroimaging studies that applied HMM to fMRI data (Vidaurre et al.,
2017). However, the findings (e.g., low occupancy likelihood in some states) suggest that a
lower number of states may present a better trade-off between richness and redundancy and
should be explored in future work. In addition, other model selection methods, such as model
evidence via the free energy used in Bayesian inference techniques, can be adapted to select an

appropriate number of states (Baker et al., 2014).

In summary, the results show the power of using HMM to uncover the neural patterns of design.
This study unveils different states in neurocognition with dynamic spatial and temporal patterns
and helps to construct a more insightful understanding of design neurocognition. The current

work focused on the activation patterns of the discovered states related to concept generation.



Network patterns or functional connectivity is another focus in the creative cognition research
community. HMM also provides benefits to network analysis in fMRI data (Vidaurre et al.,
2017, 2018). Future research can move from isolated activation toward exploring broad patterns
in neural activation networks. The results from future research are expected to show how large-

scale networks in the brain and functional connectivity contribute to design ideation.

6. Conclusion

This study used a Hidden Markov Modeling (HMM) approach to uncover the spatial and
temporal patterns in fMRI data related to design concept generation. The underlying fMRI data
were collected when participants generated solutions to open-ended design problems in two
concurrent blocks, each lasting 60 seconds. 12 distinct states, with dynamic transitions between
each other, were automatically inferred from the HMM method. Specific activation patterns
associated with each state were identified and linked to varying brain regions and cognitive
functions. The HMM states with higher likelihood of occupancy show more activation in the
brain regions from the executive control network, default mode network, and the middle
temporal cortex. Multiple cognitive functions (e.g., semantic processing, memory retrieval,
executive control, and visual processing) are involved in the key states in neurocognition related
to concept generation. Highly possible transitions between the states in neurocognition are
identified and suggest possible transitions between different cognitive processes (e.g., from
visual processing to rule-based reasoning, from internal retrieving process to external attention).
The functions of the states in neurocognition offer meaningful explanations on the different
patterns between designers with high and low idea fluency. To summarize, this study shows the
potential of HMM in identifying spatial and temporal patterns in the fMRI data related to design
cognition. HMM offers a deeper understanding of the dynamics in neurocognitive processing
and brings new knowledge to the design cognition community. Researchers in design
neurocognition, not limited to those using fMRI but also EEG or fNIRS, can take advantage of
HMM or other relevant machine learning techniques to provide a more detailed description of

brain dynamics in design cognition.
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Appendix
Table A1 HCP Parcellations, physical locations and cognitive functions
Parcellation MNI coordinates of central points Cognitive functions based on meta-

Brain regions; Brodmann area analysis

1 (-2,-88,32) Memory encoding, experience, Word
L lateral occipital gyrus; BA 19 pairs;

(-2,-68,2) Lingual, visual;

L lateral occipital gyrus BA18

2 (-22,-100,-4) Reading, visual word, face, videos;
L lateral occipital gyrus BA18

3 (-16,-96,20) Visual, eye movement;
L lateral occipital gyrus BA18

4 (-42,-80,-6) Visual, object, face;
L lateral occipital gyrus; BA 19

5 (-40,46,-2) Rules, reasoning, item, retrieval,

L anterior prefrontal cortex, BA 10 semantic;

(-16,36,48)



10

11

12

13

14

15

16

L front eye field; BA 8

(-6,-64,52)
L/R superior parietal lobule, BA 7
(-40,-76,30)
L/R angular gyrus; BA 39
(52,-48,44)
R supramarginal gyrus, BA 40
(58,-46,-8)
R inferior temporal gyrus; BA 37
(40,40,16)
R anterior prefrontal cortex, BA 10
(-40,-80,24)
L/R lateral occipital gyrus; BA 19
(-16,-68,52)
L/R superior parietal lobule; BA 7
(-40,36,20)
L dorsolateral PFC; BA 46
(-60,-36,36)
L supramarginal gyrus, BA 40
(40,20,44)
R front eye field; BA 8
(50,-60,34)
R angular gyrus; BA 39
(-40,26,24)
L/R dorsolateral PFC; BA 9
(-56,-52,-10)
L/R inferior temporal gyrus; BA 37
(-28,-56,48)
L/R intraparietal sulcus; BA 7
(-12,52,36)
L/R dorsolateral PFC; BA 9
(-6,60,16)
L anterior PFC; BA 10
(-24,-60,56)
L/R intraparietal sulcus; BA 7
(-20,-82,40)
L/R intraparietal sulcus; BA 7
(-60,-28,32)
L/R supramarginal gyrus, BA 40
(-40,12,48)
L supplementary area; BA6
(-52,2,-20)
L temporopolar area; BA 38
(-10,-90,0)

Remembering, experience, thinking,
semantic, mentalizing, retrieval;
Calculation, planning, working memory,
memory load, execution;

Memory retrieval, default, episodic, task,
difficulty, retrieved;

Emotion regulation, monitoring,
competing;

Memory encoding, character (language),
memory;

Working memory, detecting, memory
load, memory task, painful;

Visual motion, episodic, memory tasks;

Spatial, eye, visual, task, attention;
ECN, working memory, demands, rules;
Verbs, sentences, language,
comprehension;

Cognitive, task;

Dorsal attention, attention;

ECN, memory, working memory,
retrieval, encoding;

Word, semantic, retrieval,

ECN, word, working memory, attention;
Social cognition, theory mind;
Self-referential, emotion, personality
traits;

Visual, eye;

Visual, reaching;

Motor, action observation, painful, verb;
Episodic, mind, memories, regulating,
retrieval, reasoning, judgments;
Comprehension, sentences, language.

Semantic, verbs, theory of mind;
Visual, imagery, object, motion;



17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

L/R primary visual cortex, BA 17
(-20,52,24)
L anterior PFC; BA 10
(-52,-52, 36)
L angular gyrus; BA 39
(-20,60,4)
L anterior PFC; BA 10
(-4,-68,36)
L dorsal posterior cingulate area; BA 31
(60,4,16)
R supplementary area; BA6
(-44,-66,28)
L angular gyrus; BA 39
(-40,48,0)
L/R anterior prefrontal cortex, BA 10
(-40,20,28)
L/R dorsolateral PFC; BA 9
(-42,-72,4)
L/R lateral occipital gyrus; BA 19
(-56,-2,28)
L/R supplementary area; BA6
(-22,-96,4)
R lateral occipital gyrus BA18
(-28,-92,0)
L lateral occipital gyrus BA18
(-16,52,32)
L dorsolateral PFC; BA 9
(-52,22,12)
L inferior frontal gyrus; BA 45
(-36,48,16)
L/R anterior prefrontal cortex, BA 10
(-52, 18, 16)
L inferior frontal gyrus, BA 44
(25,-83,27)
R lateral occipital gyrus; BA 19
(50, -48, 18)
R angular gyrus; BA 39
(-60,-32,24)
L/R supramarginal gyrus, BA 40
(-28,42,26)
L anterior prefrontal cortex; BA 10
(-48,-24,56)
L supplementary area; BA6
(52,-24,52)
R primary somatosensory cortex, BA 1

Emotion regulation, belief;
Memory retrieval, theory of mind;
Memories, recollection retrieval,

DMN, recognition memory, episodic,
memory retrieval,

Finger movement, execution, chosen,
motor; tapping;

Semantic, episodic memory, retrieval,
memories, mind;

Judgment, retrieval, memory retrieval,
rules, reasoning, DMN, memory;
Retrieval, semantic, language, word,
characters;

Motion, visual, visual motion;

Finger tapping, hand, movement;
Early visual, face, words;

Visual, action observation;

Theory of mind, episodic memory,
mental states;

Sentence, semantic, comprehension,
words, verb;

Working memory, recall, semantic
memory, retrieval;

Semantic, verb, comprehension;
Motion, visual, eye movement;
Theory mind, empathy, social cognition;
Foot, pain, body;
Nociceptive

Finger tapping, hand, movement;

Finger tapping, hand;



35 (-4,64,-12) Beliefs, metabolism, reward;
L ventromedial prefrontal cortex; BA 10
36 (-4,-26,64) Foot, movement, limb;
L/R primary motor cortex, BA 4
37 (8,-92,-8) Visual, force, real world;
L/R lateral occipital gyrus BA18
38 (-58,2,-4) Language, comprehension;
L/R superior temporal gyrus, BA 22
39 (-56, -48,-12) Word, semantic, verb, encoding;
L/R middle temporal gyrus (BA 21)
Rules, retrieval, reasoning;
L/R rostrolateral PFC (BA 10)
40 (-14,- 86,36) Sighted, visual;
R lateral occipital gyrus; BA 19
41 (-4,0,65) Motor, movement, tapping, imagery;
L supplementary area; BA6
42 (-8,-92,-8) Visual, eye movement;
L lateral occipital gyrus BA18
43 (44,-80,-4) Visual, face, object, viewing;
R lateral occipital gyrus; BA 19
44 (44.-80,0) Visual, object, motion;
L/R lateral occipital gyrus; BA 19
(-20,20,52) Familiarity, decision task;

L/R supplementary area; BA6

Note: DMN = default mode network, CEN = central executive network






