Ergod. Th. & Dynam. Sys. (First published online 2020), page 1 of 46*
doi:10.1017/etds.2020.12 © The Author(s) 2020. Published by

Cambridge University Press
*Provisional—final page numbers to be inserted when paper edition is published

C*-algebras of a Cantor system with finitely
many minimal subsets: structures,
K-theories, and the index map

SERGEY BEZUGLYIt, ZHUANG NIU# and WEI SUN§

T University of lowa, Iowa City, IA 52242, USA
(e-mail: sergii-bezuglyi@uiowa.edu)
1 Department of Mathematics, University of Wyoming, Laramie, WY 82071, USA
(e-mail: zniu@uwyo.edu)
§ Department of Mathematics, East China Normal University, Shanghai 200062, China
(e-mail: wsun@math.ecnu.edu.cn)

(Received T April 2019 and accepted in revised form 15 January 2020)

Abstract. We study homeomorphisms of a Cantor set with k (k < +00) minimal invariant
closed (but not open) subsets; we also study crossed product C*-algebras associated to
these Cantor systems and certain of their orbit-cut sub-C*-algebras. In the case where
k > 2, the crossed product C*-algebra is stably finite, has stable rank 2, and has real rank
0 if in addition (X, o) is aperiodic. The image of the index map is connected to certain
directed graphs arising from the Bratteli—Vershik—Kakutani model of the Cantor system.
Using this, it is shown that the ideal of the Bratteli diagram (of the Bratteli—Vershik—
Kakutani model) must have at least k vertices at each level, and the image of the index
map must consist of infinitesimals.

Key words: operator algebras, topological dynamics, K-theory, Cantor systems, index map
2010 Mathematics Subject Classification: 46L.35, 37B05 (Primary)

Contents
1 Introduction 2
2 Preliminaries and notation 4
3 Cantor system with finitely many minimal subsets 7
4  The K-theory of Ay 11
5  k-simple Bratteli diagrams and Bratteli—Vershik models 13
6  From Cantor systems to Bratteli—Vershik models 20
7 Transition graphs of a k-simple ordered Bratteli diagram and the index maps 25



2 S. Bezuglyi et al

8 Realizability of a Bratteli diagram 32
9 Cantor system with one minimal subset 36
10 Chain transitivity 39
Acknowledgements 44
References 45

1. Introduction

The paper is devoted to the study of interactions between topological dynamical systems on
a Cantor set and C*-algebras. There are several constructions of operator algebras arising
from dynamical systems in the frameworks of measurable or topological dynamics, and the
most important one is the concept of crossed product operator algebras which originated
in the work of von Neumann. It is fascinating to see how dynamical properties reveal
themselves in the corresponding operator algebras. On the other hand, ideas and methods
used in operator algebras can lead to new approaches and information for the study of
dynamical systems. We mention here that Bratteli diagrams (one of the central objects of
our paper) are proved to be an effective tool in dynamics.

A topological space is called Cantor if it is compact, metrizable, totally disconnected,
and has no isolated points. Any two Cantor sets are homeomorphic. A Cantor system
(X, o) consists of a Cantor set X and a homeomorphism o : X — X. A closed subset
Y C X is said to be invariant if ¥ = o (Y). It follows from Zorn’s lemma that any system
(X, o) has minimal non-empty closed invariant subsets (called minimal components). If
X is the only non-empty closed invariant subset, the system (X, o) is said to be minimal.
This means, in other words, that, for every x € X, the o-orbit of x is dense in X. In
this paper, we will focus on non-minimal homeomorphisms of a Cantor set. Our primary
interest is the case where a homeomorphism ¢ has finitely many minimal components
Y1, Ya, ..., Y. These subsets are necessarily disjoint. There are several natural classes
of homeomorphisms which have this property, such as interval exchange transformations
(treated as Cantor dynamical systems) and aperiodic substitutions; see [4, 5, 9].

If some of the minimal component, say Y;, is open, then both ¥; and X \ ¥; are again
Cantor sets (they are compact, metrizable, totally disconnected, and have no isolated
points). Since Y; and X \ ¥; are invariant under o, the whole system (X, o) can be
decomposed into the Cantor systems (Y;, ) and (X \ Y;, o), where (¥;, ) is minimal,
and (X \ Y;, o) has k — 1 minimal components.

Thus, in this paper, we will assume that (X, o) is indecomposable, that is, none of
the ¥; are open. Our aim is to study C*-algebras associated to (X, o). For this, we use
the existence of a Bratteli—Vershik—Kakutani model of (X, o) constructed by a sequence
of Kakutani—Rokhlin partitions. Our main interest is in the properties of the C*-algebras
associated to a Cantor system (X, o) with finitely many minimal sets. In this paper, we
apply the methods developed in K-theory and Bratteli diagrams. Note that the case of
minimal homeomorphisms has been extensively studied in earlier papers (see, in particular,
[10, 15, 18, 26-29] where various aspects of the theory of C*-algebras corresponding to
minimal homeomorphisms are discussed).

It is well known that if (X, o) is minimal, then the crossed product C*-algebra
C(X) x Z is isomorphic to an inductive limit of circle algebras (AT algebra); see [28].
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This is still true if there is only one minimal component. However, once there are at least
two minimal components, the C*-algebra C(X) x Z is no longer an AT algebra. In fact,
in this case, the C*-algebra C(X) x Z is a stably finite C*-algebra with stable rank 2;
moreover, it has real rank 0 if (X, o) is aperiodic. (See Corollary 7.11; see also [26].)

In the case of minimal dynamical systems, it is also well known that each minimal
Cantor system (X, o) has a Bratteli—Vershik—Kakutani model; see [18]. Moreover, the
(unordered) Bratteli diagram appears in the Bratteli—Vershik—Kakutani model must be
simple, and any (non-elementary) simple Bratteli diagram can be ordered to have a
continuous Bratteli—Vershik map.

In the case of Cantor systems with £ minimal components, it turns out that any
such system still has a Bratteli—Vershik—Kakutani model (see §6); and very naturally,
the (unordered) Bratteli diagram that appears in the Bratteli—Vershik—Kakutani model is
k-simple (Definition 5.1)—or, roughly speaking, it has k sub-diagrams which are simple,
and each of them corresponds to one of the minimal components.

However, unlike the simple case, to assign an order to a given (unordered) k-simple
Bratteli diagram with k > 2 so that the Bratteli—Vershik map is continuous is in some
sense restrictive (see Definition 5.3), and is even impossible for some (k-simple) Bratteli
diagrams. Therefore, not all k-simple Bratteli diagrams can arise from a Cantor system.
For more details on orders on Bratteli diagrams, see [6, 7, 15, 18, 21, 23].

It turns out that these constrains on the Bratteli diagrams can be connected to the crossed
product algebra C(X) x Z and the associated C*-algebra extension

0—>CO(X\U Yl-) Mo Z——> C(X) 3o Z—> D C(¥) %10 Z — 0.

The index map of the extension above,
k
K1<€B CY;) %y Z) N K0<C0(X\ U Yk) " Z),
i i=1

turns out to have an image isomorphic to Z*~! (in particular, the index map is non-zero if
k>?2).

To connect the index map to Bratteli diagrams, we introduce a sequence of finite
directed graphs (transition graphs; see Definition 7.1) for the ordered Bratteli diagram
which represents the given Cantor system (X, o). Then the index map can be recovered
from these transition graphs (Theorem 7.5). Using this connection as a bridge, we show
that elements in the image of the index map must be infinitesimals (Corollary 7.9). The
transition graphs are also used in §8 to characterize the (unordered) Bratteli diagrams
which appear in the Bratteli—Vershik—Kakutani construction (Theorems 8.1 and 8.2).
Relative results on graphs associated to Bratteli diagrams also can be found in [6, 7].

The paper is organized as follows. In §2 we include several definitions and facts from
K-theory and Cantor dynamics that are used in the main part of the paper. In §3 we discuss
basic properties of the crossed product C*-algebras, generated by homeomorphisms o
with finitely many minimal components. Using the Pimsner—Voiculescu six-term exact
sequence, we show (in §3.3) that the index map is non-zero if the Cantor system (X, o)
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contains more than one minimal component, and hence in this case the crossed product
C*-algebra cannot be AT, in contrast to the case of minimal Cantor systems. The K-theory
of the Putnam’s orbit-cutting algebra Ay, where ¥ C X is a closed set with non-empty
intersection with each Y;,i =1, . . ., k, is considered in §4 (for instance, Y can be Ui Y).
A dynamical system description of Ko(Ay) is given in Theorem 4.4.

In §5 we introduce k-simple ordered Bratteli diagrams. These are Bratteli diagrams
with k simple quotients, but with more compatibility conditions on the order structure
(see Definition 5.3). With these conditions, the Bratteli—Vershik map is then continuous,
and the induced Cantor system is indecomposable and has k¥ minimal components. Then,
in §6, we also show that these k-simple ordered Bratteli diagrams (with the Vershik maps)
are exactly the Bratteli—Vershik—Kakutani models for arbitrary indecomposable Cantor
systems with £ minimal components.

The compatibility conditions on the k-simple ordered Bratteli diagram actually are very
rigid on the underlining (unordered) Bratteli diagram, and they have deep connections to
the index map of the C*-algebra extension associated with the Cantor system. In §7 we
build this bridge by means of transition graphs (Definition 7.1). It is a sequence of finite
directed graphs produced from the given k-simple ordered Bratteli diagram, and it actually
provides a combinatorial description of the index map (Theorem 7.5). As consequences,
when k > 2, the Ko-group of the canonical approximately finite (AF) ideal of C(X) x Z
must contain infinitesimal elements, it has rational rank at least k, and the C*-algebra
C(X) x Zis stably finite. Together with [26, Corollary 2.6], this provides natural examples
of stably finite C*-algebra with stable rank 2 and real rank 0.

We use transition graphs again in §8 to describe which unordered Bratteli diagram can
carry a Cantor system with k£ minimal components. With the help of the Euler walk, this
question can be answered in a special case (Theorem 8.2).

In §9 we consider Cantor systems with only one minimal component. In this case, the
crossed product C*-algebra is an AT algebra, and hence the Ko-group is a (not necessarily
simple) dimension group. We study the connection between its order structure and the
boundedness of the invariant measures concentrated on the complement of the minimal
components.

In §10 we focus on topological properties of Cantor dynamical systems with
finitely many minimal components. We discuss the notions of chain-transitive and
moving homeomorphisms (the latter was introduced in [1]). We give a necessary and
sufficient condition for a non-minimal homeomorphism to be chain transitive; see
Theorem 10.15. In particular, we show that any k-minimal homeomorphism is chain
transitive (Corollary 10.16).

2. Preliminaries and notation

2.1. Cantor systems. By a Cantor dynamical system (X, o), we mean a Cantor set X
together with a homeomorphism ¢ : X — X. A closed set Y C X is said to be invariant
if 0(Y) =Y, and a closed invariant set is said to be minimal if it is non-empty and does
not contain any closed invariant subsets other than itself and #. By Zorn’s lemma and
the compactness of X, minimal invariant subsets always exist; let us call them minimal
components. In this paper we only consider Cantor systems with finitely many minimal
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components, unless other properties of ¢ are explicitly specified. A Cantor system is said
to be aperiodic if X does not contain any periodic points of o.

2.2. Ordered Bratteli diagrams.  Let us recall some definitions and notation on Bratteli
diagrams which are crucial in Cantor dynamics for constructing models for given
transformations. For more details, we refer to [3, 11, 12] where various combinatorial
and dynamical properties of simple and non-simple Bratteli diagrams are discussed.

Definition 2.1. A Bratteli diagram is an infinite graph B = (V, E) such that the vertex set

V =,>0 V" and the edge set E = J,.o E" are partitioned into disjoint subsets V" and

E" where:

i) VO={y}isa single point;

(ii)) V"™ and E" are finite sets, for all n > 0;

(iii) there exist r : E — V (range map r) and s : E — V (source map s), both from
E to V, such that r(E")=V"tl §(E")=V" (in particular, s~!(v) #¢ and
r @) #£@forallve Vandv eV \ Vo).

The structure of every Bratteli diagram B is completely determined by the sequence of
incidence matrices (Fy). By definition, the incidence matrix F, has entries

fv("u)) =|{ecE,:s(e)=w,re)=v}, veEVu, weV,

A Bratteli diagram B is called stationary if F, = F) for all n, and B is of finite rank if
there exist d € N such that |V, | < d for all n.

In what follows, we will constantly use the telescoping procedure. A telescoped Bratteli
diagram preserves all properties of the initial diagram so that it does not change its
dynamical properties.

Definition 2.2. Let B be a Bratteli diagram, and no=0<n; <ny <--- be a strictly
increasing sequence of integers. The felescoping of B to (ny) is the Bratteli diagram B’,
with V" being the i-level vertex set (V') and the edges between (V') and (V')*! being
finite paths of the Bratteli diagram B between n;-level vertices and n;-level vertices.

For a Bratteli diagram B, the tail (cofinal) equivalence relation £ on the path space X p
is defined as follows: xE&y if there exists m € N such that x, =y, for all n > m, where
X = (xX), y = (Yn)-

A Bratteli diagram B is called aperiodic if every £-orbit is countably infinite.

LEMMA 2.3. Every aperiodic Bratteli diagram B can be telescoped to a diagram B’ with
the property [r='(v)|>2,ve V\ V%and |s~'(v)|>2, ve V\ V"

Remark 2.4. Given an aperiodic dynamical system (X, o), a Bratteli diagram is
constructed by a sequence of refining Kakutani—Rokhlin partitions generated by (X, o)
(for details, see [18, 23]). The nth level of the diagram, (V", E"), corresponds to the
nth Kakutani—Rokhlin partition, and the cardinality of the set E(vg, v) of all finite paths
between the top vg and a vertex v € V" is the height of the o-tower labeled by the symbol
v from that partition. We will give more details of this construction in §6.
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Definition 2.5. A Bratteli diagram B = (V*, E) is called ordered if there is a linear order
‘>’ on every set 7 1 (v), v € Unzl V. We also use > to denote the corresponding partial
order on E and write (B, >) when we consider B with the order >.

Every order > defines the lexicographic ordering on the set E(k, ) of finite paths
between vertices of levels V¥ and V/: we say that

(er+1s---ve) > (fewts oo os fD)

if and only if there is i with k +1 <i </ suchthate; = f; fori < j <[, and ¢; > f;. It
follows that, given the order >, any two paths from E (vg, v) are comparable with respect
to the lexicographic ordering generated by >. If two infinite paths are tail equivalent, and
agree from the vertex v onwards, then we can compare them by comparing their initial
segments in E(vg, v). Thus > defines a partial order on X p, where two infinite paths are
comparable if and only if they are tail equivalent.

With every Bratteli diagram B, one can associate the dimension group Kp. This is
defined as the direct limit of groups Z!'»! with a sequence of positive homomorphisms
generated by incidence matrices Fj:

Kp = lim (zYal L 7Vanl),
n—0o0
Then Kp is an abelian partially ordered group with the distinguished order unit
corresponding to V0. These groups play a prominent role in the classification of AF
algebras and Bratteli diagrams; see, for example, [8, 14, 15].

In particular, it is well known that, for Bratteli diagrams B; and B,, if K, =Kgp,
(as order-unit groups), then there is a Bratteli diagram B such that both By and B; can be
obtained from B by the telescoping operations.

2.3. Crossed product C*-algebras and K-theory. ~ Consider a compact Hausdorff space
X and consider a homeomorphism o : X — X. Let C(X) denote the C*-algebra of
complex-valued continuous functions on X. Then the homeomorphism o induces an
automorphism of C(X) by f +— f oo~ =& (f), which is also denoted by o. The crossed
product C*-algebra C(X) x, Z is defined to be the universal C*-algebra generated by
C(X) and a canonical unitary u satisfying

w fu=o(f), [feCX).
In other words, the crossed product C*-algebra is defined by
C(X) X Z:=C*f,u; f€eCX),uu* =u*u=1,u"fu=foo '}.

This concept is defined and studied in many books on operator algebras; see, for instance,
[10, Ch. VIII].
Applying the Pimsner—Voiculescu six-term exact sequence to C(X) X, Z yields

Ko(C(X)) ——7 Ko(C(X)) — Ko(C(X) x4 Z)

| e

K1 (C(X) %6 Z) < K (C(X)) < ——— Ki(C(X)),
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where Ko(A) and Kj(A) are respectively the Ko-group and K;-group of a C*-algebra A.
In (2.1), [o]o and [o]; denote the maps between the Ko-groups and K;-groups induced
by o, respectively.
In the case where X is a Cantor set, we have K;(C(X)) = {0}; hence, it follows from
(2.1) that
Ko(C(X) Xo Z) = Ko(C(X))/(1 — [0]0) (Ko(C(X))), (2.2)
and the group
K (C(X) x5 Z) =ker(1 — [0]o) 2.3)

consists of o -invariant functions.

A closed two-sided ideal of a C*-algebra A is a sub-C*-algebra I € A such that
TACTI and AICI.If Y C X is a closed subset, then Co(X \ Y) is an ideal of C(X).
If, moreover, Y is invariant (i.e., 0(Y) =7Y), then Co(X \ Y) is a o-invariant ideal of
C(X), and therefore Co(X \ Y) X, Z is an ideal of C(X) X, Z with quotient canonically
isomorphic to C(Y) X, Z. That is, we have a short exact sequence of C*-algebras:

0——=Co(X\Y) g Z——C(X) Xg Z—C(Y) g Z—0O.
In general, for any C*-algebra extension

0 I A A/l 0,

we have the six-term exact sequence

Ko(1) Ko(4) Ko(A/I)
Ki(A/I) Ki(4) Ky (1)

The map K{(A/I) — Ko(I) is called the index map, and the map Ko(A/I) — K;(I) is
called the exponential map.
For more information about the K-theory of a C*-algebra, see, for instance, [31].

3. Cantor system with finitely many minimal subsets
3.1. Crossed product C*-algebra associated to o. Recall that, for a topological
dynamical system (X, o) (X is not necessarily a Cantor set), a closed subset Y is minimal
if Y is a closed invariant non-empty subset and Y is minimal among these subsets. Minimal
subsets always exist, and each pair of them is disjoint.

Let (X, o) be a topological dynamical system with only kK minimal subsets Y7, ..., Y.
We then have the short exact sequence

0 —>C0(X\ U Yi) Xo Z——C(X) g Z—> ED C(¥}) 3y Z—0. (3.1)

LEMMA 3.1. Let Yy, ..., Y be all the minimal subsets of (X, o). Suppose that U C X is
an open set suchthat U NY; #0,i=1,2, ..., k. Then U?‘;_Oo o/ (U)=X.
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Proof. We first note that if an open set V intersects a minimal set Y, then the orbit of V
contains Y. Consider the open invariant subset

o]

AL U aj(U).

j=—00

If Z were a proper subset of X, then X \ Z would be a non-empty invariant closed subset
of X, and hence it must contain a minimal subset Y. But this minimal subset is disjoint
with every set Y, . .., Y. This contradicts the assumption that Yy, Y», ..., Y} are all the
minimal components. Therefore, Z = X, as desired. O

Remark 3.2. 1t follows from Lemma 3.1 that, for any open subset U 2 Ul- Y;, we have
that 72, o/(U) = X.

LEMMA 3.3. Under the assumption that all proper minimal components for (X, o) are
not clopen sets, every minimal component Y has empty interior.

Proof. Suppose Y has a subset U which is open in X. Since Y is minimal and compact,
there exists N such that Y = U;V=7 N o/ (U). Hence Y is open in X, which contradicts the
assumption. O

COROLLARY 3.4. Let Yy, ..., Yy be minimal subsets for (X, o). If none of the Y; is
clopen, then the ideal Cy(X \ Ui Y;) is essential in C(X).

PROPOSITION 3.5. Let « be an action of Z on a C*-algebra A, and let I be an invariant
ideal. If I is essential in A, then I X, Z is essential in A Xq Z.

Proof. Consider the conditional expectation
E:A ><1aZ9a|—>/oz,*(a)dteA,
T

where o/ is the dual action of «. Note that EE is faithful.

Let a be a positive element in A x4 Z with a(I x4 Z) = {0}. Then, for any b € I, we
have that ab = 0. Since b € I C A, we also have that E(ab) =E(a)b = 0. Since E(a) €
A and b is arbitrary, we have that E(a) = 0. Since E is faithful, we have that a =0, as
desired. a

COROLLARY 3.6. For (X, o) as above, if none of Y1, ..., Yy is clopen, then the ideal
Co(X \ U, Yi) %5 Zis essential in C(X) Xo Z.

3.2. AF sub-C*-algebras. We return to the case where the compact topological space
X is a Cantor set. Then each minimal subset Y;,i =1, . . ., k, is a Cantor set or consists of
a periodic orbit. Indeed, to see this, suppose that a minimal set, say Y7, contains an isolated
point x. Then Orbit(x) is an open set (relative to Y1), and therefore Orbit(x)\Orbit(x) is
an invariant closed subset of Y;. Since Y is minimal, we have that Y; = Orbit(x), and then
a standard compactness argument shows that Y7 consists of a periodic orbit.
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LetY € X be aclosed subset with Y NY; #@,i =1, ..., k. By Lemma 3.1, we have
that U?ifoo af(U) = X for any clopen set U 2 Y. Then, by [27, Lemma 2.3], the sub-
C*-algebra

Ay :=CHg, fu; g, f €CX), fly =0} S C(X) x5 Z
is AF-dimensional.
In particular, fix y; € ¥;,i =1, 2, ..., k, and define
Ay =CHg, fus g, f€CX), fOi)=0,i=1,....k} SCX) x5 Z
The C*-algebra Ay, .y, is AF, and hence the ideal Co(X \ U; Yi) %o Z is also AF; see
[13, Theorem 3.1].

,,,,,

3.3. Index maps. The six-term exact sequence associated to (3.1) is

KO(CO(X\U Y,») g Z) —  Ko(C(X) %y Z) ———— @ Ko(C(Y;) %, Z)

1

/ |

@ K1 (C(Y;) Mg Z) ~<——— K (C(X) 3y Z) ~<—— K (CO(X\U Y,) g Z) = {0}

(3.2)
Since the restriction of ¢ to each Y; is minimal, it follows from (2.3) that
Ki(C(Y:) %o Z) = Z,

which is generated by the K;-class of the canonical unitary of C(Y;) %, Z. Also note that
(X, o) is indecomposable, that is, the only clopen o-invariant subsets are X and #J. Then
the only invariant Z-valued continuous functions on X are constant functions, and then, by
(2.3) again, we obtain that

Ki(C(X) x¢ Z) =Z,
which is generated by the K;-class of the canonical unitary of C(X) x, Z.

THEOREM 3.7. If a Cantor system (X, o) is indecomposable and has k minimal
components, then the image of the index map Ind is isomorphic to ZF=': in particular,
the index map is non-zero if k > 2.

Proof. Note that the canonical unitary of C(X) X, Z is sent to the canonical
unitaries of C(Y;) s Z, i =1, 2, ..., k. Therefore, the index map K;(C(X) Xy Z) —
PF_, Ki(C(Y;) %, Z) in (3.2) is given by
Z31e>(1,...,1)eZk,
and hence
k
Image(Ind) = <@ K (C(Y}) xo Z))/Kl(C(X) Xg Z)Z7F)7(1,1, ..., 1), (3.3)
i=1

which is isomorphic to Z*~! and is non-zero if k > 2. O

An abelian group G is said to have Q-rank r if the vector space G ® Q has dimension
r over Q. Then another consequence of equation (3.3) is the following theorem.
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THEOREM 3.8. The Q-rank of the group Ko(Co(X \ Ui Y)) X Z) is at least k — 1.

Remark 3.9. The lower bound of the Q-rank of Ko(Co(X \ ; ¥i) %o Z) will be improved
to k in Corollary 7.10.

For a clopen set U C X, denote by xy the characteristic function of the set U; note that
xu € C(X). Also note that any continuous integer-valued function on X which vanishes
on Ule Y; induces a Ko-class of the C*-algebra Co(X \ Ule Y;) and hence induces a
Ko-class of the C*-algebra Co(X \ Uf-‘zl Y;) X Z by the embedding of Co(X \ Ule Y.

THEOREM 3.10. Consider the minimal components Y;,i =1, ..., k, and choose pairwise
disjoint clopen sets U; D Y;. Define

d; :=[xv; — xv; 00 'lo € Ko (CO(X\ U Yl-) Mo Z).

(Note that each integer-valued continuous function Xy, — Xy, ©0  vanishes on
Ule Yi.) Then d; is independent of the choice of U;. Moreover, dy =0 ifk =1. If k > 2,

1

then
k
Z di =0,
i=1
and the sum of any proper subset of {dy, da, . . ., di} is non-zero.

Proof. Consider
Vi = Xy u+ Z xu; € C(X) %4 Z,
j#i
where u is the canonical unitary of C(X) X, Z. Then it is a lifting of the canonical unitary
of C(Y;) X, Z. Since v; v? = Zl;zl Xu; (so v; is a partial isometry) and

vivi =u"xuu +Z XU; = Xuoo ! +ZXUJ-,
J# J#

the index of the canonical unitary of C(Y;) X4 Z is given by

k
[1—vfvilo — [1 = vvflo = [1 - <XU,— oo+ XU,-):| - [1 - <Z XUj)i|
J# 0 j=1 0
= [XU,‘ — XU; © 0'_1]0
=d;.
Therefore, d; is the image of the K;-class of the canonical unitary of C(Y;) X, Z under
the index map. The theorem then follows from the six-term sequence (3.2) and (3.3). O

COROLLARY 3.11. The C*-algebra C(X) X4 Z is an AT-algebra (i.e., it is the inductive
limit of F ® C(T), where F is a finite-dimensional C*-algebra and T is the unit circle) if
and only ifk = 1.

Proof. By [22, Theorem 5], an extension of AT algebras is AT if and only if the index
map is zero, and by Theorem 3.7, this holds if and only if k = 1. O
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Remark 3.12. For the case k > 2, we will show later (see Corollary 7.11) that the
C*-algebra C(X) X Z is stably finite, has stable rank 2, and has real rank O if the Cantor
system is aperiodic.

4. The K-theory of Ay
In this section we study a general Cantor system (X, o). Let Y € X be a closed subset of
X which satisfies the property that, for any open subset U containing Y,

Jeo"w)=x.

nez
Such sets are called basic in [23]. In particular, in the case where X has k minimal subsets
Y1, ..., Y, the set Y can be any closed subset with Y NY; #0,i=1, ..., k. By [27,
Theorem 2.3], Ay is an AF-algebra. We will calculate the Ko-group of Ay in this section,
and show that it can be identified with a certain ordered group related to the dynamical
system (X, o).

First, let us recall the following result.

PROPOSITION 4.1. ([26, Proposition 3.3], [28, Theorem 4.1]) For Y chosen as above,
there is an exact sequence

0——C°(X,7Z) ——=C(Y, Z) LN Ko(Ay) . Ko(C(X) x4 Z) — 0,
4.1
where C° (X, Z) is the group of o-invariant integer-valued continuous functions on X, o
is the restriction map, and

B(f)=lg—goo']
for some g € C(X, Z) with gly = f. In particular, if (X, o) is indecomposable, that is,
any o -invariant clopen subset is trivial, then C° (X, Z) = Z, and (4.1) is transformed to

0——=7Z—2CW,7) —ﬁ>K()(Ay) L>K0(C(X) Xg Z) — 0. “4.2)
Let us define an ordered group from the dynamical system setting.
Definition 4.2. Let (X, o) be a Cantor system, and let Y € X be a closed subset. Define
K)(X,0)=C(X,Z)/{f — foo™"; feC(X, D), fly =0},
and set
KX, o)t ={f: f =0, f e C(X, Z)} SK} (X, ).

Note that C(X, Z) = Ko(C(X)) as ordered groups (the positive cone of C(X, Z)
consisting of positive functions). Then the embedding C(X) C Ay induces a map 6 :
C(X,7Z) — Ko(Ay). Moreover, a direct calculation shows that if f € C(X, Z) with
fly =0, then

O(f — foo H=0.
Therefore, 6 induces a map from K?,(X , o) to Ko(Ay) which sends K°(X, o)t to the
positive cone of Ko(Ay).

By (2.2), we have

0——={f—fool; feC(X, 7)) —= C(X,Z) —2> Ko(C(X) xg Z) —0,
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and therefore, there is an exact sequence
0 ——> H —KJ(X, 0) —> Ko(C(X) %, Z) — 0, 4.3)

where

o (f — foo™l; feC(X, 7))
T {f—foo i feCX, T, fly =0}

For any f € C(X, Z), define n(f — f oo ~") to be the restriction of f to Y. This
induces an isomorphism from H to C(Y, Z)/a(C° (X, Z)), which is also denoted by 7.
Indeed, if

f—foai1 =g—goail,
then
f-g=(f—-go".
Thatis, f — g € C° (X, Z), and hence 0 is well defined. It is also clear that 7 is a bijection,
and thus an isomorphism.

LEMMA 4.3. With notation as above, the following diagram commutes:

0 H K9 (X, 0) —> Ko(C(X) Xy Z) —>0
| | |
0 ——C(, Z)/a(C° (X, Z)) . Ko(Ay) L Ko(C(X) %o Z) —0
In particular, the map 0 is an isomorphism.

Proof. To prove this, we only have to verify the commutativity for the first square. Pick
any f — f oo~ ! € H. Then we have

B(f = foo ) =B(fl)=1f — foo™]
and
0(f —foo H=[f—foo 'l
as desired. Since the map n is an isomorphism, by the five-lemma, the map 6 is also an
isomorphism. O
Moreover, the map 6 is in fact an order isomorphism.
THEOREM 4.4. The map 6 induces an order isomorphism

K)(X, o), KY(X, 0)", 1) = (Ko(Ay), K (Ay), [1a,]).

Proof. We need to show that O(K(I), (X,0)") = K(—;_(Ay). It is clear that the image of
K(l), (X,0)t isin K(T (Ay). On the other hand, using the AF-decomposition of Ay, it is
clear that any positive element in Ko(Ay) comes from a positive integer function on X. O

Assume that (X, o) is indecomposable. Let W € W5 be closed subsets of X. Then we
have
0— K —=K}, (X, 0) —= K, (X, 0) —0, (4.4)
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where
k= foo i feCX, D), flw =0}
{f —foo™l; feCX, D), flw, =0}
For any f € C(X, Z), define

n(f = foo™) = flw,.
Note that this map is well defined. We also define
C(Wa, W1, Z) :={f € C(W2, Z), flw, =0}.
Then we can prove the following statement.
LEMMA 4.5. If (X, o) is indecomposable and Wy # W, the map n induces an isomorphism
n:K— CW,, Wi, Z).
Proof. Let us first check that the map 7 is well defined. Indeed, if
(f—foo™H—(g—goo )=h—hoo™!
for some f, g, h € C(X, Z) with f|w, = g|lw, =0 and h|w, =0, then
(f=g=h=(f~-g=—moo™".

Since (X, o) is indecomposable, there is no invariant clopen subset of X, and hence
f — g — h is a constant function. Since W; # § and the restrictions of f, g, h to Wy are
zero, we have that

f=g+h

The condition &|w, = 0 implies that
f|W2 = g|W2;

that is, the map n is well defined.
It is clear that 7 is surjective. If n(f — f o 0~') =0, then flw, = 0; that is, the map n
is also injective, and hence it is an isomorphism. O
Thus, the exact sequence (4.4) can be written as
—1

0 —= C(Wa, Wi, Z) — K3, (X, 0) —= K, (X, o) —=0, (4.5)

and. applying Theorem 4.4, we obtain the following statement.

THEOREM 4.6. For any non-empty closed subsets Wi C W, which are basic, we have
0 ——> C(Wa, Wi, 2) —> Ko(Aw,) — > Ko(Aw,) —=0,  (46)
where B(f) =g — g oo~ ! for some g € C(X, Z) with glw, = f.

5. k-simple Bratteli diagrams and Bratteli—Vershik models
In this section we shall introduce certain ordered Bratteli diagrams which will be used to
model Cantor systems with finitely many minimal subsets.
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5.1. k-simple Bratteli diagrams. Let us now introduce a special class of Bratteli
diagrams. This class of Bratteli diagrams will serve as models for Cantor systems with
finitely many minimal components.

Definition 5.1. Let k € N. A Bratteli diagram B = (V, E) is said to be k-simple if, for each

n > 1, there are pairwise disjoint subsets V{, ..., V' of V" such that:

(1) foranyl<i<kandanyve VI-”H, we have that s (r "1 (v)) C v,

(2) for any 1 <i <k and any level n, there is m > n such that each vertex of Vlm is
connected to all vertices of V.

Moreover, denote V) = V" \ (V' U---U V") forn > 1.

(1) The diagram B is said to be strongly k-simple if, for any level n, there is m > n such
that if a vertex v € V" is connected to some vertex of V', then v is connected to all
vertices of V.

(2) The diagram B is said to be non-elementary if, for any V', there is m > n such that
the multiplicity of the edges between V! and V" is either O or at least 2.

A dimension group G is said to be (strongly) k-simple if G = Kp for some (strongly)
k-simple Bratteli diagram.

Remark 5.2.
(1) To clarify the meaning of Definition 5.1, we make the following observations.
(a) The diagram B consists of k many simple sub-diagrams B;, i =1, ..., k,

constructed on the sequence of vertices (V;"); there are no edges connecting
different sub-diagrams. The part of the diagram whose infinite paths eventually
go through vertices of V! for sufficiently large n constitutes an open invariant
set which does not contain minimal subsets.

(b) Without loss of generality, we can assume that V' #@; otherwise the
corresponding Bratteli—Vershik system would be decomposable.

(¢) The part of the diagram B defined by (V)') induces an ideal of the
corresponding AF-algebra. Strongly k-simple diagrams correspond to the case
where the ideal is simple.

(d) A k-simple Bratteli diagram B is non-elementary if and only if the infinite-path
space does not have isolated points (so it is a Cantor set). To guarantee that a
Bratteli diagram is non-elementary it suffices to require that for every infinite
path x = (x;) there are infinitely many edges x,, such that |s~! (r (x,,))| > 1.

(2) Let B be a k-simple Bratteli diagram. Then the sub-diagram restricted to the vertices
in V!, denoted by Ip, induces an ordered ideal K;, € Kp such that Kp/K;, =

@f-;l G, where G; are simple dimension groups induced by the restriction of B to

the vertices in V/*. Moreover, the diagram B is strongly k-simple if and only if K;,

is a simple dimension group; it is non-elementary if and only if K;, has no quotient

which is isomorphic to Z, and if and only if the space of infinite paths through the
sets V' is a locally compact Cantor set.

An ordered Bratteli diagram B = (V, E, >) is a Bratteli diagram with (partial) order
> on E so that two edges e and ¢’ are comparable if and only if r(e) =r(e’); see
Definition 2.5. Denote by Enax and Ep;i, the sets of maximal edges and minimal edges,
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respectively. This partial order induces a lexicographical partial order on paths (infinite
or finite). Denote by Xmax and Xpin the set of maximal infinite paths and the set of
minimal infinite paths, respectively. Also note that if B’ is the Bratteli diagram obtained by
telescoping on B, the lexicographic order on B’ makes it into an ordered Bratteli diagram
canonically.

Definition 5.3. An ordered Bratteli diagram B = (V, E, >) is called k-simple (with a
slight abuse of notation) if it satisfies the following conditions.
(1) The unordered Bratteli diagram B = (V, E) is k-simple in the sense of
Definition 5.1.
(2) There are infinite paths zj max, - - - » Zk,max a0d Z1,min, - - - » Zk,min Such that, for any
levelnand 1 <i <k,
{Ztr'l,min’ Ztr'l,max} c th

and

Xmax = {Zl,maXa ey Zk,max}»
Xmin = {Zl,minv ey Zk,min}-

By this condition and Lemma 5.5 below, there is L such that, for all n > L and any
v e V), the maximal edge (or minimal edge) starting with v backwards to v will
end up in VI-l for some 1 <i <k.Denote my(v) =i (orm_(v) =1).

(3) Forany v e V], we have
(a) if eis an edge with s(e) = v, then

m_(s(e +1)) =my (v)

(if e € Emax, the vertex s(e + 1) is understood as s(e’ + 1) with ¢ a non-
maximal edge starting with e and ending at some level m > n—such an edge
exists and m_(s(e + 1)) is well defined, by Condition (2)); and

(b) ifeisanedge with e ¢ Enax, r(e) =v and s(e) € Vi"_1 with n > 3, then

m_(s(e+ 1)) =i.

If, in addition, the unordered Bratteli diagram (V, E) is strongly k-simple, then B is said
to be a strongly k-simple ordered Bratteli diagram.

Remark 5.4. Note that if k = 1, then condition (3) is redundant. Moreover, condition (3)
is preserved under telescoping.

LEMMA 5.5. Any ordered Bratteli diagram satisfying condition (2) of Definition 5.3 can
be telescoped to an ordered Bratteli diagram satisfying the following condition: if e and
e’ are in Emax (0 Emin) with r(e) = s(e’), then e is in Xmax (07 Xmin)-

Proof. The proof is similar to that of [18, Proposition 2.8]. Let T denote the graph obtained
from Epmax by deleting zi max, - - - , Zk.max- By Condition (2), each connected component
of T is finite.

Let np = 0. Having defined ny, choose ny1 so that no vertex in V,,, is connected to all
vertices of V;, .. Contract the diagram to the subsequence {ny; k > 0}. Then this diagram
satisfies the lemma. a
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Recall that two ordered Bratteli diagrams B; and B; are equivalent if there is an ordered
Bratteli diagram B such that B; and B, can be obtained by telescoping on B.

LEMMA 5.6. Let B=(V, E, >) be a k-simple ordered Bratteli diagram. Then it is

equivalent to a k-simple Bratteli diagram B’ = (V', E', >') satisfying the following

conditions:

(1) ife € E|, withr(e) € V), then s(e) ¢ V, (so the edge e in condition (3a) cannot be
a maximal edge in B');

(2) foranyl <i <kandanyn > 1, each vertexv € (V')
ofwe (V) and

(3) if B is strongly k-simple, then, for any n > 1, each vertex of v € (V' )ﬁ'” is connected
to all vertices of (V')! (and hence to all vertices of (V')").

Moreover, if B is an unordered k-simple Bratteli diagram, then it is equivalent to an

unordered k-simple Bratteli diagram B’ which satisfies conditions (2) and (3).

;’ +is connected to all vertices

Proof. Condition (1) follows from Lemma 5.5. Since B is k-simple, by (2) of
Definition 5.1, condition (2) can also be obtained by a telescoping of B.

If B is strongly k-simple. Then B can be telescoped further so that if a vertex v € VO"J“1
is connected to a vertex of V', then it is connected to all vertices of V. For condition (3)
we need to find an equivalent Bratteli diagram B’ so that each vertex v € (V’)’;Jrl is
connected to all vertices of (V')".

For each n > 1, write

n+l1 __ nn+1 nn+1 n+1 n+1
vV, ={()] ""’(v)rn+1’vl ,...,vth}

where the vertices v; are not connected to V. Denote by w’f, e, w[" the vertices from V"
which are not in V. Interpolate levels n and n + 1 of B as follows. Consider the vertices

on . ..n n n+l n+1

Vicwl,...,w o, ot ®
The map from V" — V" is defined as the identity if restricted to w’l“, oo wi (in VY,
and the original map (defined by edges of B) if restricted to vi’“, cee v,’iill Define the
map from V,, — V"*! as the original map if restricted to (v/)’]”l, R (v’);‘ntll, and the
identity if restricted to vi’“, cees v;:tll (in V;,41). This can be illustrated by the following

diagrams. The original maps

wy \ wi (U,)?\ (U,):l of >< vy
wn+1 . wn+1 (v’)7L+1m\(1)/>nH Un+1 e 1}"+1
1 1 1 T 1 s

are interpolated into

wvlz L. wln (’UIM)' R (U,)" ,lez .. @;1

l r
id \ ><
) a1 . vn+1

id

o+l . n+1 nn+1 . N\n+1 a1 . n+1
oy ()1 (v") v v
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Put an order on this enlarged Bratteli diagram as follows. Consider a vertex of level V.
If it is one of the w;’, i=1,...,1, then there is only one edge connecting it backwards,
and so just put the trivial order; if it is one of the vf“, s=1,...,s, then the edges
backwards are exactly the same edges backwards as in the original Bratteli diagram, and
so just put the same order as in the original Bratteli diagram. Put the order similarly for
vertices of level V. Then it is straightforward to check that its telescoping into the levels
V" is exactly the original ordered Bratteli diagram B.

Denote by B’ the telescoping of this diagram into the levels V" Note that the vertices of
(V')§ only consist of vi’“, e, v;”;ll, and hence B’ is a k-simple ordered Bratteli diagram
satisfying condition (3). It follows from Lemma 5.5 that conditions (1) and (2) can also be
satisfied by a further telescoping. O

Remark 5.7. In the rest of the paper, we always assume that strong k-simple Bratteli
diagrams satisfy conditions (1), (2), and (3) of Lemma 5.6.

Example 5.8. The following is an example of a strongly 2-simple ordered Bratteli diagram
(with level O omitted):

] Q O ]
2|1 42 2| @ 1|2
] QO O ]
2|1 4R 2| 4 12
] Q O ]
2|1 4R 2| 4 12
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5.2. Bratteli-Vershik map. Let B be a non-elementary ordered k-simple Bratteli
diagram, and denote by X p the space of infinite paths of B. For each finite path &, we
will denote by xg the cylinder set consisting of all paths starting with £. Then Xp is a
Cantor set with topology generated by these cylinder sets because the cylinder sets are
clopen X p.

Let us adapt the well-known construction of the Vershik map o : Xp — Xp of the
simple case to the case of k-simple Bratteli diagrams. Let £ = (¢!, £2,...) € Xp with
each& e E.Ife = Zi.max for some 1 <i <k, then define

o) = G(Zi,max) = Zi,min-

Otherwise, set

d(€) = max{m; €', ..., ") € Emul,
and for any vertex v at level n, set ryin(v) € Erlmrll1 the minimal edge with range v. Then
define
Fmin(S(E9®) + 1)) ifn <d (),
o(§)(n)=1&"+1 ifn=4d(§),
&n ifn>d)+1.

LEMMA 5.9. The map o : Xp — Xp is a homeomorphism.

Proof. Define a map t: Xp — Xp as follows. Let £ = (€', €2, ...) € Xp with each
EeE.IfE = Zimin for some 1 <i <k, then define

o) = G(Zi,min) = Zi,max-
Otherwise, set
c(®) =max{m; (', ..., £""") € Emin}.

and for any vertex v at level n, set rmax(v) € Erlngx the maximal edge with range v. Then

define
Fmax (S(EC®) + 1)) ifn < d(&),

T€)(n)=1&" -1 if n=4d(§),
g" ifn>dE&)+1.

Then it is straightforward to calculate that o o T = 7 0 0 = id, and thus the map o is one-
to-one and onto.

Since Xp is a compact metrizable space, to show that o is a homeomorphism, it is
enough to show that ¢ is continuous. It is clear that o is continuous ateach £ € Xp \ Xmax.
Consider z; max and a sequence &; — z; max With & ¢ Xax. Let N € N. Then there is J
such that, for any j > J,

£j(n) =zimax(n) foralll <n <N.
Pick an arbitrary &; with j > N, and put
M =max{n; E(n') € Enax, Y0’ <n}.
Note that M > N. If r(§;(M + 1)) € VM*2, then

O'(Ej)(n) = Zi,min(”) = O—(Zi,max)(n) foralll<n <M —-2.
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Ifr(gj(M + 1)) € VME2\ | J; VM T2 and £;(M + 1) € Epax then, by condition (3a),
0()(M) =zimin(n) =0 (Zimax)(n) foralll<n <M —1.

If 7(£;(M + 1)) € VMF2\ |, VYT and £;(M + 1) ¢ Epmax then, by condition (3b),
we still have that

o)) = Zimin(n) =0 (Zimax)(n) Tforalll <n <M —1.

Since M > N, we have that o(§;) is in the (N — 1)-neighborhood of z; min for any
J = J, and hence the map o is continuous at z; max, as desired. a

THEOREM 5.10. The Bratteli-Vershik system (X g, o) has k minimal subsets.

Proof. For each 1 <i <k, denote by Y; the closed subset corresponding to the paths
{z; 7" € Vl.”}. It follows from condition (1) that Yy, ..., Y; are closed invariant subsets.
By condition (2), the sets Y7, . . ., Y are minimal. Note that z; max € Y¥; for each i, and the
orbit of z; max is dense in Y;.

Let U be any minimal invariant closed non-empty subset of X p.

Pick any point x = (x1, x2, ...) € U, and fix n € N such that the n-neighborhoods

of each z; max are pairwise disjoint. The finite path (x1, ..., x,41) has finitely many
successors in Py ,41. In particular, its ith successor is maximal in Py, for some i,
and therefore ai(x) =(f1, ..., fa+1) with (f1, ..., fa+1) maximal. Since the diagram
satisfies Lemma 5.5, the finite path (fi,..., f,) is in Xpax, and hence in the
n-neighborhood of z; max for some i.

Therefore, at least one of {z1 max. - - - , Zk,max} 18 in the closure of the orbit of x, and
hence U has to contain one of {Yy, ..., Yx}. Since U is also minimal, it has to be one of
{Y1, ..., Y}, as desired. O

Consider the C*-algebra Ay, ., and write V" = {v1, ..., vjyn|}. For each v;, denote
by f{ <. o< flf the finite paths ending at v; (they form a totally ordered set). Consider

v
. % li—1
F, .:@C*{Xfli,xfliu,...,Xf]iu JS Ay -
i=1

LEMMA 5.11. The sub-C*-algebras {F,} have the following properties:

M) F =@y M, ©)

2 IS - CFRCFn<

3) U, Fuisdensein Ay, . .,

(4) the Ko-map induced by the inclusion F,, C F,41 is the same as the multiplicities
between V" and V"1

Proof. Property (1) is clear and property (3) is standard (see, for example, [27]). Let us
show properties (2) and (4).

Let f be a minimal finite path with end point v. Assume that v is sent to vy, ..., v,
with multiplicity my, ..., m; at level n + 1. Consider yx ful with [ strict smaller than the



20 S. Bezuglyi et al

number of paths ending at v, and denote the edges between v and v; by fli <. < f,ﬁ,l_.
Then

l m
xpu' = (Z > Xff,’f)”l
i=1 j=I
[ m;
= Z Z(u*)j_l)(ffliuj_lul

i=1 j=1

l m
= Z Z((u*)J_lXffli)(Xffli“l+j_1) € Fyt1.
i=1 j=1
Thus, F,, € F41.
Let us calculate the Ko-map. Applying the equation above for / = 0, we have

[ m [
D=0 D L@ i g T= Y mil il
i=1 j=1 i=1
Since the standard generators of Ko(F,,) are [x r], the Ko-map agrees with the multiplicity
map between V" and ynt+l as desired. ]

As a straightforward corollary, we have the following result.
THEOREM 5.12. Denote by Kp the dimension group associated with B. We then have
KO(Ayl ..... yk) = KB

as ordered groups.

6. From Cantor systems to Bratteli—Vershik models

In this section we shall show that any Cantor system (X, o) with finitely many minimal
components can be modeled by the Bratteli—Vershik map on an ordered k-simple Bratteli
diagram as introduced in the previous section (see Theorems 6.5 and 6.7 below). Results
of this kind, based on sequences of Kakutani—Rokhlin partitions, have been discussed in
a number of papers; see, for example, [4, 18, 23]. Nevertheless, it will be useful for the
reader to see a complete proof where all details are clarified.

We first show that if, for a given Cantor system (X, o), a sequence of Kakutani—Rokhlin
partitions satisfies certain conditions, then it determines an ordered Bratteli diagram B.
Then we prove that if (X, o) has kK minimal subsets, then B is a k-simple Bratteli diagram,
described in §5.

Definition 6.1. A Kakutani—Rokhlin partition of (X, o) consists of pairwise disjoint
clopen o -towers
& :={Z(U, j1=j=JD}, 1=<I=<L,

of height J (/) such that:

) ZA, HNZd, j)y=90,j#]"

2 U,;Z,;=X;and

3) o(Zd,j)=2Z(, j+1)forany 1 < j < J().
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Remark 6.2. Denote by Z = Jj—, Z(l, J(1)). Then

L
UJze.n=02).

=1
LEMMA 6.3. [18, Lemma4.1] Let Z be a clopen subset such that y; € Z forany 1 <i <k,
and let & be a partition of X into clopen sets. Then there is a Kakutani—Rokhlin partition

{(Zd, j; 1<I<L,1<j=<JD}
of X which is finer than &7 and Z = U1L=1 Z{1, J()).

Proof. By Lemma 3.1, we have that X = J)__, o/(Z) for some N. Applying o~ on
both sides, we have that
o
X:Ua"(Z). 6.1)
i=0

For each x € Z, define
r(x) =min{i > 1; o' (x) € Z}.

By (6.1), the map r : Z — N is well defined. Moreover, the map r is continuous. Write
r(Z2)={J(), J©2), ..., J(D)},

and define '
zZ(d, jy=a/ I D).

It is clear that the sets {Z(l, j)} are clopen and satisfy condition (3). We show that
they form a partition of X. If x € Z(l1, j1) N Z(l2, j»), then there are y; € r~1(J (1)) and
y2 € r~1(J(l»)) such that

alt(y1) = 02 (y2).

If j1 > j2, then
o Ry =y er l(Jh) C Z,

which contradicts y; € rl (J(l)). If j1 < jo, the same argument leads to a contradiction.
If ji1 = j», then we have that y; =y, and hence /1 =[. Thus, the collection {Z(l, j)}
consists of pairwise disjoint sets.

For any x € X \ Z, consider

n=min{i >0; 0 ' (x)€Z} and m=min{i >0; o' (x) € Z}.
By Lemma 3.1, such n and m exist. Note that m, n > 1 and
o "x)er tm+n+1).

Therefore, x € Z(l, n) with J(I) =m +n + 1.
For any x € Z, consider

n=min{i > 1; 0 " (x) € Z).
Then we have that r (o =" (x)) = n and

xeZd, J{1)) (6.2)
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for [ with J(I) = n. Hence {Z(l, j)} is a partition of X, and it actually forms a Kakutani—
Rokhlin partition of X with respect to .

It is clear that Ul Z(, J()) € Z for any 1 <[ < L by the construction. On the other
hand, it follows from (6.2) that Uz Z(l, J()) 2 Z, and hence we have

Uzew.san=z
1

Once we have a Kakutani—Rokhlin partition of X with respect to o, a similar argument
to that of [28, Lemma 3.1] shows that {Z(l, j)} can always be modified further so that
{Z(l, j)} is finer than the given partition . a

THEOREM 6.4. [18, Theorem 4.2] There are Kakutani—Rokhlin partitions of X,

such that:

(1) the sequence (Z,, := UIL:(r{) Z(n,l, J(n,l))) is a decreasing sequence of clopen sets
with intersection {y1, y2, . . ., Yk}, where the points {y1, y2, ..., Yk} are chosen in
minimal components Y1, . . ., Yy, respectively;

(2) the partition P, 11 is finer than the partition 2,; and
3) U, P generates the topology of X.

Proof. Choose a sequence of clopen sets Z; 2 Z, O - - - with ﬂn Zn={y1,y2, -+ Yk}
and a sequence of finite partitions (7)) such that UZ?), generates the topology of X. By
Lemma 6.3, there is a Kakutani—Rokhlin partition &7 :={Z(1, [, j); 1 <l <L(1),1<
j <J(, D}suchthat | J, Z(1,1, J(1, 1)) = Z; and & is finer than &7].

Assume that the Kakutani—Rokhlin partitions &y, . . ., &2,_ are constructed. Then, by
Lemma 6.3, there is a Kakutani—Rokhlin partition &2, :={Z(n, [, j); 1 <I <L), 1<
Jj <J(n, D} suchthat | J; Z(n, I, J(n,1)) = Z, and P, is finer than &, vV &, _;. Then
(Py) is the desired sequence of Kakutani—Rokhlin partitions. O

Based on the sequence of Kakutani—Rokhlin partitions, e cab construct an ordered
Bratteli diagram B = (V, E, >) following the procedure described in [18, §4].

For convenience, we may assume that L(0) =1, J(0, 1) =1, and Z(0, 1, 1) = X. The
set of vertices V" of the diagram B is formed by the towers in the Kakutani—Rokhlin
partition £Z,,. To define the set of edges, we say that there is an edge between a tower
(vertex) Si”*l at level n — 1 and a tower (vertex) S}’ at level n if é;? pass through El."*l.
More precisely, for each n, we have

V'={(n, 1), @, 2),...,(n, Ln))}
and
E'={n LU, jNZwn, U, j '+ ) CZmn—1,1, h)¥Vj=1,...,J(n—1,D).
Then the source and range maps are

s(in, LU, j ) =m—1,1)
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and
r((n, LU, j))=Wm1).

The order on the edges comes from the natural order on each tower {Z(n, [, j); j=
1,..., J(n, D}. That is,

(n, 11, U, j)) > (n, b, ', j5) ifand only if j| > j;.

THEOREM 6.5. Let (X, o) be a Cantor dynamical system with k minimal sets Y1, . . ., Y.
The ordered Bratteli diagram B = (V, E, >), constructed as above, is non-elementary,
and satisfies conditions (1)—(3) of Definition 5.3, that is, B is a non-elementary k-simple
ordered Bratteli diagram.

Proof. Foreachn and 1 <i <k, set
Vii={n,1);YiNZ(n,l, j)#P@forsomel <j<J(n )}
Note that since Y; is invariant,
Vi={n0; YiNnZn Il j)#VV1 <j<J@n D}

Since Y; are pairwise disjoint, by choosing n sufficiently large, we have that
{Vi, Vi, ..., V['} are pairwise disjoint.

Consider an edge (n, [, ', j') with its range (n, [') € V. Then Z(n, l’, j) NY; # { for
alll < j < J(n, ), and thus

Zn—1,1, HNY;: #0

forall 1 <j<J(m—1,1). That is, the vertex (n — 1, [) is in Vl.”fl. Hence the Bratteli
diagram satisfies Condition (1) of Definition 5.1.

Note that the restriction of ¢ to Y; is minimal. Thus, Condition (2) of Definition 5.1 also
holds. That is, the unordered diagram (V, E) is k-simple, and this verified condition (1)
of 5.3.

Let ((n, Iy, I}, j))) be an infinite path in Ep;,. Since it is an infinite path, we have
that [! | =1,. Since (n, I, I;,, j,) is minimal, we have that j;, = 0. Hence Z(n, I,,, 1) C
Z(n—1,1,-1, 1) for any n, and thus

00 oo ,L(n)

() Z®, 1, 1) < (U Z(n, 1, 1)) = (o), 0 (32, -+, oK)}

n=1 n=1 ‘=1
By the construction of Z(n, [, j), this is finer than any given partition &?’. Therefore the
intersection ﬂ;’;l Z(n, I,, 1) is a single point, and there is 1 <i < k such that

o0

() 2@, Lo, 1) =0 (30).

n=1
This uniquely determines /,, and thus there are at most k infinite minimal paths. On
the other hand, for each y;, the infinite sequence ((Z(n, [,;, 1))) with o (y;) € Z(n, I, 1)
clearly forms a minimal path. Thus, there are k minimal paths.

A similar argument shows that there are also X maximum paths. Therefore, the ordered

Bratteli diagram (V, E, >) satisfies condition (2) of Definition 5.3.
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Foreach 1 <i <k and each n > 1, define
J(n,l)

Noi= | U z@.np.

(n,hevt j=1
Then each N, ; is a clopen neighborhood of ¥;, and N, 1, . .., N, i are pairwise disjoint.
Consider a vertex (a tower) (n,l) € V, \ (V['U---U V). Note that if n >2, by
condition (1) of Theorem 6.4, there is one and only one 1 <i <k and one and only one
1 < j <k such that

Z(n,1,1) S Ny_1; and Z(n. 1, J(n, 1)) S Ny_y ;.
Then, by the definition,
m_((n,D))=i and my((n,l))=j.
Let (n + 1,1, 1, j) be an edge such that

Zn+ LU, +)H<CZm, 1, ), j=1,...,Jm0D.

Then
s(m+1,L0, 1)) =W0m,1.

Note that there is Z(n, ") such that

Zn+ 1L, +Jm, D+ )H<CZm, 1", j), j=1,...,J@n1).
Then
m+1,0L0U, jH+1=m+1,1"1j+Jn]D)
and
s(n+1,L0U, jHh+1D)=01").
If

Zn,l, J(n,1)) S Ny—1s and Zn, I, J(n,1)+1) S Ny_14,
for some 1 <, t <k, then
Zn+ 1,0, j'+Jmn+1)CNy—1s and Zn+ 1,0, j'+Jn+1)+1) < Ny_1,.
But

Zn+ LU j +Jm+ D+ ) =0Zn+ 1,1, ]+ Jn+1)+1),

and this forces s = ¢, that is,

m_(s(n+1,L1, jH+1D))=m_((n,1")=t=s=my((n, D).
This shows condition (3a) of Definition 5.3.

Condition (3b) of Definition 5.3 can also be verified in a similar way. O

Applying the same argument as that of [18, Theorem 4.4], we can prove the following
statement.

THEOREM 6.6. Given (X, o) and the points y1 € Y1, . .., Yk € Yi, the equivalent class of
the ordered Bratteli diagram B constructed in Theorem 6.5 does not depend on the choice
of Kakutani—Rohklin partitions.

THEOREM 6.7. There is a one-to-one correspondence between the equivalence classes of
non-elementary k-simple ordered Bratteli diagrams and the pointed topological conjugacy
classes of Cantor systems with k minimal invariant subsets.
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7. Transition graphs of a k-simple ordered Bratteli diagram and the index maps
7.1. Transition graphs associated to Bratteli diagrams. Consider a k-simple ordered
Bratteli diagram B = (V, E, >). Condition (3) of Definition 5.3 is necessary for the
continuity of the associated Bratteli—Vershik map. Based on this continuity condition, we
will introduce a sequence of directed graphs for B, and it turns out that these graphs are
closely related to the index map of the short exact sequence (3.1) associated to the Bratteli—
Vershik system (Xp, o) (see Theorem 7.5). Moreover, we will be able to obtain certain
combinatorial properties of these graphs and the Bratteli diagram B from the information
on the index map.

In the next definition, we use the word ‘vertex’ for a Bratteli diagram and for a transition
graph. It should be clear from the context which vertex is considered.

Definition 7.1. Let B = (V, E, >) be a k-simple ordered Bratteli diagram. For each level
n > 2, define the transition graph L, to be the following directed graph: the vertices of L,
correspond to the minimal sets Y1, . . ., Yi, and the edges are labeled by the vertices from
the set V. For each v € V], the edge v starts from Y; and ends at Y; if and only if

m_(v)=i and my(v)=].

Example 7.2. For the diagram considered in Example 5.8, we obtain the following
transition graph at level n:

V2

U1

LEMMA 7.3. Let ve V) =V" \Ufle V' and let e € Epin with r(e) =v and s(e) €
Vi"_l. Take v' € V' and ¢’ € E with r(¢’) =v' and s(e') = v. Then, for any ¢ € E
withr(e”) =v' and e’ < €, there is a path (vy, . .., v;) in L, with vi = v which starts at
Y; and ends at Y, (s(e7)).-

Proof. Since ¢’ < ¢”, there are

1 2 d
HetVs ey (e @) el Dy ey
—_—
G Gy Gy

with each eﬁ.s) an edge between level n — 1 and level n such that:

(1) each group Gy consists of all edges with range v; € V";
(2) inside each group Gy, we have

egs) < eé”(: egs) + D)< < ef,f»?(: e’(:j_l + 1);

3) eV =e,¢” € Epinand r(e”) = s();
(4) there are edges g, . . ., gs connecting v, to v’ respectively such that

d=gi<pEgat+h<gpE=ap+D < <gi=gi-1+D<gatl=e"



26 S. Bezuglyi et al

Then each group G, represents an edge in L, if vy € V" \ UI;'=1 V;’. Moreover, if v, €
V;’ for some j, by condition (3b) of Definition 5.3, then m_(vs4+1) = j. Thus, if one
deletes these v, € V;’ for some j, the remaining vertices induce a path in L.

It is clear that the path starts with Y;. The end point of the path is Y}, (y,). Then it
follows from condition (3a) of Definition 5.3 and condition (4) above that

Yy o) = Ym_(s(ga+1) = Ym_(s(e”))s

as desired.
The argument can be illustrated by the following diagram:

e@\ Y ¥ 6m
e =q Js ga "

' |

COROLLARY 74. Let B=(V, E, >) be a k-simple non-elementary ordered Bratteli
diagram with k > 2, and let L, denote the transition graph of B at level n. If there is an
edge v that has the vertex Y; as the source point, then there is a closed walk (v1, . .., v;)
in L, (so the range point of v is Y;).

Proof. Without loss of generality, assume that the vertex Y is a source point. Then there
arev e V" \ Uf-‘zl V" and e € Enin such thatr(e) = vands(e) € Vl”_l. Since the diagram
is non-elementary, by condition (2) of Definition 5.1, there is v’ € V7+1 guch that

|Eyy i =1{e € E;s(e)=v,r(e) ="} > 2.

Pick ¢/, ¢’ € E, ,y with ¢’ < ¢”. Then, by Lemma 7.3, there is a path in L,, staring at Y|
and ending at Y,,, () = Y1, and it is the desired loop. O

7.2. Index maps and transition graphs.  In this subsection we shall give a description of
the images of the index maps (see Theorem 3.10) using the transition graphs.

Consider a k-simple non-elementary ordered Bratteli diagram B = (V, E, >), and
consider the associated Cantor system (X g, o). Note that the ideal Co(Xp \ Uf:l Yi) X Z
has an AF-structure arising naturally from the sub-diagram of B with vertices {V) : n =
1,2, ...}. In particular, its Ko-group is naturally isomorphic to the dimension group of the
sub-diagram of B with vertices {V :n =1, 2, ...}. With this identification, we have the
following theorem.
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THEOREM 7.5. Let Y; be a minimal component of (X, o), and let L, be the transition
graph of B at level n. Denote by E.(Y;) the set of edges of L, which have Y; as source,
and denote by E_(Y;) the set of edges of L, which have Y; as range. Write

E (Y)= {va, R v;'}
and
E_(Y))={v,....v}
That is,
\ n B /
,US /US
v v
/ 1 1 \

Let d; be the element of Theorem 3.10 associated to Y;. Then d; is given by
(ev?, + “ o _’_ev;r) — (evl, + PN +ev;)’
where e, stands for (0,...,0,1,0,...,0) € @Vn Z with entry 1 at the position v.

Proof. Consider the set U C X p consisting of all infinite paths which are in Y¥; up to level
n — 1. It is clear that U is a clopen set containing Y;. By Theorem 3.10, the element d; is
given by

[xv — xv oo™ o =xv — Xow)lo-

Denote by vy, ..., v, the vertices in V! connecting to Y;; and for each 1 < [ <h,
define
E :={ecE;r(e)=v, s(e) € VI."_l}
and
i _
0 Dy = e € Er e ¢ Emax, sle+ 1) g V'),
i _
g gV) = (e € Eye ¢ Emin, ste — 1) ¢ V1.

Since the number of edges jumping into E; is the same as the number of edges being
pushed out of E;, we have

mp =rj if |[(E; N Emax) U (E; N Ein)| € {0, 2},
mp+1=r if (E; N Emax) Z@but E; N Enpin = 0, (7.1)
my=r;+1 if (E; N Emax) =@ but E; N Ein # 0.

For each e € E|, define x_(e) to be the cylinder set consisting all infinite paths starting
with we with w the minimal finite path ending at s(e). Note that, for any ey, e € Ej,

ey :=[x-(elo=[x-(e2)lo=(,...,0,1,0...,0) € @ Z C Ko(1), (7.2)
Ve

where the 1 is in position v;.
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We then assert that

h
!
X — Xowy =9 (x-&) + -+ x-(g")
=1

h
=0 D A+ D+ 1) (7.3)
=1

In fact,
XU — Xo(U) = XU\o(U) — Xoa(U)\U-

Then the assertion follows from the equations

h
l
XU\o(U) = Z(xf(gi Nt x-(gP)
=1

and b
I
Xownu = P =P+ D+ 4 x(fD + 1),
=1
which can be verified straightforwardly.
Then, by equations (7.1) and (7.2), we have

[xv — xeawlo

h
=)+ -+ - @lo = Y- (A + D+ -+ %= (£ + Dlo
! I=1

I
M=

~
I

Ux=(glo + - - + =810 = x=(FMo + - - - + [x=(£I)1o)

Il
M=

~
I

1

I
M=

(r—mpey = (e,+ + - +eyr) — (e +-+e),

~
I

as desired. O

COROLLARY 7.6. Let B = (V, E, >) be a k-simple ordered Bratteli diagram with k > 2.
Then each transition graph L, is connected. In particular, L, has at least k — 1 edges.

Proof. If there were a proper connected component of L,, say, consisting of
{Yu,, ..., Yy}, then, by Theorem 7.5, we would have d,, + -+ d,, =0. But this
contradicts the conclusion of Theorem 3.10. O

In general, kK — 1 can be attained. For example, consider the stationary diagram

(¢} (¢] o (¢] (¢]

ANV RNV

[e] [e] (o] [e] [e]

NN

[e] [¢] o [e] [e]
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This diagram can be easily ordered so that it becomes an ordered 3-simple Bratteli
diagram. Its transition graph at each level has two edges.

However, if the Bratteli diagram is non-elementary, that is, if the path space is a Cantor
set, then L, has at least k edges.

COROLLARY 7.7. Let B=(V, E, >) be a non-elementary k-simple ordered Bratteli
diagram with k > 2. The transition graph L, has at least k edges. In particular, we have
that k
v\ v
i=1

V'l = >k,

for all n.

Proof. 1t follows from Corollary 7.6 that the transition graph L, is connected, and it
follows from Corollary 7.4 that L,, contains loops. Since L, has k vertices, it must have at
least k edges, as desired. O

Definition 7.8. Let G be a dimension group with a given inductive limit decomposition
G = h_n; 7. Define D(G) to be the subgroup consisting of the elements g such that, with
g = (g;i), where g; € Z", there is m € N such that

lgilloo <m, i=1,2,...,

where || - || is the standard £°°-norm of Z".

It is straightforward to show that D(G) N G* = {0} if the dimension group G has no
quotient isomorphic to Z. Also note that if G is a non-cyclic simple dimension group, then
any element of D(G) is an infinitesimal (an element g of a simple dimension group G is
said to be an infinitesimal if —2 < mg < h forallm € Nand h € GT \ {0}).

Recall that K, is the dimension group of the sub-diagram of B restricted to the vertices
Vi, n=1,2,...; hence it is isomorphic to Ko(Cp(X \ U{'(:I Y) X 7).

COROLLARY 7.9. If B is a non-elementary ordered Bratteli diagram, then
Image(Ind) € D(Ky;)
with respect to the inductive limit decomposition of Ky, given by B. In particular,
Image(Ind) N (KIB)+ ={0}.

Moreover, if B is assumed to be strongly k-simple (so the ideal K, is simple), then the
image of the index map is in the subgroup of Ky, of infinitesimals.

Proof. Since the image of the index map is generated by {di, ..., di}, it is enough to
show that
dieDXKy), i=1,2,... k.

But this follows directly from Theorem 7.5, which states that each entry of d; must be 0,
—1, or 1, at any level, as desired. a

The following result can be regarded as a strengthened version of Corollary 7.7.
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COROLLARY 7.10. Denote by r the Q-rank of Ky,. Thenr > k.

Proof. Denote by H C Ky, the image of the index map. By equation (3.3), we have that
dimg(H ® Q) =k — 1. Note that the dimension group K;, must contain non-zero positive
elements; so pick p € Ky, positive and non-zero. We assert that p ® 1o ¢ H ® Q. If this
were not true, there would be natural numbers m, n and h € H such that mp = nh. Since
p is positive, it follows from Corollary 7.9 that mp = 0. Since the dimension group Ky, is
torsion-free, we have that p = 0, which contradicts the choice of p. Therefore K;, ® Q 2
H ® Q, and hence r =dimg(K;, ® Q) >k -1+ 1=k O

The authors thank the referee for suggesting Pimsner’s dynamical criterion for the stable
finiteness in the following corollary.

COROLLARY 7.11. Let (X, o) be a indecomposable Cantor system with k minimal
subsets. Then the C*-algebra C(X) X, Z is stably finite. It has stable rank 2 if k > 2,
and stable rank 1 if k = 1. Moreover, if (X, o) is aperiodic, the C*-algebra C(X) X Z
has real rank 0.

Proof. Let us first consider the real rank of C(X) x, Z. Note that there is a short exact
sequence

0 —>C0<X\ U Yl-) Mg Z——> C(X) 3 Z—> D C(¥) x5 Z — 0.
L 1
(7.4)
Since (X, o) is assumed to be aperiodic, each minimal component ¥; is homeomorphic to
a Cantor set, and therefore the quotient algebra @@, C(Y;) x4 Z is an AT algebra with real
rank 0. On the other hand, the ideal Co(X \ Ui Y;) X4 7 is AF, so it also has real rank 0.
Since K1 (Co(X \ |U; ¥i) x5 Z) = {0}, we have that the exponential map

KO(EP C(Y3) Xq Z) LK (C()(X\ L,J Yi) Mo Z)

of the extension above must be zero. Hence, as an extension of two real rank-0 C*-algebras
with zero exponential map, the algebra C(X) %, Z has real rank O (see, for example, [22,
Proposition 4(i)]).

For the stable rank of C(X) X, Z, if k=1, it follows from Corollary 3.11 that
C(X) X4 Z is an AT algebra, and, in particular, it has stable rank 1. If k > 2, it follows
from [26, Corollary 2.6] that C(X) X, Z has stable rank 2. (Indeed, since both the ideal
and the quotient algebras in the extension (7.4) have stable rank 1, it follows from [30,
Corollary 4.12] that the stable rank of C(X) X, Z is either 1 or 2. Since the index map
is non-zero when k > 2, the stable rank of C(X) X, Z cannot be 1; see, for instance, [22,
Proposition 4(ii)].)

Let us show that C(X) X, Z is always stably finite, and let us prove the following
general statement instead. Consider an extension of C*-algebras

0 I A—ZsD 0
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with A and D unital. Assume that D is stably finite, / has the property that [plo #0 €
Ko(7) for any non-zero projection p € I, and

Ind(K; (D)) NK{ (1) = {0}. (7.5)

Then A is stably finite.

We only have to show that A is finite (for matrix algebras over A, one can tensor the
extension above with a matrix algebra, and proceed with the same argument). Let v be an
isometry in A. Since D is finite, the image 7 (v) has to be an unitary. Then

Ind(—[7()]1) = [1a — vv*lo — [1a — v*v]o = [14 — vv*]o € K (D).

Therefore [1 — vv*]g = 0 and hence 1 — vv* = 0 (since 1 — vv* is a projection on A). So
v must be a unitary, and A is finite.

Consider the extension (7.4). Note that, by Theorem 6.7, one may assume that the
Cantor system arises from a non-elementary k-simple ordered Bratteli diagram. It follows
from Corollary 7.9 that equation (7.5) always holds, and 7 is an AF-algebra. Hence the
statement follows.

Alternatively, one also can use Pimsner’s dynamical criterion for the stable
finiteness. Note that the C*-algebra C(X) x5 Z is AT and hence stably finite if k =1
(Corollary 3.11). So, let us assume that k > 2, and let us show that every point of X is
pseudoperiodic, that is, for any xo € X and any ¢ > 0, there exist x, x2, ..., x,—1 such
that

dist(xj+1, 0(x;)) <e, i=0,1,...,n—1,

where dist is a compatible metric on X, and x, is understood as xg. Then the stable
finiteness follows from [25, Theorem 9].

The pseudoperiodicity indeed follows from Corollary 7.6: if xp € ¥; for sone i =
1, ..., k, then the pseudoperiodicity follows from the minimality of Y;; therefore one
may assume that xp € X \ Uf:l Y;. With the Bratteli—Vershik model, let x be represented
by the infinite path [e1, e, . . ., €4, €q+1, - - -], and let d be sufficiently large such that any
two paths with same first d segments actually have distance at most ¢.

Consider the vertex r(eg), which is at level d + 1. Since xp € X \ Uf: 1 Yi, one may
assume that d is sufficiently large that r(ey) € Vod‘H. Consider the minimal edge starting
with r(e4) backwards, and denote it by [e], €}, .. ., e/;]. It is clear that xo is in the forward
orbit of the infinite path [e’l, cee, e:l, €d+1, - - .]. By Lemma 5.5, one may assume that
s(e};) is in the sub-diagram B,,_(r(e,) (and so the finite minimal path [¢], €}, ..., e}, _,]
is in the sub-diagram B,,_(;(e,)))- Pick an arbitrary infinite path y in the sub-diagram
Bu_(r(eq)) Which starts with [e], e/, ..., e/,_,]. Note that

. / / /
dist(y, [e}, ..., e;_1, €4, €as1, .. .]) <e&.

Consider the minimal set Y,_(r(,). By Corollary 7.6, there is a closed walk

(r(eq), v2, ..., vy) in the transition graph Lgy1, where v; € Vljj“, i=2,...,1, and
m4(v;) =m_(r(eq)). Then this loop provides a partial orbit x1, x2, . . ., x,, where each
x; is an infinite path of the Bratteli diagram such that x;11 =0 (x;), i =0,...,n—1,

and o (x,) = (e}, ..., e)_y, €, ...), where e/, eJ, ..., e/ | are minimal edges in the
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Bratteli sub-diagram B, (r(,)). Pick an arbitrary infinite path zo in the Bratteli sub-

diagram By,_(;(e;)) Which starts with [e], €7, ..., e/;_,], and note that
dist(zo, o (x,,)) = dist(z, [e’l/, ey eg_l, eg, ] <e.

Since the set Yj,_(r(e,)) is minimal (so the forward orbit is dense), there are z1, 22,
e Zn €Y (r(egy) Such that z; 11 =0(z;), i =0, ..., n1 — 1, and dist(o (24, ¥)) < €.
Therefore, the finite sequence

/ / /
X0s X1, X25 « o5 Xny 205 15+« -5 Znys Vs [elv ~-'3ed7]3 €4 €d+1, ], c.oe s X0

is the desired pseudoperiodic orbit. O

8. Realizability of a Bratteli diagram
Let B = (V, E) be an unordered k-simple Bratteli diagram. In this section let us consider
the question when there is an order > on B so that (V, E, >) is an ordered k-simple
Bratteli diagram.
Suppose that there is an order > on B so that (V, E, >) is k-simple. Without loss of
generality, let us also assume that (V, E, >) satisfies the conditions of Lemma 5.6.
Denote by L, the transition graphs of (V, E, >) at level n. For any edge v of the
transition graph L,, denote by Yminy) the source point of v and denote by Yiax(v) the
range point of v.

THEOREM 8.1. Consider the k-simple ordered Bratteli diagram (V, E, >). The transition
graphs {L,; n =2, ...} are compatible with the unordered Bratteli diagram (V, E) in the

following sense. For any edge w of L,+1, there is a path (v, v, ..., vy) in L, such that:
(1) the edge w and the path (v1, . .., v;) have the same range and source;
(2) forany v € V), the number of times v (as an edge of L) appears in (vy, ..., vy) is

the same as the multiplicity of the edges in the Bratteli diagram (V, E) between v
and w (as vertices of (V, E));
(3) ifw(asavertexin VO"'H) is connected to some vertex in VI" forsome 1 <i <k, then
(v1, v2, . .., V) passes through Y;; and
(4) for any edge v of L,, the vertex v (as a vertex in the Bratteli diagram) is connected
to some vertex in Vrﬁi;(lv) and is also connected to some vertex in Vrﬁ;(l(v).
Conversely, if there is a sequence of directed graphs {L,; n =2, 3, ...} such that the
vertices of each Ly are {Y1, ..., Yy}, the edges of each L, are labeled by the vertices in
V', and (L,) are compatible with (V, E) in the sense above, then there is an order on
(V, E) so that it is a k-simple ordered Bratteli diagram.

Proof. Let w be any edge of L, ;1. With a slight abuse of notation, let w also denote the
vertex in V! which corresponds to this directed edge of L, 1. Since the edges r ! (w) €
E,, of the Bratteli diagram are totally ordered, write them as

dh<ey<---<e,.
Remove all the edges with the source points not in V', and write the remaining edges as

el <ey<---<e.
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Put v; =s(e;), i =1, ..., l. Then direct calculation shows that (vy, va, ..., v;) is a path
in L, and satisfies conditions (1), (2), (3) and (4). We leave it to the reader.

Now assume that there are directed graphs {L,;n=2,3,...} and a k-simple
(unordered) Bratteli diagram (V, E) which are compatible. Let us show that there is an
order > on (V, E) so that (V, E, >) is a k-simple ordered Bratteli diagram.

For each 1 <i <k and n > 1, choose a pair of vertices (zﬁmin, zﬁmax) in V. (The
infinite paths (z}’min, zimin, ...) and (z}’max, zzmax, ...) will be the minimal path and
maximal path of the final ordered Bratteli diagram, respectively.)

Then, for each v € V", put an arbitrary total order on r_l(v) such that (77 -l

i,min’ v) is

ljt—l

¢ max» V) is maximal.

minimal and (z

Now let us consider how to order the edges r~l(w) for some w € V}'. On the first level,
put an arbitrary total order on r~!(w) if w € Vol.

For any w € V! with n > 2, define the order the edges r~L(w) as follows. Pick any edge
between Vr;’li;zw) and w to be the minimal edge and pick any edge between Vr:lle;](w) and w
to be the maximal edge. (The existence of such edges is ensured by condition (4).)

If n =2, then order the edges r~l(w) with an arbitrary total order with the given
minimal element and maximal element.

If n > 2, then consider the corresponding path (vi, v2, ..., v;) in the transition graph
L,_1. For each v;, 1 <i <1, pick an arbitrary edge in E, connecting v; (as a vertex in
Vo"_l) to w, and denote it by e(v;). By condition (2), such an edge exists and the collection

{e(u1), e(v2), ..., e(v)}
exhausts all the edges between V~! and w. Set
e(v) <e(v) <---<e(v).

For each 1 <i <k, and edges between Vl.”_l and w, by condition (3), thereis 1 < j </
such that the vertex Y; of L,,_; is the range of v;. Then, filling between e(v;) and e(v;+1)
by all the edges between Vl.”_1 and w with an arbitrary order, we obtain a total order on
r~ N (w).

Note that it follows from the construction above that

m_(w) = Yminw) and my(w) = Ymax(w)-

Let us verify that the resulting ordered Bratteli diagram (V, E, >) is k-simple.

Since (V, E) is a k-simple unordered Bratteli diagram, condition (1) of Definition 5.3
is automatic.

By the choices of the ordering, it is easy to see that (z}’min, zimin, ...) and
(zi’max, z%max, ..., 1 <i <k, are the only maximal infinite paths and minimal infinite
paths. Thus condition (2) of Definition 5.3 is also satisfied.

Let us verify condition (3) of Definition 5.3. Fix any v € V. Let e be any edge with
s(e) = v. Denote w = r(e). Write the path in the transition graph L, corresponding to w
(as an edge in the transition graph L, 1) as (vq, v2, ..., v;). Then there is 1 <i <[ such
that v = v;. By the construction of the transition graph, we have that m_ (v) is the range of
v; in L,, that is,

m4 (V) = Yimax(v))- 8.1
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Consider the edge e + 1. By the construction of the order on » ~! (w), the vertex s (e + 1)
is either v; 11 or in Vrﬁax(u,«)' If s(e + 1) = vj4+1, then

m_(s(e+1))=m_(viy1) = Ymin(viﬂ) = Ymax(vi);
and if s(e +1) e V"
have

then m_(s(e + 1)) = Ymax(v,;). Therefore, by (8.1), we always

ax(v;)’

m_(s(e+1)) = Ymax(v,-) =my(v),

which verifies condition (3a) of Definition 5.3.

Now, let e be an edge with e ¢ Enax, 7(e¢) =v and s(e) € Vi"_1 with n > 3. Write the
path in L,_; corresponding to v (as an edge in L,) as (u1, ua, ..., us). By condition (3),
there is 1 < j < s such that Ymax(uj) =Y.

If j < s, then we have that either s(e + 1) = u 4, in which case

m_(s(e+1)) = Ymin(ujﬂ) = Ymax(uj) =Y;

ors(e+1)e Vl."_l. So, in both cases, m_(s(e + 1)) = Y;.

If j =, since e ¢ Emax, we have that s(e 4+ 1) € Vi”_l, and therefore m_(s(e + 1)) =
Y;.
Thus, the order satisfies condition (3b) of Definition 5.3, and hence (V, E, >) is a
k-simple ordered Bratteli diagram. O

Let B = (V, E, >) be an ordered k-simple Bratteli diagram, and denote by Lj, L3, ...
the corresponding transition graphs. Consider the Cantor system (Xp, o), and denote by
Y1, ..., Y the minimal subsets. For each 1 <i <k, recall that d; is the image of xy,u
under the index map. By Theorem 7.5, each entry of d; € @y, Z has to be £1 or 0.
Moreover, we also have that, for each v € V!, ‘

{1 <i<kidi(v)#0}=0or2,

and if d;, (v) # 0 and d;, (v) # O for some i| # i2, then d;, (v) + d;, (v) = 0; that is, if there
is a non-zero pair, it must be either (+1, —1) or (—1, +1).

Thus, the unordered Bratteli diagram (V, E) has the following property. There are
elements dy, . . ., di in K;, such that:
(@ cadi+---+cdy=0ifandonlyifci=cr=---=cp;
(b) for each level n and each v € V!, we have that d; (v) € {0, £1}, 1 <i <k;
(c) foreachv e V), we have that |{1 <i <k; d;(v) #0}| =0or 2, and if

{1 <i<k;di(v) #0}={i1, iz},

then (d;, (v), d;, (v)) is either (41, —1) or (=1, +1).
It turns out that these conditions are also sufficient for the existence of a k-simple order on
(V, E)if (V, E) is strongly k-simple.

THEOREM 8.2. Let B=(V, E) be an unordered strongly k-simple Bratteli diagram
satisfying condition (3) of Lemma 5.6 (i.e., each vertex in V(f"H is connected to all vertices
in V"). Suppose that there are element dy, . . ., dy € Ky, € Kp satisfying conditions (a),
(b), and (c) above. Then there is an order > such that (V, E, >) is an ordered (strongly)
k-simple Bratteli diagram.
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Before we prove the theorem, let us recall several facts from graph theory.

Definition 8.3. Let G = (V, E) be a directed graph (there might be multiple edges between
two vertices, and loops are also allowed). Let v be a vertex of G. The indegree and
outdegree of v, denoted by deg™ (v) and deg™ (v) respectively, are the numbers of directed
edges leading into and leading away from v, respectively. The degree of v is defined by

deg(v) = deg™ (v) — deg™ (v).

A (directed) Euler walk in G is a walk (in the directed sense) in G that covers each
directed edge exactly once.

We have the following criterion for the existence of an Euler walk in a directed graph.

THEOREM 8.4. A directed (multi)graph has an Euler walk if and only if it is connected,
and deg(v) = 0 for every vertex with the possible exception of two vertices vo and vy such
that deg(vp) = 1 and deg(vy) = —1. In this case, vg and v; are the starting point and end
point of the Euler walk, respectively.

Proof of Theorem 8.2. By Theorem 8.1, one only has to construct a sequence of directed
graphs Ly, L3, ... which are compatible to B = (V, E).

Note that the vertices of the proposed directed graphs are always Y1, Y», ..., Yx. To
get L,, one only has to assign each v € V! to be a suitable directed edge of L.

Fix n > 2. For each v € V', if d; (v) = 0 for all i, then choose any Y; such that there is
an edge between Vi"_1 and v, and then assign v to be a loop with the base point Y;.

Otherwise, by condition (c), there are 1 < min(v) # max(v) < k such that

dmin(v) (v)=—-1 and dmax(v) (v) =+1.

Then assign v to be an edge from Yin(v) t0 Ymax(v)-

Denote the resulting directed graph by L,,. We assert that {L,, L3, ...} are compatible
with (V, E) in the sense of Theorem 8.1.

First, note that, for each n > 2 and v € V', by the construction of L,,, we have

—1 if ¥; is the source point but not the range point of v in L,,
di(v) = {41 ifY; is the range point but not the source point of v in L,;, (8.2)
0 otherwise.

That is, the elements dy, . . ., di are induced by the diagram as in Theorem 7.5.

Then it follows from condition (a) that the underlying undirected graphs of Lj, L3, . ..
are connected. Indeed, if there were a proper connected component of L,, say with
vertices Yy, ..., Yy,, it would then follow from (8.2) that d,, + - - - + d,, =0, which
is in contradiction to condition (a).

Now let w be any edge of L. Consider w as a vertex in V! and write

l/

1
_ gy VA
w= cjvj + civ;
Jj=1 J

—1

in the Bratteli diagram (V, E), where c;, c/j eN,v; e V), and v;. e V"\ VI
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Since the vertex w is assumed to be connected to all vertices at level n, we have that
{vi, ..., vy} =V Let us construct an auxiliary directed graph L)’ to be the directed
(multi)graph obtained by multiple each edge v; of L, into c; edges. Since L, is connected,
it is clear that L} is also connected.

Then, in order to find a path in L, satisfying conditions (1) and (2) of Theorem 8.1,
it is enough to find an Euler walk (i.e., a walk which covers each edge exactly once) in
L} which has the starting point Ymin(y) and the ending point Ymax(w). Moreover, since the
edges of the graph L}’ exhaust all vertices in V' ,conditions (3) and (4) of Theorem 8.1 are
satisfied automatically.

Since L’ is connected, by Theorem 8.4, it is enough to show that

degzuw (Yminw)) = +1,  degzw Vmaxw)) = —1

and
deg Ly (Y;) =0 for all other vertices Y;.

Consider any vertex ¥; of L)”. Then

deg/n(Y)= )« and degu(¥)= ) «,
d;i (vi)=—1 di(vi)=1

and therefore
deg y (Y;) = deg, (Vi) — degp, (Y))
= 2 = ) q
di(vj)=—1 di(vj)=1
=—d;(w).

Hence,
degrw(Yi) = —di(w) =0 ifi ¢ {min(w), max(w)},
degL}y(Ymin(w)) = —dminw)(w) =1,
deng’(Ymax(w)) = _dmax(w) (w) =—1.

Therefore, there is an Euler walk in L with starting point Ypiny) and ending point
Ymax(w)- That is, there is a path in L,, that satisfies conditions (1)-(4) of Theorem 8.1,
as desired. a

Remark 8.5. In general, it would be interesting to have an abstract characterization of the
dimension groups which can be realized by k-simple ordered Bratteli diagrams.

9. Cantor system with one minimal subset

Let us study the ordered Kg-group of C(X) x, Z for a Cantor system with only one
minimal component Y, and explore its connection to the boundedness of invariant
measures on the open set X \ Y. By Theorem 3.10, the index map is zero. Also note
that the C*-algebra C(Y) x4 Z is always an AT-algebra, and has real rank 0 if (X, o) is
aperiodic. Hence, by [22, Theorem 5], we have the following structure theorem.

THEOREM 9.1. Ifk =1, the C*-algebra C(X) X, Z is an AT-algebra. It has real rank 0
if (X, o) is aperiodic.
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Denote by K the algebra of compact operators acting on a separable infinite-
dimensional Hilbert space. Then a C*-algebra A is said to be stable if A= A ® I, and
the positive cone of the Ky-group, denoted by Kg (A), is defined by

KS'(A) ={[plo: p is a projection of A ® K} € Ko(A).

Note that if A is stably finite, (Ko(A), K(J)F(A)) is always an ordered group; furthermore, if
A is an AT-algebra, (Ko(A), K(')Ir (A)) is always a dimension group.
As in §3, we have the exact sequence

0 —— Ko(Co(X \ ¥) x5 Z) —— Ko(C(X) o Z) ——= Ko(C(Y) x5 Z) — 0,

and therefore Ko(C(X) X4 Z) is an extension of the dimension group. Denote by u €
Kg (C(X) Xg Z)and v € Kg (C(Y) x4 Z) the standard order units induced by the constant
function 1. Then it is clear that 77 (1) = v. If, moreover,

LK (Co(X \ Y) Xo Z)) € [0, ul, 9.1)

then the extension above is an extension of the dimension group with order units in the
sense of [17, p. 295]. Since Ko(C(Y) x4 Z) is simple, it follows from [17, Theorem 17.9]
that the extension is lexicographic, namely,

K (C(X) %6 Z) = LK (Co(X \ V) xp 2)) Un ™ (K (C(Y) 16 Z) \ {0)).

In general, relation (9.1) does not always hold. As we shall see in this section, (9.1)
holds if and only if there is no finite o -invariant measure on the open set X \ Y, and hence
the extension is lexicographic in this case.

Example 9.2. The order-unit group Ko(C(Y) X, Z) is always simple, but Ko(Co(X \
Y) Xo Z) is not necessarily a simple ordered group. For example, let (X1, o1) and (X2, 02)
be two almost simple Cantor system with fixed point x; and x,. Attaching X to X, by
identifying x| and x;, we have a new Cantor set X and an action o on it with a fixed
point {x}. It is clear that the only non-trivial closed invariant subset is {x} (although the
system is not almost simple, which requires that every orbit other than {x} is dense).
However, Ko(Co(X \ {x}) X4 Z) is not simple. One can expand the fixed point to an
odometer system to get an aperiodic example. For instance, consider the stationary Bratteli
diagram with incidence matrix

2 2
F=10 2
0 2

N woo

The dimension group associated with the ideal is Z[1/2] & Z[1/3], with the usual order.
Let A be a stably finite C*-algebra. Denote
D(A) ={[plo; p€A}SKJ(A).

LEMMA 9.3. Let A be a C*-algebra with an approximate unit consisting of projections.
Assume that A has stable rank 1. Then A is stable if and only if D(A) = Kg (A).
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Proof. If A is stable, then it is clear that D(A) = K (A).

Assume that D(A) = K(‘; (A), and let us show that A is stable. Since A has an
approximate unit consisting of projections, by [19, Theorem 3.1], it is enough to show that,
for any projection p € A, there is a projection g € A such that g is Murray—von Neumann
equivalent to p and ¢ L p. Indeed, it follows from the stable rank 1 that A has cancelation
of projections. Together with D(A) = Ka' (A), we have that, for the given projection p,
there is a projection s € A such that s is Murray—von Neumann equivalent to p & p, which
implies that there is a subprojection ¢’ < s which is Murray—von Neumann equivalent to p.
Using the cancelation of projections again, we have that the complementary projection
s — ¢’ is also Murray—von Neumann equivalent to p. Since A has stable rank 1, there
is a unitary u € A such that u*q’u = p (i.e., ¢’ and p are unitarily equivalent). Then
q = u*(s — q")u is the desired projection. O

The following result deals with the case of AF-algebras.

LEMMA 9.4. Let A be an AF-algebra. Then A is stable if and only if any non-zero trace
on A is unbounded.

Proof. If A is stable, then any non-zero trace is unbounded.
If A is not stable, we construct a non-zero bounded trace on A. Write

A= ]i_r)n(Anv ¢I‘L)7

where each A, = @f": | Mi,,; (C). Then there is a projection p € A (one may assume that
p € Aj) such that, for any n, there exists 1 <i <1,, such that

2- rank(”n,i o ¢1,n(p)) > Mpis

as otherwise, for any projection p, we can find a projection g such that p 1 ¢ and p ~q.
Then it follows from [19, Theorem 3.1] that A is stable, which contradicts the assumption.
Set

T, = Trom,;: A, — C.

m,,,i

It is clear that 7, is a tracial state on A,, and t,(p) > 1/2. Extend 7, to a linear
functional on A with norm 1, and denote it also by t,. Pick an accumulation point of

{tn;n=1, ..., 00}, and denote it by 7. It is clear that T is a trace on A with norm at
most 1. Moreover, since 7,(p) > 1/2, we have that 7(p) > 1/2, and thus 7 is non-zero.
Therefore A has a non-zero bounded trace, as desired. O

THEOREM 9.5. The restriction of ¢ on X \ Y has no finite invariant non-zero measure if
and only if Co(X \ Y) X4 Z is stable.

Proof. If (X \ Y, o) has a finite invariant measure, then it induces a finite trace T on
Co(X \ Y) %4 Z, and hence it cannot be stable.

On the other hand, if Co(X \ Y) x4 Z is not stable, then by Lemma 9.4, there is a
bounded non-zero trace on Co(X \ Y) X, Z. The restriction of this trace to Co(X \ Y)
induces a finite non-zero invariant measure. a
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Denote by u the standard order unit of Ko(C(X) X, Z), and consider the generating set
O, ul =k € K(}L(CO(X \Y) %o Z):1(k) <u} C KSF(CO(X \Y) Xg Z).

The set ¢~'[0, u] is then a generating interval in sense that it is a convex upward-directed
subset which generates the whole ordered group; see [17, Lemma 17.8].
We have the following theorem.

THEOREM 9.6. The ideal Co(X \'Y) X, Z is stable if and only if «='[0, u] = K (Co(X \
Y) x4 Z).

Proof. Assume that HO, u] = K(T (Co(X \Y) Xg Z); that is, for any positive element
ae KJ(CO(X \Y) Xy Z), we have that a <u in KJ(C(X) Xy Z). Then, for any
projection p in a matrix algebra of Co(X \ Y) X Z, there is a partial isometry v in a matrix
algebra of C(X) X, Z such that vv* = p and v*v < 1. In particular, v*pv € C(X) X, Z.
Since Cop(X \ Y) X, Z is an ideal, we have that v*pv € Co(X \ Y) X, Z. Hence [p] €
D(Co(X \'Y) Xy Z). By Lemma 9.3, the ideal Co(X \ ¥) X, Z is stable.

If the ideal Co(X \ Y) X4 Z is stable, then, for any a € K(')|r (Co(X \Y) Xy Z), there is
a projection p € Co(X \ Y) X, Z such that [p]p = a. It is clear that p < 1 in C(X) %, Z,
and therefore a = [ply < [1]o = u. Hence, :~'[0, u] = KS‘(CO(X \Y) x4 Z). a

COROLLARY 9.7. The restriction of o on X \ Y has no non-zero finite invariant measure
if and only if Co(X \'Y) X4 Z is stable, if and only if 1='[0, u] = Ka'(Co(X \Y) Xs Z),
and if and only if the extension is lexicographic.

10.  Chain transitivity

10.1. Topologies on the group of homeomorphisms. Let X be a Cantor set, and let
H (X) denote the group of all homeomorphisms of a Cantor set X. Since all Cantor sets
are homeomorphic, we do not need to specify a particular Cantor set while studying the
group H (X). In particular, the Cantor set can be represented as the path space of a non-
simple Bratteli diagram.

We recall that by an aperiodic Cantor dynamical system (X,oc), we mean a
homeomorphism o of a Cantor set X such that, for any x € X, the orbit Orbit, (x) =
{o!(x) : i € Z} is infinite.

The set Ap of aperiodic homeomorphism was studied in [1, 2, 23, 24] from various
points of view. We recall here a few results that will be used below.

Fix a metric d on X compatible with the clopen topology on X. There are several
natural topologies defined on H (X); see [1, 16, 20]. The most popular one is the topology
of uniform convergence, t,,, that turns H(X) into a Polish group. This topology can be
defined in several equivalent ways: for instance, by the metric

D1, ¥2) = sup d(1(x), ¥2(x)) + sup AW ), vy (), Y, Y2 € HX).
xe xe

(10.1)
Equivalently, the topology 7, is generated by the base of neighborhoods W =
(W, Eq, ..., E;)} where

W@ Er, ... En) ={f e HX): f(ED) =V (ED), ..., f(E) =V (Ep}
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Here ¢ € H(X), and Eq, ..., E, are any clopen sets. Without loss of generality, we can
assume that (E1, . .., E,) forms a clopen partition of X.

If D(o,, 0) — 0, we say that o is approximated by a sequence of homeomorphisms
(0,). We first remark that any homeomorphism of X is approximated by aperiodic
homeomorphism.

LEMMA 10.1. [1] The set Ap is dense in (H(X), Ty).

We introduce notation for some classes of homeomorphisms of a Cantor set X: Min
denotes the set of all minimal homeomorphisms (a homeomorphism ¢ is minimal if every
o-orbit is dense in X); Tt denotes the set of all topologically transitive homeomorphisms
(o is topologically transitive if there exists a dense orbit); Mov is the set of all moving
homeomorphisms (a homeomorphism o € H(X) is called moving if, for any non-trivial
clopen set E C X, we have o(E)\ E #0 and E \ 6 (E) # ). The notion of moving
homeomorphisms was defined in [1].

LEMMA 10.2. [1] The set of moving homeomorphisms is ty-closed. An aperiodic
homeomorphism o is moving if and only if o can be approximated by a sequence of
minimal homeomorphisms (or topologically transitive homeomorphisms), that is, Mov =

- T —Tw
Min" =Tt".

10.2. Chain-transitive homeomorphisms. Let (X, o) be an aperiodic Cantor dynamical
system. We now recall several notions related to chains in X defined by o. A finite set

{xo0, x1, ..., xn}, where o(x;) =xi4+1,i =0, ...,n—1, is called a o-chain (or simply
a chain). Given ¢ >0 and x,y € X, an e-chain from x to y is a finite sequence
{xo0, x1, ..., x,} such that xo =x, x, =y and d(o(x;), xj+1) <&,i=0,...,n— 1. In

symbols, an e-chain from x to y will be denoted by x o Y.

Given an aperiodic Cantor system (X, o), it is said that o is chain transitive if, for any
two points x, y € X, there exists an e-chain from x to y.

The following result is a new characterization of moving homeomorphisms as chain-
transitive ones.

THEOREM 10.3. An aperiodic homeomorphism o of a Cantor set X is chain transitive if
and only if o is moving.

Proof. (=) If ¢ is not moving then there is a non-trivial clopen set E such that
o(E) CE,and F = E \ o(E) is a non-empty clopen subset (the case where E C o (E)
is considered similarly). Let xg, yo be any distinct points from F with d(xq, yo) =
§>0. We note that o/(x) €o'(E) Co(E), i >0, for any x € E. Take 0 <& <
min{§, d(yg, o (E)), d(xg, 0 (E))} (we denote the distance between closed subsets of X
by the same letter d; it will be clear from the context which metric space is meant). Then
there is no e-chain from xg to yp and from yg to xo as well. Hence, ¢ is not chain transitive.

(«<=) Conversely, let o0 be a moving homeomorphism of a Cantor set X, and let € be a
positive number. Take a partition of X into a finite collection of clopen sets C (i) such that
diam(C(i)) < eforanyi =1, ..., N. We will show that, for any x, y € X, there is a finite
e-chain for o from x to y. Suppose x € C(ip) and o (x) € C(i1). Then any z from C(i1)
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can be considered as the target of e-chain {x, z} of length 1. So, if y € C(i1) we are done.
If not, we consider X \ B(1), where B(1) = C(ip). Because o is moving, the set o (B(1))
intersects X \ B(1). Let
B2)=J cii.
Jjeh

where j € I if C(j) N o (B(1)) # @. If z is a point from B(2), then there exists an e-chain
from x to z of length 2. Indeed, if z € C(j), j € I, take the e-chain {x, x1, z} where
x1 € B(1) such that o(x1) € C(j). If y € B(2), we are done. Otherwise, we apply the
same argument to the set X \ (B(1) U B(2)). In view of compactness of X, this procedure
terminates in a finite number of steps. This means there exists B(k) such that y € B(k),
that is, the point y is the final point of an e-chain of length %. O

Remark 10.4. We observe that the proof of Theorem 10.3 uses essentially the topological
structure of Cantor sets, namely, the existence of partitions of Cantor sets into clopen sets
of arbitrary small diameter. Below we give another proof of the implication moving —
chain transitivity based on Lemma 10.2.

Proof. Suppose o € H(X) is moving. By Lemma 10.2, for any fixed ¢ > 0, there exists a
minimal homeomorphism f = f; such that D(o, f) < ¢. Take any two points x, y € X.
By minimality of £, find the smallest positive k such that d(f*x, y) < &. Consider the set
I ={x=x0, x1 = f(x), x2= f2(x), ..., xx = fX(x)}. We claim that 7 is an e-chain for
o from x to y. Indeed,

d(o (xi), xit1) =d (o (f'(0)), f(f () < sup d(0(2), f(2))<e, i=0,1,....k—1,

and d(xg, y) < ¢. Thus, o is chain transitive. a

Let ChT be the set of all chain-transitive homeomorphisms. The next corollary follows
from Theorem 10.3.

COROLLARY 10.5. The set ChT of chain-transitive homeomorphisms of a Cantor set is
closed in the topology t,, of uniform convergence.

Since the proof of the fact that any moving homeomorphism is chain transitive, given
in Remark 10.4, does not explicitly use the fact that X is a Cantor set, we immediately
deduce the following corollary.

COROLLARY 10.6. Suppose o is a homeomorphism of a compact metric space (2, d)
which is approximated by minimal homeomorphisms, that is, lim; D(o, f;) =0 where
each f; is minimal. Then o is chain transitive.

10.3. Homeomorphisms with finite number of minimal sets. In this subsection we
consider the case where an aperiodic homeomorphism o € H(X) has a finite number of
minimal sets, say Y71, ..., Yk, thatis, each Y; is a closed o-invariant set such that the orbit
Orbit, (z) is dense in ¥; for any z € Y;. For simplicity, we will call such homeomorphisms
k-minimal.
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It worth recalling that we are dealing with indecomposable homeomorphisms o, that
is, every minimal set Y for a k-minimal homeomorphism o is not open and has empty
interior.

Given a closed subset C of X, we say that an open set V is an g-neighborhood of C if
VDOCandd(C, x) <eforanyx € V.

LEMMA 10.7. Given an aperiodic Cantor system (X, o), let {Y,} be the collection of all
minimal subsets for o. Let V be any clopen subset of X such that V O | J,, Yo. Then there
exist positive integers K and K_ such that

K. K_
U o"(V)=X and U o (V) = X. (10.2)
n=0 n=0

Moreover, the same result is true when the above condition V O |, Y, is replaced by the
condition V N Y, # 0 for any a.

Proof. Let (X, o) be a Cantor aperiodic dynamical system. Consider the o -invariant open
set Y =,z 0"(V). If the closed set X \ ¥ were non-empty, then it would contain a
minimal set for o; this is impossible because all minimal sets are subsets of Y. Thus, X =
Upez 0" (V); hence, by compactness, the latter is a finite union. Applying appropriate
powers of o to the above relation, we find some K € N and K_ € N such that (10.2)
holds. The other statement of the lemma is proved similarly. O

In the case of finitely many minimal subsets, we can reformulate Lemma 10.7 in a
more appropriate form. For this purpose, we first observe the following useful fact. Let
V D Z be any neighborhood of a minimal set Z for a homeomorphism o. It is easily seen
that 0" (V) D Z (n € Z) because Z is o-invariant. Therefore, the following result can be
straightforwardly deduced from Lemma 10.7.

COROLLARY 10.8. Let (X, o) be an aperiodic Cantor system with minimal sets
Y1, ..., Y. For any ¢ > 0 and any clopen e-neighborhood V; of Y; (i =1, ..., k), the
clopen set V = U{F:l V; satisfies the condition Uf;ro o"(V)=X, Uf;o o (V) =X for
some positive integers K and K_.

Definition 10.9. Let Z be a fixed minimal set for an aperiodic Cantor system (X, o). We
will say that two points x, y € X are chain equivalent with respect to Z if, for any ¢ > 0,
there exist e-chains x ~- zopand y o z0 where zg is a point from Z.

. & & . & &
We observe that if x ~» zg and y ~ z¢ for some point zg € Z, then x ~» z and y ~~ z for
any point z because o is minimal on Z.

LEMMA 10.10. Let Z be a minimal set for an aperiodic Cantor system (X, o), and let

x, ¥ be any two points from X. The following statements are equivalent.

(i)  The points x and y are chain equivalent with respect to Z.

(ii) Forall € > 0, there exist x &5 z1and y 55 zo where 71,z € Z.

(iii) For all € > 0 and for all e-neighborhoods V,, there exist x ~> vy and y 5 vy where
v, 2 € Ve



C*-algebras of a Cantor set 43

It follows from this lemma that the chain equivalence with respect to a minimal set Z is
an equivalence relation on X x X. We denote it by £(Z).

Proof. We sketch the proof of the lemma because the technique used in the proof is quite
standard. The implications (i) = (ii)) = (iii) are obvious, so all that remains is to show
that (iii) = (i). To do this, it suffices to notice that, by minimality of ¢ on Z, there exists
a point z € Z (in fact, z can be any point from Z) such that v; ~ z and vy ~ z. The result
then follows Definition 10.9. a

PROPOSITION 10.11. Suppose Z is a unique minimal set for an aperiodic
homeomorphism o of a Cantor set X. Then £(Z) = X x X. In other words, any two
points in X are chain equivalent with respect to Z. Moreover, o is chain transitive.

Proof. The factthat £(Z) = X x X follows directly from Lemmas 10.7 and 10.10 because
the o -orbit of any clopen neighborhood of Z covers X after finitely many iterations.

Take any two points x, y in X. Let ¢ > 0, and let V, be an e-neighborhood of Z. We
consider the case where x, y € X \ Z; the other possible cases are considered similarly
with obvious simplifications. By Corollary 10.8, we find positive integers K4 and K_

such that

K. K_

Ueo"va=Jo "o =x.

n=0 n=0
Let i be the smallest number from the set (0, 1, ..., K_) such that x € a_i(Vg), and let j
be the smallest number from the set (0, 1, ..., K) such that y € o/ (V). To construct a

chain C from x to y, we first find two points w € Z and z € Z such that d(w, 0~/ (y)) < ¢
and d(c'(x), z) < &. Then we take the set

C=(x,0),...,0(x),2,00@,....,0"@,c ), ), ....y),

where m is the smallest positive integer such that d(c” (z), w) < &. Then C is a 2e-chain
for o. This proves the chain transitivity of . O

Remark 10.12. (1) It follows from Theorem 10.3 that if (X, o) is an aperiodic Cantor
system with a unique minimal set, then o is a moving homeomorphism.

(2) Another simple observation from the proved result is the fact that any aperiodic
homeomorphism with a unique minimal set is the limit of a sequence of minimal
homeomorphisms in the topology of uniform convergence t,.

Dynamical properties of an aperiodic Cantor system (X, o) become more complicated
when the system has several minimal sets Y1, ..., Y.
Let E; be the subset of X defined as follows:

Ei={xeX:V8>05va£~>zforsomezeY,-}, i=1,...,k. (10.3)

We observe that E; contains Y;; moreover, E; is the £(Y;)-saturation of the set Y;. The
latter means that E; is the minimal £ (¥;)-invariant set such that every £ (Y;)-orbit meets Z
at least once.

LEMMA 10.13. In the above notation, each E; is a clopen subset of X, i =1, ..., k.
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Proof. First we show that E; is open. For x € E; and ¢ > 0, take an e-chain (x =
X0, X1, - . ., X, =2) from x to z € /Y;. We prove that there exists a neighborhood V of
x such that V C E;. Choose § > 0 such that d(o(x), 0(y)) <¢e/2 when y eV :={u:
d(x, u) < 8}. Then, for any y € V, we see that (y, x1, . .., X,) is an e-chain from y to z.
Next, let (u(n)) be a sequence from E; that converges to some point x. Suppose that for
each u(n) there is an e-chain (u(n), x;(n), ..., z(n)) from u(n) to Y;. Choose ng such that
d(o(u(ng)), o(x)) <e/2. Then (x, x1(n), ..., z(n)) is an e-chain from x to Y;. Hence,
E; is closed. O

Consider an aperiodic Cantor system (X, o) with finitely many minimal sets
Yi,..., Yk, and let Eq, ..., E; be the clopen sets defined by minimal sets according
to (10.3). Then, by Proposition 10.11, we have

LEMMA 10.14. In the above notation,
EiﬂEj;é@:>Ei=Ej, i,j=1,...,k.

Proof. 1t follows from Proposition 10.11 that, for any & > 0, each set E;, and any two
points x, y € E;, there exists an e- chain from x to y. Thus, if x; € E;, x; € E are arbitrary
points and y € E; N E}, then there are e-chains x; s Z j and x; o z; where z; € ¥; and
zj €Y. O

THEOREM 10.15. Suppose o is an aperiodic homeomorphism, and Yi, ..., Yy are
minimal sets for o on a Cantor set X. Then (X, o) is chain transitive if and only if
Ei=---=E;,=X.

Proof. Let o be a chain-transitive homeomorphism. Fix E; and take any point x € E;.

Then, for any ¢ > 0 and y; € E}, there exists an e-chain from x to y;, j=1,...,k.
Hence, x € Ej forall j =1, ..., k. This proves the first statement.
The converse statement follows from Lemma 10.14. O

The properties of homeomorphisms with finitely many minimal sets are clearly seen for
Vershik maps defined on k-minimal Bratteli diagrams. We obtain the following result from
Theorem 10.15.

COROLLARY 10.16. Let B = (V, E, >) be a k-simple ordered Bratteli diagram and let
(X B, wp) be a Bratteli-Vershik k-minimal dynamical system defined on the path space
of B. Then op is a chain-transitive homeomorphism.
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