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Abstract. We study homeomorphisms of a Cantor set with k (k < +1) minimal invariant
closed (but not open) subsets; we also study crossed product C*-algebras associated to
these Cantor systems and certain of their orbit-cut sub-C*-algebras. In the case where
k � 2, the crossed product C*-algebra is stably finite, has stable rank 2, and has real rank
0 if in addition (X, � ) is aperiodic. The image of the index map is connected to certain
directed graphs arising from the Bratteli–Vershik–Kakutani model of the Cantor system.
Using this, it is shown that the ideal of the Bratteli diagram (of the Bratteli–Vershik–
Kakutani model) must have at least k vertices at each level, and the image of the index
map must consist of infinitesimals.
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1. Introduction
The paper is devoted to the study of interactions between topological dynamical systems on
a Cantor set and C*-algebras. There are several constructions of operator algebras arising
from dynamical systems in the frameworks of measurable or topological dynamics, and the
most important one is the concept of crossed product operator algebras which originated
in the work of von Neumann. It is fascinating to see how dynamical properties reveal
themselves in the corresponding operator algebras. On the other hand, ideas and methods
used in operator algebras can lead to new approaches and information for the study of
dynamical systems. We mention here that Bratteli diagrams (one of the central objects of
our paper) are proved to be an effective tool in dynamics.

A topological space is called Cantor if it is compact, metrizable, totally disconnected,
and has no isolated points. Any two Cantor sets are homeomorphic. A Cantor system
(X, � ) consists of a Cantor set X and a homeomorphism � : X ! X . A closed subset
Y ✓ X is said to be invariant if Y = � (Y ). It follows from Zorn’s lemma that any system
(X, � ) has minimal non-empty closed invariant subsets (called minimal components). If
X is the only non-empty closed invariant subset, the system (X, � ) is said to be minimal.
This means, in other words, that, for every x 2 X , the � -orbit of x is dense in X . In
this paper, we will focus on non-minimal homeomorphisms of a Cantor set. Our primary
interest is the case where a homeomorphism � has finitely many minimal components
Y1, Y2, . . . , Yk . These subsets are necessarily disjoint. There are several natural classes
of homeomorphisms which have this property, such as interval exchange transformations
(treated as Cantor dynamical systems) and aperiodic substitutions; see [4, 5, 9].

If some of the minimal component, say Yi , is open, then both Yi and X \ Yi are again
Cantor sets (they are compact, metrizable, totally disconnected, and have no isolated
points). Since Yi and X \ Yi are invariant under � , the whole system (X, � ) can be
decomposed into the Cantor systems (Yi , � ) and (X \ Yi , � ), where (Yi , � ) is minimal,
and (X \ Yi , � ) has k � 1 minimal components.

Thus, in this paper, we will assume that (X, � ) is indecomposable, that is, none of
the Yi are open. Our aim is to study C*-algebras associated to (X, � ). For this, we use
the existence of a Bratteli–Vershik–Kakutani model of (X, � ) constructed by a sequence
of Kakutani–Rokhlin partitions. Our main interest is in the properties of the C*-algebras
associated to a Cantor system (X, � ) with finitely many minimal sets. In this paper, we
apply the methods developed in K-theory and Bratteli diagrams. Note that the case of
minimal homeomorphisms has been extensively studied in earlier papers (see, in particular,
[10, 15, 18, 26–29] where various aspects of the theory of C*-algebras corresponding to
minimal homeomorphisms are discussed).

It is well known that if (X, � ) is minimal, then the crossed product C*-algebra
C(X) o Z is isomorphic to an inductive limit of circle algebras (AT algebra); see [28].
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This is still true if there is only one minimal component. However, once there are at least
two minimal components, the C*-algebra C(X) o Z is no longer an AT algebra. In fact,
in this case, the C*-algebra C(X) o Z is a stably finite C*-algebra with stable rank 2;
moreover, it has real rank 0 if (X, � ) is aperiodic. (See Corollary 7.11; see also [26].)

In the case of minimal dynamical systems, it is also well known that each minimal
Cantor system (X, � ) has a Bratteli–Vershik–Kakutani model; see [18]. Moreover, the
(unordered) Bratteli diagram appears in the Bratteli–Vershik–Kakutani model must be
simple, and any (non-elementary) simple Bratteli diagram can be ordered to have a
continuous Bratteli–Vershik map.

In the case of Cantor systems with k minimal components, it turns out that any
such system still has a Bratteli–Vershik–Kakutani model (see §6); and very naturally,
the (unordered) Bratteli diagram that appears in the Bratteli–Vershik–Kakutani model is
k-simple (Definition 5.1)—or, roughly speaking, it has k sub-diagrams which are simple,
and each of them corresponds to one of the minimal components.

However, unlike the simple case, to assign an order to a given (unordered) k-simple
Bratteli diagram with k � 2 so that the Bratteli–Vershik map is continuous is in some
sense restrictive (see Definition 5.3), and is even impossible for some (k-simple) Bratteli
diagrams. Therefore, not all k-simple Bratteli diagrams can arise from a Cantor system.
For more details on orders on Bratteli diagrams, see [6, 7, 15, 18, 21, 23].

It turns out that these constrains on the Bratteli diagrams can be connected to the crossed
product algebra C(X) o Z and the associated C*-algebra extension

0 // C0

⇣
X

/ [

i

Yi

⌘
o� Z // C(X) o� Z //

M

i

C(Yi ) o� Z // 0.

The index map of the extension above,

K1

⇣M

i

C(Yi ) o� Z
⌘

! K0

✓
C0

✓
X

/ k[

i=1

Yk

◆
o Z

◆
,

turns out to have an image isomorphic to Zk�1 (in particular, the index map is non-zero if
k � 2).

To connect the index map to Bratteli diagrams, we introduce a sequence of finite
directed graphs (transition graphs; see Definition 7.1) for the ordered Bratteli diagram
which represents the given Cantor system (X, � ). Then the index map can be recovered
from these transition graphs (Theorem 7.5). Using this connection as a bridge, we show
that elements in the image of the index map must be infinitesimals (Corollary 7.9). The
transition graphs are also used in §8 to characterize the (unordered) Bratteli diagrams
which appear in the Bratteli–Vershik–Kakutani construction (Theorems 8.1 and 8.2).
Relative results on graphs associated to Bratteli diagrams also can be found in [6, 7].

The paper is organized as follows. In §2 we include several definitions and facts from
K-theory and Cantor dynamics that are used in the main part of the paper. In §3 we discuss
basic properties of the crossed product C*-algebras, generated by homeomorphisms �
with finitely many minimal components. Using the Pimsner–Voiculescu six-term exact
sequence, we show (in §3.3) that the index map is non-zero if the Cantor system (X, � )
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contains more than one minimal component, and hence in this case the crossed product
C*-algebra cannot be AT, in contrast to the case of minimal Cantor systems. The K-theory
of the Putnam’s orbit-cutting algebra AY , where Y ✓ X is a closed set with non-empty
intersection with each Yi , i = 1, . . . , k, is considered in §4 (for instance, Y can be

S
i Yi ).

A dynamical system description of K0(AY ) is given in Theorem 4.4.
In §5 we introduce k-simple ordered Bratteli diagrams. These are Bratteli diagrams

with k simple quotients, but with more compatibility conditions on the order structure
(see Definition 5.3). With these conditions, the Bratteli–Vershik map is then continuous,
and the induced Cantor system is indecomposable and has k minimal components. Then,
in §6, we also show that these k-simple ordered Bratteli diagrams (with the Vershik maps)
are exactly the Bratteli–Vershik–Kakutani models for arbitrary indecomposable Cantor
systems with k minimal components.

The compatibility conditions on the k-simple ordered Bratteli diagram actually are very
rigid on the underlining (unordered) Bratteli diagram, and they have deep connections to
the index map of the C*-algebra extension associated with the Cantor system. In §7 we
build this bridge by means of transition graphs (Definition 7.1). It is a sequence of finite
directed graphs produced from the given k-simple ordered Bratteli diagram, and it actually
provides a combinatorial description of the index map (Theorem 7.5). As consequences,
when k � 2, the K0-group of the canonical approximately finite (AF) ideal of C(X) o Z
must contain infinitesimal elements, it has rational rank at least k, and the C*-algebra
C(X) o Z is stably finite. Together with [26, Corollary 2.6], this provides natural examples
of stably finite C*-algebra with stable rank 2 and real rank 0.

We use transition graphs again in §8 to describe which unordered Bratteli diagram can
carry a Cantor system with k minimal components. With the help of the Euler walk, this
question can be answered in a special case (Theorem 8.2).

In §9 we consider Cantor systems with only one minimal component. In this case, the
crossed product C*-algebra is an AT algebra, and hence the K0-group is a (not necessarily
simple) dimension group. We study the connection between its order structure and the
boundedness of the invariant measures concentrated on the complement of the minimal
components.

In §10 we focus on topological properties of Cantor dynamical systems with
finitely many minimal components. We discuss the notions of chain-transitive and
moving homeomorphisms (the latter was introduced in [1]). We give a necessary and
sufficient condition for a non-minimal homeomorphism to be chain transitive; see
Theorem 10.15. In particular, we show that any k-minimal homeomorphism is chain
transitive (Corollary 10.16).

2. Preliminaries and notation
2.1. Cantor systems. By a Cantor dynamical system (X, � ), we mean a Cantor set X
together with a homeomorphism � : X ! X . A closed set Y ✓ X is said to be invariant
if � (Y ) = Y , and a closed invariant set is said to be minimal if it is non-empty and does
not contain any closed invariant subsets other than itself and ;. By Zorn’s lemma and
the compactness of X , minimal invariant subsets always exist; let us call them minimal
components. In this paper we only consider Cantor systems with finitely many minimal
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components, unless other properties of � are explicitly specified. A Cantor system is said
to be aperiodic if X does not contain any periodic points of � .

2.2. Ordered Bratteli diagrams. Let us recall some definitions and notation on Bratteli
diagrams which are crucial in Cantor dynamics for constructing models for given
transformations. For more details, we refer to [3, 11, 12] where various combinatorial
and dynamical properties of simple and non-simple Bratteli diagrams are discussed.

Definition 2.1. A Bratteli diagram is an infinite graph B = (V, E) such that the vertex set
V =

S
n�0 V n and the edge set E =

S
n�0 En are partitioned into disjoint subsets V n and

En where:
(i) V 0

= {v0} is a single point;
(ii) V n and En are finite sets, for all n � 0;
(iii) there exist r : E ! V (range map r ) and s : E ! V (source map s), both from

E to V , such that r(En) = V n+1, s(En) = V n (in particular, s�1(v) 6= ; and
r�1(v0) 6= ; for all v 2 V and v0

2 V \ V0).

The structure of every Bratteli diagram B is completely determined by the sequence of
incidence matrices (Fn). By definition, the incidence matrix Fn has entries

f (n)
v,w = |{e 2 En : s(e) = w, r(e) = v}|, v 2 Vn+1, w 2 Vn .

A Bratteli diagram B is called stationary if Fn = F1 for all n, and B is of finite rank if
there exist d 2 N such that |Vn|  d for all n.

In what follows, we will constantly use the telescoping procedure. A telescoped Bratteli
diagram preserves all properties of the initial diagram so that it does not change its
dynamical properties.

Definition 2.2. Let B be a Bratteli diagram, and n0 = 0 < n1 < n2 < · · · be a strictly
increasing sequence of integers. The telescoping of B to (nk) is the Bratteli diagram B 0,
with V ni being the i-level vertex set (V 0)i and the edges between (V 0)i and (V 0)i+1 being
finite paths of the Bratteli diagram B between ni -level vertices and ni+1-level vertices.

For a Bratteli diagram B, the tail (cofinal) equivalence relation E on the path space X B
is defined as follows: xE y if there exists m 2 N such that xn = yn for all n � m, where
x = (xn), y = (yn).

A Bratteli diagram B is called aperiodic if every E-orbit is countably infinite.

LEMMA 2.3. Every aperiodic Bratteli diagram B can be telescoped to a diagram B 0 with
the property |r�1(v)| � 2, v 2 V \ V 0 and |s�1(v)| � 2, v 2 V \ V 0.

Remark 2.4. Given an aperiodic dynamical system (X, � ), a Bratteli diagram is
constructed by a sequence of refining Kakutani–Rokhlin partitions generated by (X, � )

(for details, see [18, 23]). The nth level of the diagram, (V n, En), corresponds to the
nth Kakutani–Rokhlin partition, and the cardinality of the set E(v0, v) of all finite paths
between the top v0 and a vertex v 2 V n is the height of the � -tower labeled by the symbol
v from that partition. We will give more details of this construction in §6.
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Definition 2.5. A Bratteli diagram B = (V ⇤, E) is called ordered if there is a linear order
‘>’ on every set r�1(v), v 2

S
n�1 Vn . We also use > to denote the corresponding partial

order on E and write (B, >) when we consider B with the order >.

Every order > defines the lexicographic ordering on the set E(k, l) of finite paths
between vertices of levels V k and V l : we say that

(ek+1, . . . , el) > ( fk+1, . . . , fl)

if and only if there is i with k + 1  i  l such that e j = f j for i < j  l, and ei > fi . It
follows that, given the order >, any two paths from E(v0, v) are comparable with respect
to the lexicographic ordering generated by >. If two infinite paths are tail equivalent, and
agree from the vertex v onwards, then we can compare them by comparing their initial
segments in E(v0, v). Thus > defines a partial order on X B , where two infinite paths are
comparable if and only if they are tail equivalent.

With every Bratteli diagram B, one can associate the dimension group KB . This is
defined as the direct limit of groups Z|Vn | with a sequence of positive homomorphisms
generated by incidence matrices Fn :

KB = lim
n!1

(Z|Vn |
Fn

�! Z|Vn+1|).

Then KB is an abelian partially ordered group with the distinguished order unit
corresponding to V 0. These groups play a prominent role in the classification of AF
algebras and Bratteli diagrams; see, for example, [8, 14, 15].

In particular, it is well known that, for Bratteli diagrams B1 and B2, if KB1
⇠
= KB2

(as order-unit groups), then there is a Bratteli diagram B such that both B1 and B2 can be
obtained from B by the telescoping operations.

2.3. Crossed product C*-algebras and K-theory. Consider a compact Hausdorff space
X and consider a homeomorphism � : X ! X . Let C(X) denote the C*-algebra of
complex-valued continuous functions on X . Then the homeomorphism � induces an
automorphism of C(X) by f 7! f � ��1

= � ( f ), which is also denoted by � . The crossed
product C*-algebra C(X) o� Z is defined to be the universal C*-algebra generated by
C(X) and a canonical unitary u satisfying

u⇤ f u = � ( f ), f 2 C(X).

In other words, the crossed product C*-algebra is defined by

C(X) o� Z := C*{ f, u; f 2 C(X), uu⇤

= u⇤u = 1, u⇤ f u = f � ��1
}.

This concept is defined and studied in many books on operator algebras; see, for instance,
[10, Ch. VIII].

Applying the Pimsner–Voiculescu six-term exact sequence to C(X) o� Z yields

K0(C(X))
1�[� ]0

// K0(C(X)) // K0(C(X) o� Z)

✏✏

K1(C(X) o� Z)

OO

K1(C(X))oo K1(C(X)),
1�[� ]1
oo

(2.1)
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where K0(A) and K1(A) are respectively the K0-group and K1-group of a C*-algebra A.
In (2.1), [� ]0 and [� ]1 denote the maps between the K0-groups and K1-groups induced
by � , respectively.

In the case where X is a Cantor set, we have K1(C(X)) = {0}; hence, it follows from
(2.1) that

K0(C(X) o� Z) = K0(C(X))/(1 � [� ]0)(K0(C(X))), (2.2)

and the group
K1(C(X) o� Z) = ker(1 � [� ]0) (2.3)

consists of � -invariant functions.
A closed two-sided ideal of a C*-algebra A is a sub-C*-algebra I ✓ A such that

I A ✓ I and AI ✓ I . If Y ✓ X is a closed subset, then C0(X \ Y ) is an ideal of C(X).
If, moreover, Y is invariant (i.e., � (Y ) = Y ), then C0(X \ Y ) is a � -invariant ideal of
C(X), and therefore C0(X \ Y ) o� Z is an ideal of C(X) o� Z with quotient canonically
isomorphic to C(Y ) o� Z. That is, we have a short exact sequence of C*-algebras:

0 // C0(X \ Y ) o� Z // C(X) o� Z // C(Y ) o� Z // 0.

In general, for any C*-algebra extension

0 // I // A // A/I // 0,

we have the six-term exact sequence

K0(I ) // K0(A) // K0(A/I )

✏✏

K1(A/I )

OO

K1(A)oo K1(I )oo

The map K1(A/I ) ! K0(I ) is called the index map, and the map K0(A/I ) ! K1(I ) is
called the exponential map.

For more information about the K-theory of a C*-algebra, see, for instance, [31].

3. Cantor system with finitely many minimal subsets
3.1. Crossed product C*-algebra associated to � . Recall that, for a topological
dynamical system (X, � ) (X is not necessarily a Cantor set), a closed subset Y is minimal
if Y is a closed invariant non-empty subset and Y is minimal among these subsets. Minimal
subsets always exist, and each pair of them is disjoint.

Let (X, � ) be a topological dynamical system with only k minimal subsets Y1, . . . , Yk .
We then have the short exact sequence

0 // C0

⇣
X

/ [

i

Yi

⌘
o� Z // C(X) o� Z //

M

i

C(Yi ) o� Z // 0. (3.1)

LEMMA 3.1. Let Y1, . . . , Yk be all the minimal subsets of (X, � ). Suppose that U ✓ X is
an open set such that U \ Yi 6= ;, i = 1, 2, . . . , k. Then

S
1

j=�1
� j (U ) = X.



8 S. Bezuglyi et al

Proof. We first note that if an open set V intersects a minimal set Y , then the orbit of V
contains Y . Consider the open invariant subset

Z :=

1[

j=�1

� j (U ).

If Z were a proper subset of X , then X \ Z would be a non-empty invariant closed subset
of X , and hence it must contain a minimal subset Y . But this minimal subset is disjoint
with every set Y1, . . . , Yk . This contradicts the assumption that Y1, Y2, . . . , Yk are all the
minimal components. Therefore, Z = X , as desired. ⇤

Remark 3.2. It follows from Lemma 3.1 that, for any open subset U ◆

S
i Yi , we have

that
S

1

j=�1
� j (U ) = X .

LEMMA 3.3. Under the assumption that all proper minimal components for (X, � ) are
not clopen sets, every minimal component Y has empty interior.

Proof. Suppose Y has a subset U which is open in X . Since Y is minimal and compact,
there exists N such that Y =

SN
j=�N �

j (U ). Hence Y is open in X , which contradicts the
assumption. ⇤

COROLLARY 3.4. Let Y1, . . . , Yk be minimal subsets for (X, � ). If none of the Yi is
clopen, then the ideal C0(X \

S
i Yi ) is essential in C(X).

PROPOSITION 3.5. Let ↵ be an action of Z on a C*-algebra A, and let I be an invariant
ideal. If I is essential in A, then I o↵ Z is essential in A o↵ Z.

Proof. Consider the conditional expectation

E : A o↵ Z 3 a 7!

Z

T
↵⇤

t (a) dt 2 A,

where ↵⇤

t is the dual action of ↵. Note that E is faithful.
Let a be a positive element in A o↵ Z with a(I o↵ Z) = {0}. Then, for any b 2 I , we

have that ab = 0. Since b 2 I ✓ A, we also have that E(ab) = E(a)b = 0. Since E(a) 2

A and b is arbitrary, we have that E(a) = 0. Since E is faithful, we have that a = 0, as
desired. ⇤

COROLLARY 3.6. For (X, � ) as above, if none of Y1, . . . , Yk is clopen, then the ideal
C0(X \

S
i Yi ) o� Z is essential in C(X) o� Z.

3.2. AF sub-C*-algebras. We return to the case where the compact topological space
X is a Cantor set. Then each minimal subset Yi , i = 1, . . . , k, is a Cantor set or consists of
a periodic orbit. Indeed, to see this, suppose that a minimal set, say Y1, contains an isolated
point x . Then Orbit(x) is an open set (relative to Y1), and therefore Orbit(x)\Orbit(x) is
an invariant closed subset of Y1. Since Y1 is minimal, we have that Y1 = Orbit(x), and then
a standard compactness argument shows that Y1 consists of a periodic orbit.
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Let Y ✓ X be a closed subset with Y \ Yi 6= ;, i = 1, . . . , k. By Lemma 3.1, we have
that

S
1

j=�1
� j (U ) = X for any clopen set U ◆ Y . Then, by [27, Lemma 2.3], the sub-

C*-algebra
AY := C*{g, f u; g, f 2 C(X), f |Y = 0} ✓ C(X) o� Z

is AF-dimensional.
In particular, fix yi 2 Yi , i = 1, 2, . . . , k, and define

Ay1,...,yk := C*{g, f u; g, f 2 C(X), f (yi ) = 0, i = 1, . . . , k} ✓ C(X) o� Z
The C*-algebra Ay1,...,yk is AF, and hence the ideal C0(X \

S
i Yi ) o� Z is also AF; see

[13, Theorem 3.1].

3.3. Index maps. The six-term exact sequence associated to (3.1) is

K0

⇣
C0

⇣
X

/[

i

Yi

⌘
o� Z

⌘
// K0(C(X) o� Z) //

M

i

K0(C(Yi ) o� Z)

✏✏M

i

K1(C(Yi ) o� Z)

Ind
OO

K1(C(X) o� Z)oo K1

⇣
C0

⇣
X

/[

i

Yi

⌘
o� Z

⌘
⇠
= {0}.oo

(3.2)
Since the restriction of � to each Yi is minimal, it follows from (2.3) that

K1(C(Yi ) o� Z) = Z,

which is generated by the K1-class of the canonical unitary of C(Yi ) o� Z. Also note that
(X, � ) is indecomposable, that is, the only clopen � -invariant subsets are X and ;. Then
the only invariant Z-valued continuous functions on X are constant functions, and then, by
(2.3) again, we obtain that

K1(C(X) o� Z) = Z,

which is generated by the K1-class of the canonical unitary of C(X) o� Z.

THEOREM 3.7. If a Cantor system (X, � ) is indecomposable and has k minimal
components, then the image of the index map Ind is isomorphic to Zk�1; in particular,
the index map is non-zero if k � 2.

Proof. Note that the canonical unitary of C(X) o� Z is sent to the canonical
unitaries of C(Yi ) o� Z, i = 1, 2, . . . , k. Therefore, the index map K1(C(X) o� Z) !Lk

i=1 K1(C(Yi ) o� Z) in (3.2) is given by

Z 3 1 7! (1, . . . , 1) 2 Zk,

and hence

Image(Ind) ⇠
=

✓ kM

i=1

K1(C(Yi ) o� Z)

◆�
K1(C(X) o� Z) ⇠

= Zk/Z(1, 1, . . . , 1), (3.3)

which is isomorphic to Zk�1 and is non-zero if k � 2. ⇤

An abelian group G is said to have Q-rank r if the vector space G ⌦ Q has dimension
r over Q. Then another consequence of equation (3.3) is the following theorem.
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THEOREM 3.8. The Q-rank of the group K0(C0(X \

S
i Yi ) o� Z) is at least k � 1.

Remark 3.9. The lower bound of the Q-rank of K0(C0(X \

S
i Yi ) o� Z) will be improved

to k in Corollary 7.10.

For a clopen set U ⇢ X , denote by �U the characteristic function of the set U ; note that
�U 2 C(X). Also note that any continuous integer-valued function on X which vanishes
on

Sk
i=1 Yi induces a K0-class of the C*-algebra C0(X \

Sk
i=1 Yi ) and hence induces a

K0-class of the C*-algebra C0(X \

Sk
i=1 Yi ) o� Z by the embedding of C0(X \

Sk
i=1 Yi ).

THEOREM 3.10. Consider the minimal components Yi , i = 1, . . . , k, and choose pairwise
disjoint clopen sets Ui ◆ Yi . Define

di := [�Ui � �Ui � ��1
]0 2 K0

✓
C0

✓
X

/ [

i

Yi

◆
o� Z

◆
.

(Note that each integer-valued continuous function �Ui � �Ui � ��1 vanishes onSk
i=1 Yi .) Then di is independent of the choice of Ui . Moreover, d1 = 0 if k = 1. If k � 2,

then
kX

i=1

di = 0,

and the sum of any proper subset of {d1, d2, . . . , dk} is non-zero.

Proof. Consider
vi := �Ui u +

X

j 6=i

�U j 2 C(X) o� Z,

where u is the canonical unitary of C(X) o� Z. Then it is a lifting of the canonical unitary
of C(Yi ) o� Z. Since viv

⇤

i =

Pk
j=1 �U j (so vi is a partial isometry) and

v⇤

i vi = u⇤�Ui u +

X

j 6=i

�U j = �u � ��1
+

X

j 6=i

�U j ,

the index of the canonical unitary of C(Yi ) o� Z is given by

[1 � v⇤

i vi ]0 � [1 � viv
⇤

i ]0 =


1 �

✓
�Ui � ��1

+

X

j 6=i

�U j

◆�

0
�


1 �

✓ kX

j=1

�U j

◆�

0

= [�Ui � �Ui � ��1
]0

= di .

Therefore, di is the image of the K1-class of the canonical unitary of C(Yi ) o� Z under
the index map. The theorem then follows from the six-term sequence (3.2) and (3.3). ⇤

COROLLARY 3.11. The C*-algebra C(X) o� Z is an AT-algebra (i.e., it is the inductive
limit of F ⌦ C(T), where F is a finite-dimensional C*-algebra and T is the unit circle) if
and only if k = 1.

Proof. By [22, Theorem 5], an extension of AT algebras is AT if and only if the index
map is zero, and by Theorem 3.7, this holds if and only if k = 1. ⇤
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Remark 3.12. For the case k � 2, we will show later (see Corollary 7.11) that the
C*-algebra C(X) o� Z is stably finite, has stable rank 2, and has real rank 0 if the Cantor
system is aperiodic.

4. The K-theory of AY
In this section we study a general Cantor system (X, � ). Let Y ✓ X be a closed subset of
X which satisfies the property that, for any open subset U containing Y ,

[

n2Z
� n(U ) = X.

Such sets are called basic in [23]. In particular, in the case where X has k minimal subsets
Y1, . . . , Yk , the set Y can be any closed subset with Y \ Yi 6= ;, i = 1, . . . , k. By [27,
Theorem 2.3], AY is an AF-algebra. We will calculate the K0-group of AY in this section,
and show that it can be identified with a certain ordered group related to the dynamical
system (X, � ).

First, let us recall the following result.

PROPOSITION 4.1. ([26, Proposition 3.3], [28, Theorem 4.1]) For Y chosen as above,
there is an exact sequence

0 // C� (X, Z)
↵
// C(Y, Z)

�
// K0(AY )

◆
⇤

// K0(C(X) o� Z) // 0,

(4.1)
where C� (X, Z) is the group of � -invariant integer-valued continuous functions on X, ↵
is the restriction map, and

�( f ) = [g � g � ��1
]

for some g 2 C(X, Z) with g|Y = f . In particular, if (X, � ) is indecomposable, that is,
any � -invariant clopen subset is trivial, then C� (X, Z) ⇠

= Z, and (4.1) is transformed to

0 // Z ↵
// C(Y, Z)

�
// K0(AY )

◆
⇤

// K0(C(X) o� Z) // 0. (4.2)

Let us define an ordered group from the dynamical system setting.

Definition 4.2. Let (X, � ) be a Cantor system, and let Y ✓ X be a closed subset. Define

K0
Y (X, � ) = C(X, Z)/{ f � f � ��1

; f 2 C(X, Z), f |Y = 0},

and set
K0(X, � )+ = {

¯f ; f � 0, f 2 C(X, Z)} ✓ K0
Y (X, � ).

Note that C(X, Z) ⇠
= K0(C(X)) as ordered groups (the positive cone of C(X, Z)

consisting of positive functions). Then the embedding C(X) ✓ AY induces a map ✓ :

C(X, Z) ! K0(AY ). Moreover, a direct calculation shows that if f 2 C(X, Z) with
f |Y = 0, then

✓( f � f � ��1) = 0.

Therefore, ✓ induces a map from K0
Y (X, � ) to K0(AY ) which sends K0(X, � )+ to the

positive cone of K0(AY ).
By (2.2), we have

0 //

{ f � f � ��1
; f 2 C(X, Z)} // C(X, Z)

◆
⇤

// K0(C(X) o� Z) // 0,
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and therefore, there is an exact sequence

0 // H // K0
Y (X, � )

◆
⇤

// K0(C(X) o� Z) // 0, (4.3)

where

H :=

{ f � f � ��1
; f 2 C(X, Z)}

{ f � f � ��1
; f 2 C(X, Z), f |Y = 0}

.

For any f 2 C(X, Z), define ⌘( f � f � ��1) to be the restriction of f to Y . This
induces an isomorphism from H to C(Y, Z)/↵(C� (X, Z)), which is also denoted by ⌘.
Indeed, if

f � f � ��1
= g � g � ��1,

then
f � g = ( f � g)��1.

That is, f � g 2 C� (X, Z), and hence ✓ is well defined. It is also clear that ⌘ is a bijection,
and thus an isomorphism.

LEMMA 4.3. With notation as above, the following diagram commutes:

0 // H //

⌘

✏✏

K0
Y (X, � )

◆
⇤

//

✓

✏✏

K0(C(X) o� Z) // 0

0 // C(Y, Z)/↵(C� (X, Z))
�
// K0(AY )

◆
⇤

// K0(C(X) o� Z) // 0

In particular, the map ✓ is an isomorphism.

Proof. To prove this, we only have to verify the commutativity for the first square. Pick
any f � f � ��1

2 H . Then we have

�(⌘( f � f � ��1)) = �( f |Y ) = [ f � f � ��1
]

and
✓( f � f � ��1) = [ f � f � ��1

],

as desired. Since the map ⌘ is an isomorphism, by the five-lemma, the map ✓ is also an
isomorphism. ⇤

Moreover, the map ✓ is in fact an order isomorphism.

THEOREM 4.4. The map ✓ induces an order isomorphism

(K0
Y (X, � ), K0

Y (X, � )+, ˜1) ⇠
= (K0(AY ), K+

0 (AY ), [1AY ]).

Proof. We need to show that ✓(K0
Y (X, � )+) = K+

0 (AY ). It is clear that the image of
K0

Y (X, � )+ is in K+

0 (AY ). On the other hand, using the AF-decomposition of AY , it is
clear that any positive element in K0(AY ) comes from a positive integer function on X . ⇤

Assume that (X, � ) is indecomposable. Let W1 ✓ W2 be closed subsets of X . Then we
have

0 // K // K0
W2

(X, � ) // K0
W1

(X, � ) // 0, (4.4)
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where

K =

{ f � f � ��1
; f 2 C(X, Z), f |W1 = 0}

{ f � f � ��1
; f 2 C(X, Z), f |W2 = 0}

.

For any f 2 C(X, Z), define

⌘( f � f � ��1) = f |W2 .

Note that this map is well defined. We also define

C(W2, W1, Z) := { f 2 C(W2, Z), f |W1 = 0}.

Then we can prove the following statement.

LEMMA 4.5. If (X, � ) is indecomposable and W1 6= ;, the map ⌘ induces an isomorphism

⌘ : K ! C(W2, W1, Z).

Proof. Let us first check that the map ⌘ is well defined. Indeed, if

( f � f � ��1) � (g � g � ��1) = h � h � ��1

for some f, g, h 2 C(X, Z) with f |W1 = g|W1 = 0 and h|W2 = 0, then

( f � g � h) = ( f � g � h) � ��1.

Since (X, � ) is indecomposable, there is no invariant clopen subset of X , and hence
f � g � h is a constant function. Since W1 6= ; and the restrictions of f, g, h to W1 are
zero, we have that

f = g + h.

The condition h|W2 = 0 implies that

f |W2 = g|W2;

that is, the map ⌘ is well defined.
It is clear that ⌘ is surjective. If ⌘( f � f � ��1) = 0, then f |W2 = 0; that is, the map ⌘

is also injective, and hence it is an isomorphism. ⇤

Thus, the exact sequence (4.4) can be written as

0 // C(W2, W1, Z)
⌘�1
// K0

W2
(X, � ) // K0

W1
(X, � ) // 0, (4.5)

and. applying Theorem 4.4, we obtain the following statement.

THEOREM 4.6. For any non-empty closed subsets W1 ✓ W2 which are basic, we have

0 // C(W2, W1, Z)
�
// K0(AW2)

◆
⇤

// K0(AW1)
// 0, (4.6)

where �( f ) = g � g � ��1 for some g 2 C(X, Z) with g|W2 = f .

5. k-simple Bratteli diagrams and Bratteli–Vershik models
In this section we shall introduce certain ordered Bratteli diagrams which will be used to
model Cantor systems with finitely many minimal subsets.
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5.1. k-simple Bratteli diagrams. Let us now introduce a special class of Bratteli
diagrams. This class of Bratteli diagrams will serve as models for Cantor systems with
finitely many minimal components.

Definition 5.1. Let k 2 N. A Bratteli diagram B = (V, E) is said to be k-simple if, for each
n � 1, there are pairwise disjoint subsets V n

1 , . . . , V n
k of V n such that:

(1) for any 1  i  k and any v 2 V n+1
i , we have that s(r�1(v)) ✓ V n

i ;
(2) for any 1  i  k and any level n, there is m > n such that each vertex of V m

i is
connected to all vertices of V n

i .
Moreover, denote V n

o = V n
\ (V n

1 [ · · · [ V n
k ) for n � 1.

(1) The diagram B is said to be strongly k-simple if, for any level n, there is m > n such
that if a vertex v 2 V m

o is connected to some vertex of V n
o , then v is connected to all

vertices of V n
o .

(2) The diagram B is said to be non-elementary if, for any V n
o , there is m > n such that

the multiplicity of the edges between V n
o and V m

o is either 0 or at least 2.
A dimension group G is said to be (strongly) k-simple if G ⇠

= KB for some (strongly)
k-simple Bratteli diagram.

Remark 5.2.
(1) To clarify the meaning of Definition 5.1, we make the following observations.

(a) The diagram B consists of k many simple sub-diagrams Bi , i = 1, . . . , k,

constructed on the sequence of vertices (V n
i ); there are no edges connecting

different sub-diagrams. The part of the diagram whose infinite paths eventually
go through vertices of V n

o for sufficiently large n constitutes an open invariant
set which does not contain minimal subsets.

(b) Without loss of generality, we can assume that V n
o 6= ;; otherwise the

corresponding Bratteli–Vershik system would be decomposable.
(c) The part of the diagram B defined by (V n

o ) induces an ideal of the
corresponding AF-algebra. Strongly k-simple diagrams correspond to the case
where the ideal is simple.

(d) A k-simple Bratteli diagram B is non-elementary if and only if the infinite-path
space does not have isolated points (so it is a Cantor set). To guarantee that a
Bratteli diagram is non-elementary it suffices to require that for every infinite
path x = (xi ) there are infinitely many edges xm such that |s�1(r(xm))| > 1.

(2) Let B be a k-simple Bratteli diagram. Then the sub-diagram restricted to the vertices
in V n

o , denoted by IB , induces an ordered ideal KIB ✓ KB such that KB/KIB
⇠
=Lk

i=1 Gi , where Gi are simple dimension groups induced by the restriction of B to
the vertices in V n

i . Moreover, the diagram B is strongly k-simple if and only if KIB

is a simple dimension group; it is non-elementary if and only if KIB has no quotient
which is isomorphic to Z, and if and only if the space of infinite paths through the
sets V n

o is a locally compact Cantor set.

An ordered Bratteli diagram B = (V, E, >) is a Bratteli diagram with (partial) order
> on E so that two edges e and e0 are comparable if and only if r(e) = r(e0); see
Definition 2.5. Denote by Emax and Emin the sets of maximal edges and minimal edges,
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respectively. This partial order induces a lexicographical partial order on paths (infinite
or finite). Denote by Xmax and Xmin the set of maximal infinite paths and the set of
minimal infinite paths, respectively. Also note that if B 0 is the Bratteli diagram obtained by
telescoping on B, the lexicographic order on B 0 makes it into an ordered Bratteli diagram
canonically.

Definition 5.3. An ordered Bratteli diagram B = (V, E, >) is called k-simple (with a
slight abuse of notation) if it satisfies the following conditions.
(1) The unordered Bratteli diagram B = (V, E) is k-simple in the sense of

Definition 5.1.
(2) There are infinite paths z1,max, . . . , zk,max and z1,min, . . . , zk,min such that, for any

level n and 1  i  k,
{zn

i,min, zn
i,max} ⇢ V n

i

and

Xmax = {z1,max, . . . , zk,max},

Xmin = {z1,min, . . . , zk,min}.

By this condition and Lemma 5.5 below, there is L such that, for all n � L and any
v 2 V n

o , the maximal edge (or minimal edge) starting with v backwards to V 1 will
end up in V 1

i for some 1  i  k. Denote m
+
(v) = i (or m

�
(v) = i).

(3) For any v 2 V n
o , we have

(a) if e is an edge with s(e) = v, then

m
�
(s(e + 1)) = m

+
(v)

(if e 2 Emax, the vertex s(e + 1) is understood as s(e0

+ 1) with e0 a non-
maximal edge starting with e and ending at some level m > n—such an edge
exists and m

�
(s(e + 1)) is well defined, by Condition (2)); and

(b) if e is an edge with e /2 Emax, r(e) = v and s(e) 2 V n�1
i with n � 3, then

m
�
(s(e + 1)) = i.

If, in addition, the unordered Bratteli diagram (V, E) is strongly k-simple, then B is said
to be a strongly k-simple ordered Bratteli diagram.

Remark 5.4. Note that if k = 1, then condition (3) is redundant. Moreover, condition (3)
is preserved under telescoping.

LEMMA 5.5. Any ordered Bratteli diagram satisfying condition (2) of Definition 5.3 can
be telescoped to an ordered Bratteli diagram satisfying the following condition: if e and
e0 are in Emax (or Emin) with r(e) = s(e0), then e is in Xmax (or Xmin).

Proof. The proof is similar to that of [18, Proposition 2.8]. Let T denote the graph obtained
from Emax by deleting z1,max, . . . , zk,max. By Condition (2), each connected component
of T is finite.

Let n0 = 0. Having defined nk , choose nk+1 so that no vertex in Vnk is connected to all
vertices of Vnk+1 . Contract the diagram to the subsequence {nk; k � 0}. Then this diagram
satisfies the lemma. ⇤
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Recall that two ordered Bratteli diagrams B1 and B2 are equivalent if there is an ordered
Bratteli diagram B such that B1 and B2 can be obtained by telescoping on B.

LEMMA 5.6. Let B = (V, E, >) be a k-simple ordered Bratteli diagram. Then it is
equivalent to a k-simple Bratteli diagram B 0

= (V 0, E 0, >0) satisfying the following
conditions:
(1) if e 2 E 0

max with r(e) 2 V 0

o, then s(e) /2 V 0

o (so the edge e in condition (3a) cannot be
a maximal edge in B 0);

(2) for any 1  i  k and any n � 1, each vertex v 2 (V 0)n+1
i is connected to all vertices

of w 2 (V 0)n
i ; and

(3) if B is strongly k-simple, then, for any n � 1, each vertex of v 2 (V 0)n+1
o is connected

to all vertices of (V 0)n
o (and hence to all vertices of (V 0)n).

Moreover, if B is an unordered k-simple Bratteli diagram, then it is equivalent to an
unordered k-simple Bratteli diagram B 0 which satisfies conditions (2) and (3).

Proof. Condition (1) follows from Lemma 5.5. Since B is k-simple, by (2) of
Definition 5.1, condition (2) can also be obtained by a telescoping of B.

If B is strongly k-simple. Then B can be telescoped further so that if a vertex v 2 V n+1
o

is connected to a vertex of V n
o , then it is connected to all vertices of V n

o . For condition (3)
we need to find an equivalent Bratteli diagram B 0 so that each vertex v 2 (V 0)n+1

o is
connected to all vertices of (V 0)n

o .
For each n � 1, write

V n+1
o = {(v0)n+1

1 , . . . , (v0)n+1
rn+1

, vn+1
1 , . . . , vn+1

tn+1
}

where the vertices v0

i are not connected to V n
o . Denote by wn

1 , . . . , wn
l the vertices from V n

which are not in V n
o . Interpolate levels n and n + 1 of B as follows. Consider the vertices

˜V n
: wn

1 , . . . , wn
l , vn+1

1 , . . . , vn+1
tn+1

.

The map from V n
!

˜V n is defined as the identity if restricted to wn
1 , . . . , wn

l (in V n),
and the original map (defined by edges of B) if restricted to vn+1

1 , . . . , vn+1
tn+1 . Define the

map from ˜Vn ! V n+1 as the original map if restricted to (v0)n+1
1 , . . . , (v0)n+1

rn+1
, and the

identity if restricted to vn+1
1 , . . . , vn+1

tn+1 (in Vn+1). This can be illustrated by the following
diagrams. The original maps

are interpolated into
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Put an order on this enlarged Bratteli diagram as follows. Consider a vertex of level ˜V n .
If it is one of the wn

i , i = 1, . . . , l, then there is only one edge connecting it backwards,
and so just put the trivial order; if it is one of the vn+1

i , s = 1, . . . , s, then the edges
backwards are exactly the same edges backwards as in the original Bratteli diagram, and
so just put the same order as in the original Bratteli diagram. Put the order similarly for
vertices of level V n . Then it is straightforward to check that its telescoping into the levels
V n is exactly the original ordered Bratteli diagram B.

Denote by B 0 the telescoping of this diagram into the levels ˜V n . Note that the vertices of
(V 0)n

0 only consist of vn+1
1 , . . . , vn+1

tn+1 , and hence B 0 is a k-simple ordered Bratteli diagram
satisfying condition (3). It follows from Lemma 5.5 that conditions (1) and (2) can also be
satisfied by a further telescoping. ⇤

Remark 5.7. In the rest of the paper, we always assume that strong k-simple Bratteli
diagrams satisfy conditions (1), (2), and (3) of Lemma 5.6.

Example 5.8. The following is an example of a strongly 2-simple ordered Bratteli diagram
(with level 0 omitted):
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5.2. Bratteli–Vershik map. Let B be a non-elementary ordered k-simple Bratteli
diagram, and denote by X B the space of infinite paths of B. For each finite path ⇠ , we
will denote by �⇠ the cylinder set consisting of all paths starting with ⇠ . Then X B is a
Cantor set with topology generated by these cylinder sets because the cylinder sets are
clopen X B .

Let us adapt the well-known construction of the Vershik map � : X B ! X B of the
simple case to the case of k-simple Bratteli diagrams. Let ⇠ = (⇠1, ⇠2, . . .) 2 X B with
each ⇠ i

2 E . If ⇠ = zi,max for some 1  i  k, then define

� (⇠) = � (zi,max) = zi,min.

Otherwise, set
d(⇠) = max{m; (⇠1, . . . , ⇠m�1) 2 Emax},

and for any vertex v at level n, set rmin(v) 2 E1,n
min the minimal edge with range v. Then

define

� (⇠)(n) =

8
<

:

rmin(s(⇠d(⇠)
+ 1)) if n < d(⇠),

⇠n
+ 1 if n = d(⇠),

⇠n if n � d(⇠) + 1.

LEMMA 5.9. The map � : X B ! X B is a homeomorphism.

Proof. Define a map ⌧ : X B ! X B as follows. Let ⇠ = (⇠1, ⇠2, . . .) 2 X B with each
⇠ i

2 E . If ⇠ = zi,min for some 1  i  k, then define

� (⇠) = � (zi,min) = zi,max.

Otherwise, set
c(⇠) = max{m; (⇠1, . . . , ⇠m�1) 2 Emin},

and for any vertex v at level n, set rmax(v) 2 E1,n
max the maximal edge with range v. Then

define

⌧ (⇠)(n) =

8
<

:

rmax(s(⇠ c(⇠)
+ 1)) if n < d(⇠),

⇠n
� 1 if n = d(⇠),

⇠n if n � d(⇠) + 1.

Then it is straightforward to calculate that � � ⌧ = ⌧ � � = id, and thus the map � is one-
to-one and onto.

Since X B is a compact metrizable space, to show that � is a homeomorphism, it is
enough to show that � is continuous. It is clear that � is continuous at each ⇠ 2 X B \ Xmax.
Consider zi,max and a sequence ⇠ j ! zi,max with ⇠ j /2 Xmax. Let N 2 N. Then there is J
such that, for any j > J ,

⇠ j (n) = zi,max(n) for all 1  n  N .

Pick an arbitrary ⇠ j with j > N , and put

M = max{n; ⇠(n0) 2 Emax, 8n0

 n}.

Note that M � N . If r(⇠ j (M + 1)) 2 V M+2
i , then

� (⇠ j )(n) = zi,min(n) = � (zi,max)(n) for all 1  n  M � 2.
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If r(⇠ j (M + 1)) 2 V M+2
\

S
i V M+2

i and ⇠ j (M + 1) 2 Emax then, by condition (3a),

� (⇠ j )(n) = zi,min(n) = � (zi,max)(n) for all 1  n  M � 1.

If r(⇠ j (M + 1)) 2 V M+2
\

S
i V M+2

i and ⇠ j (M + 1) /2 Emax then, by condition (3b),
we still have that

� (⇠ j )(n) = zi,min(n) = � (zi,max)(n) for all 1  n  M � 1.

Since M � N , we have that � (⇠ j ) is in the (N � 1)-neighborhood of zi,min for any
j � J , and hence the map � is continuous at zi,max, as desired. ⇤

THEOREM 5.10. The Bratteli–Vershik system (X B, � ) has k minimal subsets.

Proof. For each 1  i  k, denote by Yi the closed subset corresponding to the paths
{z; zn

2 V n
i }. It follows from condition (1) that Y1, . . . , Yk are closed invariant subsets.

By condition (2), the sets Y1, . . . , Yk are minimal. Note that zi,max 2 Yi for each i , and the
orbit of zi,max is dense in Yi .

Let U be any minimal invariant closed non-empty subset of X B .
Pick any point x = (x1, x2, . . .) 2 U , and fix n 2 N such that the n-neighborhoods

of each zi,max are pairwise disjoint. The finite path (x1, . . . , xn+1) has finitely many
successors in P0,n+1. In particular, its i th successor is maximal in P0,n+1 for some i ,
and therefore � i (x) = ( f1, . . . , fn+1) with ( f1, . . . , fn+1) maximal. Since the diagram
satisfies Lemma 5.5, the finite path ( f1, . . . , fn) is in Xmax, and hence in the
n-neighborhood of zi,max for some i .

Therefore, at least one of {z1,max, . . . , zk,max} is in the closure of the orbit of x , and
hence U has to contain one of {Y1, . . . , Yk}. Since U is also minimal, it has to be one of
{Y1, . . . , Yk}, as desired. ⇤

Consider the C*-algebra Ay1,...,yk , and write V n
= {v1, . . . , v

|V n
|
}. For each vi , denote

by f i
1 < · · · < f i

li the finite paths ending at vi (they form a totally ordered set). Consider

Fn :=

|V n
|M

i=1

C*{� f i
1
, � f i

1
u, . . . , � f i

l
uli �1

} ✓ Ay1,...,yk .

LEMMA 5.11. The sub-C*-algebras {Fn} have the following properties:
(1) Fn ⇠

=

L
|V n

|

i=1 Mli (C);
(2) F1 ✓ · · · ✓ Fn ✓ Fn+1 ✓ · · · ;
(3)

S
n Fn is dense in Ay1,...,yk ;

(4) the K0-map induced by the inclusion Fn ✓ Fn+1 is the same as the multiplicities
between V n and V n+1.

Proof. Property (1) is clear and property (3) is standard (see, for example, [27]). Let us
show properties (2) and (4).

Let f be a minimal finite path with end point v. Assume that v is sent to v1, . . . , vl
with multiplicity m1, . . . , ml at level n + 1. Consider � f ul with l strict smaller than the
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number of paths ending at v, and denote the edges between v and vi by f i
1 < · · · < f i

mi
.

Then

� f ul
=

✓ lX

i=1

miX

j=1

� f f i
j

◆
ul

=

lX

i=1

miX

j=1

(u⇤) j�1� f f i
1
u j�1ul

=

lX

i=1

miX

j=1

((u⇤) j�1� f f i
1
)(� f f i

1
ul+ j�1) 2 Fn+1.

Thus, Fn ✓ Fn+1.
Let us calculate the K0-map. Applying the equation above for l = 0, we have

[� f ] =

lX

i=1

miX

j=1

[(u⇤) j�1� f f i
1
� f f i

1
u j�1

] =

lX

i=1

mi [� f f i
1
].

Since the standard generators of K0(Fn) are [� f ], the K0-map agrees with the multiplicity
map between V n and V n+1, as desired. ⇤

As a straightforward corollary, we have the following result.

THEOREM 5.12. Denote by KB the dimension group associated with B. We then have

K0(Ay1,...,yk )
⇠
= KB

as ordered groups.

6. From Cantor systems to Bratteli–Vershik models
In this section we shall show that any Cantor system (X, � ) with finitely many minimal
components can be modeled by the Bratteli–Vershik map on an ordered k-simple Bratteli
diagram as introduced in the previous section (see Theorems 6.5 and 6.7 below). Results
of this kind, based on sequences of Kakutani–Rokhlin partitions, have been discussed in
a number of papers; see, for example, [4, 18, 23]. Nevertheless, it will be useful for the
reader to see a complete proof where all details are clarified.

We first show that if, for a given Cantor system (X, � ), a sequence of Kakutani–Rokhlin
partitions satisfies certain conditions, then it determines an ordered Bratteli diagram B.
Then we prove that if (X, � ) has k minimal subsets, then B is a k-simple Bratteli diagram,
described in §5.

Definition 6.1. A Kakutani–Rokhlin partition of (X, � ) consists of pairwise disjoint
clopen � -towers

⇠l := {Z(l, j); 1  j  J (l)}, 1  l  L ,

of height J (l) such that:
(1) Z(l, j) \ Z(l, j 0) = ;, j 6= j 0;
(2)

S
l, j Zl, j = X ; and

(3) � (Z(l, j)) = Z(l, j + 1) for any 1  j < J (l).
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Remark 6.2. Denote by Z =

SL
l=1 Z(l, J (l)). Then

L[

l=1

Z(l, 1) = � (Z).

LEMMA 6.3. [18, Lemma 4.1] Let Z be a clopen subset such that yi 2 Z for any 1  i  k,
and let P be a partition of X into clopen sets. Then there is a Kakutani–Rokhlin partition

{Z(l, j); 1  l  L , 1  j  J (l)}

of X which is finer than P and Z =

SL
l=1 Z(l, J (l)).

Proof. By Lemma 3.1, we have that X =

SN
i=�N �

i (Z) for some N . Applying ��N on
both sides, we have that

X =

2N[

i=0

��i (Z). (6.1)

For each x 2 Z , define
r(x) = min{i � 1; � i (x) 2 Z}.

By (6.1), the map r : Z ! N is well defined. Moreover, the map r is continuous. Write

r(Z) = {J (1), J (2), . . . , J (L)},

and define
Z(l, j) = � j (r�1(J (l))).

It is clear that the sets {Z(l, j)} are clopen and satisfy condition (3). We show that
they form a partition of X . If x 2 Z(l1, j1) \ Z(l2, j2), then there are y1 2 r�1(J (l1)) and
y2 2 r�1(J (l2)) such that

� j1(y1) = � j2(y2).

If j1 > j2, then
� j1� j2(y1) = y2 2 r�1(J (l2)) ✓ Z ,

which contradicts y1 2 r�1(J (l1)). If j1 < j2, the same argument leads to a contradiction.
If j1 = j2, then we have that y1 = y2 and hence l1 = l2. Thus, the collection {Z(l, j)}
consists of pairwise disjoint sets.

For any x 2 X \ Z , consider

n = min{i � 0; ��i (x) 2 Z} and m = min{i � 0; � i (x) 2 Z}.

By Lemma 3.1, such n and m exist. Note that m, n � 1 and

��n(x) 2 r�1(m + n + 1).

Therefore, x 2 Z(l, n) with J (l) = m + n + 1.
For any x 2 Z , consider

n = min{i � 1; ��i (x) 2 Z}.

Then we have that r(��n(x)) = n and

x 2 Z(l, J (l)) (6.2)
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for l with J (l) = n. Hence {Z(l, j)} is a partition of X , and it actually forms a Kakutani–
Rokhlin partition of X with respect to � .

It is clear that
S

l Z(l, J (l)) ✓ Z for any 1  l  L by the construction. On the other
hand, it follows from (6.2) that

S
l Z(l, J (l)) ◆ Z , and hence we have
[

l

Z(l, J (l)) = Z .

Once we have a Kakutani–Rokhlin partition of X with respect to � , a similar argument
to that of [28, Lemma 3.1] shows that {Z(l, j)} can always be modified further so that
{Z(l, j)} is finer than the given partition P . ⇤

THEOREM 6.4. [18, Theorem 4.2] There are Kakutani–Rokhlin partitions of X,

Pn = {Z(n, l, j); 1  l  L(n), 1  j  J (n, l)},

such that:
(1) the sequence (Zn :=

SL(n)
l=1 Z(n, l, J (n, l))) is a decreasing sequence of clopen sets

with intersection {y1, y2, . . . , yk}, where the points {y1, y2, . . . , yk} are chosen in
minimal components Y1, . . . , Yk, respectively;

(2) the partition Pn+1 is finer than the partition Pn; and
(3)

S
n Pn generates the topology of X.

Proof. Choose a sequence of clopen sets Z1 ◆ Z2 ◆ · · · with
T

n Zn = {y1, y2, . . . , yk},
and a sequence of finite partitions (P 0

n) such that [P 0

n generates the topology of X . By
Lemma 6.3, there is a Kakutani–Rokhlin partition P1 := {Z(1, l, j); 1  l  L(1), 1 

j  J (1, l)} such that
S

l Z(1, l, J (1, l)) = Z1 and P1 is finer than P 0

1.
Assume that the Kakutani–Rokhlin partitions P1, . . . , Pn�1 are constructed. Then, by

Lemma 6.3, there is a Kakutani–Rokhlin partition Pn := {Z(n, l, j); 1  l  L(n), 1 

j  J (n, l)} such that
S

l Z(n, l, J (n, l)) = Zn and Pn is finer than P 0

n _ Pn�1. Then
(Pn) is the desired sequence of Kakutani–Rokhlin partitions. ⇤

Based on the sequence of Kakutani–Rokhlin partitions, e cab construct an ordered
Bratteli diagram B = (V, E, >) following the procedure described in [18, §4].

For convenience, we may assume that L(0) = 1, J (0, 1) = 1, and Z(0, 1, 1) = X . The
set of vertices V n of the diagram B is formed by the towers in the Kakutani–Rokhlin
partition Pn . To define the set of edges, we say that there is an edge between a tower
(vertex) ⇠n�1

i at level n � 1 and a tower (vertex) ⇠n
j at level n if ⇠n

j pass through ⇠n�1
i .

More precisely, for each n, we have

V n
= {(n, 1), (n, 2), . . . , (n, L(n))}

and

En
= {(n, l, l 0, j 0)|Z(n, l 0, j 0 + j) ✓ Z(n � 1, l, j) 8 j = 1, . . . , J (n � 1, l)}.

Then the source and range maps are

s((n, l, l 0, j 0)) = (n � 1, l)
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and
r((n, l, l 0, j 0)) = (n, l 0).

The order on the edges comes from the natural order on each tower {Z(n, l, j); j =

1, . . . , J (n, l)}. That is,

(n, l1, l 0, j 01) > (n, l2, l 0, j 02) if and only if j 01 > j 02.

THEOREM 6.5. Let (X, � ) be a Cantor dynamical system with k minimal sets Y1, . . . , Yk.
The ordered Bratteli diagram B = (V, E, >), constructed as above, is non-elementary,
and satisfies conditions (1)–(3) of Definition 5.3, that is, B is a non-elementary k-simple
ordered Bratteli diagram.

Proof. For each n and 1  i  k, set

V n
i := {(n, l); Yi \ Z(n, l, j) 6= ; for some 1  j  J (n, l)}.

Note that since Yi is invariant,

V n
i = {(n, l); Yi \ Z(n, l, j) 6= ; 81  j  J (n, l)}.

Since Yi are pairwise disjoint, by choosing n sufficiently large, we have that
{V n

1 , V n
2 , . . . , V n

k } are pairwise disjoint.
Consider an edge (n, l, l 0, j 0) with its range (n, l 0) 2 V n

i . Then Z(n, l 0, j) \ Yi 6= ; for
all 1  j  J (n, l 0), and thus

Z(n � 1, l, j) \ Yi 6= ;

for all 1  j  J (n � 1, l). That is, the vertex (n � 1, l) is in V n�1
i . Hence the Bratteli

diagram satisfies Condition (1) of Definition 5.1.
Note that the restriction of � to Yi is minimal. Thus, Condition (2) of Definition 5.1 also

holds. That is, the unordered diagram (V, E) is k-simple, and this verified condition (1)
of 5.3.

Let ((n, ln, l 0n, j 0n)) be an infinite path in Emin. Since it is an infinite path, we have
that l 0n�1 = ln . Since (n, ln, l 0n, j 0n) is minimal, we have that j 0n = 0. Hence Z(n, ln, 1) ✓

Z(n � 1, ln�1, 1) for any n, and thus
1\

n=1

Z(n, ln, 1) ✓

1\

n=1

✓L(n)[

l=1

Z(n, l, 1)

◆
= {� (y1), � (y2), . . . , � (yk)}.

By the construction of Z(n, l, j), this is finer than any given partition P 0. Therefore the
intersection

T
1

n=1 Z(n, ln, 1) is a single point, and there is 1  i  k such that
1\

n=1

Z(n, ln, 1) = � (yi ).

This uniquely determines ln , and thus there are at most k infinite minimal paths. On
the other hand, for each yi , the infinite sequence ((Z(n, ln, 1))) with � (yi ) 2 Z(n, ln, 1)

clearly forms a minimal path. Thus, there are k minimal paths.
A similar argument shows that there are also k maximum paths. Therefore, the ordered

Bratteli diagram (V, E, >) satisfies condition (2) of Definition 5.3.
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For each 1  i  k and each n � 1, define

Nn,i =

[

(n,l)2V n
i

J (n,l)[

j=1

Z(n, l, j).

Then each Nn,i is a clopen neighborhood of Yi , and Nn,1, . . . , Nn,k are pairwise disjoint.
Consider a vertex (a tower) (n, l) 2 Vn \ (V n

1 [ · · · [ V n
k ). Note that if n � 2, by

condition (1) of Theorem 6.4, there is one and only one 1  i  k and one and only one
1  j  k such that

Z(n, l, 1) ✓ Nn�1,i and Z(n, l, J (n, l)) ✓ Nn�1, j .

Then, by the definition,
m

�
((n, l)) = i and m

+
((n, l)) = j.

Let (n + 1, l, l 0, j 0) be an edge such that
Z(n + 1, l 0, j 0 + j) ✓ Z(n, l, j), j = 1, . . . , J (n, l).

Then
s((n + 1, l, l 0, j 0)) = (n, l).

Note that there is Z(n, l 00) such that
Z(n + 1, l 0, j 0 + J (n, l) + j) ✓ Z(n, l 00, j), j = 1, . . . , J (n, l 0).

Then
(n + 1, l, l 0, j 0) + 1 = (n + 1, l 00, l, j 0 + J (n, l))

and
s((n + 1, l, l 0, j 0) + 1) = (n, l 00).

If
Z(n, l, J (n, l)) ✓ Nn�1,s and Z(n, l, J (n, l) + 1) ✓ Nn�1,t ,

for some 1  s, t  k, then
Z(n + 1, l 0, j 0 + J (n + 1)) ✓ Nn�1,s and Z(n + 1, l 0, j 0 + J (n + 1) + 1) ✓ Nn�1,t .

But
Z(n + 1, l 0, j 0 + J (n + 1) + 1) = � (Z(n + 1, l 0, j 0 + J (n + 1) + 1)),

and this forces s = t , that is,
m

�
(s((n + 1, l, l 0, j 0) + 1)) = m

�
((n, l 00)) = t = s = m

+
((n, l)).

This shows condition (3a) of Definition 5.3.
Condition (3b) of Definition 5.3 can also be verified in a similar way. ⇤

Applying the same argument as that of [18, Theorem 4.4], we can prove the following
statement.

THEOREM 6.6. Given (X, � ) and the points y1 2 Y1, . . . , yk 2 Yk, the equivalent class of
the ordered Bratteli diagram B constructed in Theorem 6.5 does not depend on the choice
of Kakutani–Rohklin partitions.

THEOREM 6.7. There is a one-to-one correspondence between the equivalence classes of
non-elementary k-simple ordered Bratteli diagrams and the pointed topological conjugacy
classes of Cantor systems with k minimal invariant subsets.
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7. Transition graphs of a k-simple ordered Bratteli diagram and the index maps
7.1. Transition graphs associated to Bratteli diagrams. Consider a k-simple ordered
Bratteli diagram B = (V, E, >). Condition (3) of Definition 5.3 is necessary for the
continuity of the associated Bratteli–Vershik map. Based on this continuity condition, we
will introduce a sequence of directed graphs for B, and it turns out that these graphs are
closely related to the index map of the short exact sequence (3.1) associated to the Bratteli–
Vershik system (X B, � ) (see Theorem 7.5). Moreover, we will be able to obtain certain
combinatorial properties of these graphs and the Bratteli diagram B from the information
on the index map.

In the next definition, we use the word ‘vertex’ for a Bratteli diagram and for a transition
graph. It should be clear from the context which vertex is considered.

Definition 7.1. Let B = (V, E, >) be a k-simple ordered Bratteli diagram. For each level
n � 2, define the transition graph Ln to be the following directed graph: the vertices of Ln
correspond to the minimal sets Y1, . . . , Yk , and the edges are labeled by the vertices from
the set V n

o . For each v 2 V n
o , the edge v starts from Yi and ends at Y j if and only if

m
�
(v) = i and m

+
(v) = j.

Example 7.2. For the diagram considered in Example 5.8, we obtain the following
transition graph at level n:

LEMMA 7.3. Let v 2 V n
o = V n

\

Sk
i=1 V n

i and let e 2 Emin with r(e) = v and s(e) 2

V n�1
i . Take v0

2 V n+1 and e0

2 E with r(e0) = v0 and s(e0) = v. Then, for any e00

2 E
with r(e00) = v0 and e0 < e00, there is a path (v1, . . . , vl) in Ln with v1 = v which starts at
Yi and ends at Ym

�
(s(e00)).

Proof. Since e0 < e00, there are

{{e(1)
1 , . . . , e(1)

m1| {z }
G1

}, {e(2)
1 , . . . , e(2)

m2| {z }
G2

}, . . . , {e(d)
1 , . . . , e(d)

md| {z }
Gd

}, e000

}

with each e(s)
j an edge between level n � 1 and level n such that:

(1) each group Gs consists of all edges with range vs 2 V n ;
(2) inside each group Gs , we have

e(s)
1 < e(s)

2 (= e(s)
1 + 1) < · · · < e(s)

ms
(= e(s)

ms�1 + 1);

(3) e(1)
1 = e, e000

2 Emin and r(e000) = s(e00);
(4) there are edges g1, . . . , gs connecting vs to v0 respectively such that

e0

= g1 < g2(= g1 + 1) < g3(= g2 + 1) < · · · < gd(= gd�1 + 1) < gd + 1 = e00.
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Then each group Gs represents an edge in Ln if vs 2 V n
\

Sk
j=1 V n

j . Moreover, if vs 2

V n
j for some j , by condition (3b) of Definition 5.3, then m

�
(vs+1) = j . Thus, if one

deletes these vs 2 V n
j for some j , the remaining vertices induce a path in Ln .

It is clear that the path starts with Yi . The end point of the path is Ym
+

(vd ). Then it
follows from condition (3a) of Definition 5.3 and condition (4) above that

Ym
+

(vd ) = Ym
�

(s(gd+1)) = Ym
�

(s(e00)),

as desired.
The argument can be illustrated by the following diagram:

⇤

COROLLARY 7.4. Let B = (V, E, >) be a k-simple non-elementary ordered Bratteli
diagram with k � 2, and let Ln denote the transition graph of B at level n. If there is an
edge v1 that has the vertex Yi as the source point, then there is a closed walk (v1, . . . , vl)

in Ln (so the range point of vl is Yi ).

Proof. Without loss of generality, assume that the vertex Y1 is a source point. Then there
are v 2 V n

\

Sk
i=1 V n

i and e 2 Emin such that r(e) = v and s(e) 2 V n�1
1 . Since the diagram

is non-elementary, by condition (2) of Definition 5.1, there is v0

2 V n+1 such that

|Ev,v0 := {e0

2 E; s(e0) = v, r(e0) = v0

}| � 2.

Pick e0, e00

2 Ev,v0 with e0 < e00. Then, by Lemma 7.3, there is a path in Ln staring at Y1
and ending at Ym

�
(v) = Y1, and it is the desired loop. ⇤

7.2. Index maps and transition graphs. In this subsection we shall give a description of
the images of the index maps (see Theorem 3.10) using the transition graphs.

Consider a k-simple non-elementary ordered Bratteli diagram B = (V, E, >), and
consider the associated Cantor system (X B, � ). Note that the ideal C0(X B \

Sk
i=1 Yi ) o Z

has an AF-structure arising naturally from the sub-diagram of B with vertices {V n
o : n =

1, 2, . . .}. In particular, its K0-group is naturally isomorphic to the dimension group of the
sub-diagram of B with vertices {V n

o : n = 1, 2, . . .}. With this identification, we have the
following theorem.
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THEOREM 7.5. Let Yi be a minimal component of (X B, � ), and let Ln be the transition
graph of B at level n. Denote by E

+
(Yi ) the set of edges of Ln which have Yi as source,

and denote by E
�
(Yi ) the set of edges of Ln which have Yi as range. Write

E
+
(Yi ) = {v+

1 , . . . , v+

s }

and
E

�
(Yi ) = {v�

1 , . . . , v�

t }.

That is,

Let di be the element of Theorem 3.10 associated to Yi . Then di is given by

(ev+

1
+ · · · + ev+

s
) � (ev�

1
+ · · · + ev�

t
),

where ev stands for (0, . . . , 0, 1, 0, . . . , 0) 2

L
V n

o
Z with entry 1 at the position v.

Proof. Consider the set U ✓ X B consisting of all infinite paths which are in Yi up to level
n � 1. It is clear that U is a clopen set containing Yi . By Theorem 3.10, the element di is
given by

[�U � �U � ��1
]0 = [�U � �� (U )]0.

Denote by v1, . . . , vh the vertices in V n
o connecting to Yi ; and for each 1  l  h,

define
El := {e 2 E; r(e) = vl , s(e) 2 V n�1

i }

and

{ f (l)
1 , . . . , f (l)

ml
} := {e 2 El; e /2 Emax, s(e + 1) /2 V n�1

i },

{g(l)
1 , . . . , g(l)

rl
} := {e 2 El; e /2 Emin, s(e � 1) /2 V n�1

i }.

Since the number of edges jumping into El is the same as the number of edges being
pushed out of El , we have

8
<

:

ml = rl if |(El \ Emax) [ (El \ Emin)| 2 {0, 2},

ml + 1 = rl if (El \ Emax) 6= ; but El \ Emin = ;,

ml = rl + 1 if (El \ Emax) = ; but El \ Emin 6= ;.

(7.1)

For each e 2 El , define �
�
(e) to be the cylinder set consisting all infinite paths starting

with we with w the minimal finite path ending at s(e). Note that, for any e1, e2 2 El ,

evl := [�
�
(e1)]0 = [�

�
(e2)]0 = (0, . . . , 0, 1, 0 . . . , 0) 2

M

V n
o

Z ⇢ K0(I ), (7.2)

where the 1 is in position vl .
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We then assert that

�U � �� (U ) =

hX

l=1

(�
�
(g(l)

1 ) + · · · + �
�
(g(l)

rl
))

�

hX

l=1

(�
�
( f (l)

1 + 1) + · · · + �
�
( f (l)

ml
+ 1)). (7.3)

In fact,
�U � �� (U ) = �U\� (U ) � �� (U )\U .

Then the assertion follows from the equations

�U\� (U ) =

hX

l=1

(�
�
(g(l)

1 ) + · · · + �
�
(g(l)

rl
))

and

�� (U )\U =

hX

l=1

(�
�
( f (l)

1 + 1) + · · · + �
�
( f (l)

ml
+ 1)),

which can be verified straightforwardly.
Then, by equations (7.1) and (7.2), we have

[�U � �� (U )]0

=

hX

l=1

[�
�
(g(l)

1 ) + · · · + �
�
(g(l)

rl
)]0 �

hX

l=1

[�
�
( f (l)

1 + 1) + · · · + �
�
( f (l)

ml
+ 1)]0

=

hX

l=1

([�
�
(g(l)

1 )]0 + · · · + [�
�
(g(l)

rl
)]0) � ([�

�
( f (l)

1 )]0 + · · · + [�
�
( f (l)

ml
)]0)

=

hX

l=1

(rl � ml)evl = (ev+

1
+ · · · + ev+

s
) � (ev�

1
+ · · · + ev�

t
),

as desired. ⇤

COROLLARY 7.6. Let B = (V, E, >) be a k-simple ordered Bratteli diagram with k � 2.
Then each transition graph Ln is connected. In particular, Ln has at least k � 1 edges.

Proof. If there were a proper connected component of Ln , say, consisting of
{Yn1 , . . . , Yns }, then, by Theorem 7.5, we would have dn1 + · · · + dns = 0. But this
contradicts the conclusion of Theorem 3.10. ⇤

In general, k � 1 can be attained. For example, consider the stationary diagram

� � � � �

� � � � �

� � � � �
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This diagram can be easily ordered so that it becomes an ordered 3-simple Bratteli
diagram. Its transition graph at each level has two edges.

However, if the Bratteli diagram is non-elementary, that is, if the path space is a Cantor
set, then Ln has at least k edges.

COROLLARY 7.7. Let B = (V, E, >) be a non-elementary k-simple ordered Bratteli
diagram with k � 2. The transition graph Ln has at least k edges. In particular, we have
that

|V n
o | =

����Vn

/ k[

i=1

V n
i

���� � k,

for all n.

Proof. It follows from Corollary 7.6 that the transition graph Ln is connected, and it
follows from Corollary 7.4 that Ln contains loops. Since Ln has k vertices, it must have at
least k edges, as desired. ⇤

Definition 7.8. Let G be a dimension group with a given inductive limit decomposition
G = lim

�!

Zni . Define D(G) to be the subgroup consisting of the elements g such that, with
g = (gi ), where gi 2 Zni , there is m 2 N such that

kgik1
 m, i = 1, 2, . . . ,

where k · k
1

is the standard `1-norm of Zni .
It is straightforward to show that D(G) \ G+

= {0} if the dimension group G has no
quotient isomorphic to Z. Also note that if G is a non-cyclic simple dimension group, then
any element of D(G) is an infinitesimal (an element g of a simple dimension group G is
said to be an infinitesimal if �h < mg < h for all m 2 N and h 2 G+

\ {0}).

Recall that KIB is the dimension group of the sub-diagram of B restricted to the vertices
V n

o , n = 1, 2, . . . ; hence it is isomorphic to K0(C0(X \

Sk
i=1 Yi ) o Z).

COROLLARY 7.9. If B is a non-elementary ordered Bratteli diagram, then

Image(Ind) ✓ D(KIB )

with respect to the inductive limit decomposition of KIB given by B. In particular,

Image(Ind) \ (KIB )+ = {0}.

Moreover, if B is assumed to be strongly k-simple (so the ideal KIB is simple), then the
image of the index map is in the subgroup of KIB of infinitesimals.

Proof. Since the image of the index map is generated by {d1, . . . , dk}, it is enough to
show that

di 2 D(KIB ), i = 1, 2, . . . , k.

But this follows directly from Theorem 7.5, which states that each entry of di must be 0,
�1, or 1, at any level, as desired. ⇤

The following result can be regarded as a strengthened version of Corollary 7.7.
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COROLLARY 7.10. Denote by r the Q-rank of KIB . Then r � k.

Proof. Denote by H ✓ KIB the image of the index map. By equation (3.3), we have that
dimQ(H ⌦ Q) = k � 1. Note that the dimension group KIB must contain non-zero positive
elements; so pick p 2 KIB positive and non-zero. We assert that p ⌦ 1Q /2 H ⌦ Q. If this
were not true, there would be natural numbers m, n and h 2 H such that mp = nh. Since
p is positive, it follows from Corollary 7.9 that mp = 0. Since the dimension group KIB is
torsion-free, we have that p = 0, which contradicts the choice of p. Therefore KIB ⌦ Q)
H ⌦ Q, and hence r = dimQ(KIB ⌦ Q) � k � 1 + 1 = k. ⇤

The authors thank the referee for suggesting Pimsner’s dynamical criterion for the stable
finiteness in the following corollary.

COROLLARY 7.11. Let (X, � ) be a indecomposable Cantor system with k minimal
subsets. Then the C*-algebra C(X) o� Z is stably finite. It has stable rank 2 if k � 2,
and stable rank 1 if k = 1. Moreover, if (X, � ) is aperiodic, the C*-algebra C(X) o� Z
has real rank 0.

Proof. Let us first consider the real rank of C(X) o� Z. Note that there is a short exact
sequence

0 // C0

⇣
X

/ [

i

Yi

⌘
o� Z // C(X) o� Z //

M

i

C(Yi ) o� Z // 0.

(7.4)
Since (X, � ) is assumed to be aperiodic, each minimal component Yi is homeomorphic to
a Cantor set, and therefore the quotient algebra

L
i C(Yi ) o� Z is an AT algebra with real

rank 0. On the other hand, the ideal C0(X \

S
i Yi ) o� Z is AF, so it also has real rank 0.

Since K1(C0(X \

S
i Yi ) o� Z) = {0}, we have that the exponential map

K0

⇣M

i

C(Yi ) o� Z
⌘

! K1

⇣
C0

⇣
X

/ [

i

Yi

⌘
o� Z

⌘

of the extension above must be zero. Hence, as an extension of two real rank-0 C*-algebras
with zero exponential map, the algebra C(X) o� Z has real rank 0 (see, for example, [22,
Proposition 4(i)]).

For the stable rank of C(X) o� Z, if k = 1, it follows from Corollary 3.11 that
C(X) o� Z is an AT algebra, and, in particular, it has stable rank 1. If k � 2, it follows
from [26, Corollary 2.6] that C(X) o� Z has stable rank 2. (Indeed, since both the ideal
and the quotient algebras in the extension (7.4) have stable rank 1, it follows from [30,
Corollary 4.12] that the stable rank of C(X) o� Z is either 1 or 2. Since the index map
is non-zero when k � 2, the stable rank of C(X) o� Z cannot be 1; see, for instance, [22,
Proposition 4(ii)].)

Let us show that C(X) o� Z is always stably finite, and let us prove the following
general statement instead. Consider an extension of C*-algebras

0 // I // A ⇡
// D // 0
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with A and D unital. Assume that D is stably finite, I has the property that [p]0 6= 0 2

K0(I ) for any non-zero projection p 2 I , and

Ind(K1(D)) \ K+

0 (I ) = {0}. (7.5)

Then A is stably finite.
We only have to show that A is finite (for matrix algebras over A, one can tensor the

extension above with a matrix algebra, and proceed with the same argument). Let v be an
isometry in A. Since D is finite, the image ⇡(v) has to be an unitary. Then

Ind(�[⇡(v)]1) = [1A � vv⇤

]0 � [1A � v⇤v]0 = [1A � vv⇤

]0 2 K+

0 (I ).

Therefore [1 � vv⇤

]0 = 0 and hence 1 � vv⇤

= 0 (since 1 � vv⇤ is a projection on A). So
v must be a unitary, and A is finite.

Consider the extension (7.4). Note that, by Theorem 6.7, one may assume that the
Cantor system arises from a non-elementary k-simple ordered Bratteli diagram. It follows
from Corollary 7.9 that equation (7.5) always holds, and I is an AF-algebra. Hence the
statement follows.

Alternatively, one also can use Pimsner’s dynamical criterion for the stable
finiteness. Note that the C*-algebra C(X) o� Z is AT and hence stably finite if k = 1
(Corollary 3.11). So, let us assume that k � 2, and let us show that every point of X is
pseudoperiodic, that is, for any x0 2 X and any " > 0, there exist x1, x2, . . . , xn�1 such
that

dist(xi+1, � (xi )) < ", i = 0, 1, . . . , n � 1,

where dist is a compatible metric on X , and xn is understood as x0. Then the stable
finiteness follows from [25, Theorem 9].

The pseudoperiodicity indeed follows from Corollary 7.6: if x0 2 Yi for sone i =

1, . . . , k, then the pseudoperiodicity follows from the minimality of Yi ; therefore one
may assume that x0 2 X \

Sk
i=1 Yi . With the Bratteli–Vershik model, let x0 be represented

by the infinite path [e1, e1, . . . , ed , ed+1, . . .], and let d be sufficiently large such that any
two paths with same first d segments actually have distance at most ".

Consider the vertex r(ed), which is at level d + 1. Since x0 2 X \

Sk
i=1 Yi , one may

assume that d is sufficiently large that r(ed) 2 V d+1
o . Consider the minimal edge starting

with r(ed) backwards, and denote it by [e0

1, e0

2, . . . , e0

d ]. It is clear that x0 is in the forward
orbit of the infinite path [e0

1, . . . , e0

d , ed+1, . . .]. By Lemma 5.5, one may assume that
s(e0

d) is in the sub-diagram Bm
�

(r(ed )) (and so the finite minimal path [e0

1, e0

2, . . . , e0

d�1]

is in the sub-diagram Bm
�

(r(ed ))). Pick an arbitrary infinite path y in the sub-diagram
Bm

�
(r(ed )) which starts with [e0

1, e0

2, . . . , e0

d�1]. Note that

dist(y, [e0

1, . . . , e0

d�1, e0

d , ed+1, . . .]) < ".

Consider the minimal set Ym
�

(r(ed )). By Corollary 7.6, there is a closed walk
(r(ed), v2, . . . , vl) in the transition graph Ld+1, where vi 2 V d+1

o , i = 2, . . . , l, and
m

+
(vl) = m

�
(r(ed)). Then this loop provides a partial orbit x1, x2, . . . , xn , where each

xi is an infinite path of the Bratteli diagram such that xi+1 = � (xi ), i = 0, . . . , n � 1,
and � (xn) = (e00

1 , . . . , e00

d�1, e00

d , . . .), where e00

1 , e00

2 , . . . , e00

d�1 are minimal edges in the
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Bratteli sub-diagram Bm
�

(r(ed )). Pick an arbitrary infinite path z0 in the Bratteli sub-
diagram Bm

�
(r(ed )) which starts with [e00

1 , e00

2 , . . . , e00

d�1], and note that

dist(z0, � (xn)) = dist(z, [e00

1 , . . . , e00

d�1, e00

d , . . .]) < ".

Since the set Ym
�

(r(ed )) is minimal (so the forward orbit is dense), there are z1, z2,

. . . , zn1 2 Ym
�

(r(ed )) such that zi+1 = � (zi ), i = 0, . . . , n1 � 1, and dist(� (zn1 , y)) < ".
Therefore, the finite sequence

x0, x1, x2, . . . , xn, z0, z1, . . . , zn1 , y, [e0

1, . . . , e0

d�1, e0

d , ed+1, . . .], . . . , x0

is the desired pseudoperiodic orbit. ⇤

8. Realizability of a Bratteli diagram
Let B = (V, E) be an unordered k-simple Bratteli diagram. In this section let us consider
the question when there is an order > on B so that (V, E, >) is an ordered k-simple
Bratteli diagram.

Suppose that there is an order > on B so that (V, E, >) is k-simple. Without loss of
generality, let us also assume that (V, E, >) satisfies the conditions of Lemma 5.6.

Denote by Ln the transition graphs of (V, E, >) at level n. For any edge v of the
transition graph Ln , denote by Ymin(v) the source point of v and denote by Ymax(v) the
range point of v.

THEOREM 8.1. Consider the k-simple ordered Bratteli diagram (V, E, >). The transition
graphs {Ln; n = 2, . . .} are compatible with the unordered Bratteli diagram (V, E) in the
following sense. For any edge w of Ln+1, there is a path (v1, v2, . . . , vl) in Ln such that:
(1) the edge w and the path (v1, . . . , vl) have the same range and source;
(2) for any v 2 V n

o , the number of times v (as an edge of Ln) appears in (v1, . . . , vl) is
the same as the multiplicity of the edges in the Bratteli diagram (V, E) between v

and w (as vertices of (V, E));
(3) if w (as a vertex in V n+1

o ) is connected to some vertex in V n
i for some 1  i  k, then

(v1, v2, . . . , vl) passes through Yi ; and
(4) for any edge v of Ln, the vertex v (as a vertex in the Bratteli diagram) is connected

to some vertex in V n�1
min(v) and is also connected to some vertex in V n�1

max(v).
Conversely, if there is a sequence of directed graphs {Ln; n = 2, 3, . . .} such that the

vertices of each Ln are {Y1, . . . , Yk}, the edges of each Ln are labeled by the vertices in
V n

o , and (Ln) are compatible with (V, E) in the sense above, then there is an order on
(V, E) so that it is a k-simple ordered Bratteli diagram.

Proof. Let w be any edge of Ln+1. With a slight abuse of notation, let w also denote the
vertex in V n+1

o which corresponds to this directed edge of Ln+1. Since the edges r�1(w) 2

En of the Bratteli diagram are totally ordered, write them as

e0

1 < e0

2 < · · · < e0

m .

Remove all the edges with the source points not in V n
o , and write the remaining edges as

e1 < e2 < · · · < el .
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Put vi = s(ei ), i = 1, . . . , l. Then direct calculation shows that (v1, v2, . . . , vl) is a path
in Ln and satisfies conditions (1), (2), (3) and (4). We leave it to the reader.

Now assume that there are directed graphs {Ln; n = 2, 3, . . .} and a k-simple
(unordered) Bratteli diagram (V, E) which are compatible. Let us show that there is an
order > on (V, E) so that (V, E, >) is a k-simple ordered Bratteli diagram.

For each 1  i  k and n � 1, choose a pair of vertices (zn
i,min, zn

i,max) in V n
i . (The

infinite paths (z1
i,min, z2

i,min, . . .) and (z1
i,max, z2

i,max, . . .) will be the minimal path and
maximal path of the final ordered Bratteli diagram, respectively.)

Then, for each v 2 V n
i , put an arbitrary total order on r�1(v) such that (zn�1

i,min, v) is
minimal and (zn�1

i,max, v) is maximal.
Now let us consider how to order the edges r�1(w) for some w 2 V n

o . On the first level,
put an arbitrary total order on r�1(w) if w 2 V 1

o .
For any w 2 V n

o with n � 2, define the order the edges r�1(w) as follows. Pick any edge
between V n�1

min(w) and w to be the minimal edge and pick any edge between V n�1
max(w) and w

to be the maximal edge. (The existence of such edges is ensured by condition (4).)
If n = 2, then order the edges r�1(w) with an arbitrary total order with the given

minimal element and maximal element.
If n > 2, then consider the corresponding path (v1, v2, . . . , vl) in the transition graph

Ln�1. For each vi , 1  i  l, pick an arbitrary edge in En connecting vi (as a vertex in
V n�1

o ) to w, and denote it by e(vi ). By condition (2), such an edge exists and the collection

{e(v1), e(v2), . . . , e(vl)}

exhausts all the edges between V n�1
o and w. Set

e(v1) < e(v2) < · · · < e(vl).

For each 1  i  k, and edges between V n�1
i and w, by condition (3), there is 1  j  l

such that the vertex Yi of Ln�1 is the range of v j . Then, filling between e(v j ) and e(v j+1)

by all the edges between V n�1
i and w with an arbitrary order, we obtain a total order on

r�1(w).
Note that it follows from the construction above that

m
�
(w) = Ymin(w) and m

+
(w) = Ymax(w).

Let us verify that the resulting ordered Bratteli diagram (V, E, >) is k-simple.
Since (V, E) is a k-simple unordered Bratteli diagram, condition (1) of Definition 5.3

is automatic.
By the choices of the ordering, it is easy to see that (z1

i,min, z2
i,min, . . .) and

(z1
i,max, z2

i,max, . . .), 1  i  k, are the only maximal infinite paths and minimal infinite
paths. Thus condition (2) of Definition 5.3 is also satisfied.

Let us verify condition (3) of Definition 5.3. Fix any v 2 V n
o . Let e be any edge with

s(e) = v. Denote w = r(e). Write the path in the transition graph Ln corresponding to w

(as an edge in the transition graph Ln+1) as (v1, v2, . . . , vl). Then there is 1  i  l such
that v = vi . By the construction of the transition graph, we have that m

+
(v) is the range of

vi in Ln , that is,
m

+
(v) = Ymax(vi ). (8.1)
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Consider the edge e + 1. By the construction of the order on r�1(w), the vertex s(e + 1)

is either vi+1 or in V n
max(vi )

. If s(e + 1) = vi+1, then

m
�
(s(e + 1)) = m

�
(vi+1) = Ymin(vi+1) = Ymax(vi );

and if s(e + 1) 2 V n
max(vi )

, then m
�
(s(e + 1)) = Ymax(vi ). Therefore, by (8.1), we always

have
m

�
(s(e + 1)) = Ymax(vi ) = m

+
(v),

which verifies condition (3a) of Definition 5.3.
Now, let e be an edge with e /2 Emax, r(e) = v and s(e) 2 V n�1

i with n � 3. Write the
path in Ln�1 corresponding to v (as an edge in Ln) as (u1, u2, . . . , us). By condition (3),
there is 1  j  s such that Ymax(u j ) = Yi .

If j < s, then we have that either s(e + 1) = u j+1, in which case

m
�
(s(e + 1)) = Ymin(u j+1) = Ymax(u j ) = Yi ,

or s(e + 1) 2 V n�1
i . So, in both cases, m

�
(s(e + 1)) = Yi .

If j = s, since e /2 Emax, we have that s(e + 1) 2 V n�1
i , and therefore m

�
(s(e + 1)) =

Yi .
Thus, the order satisfies condition (3b) of Definition 5.3, and hence (V, E, >) is a

k-simple ordered Bratteli diagram. ⇤

Let B = (V, E, >) be an ordered k-simple Bratteli diagram, and denote by L2, L3, . . .

the corresponding transition graphs. Consider the Cantor system (X B, � ), and denote by
Y1, . . . , Yk the minimal subsets. For each 1  i  k, recall that di is the image of �Yi u
under the index map. By Theorem 7.5, each entry of di 2

L
V n

o
Z has to be ±1 or 0.

Moreover, we also have that, for each v 2 V n
o ,

|{1  i  k; di (v) 6= 0}| = 0 or 2,

and if di1(v) 6= 0 and di2(v) 6= 0 for some i1 6= i2, then di1(v) + di2(v) = 0; that is, if there
is a non-zero pair, it must be either (+1, �1) or (�1, +1).

Thus, the unordered Bratteli diagram (V, E) has the following property. There are
elements d1, . . . , dk in KIB such that:
(a) c1d1 + · · · + cndn = 0 if and only if c1 = c2 = · · · = cn ;
(b) for each level n and each v 2 V n

o , we have that di (v) 2 {0, ±1}, 1  i  k;
(c) for each v 2 V n

o , we have that |{1  i  k; di (v) 6= 0}| = 0 or 2, and if

{1  i  k; di (v) 6= 0} = {i1, i2},

then (di1(v), di2(v)) is either (+1, �1) or (�1, +1).
It turns out that these conditions are also sufficient for the existence of a k-simple order on
(V, E) if (V, E) is strongly k-simple.

THEOREM 8.2. Let B = (V, E) be an unordered strongly k-simple Bratteli diagram
satisfying condition (3) of Lemma 5.6 (i.e., each vertex in V n+1

o is connected to all vertices
in V n). Suppose that there are element d1, . . . , dk 2 KIB ✓ KB satisfying conditions (a),
(b), and (c) above. Then there is an order > such that (V, E, >) is an ordered (strongly)
k-simple Bratteli diagram.
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Before we prove the theorem, let us recall several facts from graph theory.

Definition 8.3. Let G = (V, E) be a directed graph (there might be multiple edges between
two vertices, and loops are also allowed). Let v be a vertex of G. The indegree and
outdegree of v, denoted by deg�(v) and deg+(v) respectively, are the numbers of directed
edges leading into and leading away from v, respectively. The degree of v is defined by

deg(v) = deg+(v) � deg�(v).

A (directed) Euler walk in G is a walk (in the directed sense) in G that covers each
directed edge exactly once.

We have the following criterion for the existence of an Euler walk in a directed graph.

THEOREM 8.4. A directed (multi)graph has an Euler walk if and only if it is connected,
and deg(v) = 0 for every vertex with the possible exception of two vertices v0 and v1 such
that deg(v0) = 1 and deg(v1) = �1. In this case, v0 and v1 are the starting point and end
point of the Euler walk, respectively.

Proof of Theorem 8.2. By Theorem 8.1, one only has to construct a sequence of directed
graphs L2, L3, . . . which are compatible to B = (V, E).

Note that the vertices of the proposed directed graphs are always Y1, Y2, . . . , Yk . To
get Ln , one only has to assign each v 2 V n

o to be a suitable directed edge of Ln .
Fix n � 2. For each v 2 V n

o , if di (v) = 0 for all i , then choose any Yi such that there is
an edge between V n�1

i and v, and then assign v to be a loop with the base point Yi .
Otherwise, by condition (c), there are 1  min(v) 6= max(v)  k such that

dmin(v)(v) = �1 and dmax(v)(v) = +1.

Then assign v to be an edge from Ymin(v) to Ymax(v).
Denote the resulting directed graph by Ln . We assert that {L2, L3, . . .} are compatible

with (V, E) in the sense of Theorem 8.1.
First, note that, for each n � 2 and v 2 V n

o , by the construction of Ln , we have

di (v) =

8
<

:

�1 if Yi is the source point but not the range point of v in Ln ,
+1 if Yi is the range point but not the source point of v in Ln ,
0 otherwise.

(8.2)

That is, the elements d1, . . . , dk are induced by the diagram as in Theorem 7.5.
Then it follows from condition (a) that the underlying undirected graphs of L2, L3, . . .

are connected. Indeed, if there were a proper connected component of Ln , say with
vertices Yn1 , . . . , Ynt , it would then follow from (8.2) that dn1 + · · · + dnt = 0, which
is in contradiction to condition (a).

Now let w be any edge of Ln+1. Consider w as a vertex in V n+1
o and write

w =

lX

j=1

c jv j +

l 0X

j=1

c0

jv
0

j

in the Bratteli diagram (V, E), where c j , c0

j 2 N, v j 2 V n
o , and v0

j 2 V n
\ V n

o .
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Since the vertex w is assumed to be connected to all vertices at level n, we have that
{v1, . . . , vl} = V n

o . Let us construct an auxiliary directed graph Lw
n to be the directed

(multi)graph obtained by multiple each edge v j of Ln into c j edges. Since Ln is connected,
it is clear that Lw

n is also connected.
Then, in order to find a path in Ln satisfying conditions (1) and (2) of Theorem 8.1,

it is enough to find an Euler walk (i.e., a walk which covers each edge exactly once) in
Lw

n which has the starting point Ymin(w) and the ending point Ymax(w). Moreover, since the
edges of the graph Lw

n exhaust all vertices in V n
o ,conditions (3) and (4) of Theorem 8.1 are

satisfied automatically.
Since Lw

n is connected, by Theorem 8.4, it is enough to show that

degLw
n
(Ymin(w)) = +1, degLw

n
(Ymax(w)) = �1

and
degLw

n
(Yi ) = 0 for all other vertices Yi .

Consider any vertex Yi of Lw
n . Then

deg+

Lw
n
(Yi ) =

X

di (vi )=�1

ci and deg�

Lw
n
(Yi ) =

X

di (vi )=1

ci ,

and therefore

degLw
n
(Yi ) = deg+

Lw
n
(Yi ) � deg�

Lw
n
(Yi )

=

X

di (v j )=�1

c j �

X

di (v j )=1

c j

= �di (w).

Hence, 8
><

>:

degLw
n
(Yi ) = �di (w) = 0 if i /2 {min(w), max(w)},

degLw
n
(Ymin(w)) = �dmin(w)(w) = 1,

degLw
n
(Ymax(w)) = �dmax(w)(w) = �1.

Therefore, there is an Euler walk in Lw
n with starting point Ymin(w) and ending point

Ymax(w). That is, there is a path in Ln that satisfies conditions (1)–(4) of Theorem 8.1,
as desired. ⇤

Remark 8.5. In general, it would be interesting to have an abstract characterization of the
dimension groups which can be realized by k-simple ordered Bratteli diagrams.

9. Cantor system with one minimal subset
Let us study the ordered K0-group of C(X) o� Z for a Cantor system with only one
minimal component Y , and explore its connection to the boundedness of invariant
measures on the open set X \ Y . By Theorem 3.10, the index map is zero. Also note
that the C*-algebra C(Y ) o� Z is always an AT-algebra, and has real rank 0 if (X, � ) is
aperiodic. Hence, by [22, Theorem 5], we have the following structure theorem.

THEOREM 9.1. If k = 1, the C*-algebra C(X) o� Z is an AT-algebra. It has real rank 0
if (X, � ) is aperiodic.
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Denote by K the algebra of compact operators acting on a separable infinite-
dimensional Hilbert space. Then a C*-algebra A is said to be stable if A ⇠

= A ⌦ K, and
the positive cone of the K0-group, denoted by K+

0 (A), is defined by

K+

0 (A) = {[p]0 : p is a projection of A ⌦ K} ✓ K0(A).

Note that if A is stably finite, (K0(A), K+

0 (A)) is always an ordered group; furthermore, if
A is an AT-algebra, (K0(A), K+

0 (A)) is always a dimension group.
As in §3, we have the exact sequence

0 // K0(C0(X \ Y ) o� Z)
◆
// K0(C(X) o� Z)

⇡
// K0(C(Y ) o� Z) // 0,

and therefore K0(C(X) o� Z) is an extension of the dimension group. Denote by u 2

K+

0 (C(X) o� Z) and v 2 K+

0 (C(Y ) o� Z) the standard order units induced by the constant
function 1. Then it is clear that ⇡(u) = v. If, moreover,

◆(K+

0 (C0(X \ Y ) o� Z)) ✓ [0, u], (9.1)

then the extension above is an extension of the dimension group with order units in the
sense of [17, p. 295]. Since K0(C(Y ) o� Z) is simple, it follows from [17, Theorem 17.9]
that the extension is lexicographic, namely,

K+

0 (C(X) o� Z) = ◆(K+

0 (C0(X \ Y ) o� Z)) [ ⇡�1(K+

0 (C(Y ) o� Z) \ {0}).

In general, relation (9.1) does not always hold. As we shall see in this section, (9.1)
holds if and only if there is no finite � -invariant measure on the open set X \ Y , and hence
the extension is lexicographic in this case.

Example 9.2. The order-unit group K0(C(Y ) o� Z) is always simple, but K0(C0(X \

Y ) o� Z) is not necessarily a simple ordered group. For example, let (X1, �1) and (X2, �2)

be two almost simple Cantor system with fixed point x1 and x2. Attaching X1 to X2 by
identifying x1 and x2, we have a new Cantor set X and an action � on it with a fixed
point {x}. It is clear that the only non-trivial closed invariant subset is {x} (although the
system is not almost simple, which requires that every orbit other than {x} is dense).
However, K0(C0(X \ {x}) o� Z) is not simple. One can expand the fixed point to an
odometer system to get an aperiodic example. For instance, consider the stationary Bratteli
diagram with incidence matrix

F =

0

@
2 2 0
0 2 0
0 2 3

1

A .

The dimension group associated with the ideal is Z[1/2] � Z[1/3], with the usual order.

Let A be a stably finite C*-algebra. Denote

D(A) = {[p]0; p 2 A} ✓ K+

0 (A).

LEMMA 9.3. Let A be a C*-algebra with an approximate unit consisting of projections.
Assume that A has stable rank 1. Then A is stable if and only if D(A) = K+

0 (A).
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Proof. If A is stable, then it is clear that D(A) = K+

0 (A).
Assume that D(A) = K+

0 (A), and let us show that A is stable. Since A has an
approximate unit consisting of projections, by [19, Theorem 3.1], it is enough to show that,
for any projection p 2 A, there is a projection q 2 A such that q is Murray–von Neumann
equivalent to p and q ? p. Indeed, it follows from the stable rank 1 that A has cancelation
of projections. Together with D(A) = K+

0 (A), we have that, for the given projection p,
there is a projection s 2 A such that s is Murray–von Neumann equivalent to p � p, which
implies that there is a subprojection q 0

 s which is Murray–von Neumann equivalent to p.
Using the cancelation of projections again, we have that the complementary projection
s � q 0 is also Murray–von Neumann equivalent to p. Since A has stable rank 1, there
is a unitary u 2

˜A such that u⇤q 0u = p (i.e., q 0 and p are unitarily equivalent). Then
q = u⇤(s � q 0)u is the desired projection. ⇤

The following result deals with the case of AF-algebras.

LEMMA 9.4. Let A be an AF-algebra. Then A is stable if and only if any non-zero trace
on A is unbounded.

Proof. If A is stable, then any non-zero trace is unbounded.
If A is not stable, we construct a non-zero bounded trace on A. Write

A = lim
�!

(An, �n),

where each An =

Lln
i=1 Mmn,i (C). Then there is a projection p 2 A (one may assume that

p 2 A1) such that, for any n, there exists 1  i  ln , such that

2 · rank(⇡n,i � �1,n(p)) > mn,i ;

as otherwise, for any projection p, we can find a projection q such that p ? q and p ⇠ q.
Then it follows from [19, Theorem 3.1] that A is stable, which contradicts the assumption.

Set
⌧n =

1
mn,i

Tr � ⇡n,i : An ! C.

It is clear that ⌧n is a tracial state on An , and ⌧n(p) > 1/2. Extend ⌧n to a linear
functional on A with norm 1, and denote it also by ⌧n . Pick an accumulation point of
{⌧n; n = 1, . . . , 1}, and denote it by ⌧ . It is clear that ⌧ is a trace on A with norm at
most 1. Moreover, since ⌧n(p) > 1/2, we have that ⌧ (p) � 1/2, and thus ⌧ is non-zero.
Therefore A has a non-zero bounded trace, as desired. ⇤

THEOREM 9.5. The restriction of � on X \ Y has no finite invariant non-zero measure if
and only if C0(X \ Y ) o� Z is stable.

Proof. If (X \ Y, � ) has a finite invariant measure, then it induces a finite trace ⌧ on
C0(X \ Y ) o� Z, and hence it cannot be stable.

On the other hand, if C0(X \ Y ) o� Z is not stable, then by Lemma 9.4, there is a
bounded non-zero trace on C0(X \ Y ) o� Z. The restriction of this trace to C0(X \ Y )

induces a finite non-zero invariant measure. ⇤
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Denote by u the standard order unit of K0(C(X) o� Z), and consider the generating set

◆�1
[0, u] = { 2 K+

0 (C0(X \ Y ) o� Z) : ◆() < u} ✓ K+

0 (C0(X \ Y ) o� Z).

The set ◆�1
[0, u] is then a generating interval in sense that it is a convex upward-directed

subset which generates the whole ordered group; see [17, Lemma 17.8].
We have the following theorem.

THEOREM 9.6. The ideal C0(X \ Y ) o� Z is stable if and only if ◆�1
[0, u] = K+

0 (C0(X \

Y ) o� Z).

Proof. Assume that ◆�1
[0, u] = K+

0 (C0(X \ Y ) o� Z); that is, for any positive element
a 2 K+

0 (C0(X \ Y ) o� Z), we have that a < u in K+

0 (C(X) o� Z). Then, for any
projection p in a matrix algebra of C0(X \ Y ) o� Z, there is a partial isometry v in a matrix
algebra of C(X) o� Z such that vv⇤

= p and v⇤v  1. In particular, v⇤ pv 2 C(X) o� Z.
Since C0(X \ Y ) o� Z is an ideal, we have that v⇤ pv 2 C0(X \ Y ) o� Z. Hence [p] 2

D(C0(X \ Y ) o� Z). By Lemma 9.3, the ideal C0(X \ Y ) o� Z is stable.
If the ideal C0(X \ Y ) o� Z is stable, then, for any a 2 K+

0 (C0(X \ Y ) o� Z), there is
a projection p 2 C0(X \ Y ) o� Z such that [p]0 = a. It is clear that p < 1 in C(X) o� Z,
and therefore a = [p]0 < [1]0 = u. Hence, ◆�1

[0, u] = K+

0 (C0(X \ Y ) o� Z). ⇤

COROLLARY 9.7. The restriction of � on X \ Y has no non-zero finite invariant measure
if and only if C0(X \ Y ) o� Z is stable, if and only if ◆�1

[0, u] = K+

0 (C0(X \ Y ) o� Z),
and if and only if the extension is lexicographic.

10. Chain transitivity
10.1. Topologies on the group of homeomorphisms. Let X be a Cantor set, and let
H(X) denote the group of all homeomorphisms of a Cantor set X . Since all Cantor sets
are homeomorphic, we do not need to specify a particular Cantor set while studying the
group H(X). In particular, the Cantor set can be represented as the path space of a non-
simple Bratteli diagram.

We recall that by an aperiodic Cantor dynamical system (X, � ), we mean a
homeomorphism � of a Cantor set X such that, for any x 2 X , the orbit Orbit� (x) =

{� i (x) : i 2 Z} is infinite.
The set Ap of aperiodic homeomorphism was studied in [1, 2, 23, 24] from various

points of view. We recall here a few results that will be used below.
Fix a metric d on X compatible with the clopen topology on X . There are several

natural topologies defined on H(X); see [1, 16, 20]. The most popular one is the topology
of uniform convergence, ⌧w, that turns H(X) into a Polish group. This topology can be
defined in several equivalent ways: for instance, by the metric

D( 1,  2) = sup
x2X

d( 1(x),  2(x)) + sup
x2X

d( �1
1 (x),  �1

2 (x)),  1,  2 2 H(X).

(10.1)
Equivalently, the topology ⌧w is generated by the base of neighborhoods W =

{W ( ; E1, . . . , En)} where

W ( ; E1, . . . , En) = { f 2 H(X) : f (E1) =  (E1), . . . , f (En) =  (En)}.



40 S. Bezuglyi et al

Here  2 H(X), and E1, . . . , En are any clopen sets. Without loss of generality, we can
assume that (E1, . . . , En) forms a clopen partition of X .

If D(�n, � ) ! 0, we say that � is approximated by a sequence of homeomorphisms
(�n). We first remark that any homeomorphism of X is approximated by aperiodic
homeomorphism.

LEMMA 10.1. [1] The set Ap is dense in (H(X), ⌧w).

We introduce notation for some classes of homeomorphisms of a Cantor set X : Min
denotes the set of all minimal homeomorphisms (a homeomorphism � is minimal if every
� -orbit is dense in X ); T t denotes the set of all topologically transitive homeomorphisms
(� is topologically transitive if there exists a dense orbit); Mov is the set of all moving
homeomorphisms (a homeomorphism � 2 H(X) is called moving if, for any non-trivial
clopen set E ⇢ X , we have � (E) \ E 6= ; and E \ � (E) 6= ;). The notion of moving
homeomorphisms was defined in [1].

LEMMA 10.2. [1] The set of moving homeomorphisms is ⌧w-closed. An aperiodic
homeomorphism � is moving if and only if � can be approximated by a sequence of
minimal homeomorphisms (or topologically transitive homeomorphisms), that is, Mov =

Min⌧w = T t⌧w .

10.2. Chain-transitive homeomorphisms. Let (X, � ) be an aperiodic Cantor dynamical
system. We now recall several notions related to chains in X defined by � . A finite set
{x0, x1, . . . , xn}, where � (xi ) = xi+1, i = 0, . . . , n � 1, is called a � -chain (or simply
a chain). Given " > 0 and x, y 2 X , an "-chain from x to y is a finite sequence
{x0, x1, . . . , xn} such that x0 = x, xn = y and d(� (xi ), xi+1) < ", i = 0, . . . , n � 1. In
symbols, an "-chain from x to y will be denoted by x " y.

Given an aperiodic Cantor system (X, � ), it is said that � is chain transitive if, for any
two points x, y 2 X , there exists an "-chain from x to y.

The following result is a new characterization of moving homeomorphisms as chain-
transitive ones.

THEOREM 10.3. An aperiodic homeomorphism � of a Cantor set X is chain transitive if
and only if � is moving.

Proof. (H)) If � is not moving then there is a non-trivial clopen set E such that
� (E) ⇢ E , and F = E \ � (E) is a non-empty clopen subset (the case where E ⇢ � (E)

is considered similarly). Let x0, y0 be any distinct points from F with d(x0, y0) =

� > 0. We note that � i (x) 2 � i (E) ⇢ � (E), i > 0, for any x 2 E . Take 0 < " <

min{�, d(y0, � (E)), d(x0, � (E))} (we denote the distance between closed subsets of X
by the same letter d; it will be clear from the context which metric space is meant). Then
there is no "-chain from x0 to y0 and from y0 to x0 as well. Hence, � is not chain transitive.

((H) Conversely, let � be a moving homeomorphism of a Cantor set X , and let " be a
positive number. Take a partition of X into a finite collection of clopen sets C(i) such that
diam(C(i)) < " for any i = 1, . . . , N . We will show that, for any x, y 2 X , there is a finite
"-chain for � from x to y. Suppose x 2 C(i0) and � (x) 2 C(i1). Then any z from C(i1)
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can be considered as the target of "-chain {x, z} of length 1. So, if y 2 C(i1) we are done.
If not, we consider X \ B(1), where B(1) = C(i0). Because � is moving, the set � (B(1))

intersects X \ B(1). Let
B(2) =

[

j2I1

C( j),

where j 2 I1 if C( j) \ � (B(1)) 6= ;. If z is a point from B(2), then there exists an "-chain
from x to z of length 2. Indeed, if z 2 C( j), j 2 I1, take the "-chain {x, x1, z} where
x1 2 B(1) such that � (x1) 2 C( j). If y 2 B(2), we are done. Otherwise, we apply the
same argument to the set X \ (B(1) [ B(2)). In view of compactness of X , this procedure
terminates in a finite number of steps. This means there exists B(k) such that y 2 B(k),
that is, the point y is the final point of an "-chain of length k. ⇤

Remark 10.4. We observe that the proof of Theorem 10.3 uses essentially the topological
structure of Cantor sets, namely, the existence of partitions of Cantor sets into clopen sets
of arbitrary small diameter. Below we give another proof of the implication moving H)

chain transitivity based on Lemma 10.2.

Proof. Suppose � 2 H(X) is moving. By Lemma 10.2, for any fixed " > 0, there exists a
minimal homeomorphism f = f" such that D(�, f ) < ". Take any two points x, y 2 X .
By minimality of f , find the smallest positive k such that d( f k x, y) < ". Consider the set
I = {x = x0, x1 = f (x), x2 = f 2(x), . . . , xk = f k(x)}. We claim that I is an "-chain for
� from x to y. Indeed,

d(� (xi ), xi+1)= d(� ( f i (x)), f ( f i (x)))< sup
z2X

d(� (z), f (z))<", i = 0, 1, . . . , k � 1,

and d(xk, y) < ". Thus, � is chain transitive. ⇤

Let ChT be the set of all chain-transitive homeomorphisms. The next corollary follows
from Theorem 10.3.

COROLLARY 10.5. The set ChT of chain-transitive homeomorphisms of a Cantor set is
closed in the topology ⌧w of uniform convergence.

Since the proof of the fact that any moving homeomorphism is chain transitive, given
in Remark 10.4, does not explicitly use the fact that X is a Cantor set, we immediately
deduce the following corollary.

COROLLARY 10.6. Suppose � is a homeomorphism of a compact metric space (�, d)

which is approximated by minimal homeomorphisms, that is, limi D(�, fi ) = 0 where
each fi is minimal. Then � is chain transitive.

10.3. Homeomorphisms with finite number of minimal sets. In this subsection we
consider the case where an aperiodic homeomorphism � 2 H(X) has a finite number of
minimal sets, say Y1, . . . , Yk , that is, each Yi is a closed � -invariant set such that the orbit
Orbit� (z) is dense in Yi for any z 2 Yi . For simplicity, we will call such homeomorphisms
k-minimal.
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It worth recalling that we are dealing with indecomposable homeomorphisms � , that
is, every minimal set Y for a k-minimal homeomorphism � is not open and has empty
interior.

Given a closed subset C of X , we say that an open set V is an "-neighborhood of C if
V � C and d(C, x) < " for any x 2 V .

LEMMA 10.7. Given an aperiodic Cantor system (X, � ), let {Y↵} be the collection of all
minimal subsets for � . Let V be any clopen subset of X such that V �

S
↵ Y↵ . Then there

exist positive integers K
+

and K
�

such that

K
+[

n=0

� n(V ) = X and
K

�[

n=0

��n(V ) = X. (10.2)

Moreover, the same result is true when the above condition V �

S
↵ Y↵ is replaced by the

condition V \ Y↵ 6= ; for any ↵.

Proof. Let (X, � ) be a Cantor aperiodic dynamical system. Consider the � -invariant open
set Y =

S
n2Z �

n(V ). If the closed set X \ Y were non-empty, then it would contain a
minimal set for � ; this is impossible because all minimal sets are subsets of Y . Thus, X =S

n2Z �
n(V ); hence, by compactness, the latter is a finite union. Applying appropriate

powers of � to the above relation, we find some K
+

2 N and K
�

2 N such that (10.2)
holds. The other statement of the lemma is proved similarly. ⇤

In the case of finitely many minimal subsets, we can reformulate Lemma 10.7 in a
more appropriate form. For this purpose, we first observe the following useful fact. Let
V � Z be any neighborhood of a minimal set Z for a homeomorphism � . It is easily seen
that � n(V ) � Z (n 2 Z) because Z is � -invariant. Therefore, the following result can be
straightforwardly deduced from Lemma 10.7.

COROLLARY 10.8. Let (X, � ) be an aperiodic Cantor system with minimal sets
Y1, . . . , Yk. For any " > 0 and any clopen "-neighborhood Vi of Yi (i = 1, . . . , k), the
clopen set V =

Sk
i=1 Vi satisfies the condition

SK
+

n=0 �
n(V ) = X,

SK
�

n=0 �
�n(V ) = X for

some positive integers K
+

and K
�

.

Definition 10.9. Let Z be a fixed minimal set for an aperiodic Cantor system (X, � ). We
will say that two points x, y 2 X are chain equivalent with respect to Z if, for any " > 0,
there exist "-chains x " z0 and y " z0 where z0 is a point from Z .

We observe that if x " z0 and y " z0 for some point z0 2 Z , then x " z and y " z for
any point z because � is minimal on Z .

LEMMA 10.10. Let Z be a minimal set for an aperiodic Cantor system (X, � ), and let
x, y be any two points from X. The following statements are equivalent.
(i) The points x and y are chain equivalent with respect to Z.
(ii) For all " > 0, there exist x " z1 and y " z2 where z1, z2 2 Z.
(iii) For all " > 0 and for all "-neighborhoods V", there exist x " v1 and y " v2 where

v1, v2 2 V".
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It follows from this lemma that the chain equivalence with respect to a minimal set Z is
an equivalence relation on X ⇥ X . We denote it by E(Z).

Proof. We sketch the proof of the lemma because the technique used in the proof is quite
standard. The implications (i) H) (ii) H) (iii) are obvious, so all that remains is to show
that (iii) H) (i). To do this, it suffices to notice that, by minimality of � on Z , there exists
a point z 2 Z (in fact, z can be any point from Z ) such that v1

" z and v2
" z. The result

then follows Definition 10.9. ⇤

PROPOSITION 10.11. Suppose Z is a unique minimal set for an aperiodic
homeomorphism � of a Cantor set X. Then E(Z) = X ⇥ X. In other words, any two
points in X are chain equivalent with respect to Z. Moreover, � is chain transitive.

Proof. The fact that E(Z) = X ⇥ X follows directly from Lemmas 10.7 and 10.10 because
the � -orbit of any clopen neighborhood of Z covers X after finitely many iterations.

Take any two points x, y in X . Let " > 0, and let V" be an "-neighborhood of Z . We
consider the case where x, y 2 X \ Z ; the other possible cases are considered similarly
with obvious simplifications. By Corollary 10.8, we find positive integers K

+
and K

�

such that
K

+[

n=0

� n(V") =

K
�[

n=0

��n(V") = X.

Let i be the smallest number from the set (0, 1, . . . , K
�
) such that x 2 ��i (V"), and let j

be the smallest number from the set (0, 1, . . . , K
+
) such that y 2 � j (V"). To construct a

chain C from x to y, we first find two points w 2 Z and z 2 Z such that d(w, �� j (y)) < "

and d(� i (x), z) < ". Then we take the set

C = (x, � (x), . . . , � i (x), z, � (z), . . . , �m(z), �� j (y), �� j+1(y), . . . , y),

where m is the smallest positive integer such that d(�m(z), w) < ". Then C is a 2"-chain
for � . This proves the chain transitivity of � . ⇤

Remark 10.12. (1) It follows from Theorem 10.3 that if (X, � ) is an aperiodic Cantor
system with a unique minimal set, then � is a moving homeomorphism.

(2) Another simple observation from the proved result is the fact that any aperiodic
homeomorphism with a unique minimal set is the limit of a sequence of minimal
homeomorphisms in the topology of uniform convergence ⌧w.

Dynamical properties of an aperiodic Cantor system (X, � ) become more complicated
when the system has several minimal sets Y1, . . . , Yk .

Let Ei be the subset of X defined as follows:

Ei = {x 2 X : 8" > 0 9 x " z for some z 2 Yi }, i = 1, . . . , k. (10.3)

We observe that Ei contains Yi ; moreover, Ei is the E(Yi )-saturation of the set Yi . The
latter means that Ei is the minimal E(Yi )-invariant set such that every E(Yi )-orbit meets Z
at least once.

LEMMA 10.13. In the above notation, each Ei is a clopen subset of X, i = 1, . . . , k.
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Proof. First we show that Ei is open. For x 2 Ei and " > 0, take an "-chain (x =

x0, x1, . . . , xn = z) from x to z 2 /Yi . We prove that there exists a neighborhood V of
x such that V ⇢ Ei . Choose � > 0 such that d(� (x), � (y)) < "/2 when y 2 V := {u :

d(x, u) < �}. Then, for any y 2 V , we see that (y, x1, . . . , xn) is an "-chain from y to z.
Next, let (u(n)) be a sequence from Ei that converges to some point x . Suppose that for

each u(n) there is an "-chain (u(n), x1(n), . . . , z(n)) from u(n) to Yi . Choose n0 such that
d(� (u(n0)), � (x)) < "/2. Then (x, x1(n), . . . , z(n)) is an "-chain from x to Yi . Hence,
Ei is closed. ⇤

Consider an aperiodic Cantor system (X, � ) with finitely many minimal sets
Y1, . . . , Yk , and let E1, . . . , Ek be the clopen sets defined by minimal sets according
to (10.3). Then, by Proposition 10.11, we have

X =

k[

i=1

Ei .

LEMMA 10.14. In the above notation,

Ei \ E j 6= ; H) Ei = E j , i, j = 1, . . . , k.

Proof. It follows from Proposition 10.11 that, for any " > 0, each set Ei , and any two
points x, y 2 Ei , there exists an "- chain from x to y. Thus, if xi 2 Ei , x j 2 E j are arbitrary
points and y 2 Ei \ E j , then there are "-chains xi

" z j and x j
" zi where zi 2 Yi and

z j 2 Y j . ⇤

THEOREM 10.15. Suppose � is an aperiodic homeomorphism, and Y1, . . . , Yk are
minimal sets for � on a Cantor set X. Then (X, � ) is chain transitive if and only if
E1 = · · · = Ek = X.

Proof. Let � be a chain-transitive homeomorphism. Fix Ei and take any point x 2 Ei .
Then, for any " > 0 and y j 2 E j , there exists an "-chain from x to y j , j = 1, . . . , k.
Hence, x 2 E j for all j = 1, . . . , k. This proves the first statement.

The converse statement follows from Lemma 10.14. ⇤

The properties of homeomorphisms with finitely many minimal sets are clearly seen for
Vershik maps defined on k-minimal Bratteli diagrams. We obtain the following result from
Theorem 10.15.

COROLLARY 10.16. Let B = (V, E, >) be a k-simple ordered Bratteli diagram and let
(X B, !B) be a Bratteli–Vershik k-minimal dynamical system defined on the path space
of B. Then �B is a chain-transitive homeomorphism.

Acknowledgements. Part of this work was carried out in 2010–2011 when the third
named author was a postdoctoral fellow at the Memorial University of Newfoundland;
the second and third named authors are grateful for the support of a start-up grant from the
Memorial University of Newfoundland. The work of the second named author is partially



C*-algebras of a Cantor set 45

supported by an NSF grant (DMS-1800882). The first named author thanks the University
of Wyoming for its warm hospitality during his visits.

REFERENCES

[1] S. Bezuglyi, A. H. Dooley and J. Kwiatkowski. Topologies on the group of homeomorphisms of a Cantor
set. Topol. Methods Nonlinear Anal. 27(2) (2006), 299–331.

[2] S. Bezuglyi, A. H. Dooley and K. Medynets. The Rokhlin lemma for homeomorphisms of a Cantor set.
Proc. Amer. Math. Soc. 133(10) (2005), 2957–2964.

[3] S. Bezuglyi and O. Karpel. Bratteli diagrams: structure, measures, dynamics. Dynamics and Numbers
(Contemporary Mathematics, 669). American Mathematical Society, Providence, RI, 2016, pp. 1–36.

[4] S. Bezuglyi, J. Kwiatkowski and K. Medynets. Aperiodic substitution systems and their Bratteli diagrams.
Ergod. Th. & Dynam. Sys. 29(1) (2009), 37–72.

[5] S. Bezuglyi, J. Kwiatkowski, K. Medynets and B. Solomyak. Finite rank Bratteli diagrams: structure of
invariant measures. Trans. Amer. Math. Soc. 365(5) (2013), 2637–2679.

[6] S. Bezuglyi, J. Kwiatkowski and R. Yassawi. Perfect orderings on finite rank Bratteli diagrams. Canad. J.
Math. 66(1) (2014), 57–101.

[7] S. Bezuglyi and R. Yassawi. Orders that yield homeomorphisms on Bratteli diagrams. Dyn. Syst. 32(2)
(2017), 249–282.

[8] O. Bratteli. Inductive limits of finite dimensional C*-algebras. Trans. Amer. Math. Soc. 171 (1972),
195–234.

[9] I. P. Cornfeld, S. V. Fomin and Y. G. Sinaı̆. Ergodic Theory (Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences], 245). Springer, New York, 1982.
Translated from the Russian by A. B. Sosinskiı̆.

[10] K. R. Davidson. C*-Algebras by Example (Fields Institute Monographs, 6). American Mathematical
Society, Providence, RI, 1996.

[11] T. Downarowicz and O. Karpel. Dynamics in dimension zero: a survey. Discrete Contin. Dyn. Syst. 38(3)
(2018), 1033–1062.

[12] F. Durand. Combinatorics on Bratteli diagrams and dynamical systems. Combinatorics, Automata and
Number Theory (Encyclopedia of Mathematics and its Applications, 135). Cambridge University Press,
Cambridge, 2010, pp. 324–372.

[13] G. A. Elliott. Automorphisms determined by multipliers on ideals of a C*-algebra. J. Funct. Anal. 23(1)
(1976), 1–10.

[14] G. A. Elliott. On the classification of inductive limits of sequences of semisimple finite-dimensional
algebras. J. Algebra 38(1) (1976), 29–44.

[15] T. Giordano, I. F. Putnam and C. F. Skau. Topological orbit equivalence and C*-crossed products. J. Reine
Angew. Math. 469 (1995), 51–111.

[16] E. Glasner and B. Weiss. Topological groups with Rokhlin properties. Colloq. Math. 110(1) (2008), 51–80.
[17] K. R. Goodearl. Partially Ordered Abelian Groups with Interpolation (Mathematical Surveys and

Monographs, 20). American Mathematical Society, Providence, RI, 1986.
[18] R. H. Herman, I. F. Putnam and C. F. Skau. Ordered Bratteli diagrams, dimension groups and topological

dynamics. Internat. J. Math. 3(6) (1992), 827–864.
[19] J. v. B. Hjelmborg and M. Rørdam. On stability of C⇤-algebras. J. Funct. Anal. 155(1) (1998), 153–170.
[20] M. Hochman. Genericity in topological dynamics. Ergod. Th. & Dynam. Sys. 28(1) (2008), 125–165.
[21] J. Janssen, A. Quas and R. Yassawi. Bratteli diagrams where random orders are imperfect. Proc. Amer.

Math. Soc. 145(2) (2017), 721–735.
[22] H. Lin and M. Rørdam. Extensions of inductive limits of circle algebras. J. Lond. Math. Soc. (2) 51 (1995),

603–613.
[23] K. Medynets. Cantor aperiodic systems and Bratteli diagrams. C. R. Math. Acad. Sci. Paris 342(1) (2006),

43–46.
[24] K. Medynets. On approximation of homeomorphisms of a Cantor set. Fund. Math. 194(1) (2007), 1–13.
[25] M. Pimsner. Embedding some transformation group C*-algebras into AF-algebras. Ergod. Th. & Dynam.

Sys. 3(4) (1983), 613–626.
[26] Y. T. Poon. Stable rank of some crossed product C*-algebras. Proc. Amer. Math. Soc. 105(4) (1989),

868–875.
[27] Y. T. Poon. AF subalgebras of certain crossed products. Rocky Mountain J. Math. 20(2) (1990), 527–537.



46 S. Bezuglyi et al

[28] I. F. Putnam. The C*-algebras associated with minimal homeomorphisms of the Cantor set. Pacific J. Math.
136(2) (1989), 329–353.

[29] I. F. Putnam. On the topological stable rank of certain transformation group C*-algebras. Ergod. Th. &
Dynam. Sys. 10(1) (1990), 197–207.

[30] M. A. Rieffel. Dimension and stable rank in the K-theory of C*-algebras. Proc. Lond. Math. Soc. (3) 46(2)
(1983), 301–333.

[31] M. Rørdam, F. Larsen and N. J. Laustsen. An Introduction to K-Theory for C*-Algebras (London
Mathematical Society Student Texts, 49). Cambridge University Press, Cambridge, 2000.


