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Simple stably projectionless C*-algebras with generalized tracial

rank one

George A. Elliott, Guihua Gong, Huaxin Lin, and Zhuang Niu

Abstract

We study a class of stably projectionless simple C*-algebras which may be viewed as
having generalized tracial rank one in analogy with the unital case. A number of structural
questions concerning these simple C*-algebras are studied, pertinent to the classification of
separable stably projectionless simple amenable Jiang-Su stable C*-algebras.

1 Introduction

Recent developments in the program of classification of simple amenable C*-algebras led to the
classification of unital simple separable C*-algebras with finite nuclear dimension in the UCT
class (see, for example, [22], [16], and [52]). The isomorphism theorem was established first
for those unital simple separable amenable C*-algebras with generalized tracial rank at most
one (see [22]). Unital simple C*-algebras with generalized tracial rank at most one have good
regularity properties. For example, these simple C*-algebras have strict comparison for positive
elements, have stable rank one, and are quasidiagonal. All quasitraces are traces. When they are
separable and amenable, they are Z-stable. These C*-algebras have many other good properties
which lead to the classification by the Elliott invariant when they satisfy the UCT. In [16], using
[52], we showed that unital finite simple (separable) C*-algebras with finite nuclear dimension
which satisfy the UCT have generalized tracial rank at most one after tensoring with a UHF-
algebra of infinite type. This completed the classification of unital simple separable C*-algebras
with finite nuclear dimension in the UCT class. In the present paper, we study the non-unital
version of the notion of generalized tracial rank one.
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#317222).

2 Notation

Definition 2.1. Let A be a C*-algebra. Denote by Ped(A) the Pedersen ideal (see Section 5.6
of [38]).
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Denote by T̃(A) the topological convex cone of all densely defined lower semicontinuous
positive traces equipped with the topology of point-wise convergence on elements of Ped(A).
Recall that, if τ ∈ T̃(A) and b ∈ Ped(A)+, then τ is a finite (equivalently, bounded) trace on

bAb. One checks easily that T̃(A) is a Hausdorff space.
Let T(A) denote the tracial state space of A. Set

T1(A) = {τ ∈ T̃(A) : |τ(a)| ≤ 1, a ∈ Ped(A) and ∥a∥ ≤ 1}.

If τ ∈ T1(A), then it can be extended to a positive linear functional on A with norm at most
one. Therefore, we may view T1(A) as a subset of the unit ball of A∗. In this way, we may write
that T(A) ⊂ T1(A). T1(A) is also a closed set in T̃(A). If A = Ped(A), then T(A) generates
T̃(A) as a cone.

Suppose that A is σ-unital. In the case that Ped(A)+ contains a full element a of A (in

particular when A is simple), let us clarify the structure of T̃(A). Put A1 = aAa. Then we may
identify A with a σ-unital hereditary sub-C*-algebra of A1 ⊗ K by Brown’s theorem ([3]). By
2.1 of [51], A1 = Ped(A1). Therefore, T1(A1) generates T̃(A) = T̃(A1) as a cone. On the other
hand, again, since A1 = Ped(A1), T1(A1) is the weak*-compact convex subset of all tracial
positive linear functionals on A1 with norm at most one, and is a Choquet simplex.

Consider the closure S of T(A) in T̃(A) in the above mentioned topology. Let T(A)
w
denote

the weak* closure of T(A) in the dual space of A. Clearly, as a set, T(A)
w ⊂ S. Note that each

element in T(A)
w
is a trace of A with norm at most one. Let ı : T(A)

w → S be the embedding as
a subset. So the map ı is one-to-one. Suppose t ∈ S. Then, t is a densely defined linear functional
and |t(b)| ≤ 1 for all b ∈ Ped(A) with ∥b∥ ≤ 1. Thus, it uniquely extends to an element of A∗ with
norm at most one. Choose a net (τα) in T(A) such that τα(b) → t(b) for all b ∈ Ped(A). Since
Ped(A) is dense in A, and ∥τα∥ = 1 and ∥t∥ ≤ 1, one concludes that τα(a) → t(a) for all a ∈ A.
This shows that S = T(A)

w
as subsets. In other words, ı is a bijection. On the other hand, if

τβ(a) → τ(a) for all a ∈ A, where τβ, τ ∈ T(A)
w
, then τβ(b) → τ(b) for all b ∈ Ped(A). In other

words, ı is continuous. Moreover, T(A)
w ⊂ A∗ is compact and S ⊂ T̃ (A) is Hausdorff. It follows

that ı is a homeomorphism. In what follows, we will identify S with T(A)
w
, In particular, S is

compact.

Definition 2.2. Let 1 > ε > 0. Define

fε(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if t ∈ [0, ε/2],
t− ε/2

ε/2
, if t ∈ (ε/2, ε],

1 if t ∈ (ε,∞).

(e 2.1)

Definition 2.3. Let A be a C*-algebra and let a ∈ A+. Suppose that T̃(A) ̸= Ø. Define

dτ (a) = lim
ε→0

τ(fε(a)), τ ∈ T̃(A),

with possibly infinite values. Note that fε(a) ∈ Ped(A)+, and by definition τ *→ τ(fε(a))

is a continuous affine function on T̃(A) (to [0,+∞)). It follows that τ *→ dτ (a) is a lower
semicontinuous affine function on T̃(A) (to [0,+∞]). Note that

dτ (a) = lim
n→∞

τ(a1/n), τ ∈ T̃(A).

Let a ∈ A+ be a strictly positive element. Define

ΣA(τ) = dτ (a), τ ∈ T̃(A).

The lower semicontinuous affine function ΣA : T̃(A) → [0,+∞] is independent of the choice of
a, and will be called the scale function (or just scale) of A.
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Definition 2.4. Let A be a C*-algebra and let a, b ∈ A+. We write a ! b if there exists a
sequence (xn) in A such that x∗nbxn → a in norm. If a ! b and b ! a, we write a ∼ b and say
that a and b are Cuntz equivalent. It is known that ∼ is an equivalence relation. Denote by
Cu(A) the set of Cuntz equivalence classes of positive elements of A⊗K. It is an ordered abelian
semigroup ([7]). Denote by Cu(A)+ the subset of those elements which cannot be represented
by projections. We shall write ⟨a⟩ for the equivalence class represented by a. Thus, a ! b will
be also written as ⟨a⟩ ≤ ⟨b⟩. Recall that we write ⟨a⟩ ≪ ⟨b⟩ if the following holds: for any
increasing sequence (⟨yn⟩), if ⟨b⟩ ≤ sup{⟨yn⟩} then there exists n0 ≥ 1 such that ⟨a⟩ ≤ ⟨yn0⟩ In
what follows we will also use the objects Cu∼(A) and Cu∼(ϕ) introduced in [43].

Definition 2.5. If B is a C*-algebra, we will use QT(B) for the set of quasitraces τ with ∥τ∥ = 1
(see [2]). Let A be a σ-unital C*-algebra. Suppose that every quasitrace of every hereditary
sub-C*-algebra B of A is a trace.

If τ ∈ T̃(A), we will extend it to (A ⊗ K)+ by the rule τ(a ⊗ b) = τ(a)Tr(b), for all a ∈ A
and b ∈ K, where Tr is the canonical densely defined trace on K.

Recall that A has the (Blackadar) property of strict comparison for positive elements, if
for any two elements a, b ∈ (A ⊗ K)+ with the property that dτ (a) < dτ (b) < +∞ for all
τ ∈ T̃(A) \ {0}, necessarily a ! b. In general (without knowing that quasitraces are traces), this
property will be called strict comparison for positive elements using traces.

Let S be a topological convex set. Denote by Aff(S) the set of all real continuous affine
functions, and by Aff+(S) the set of all real continuous affine functions f with f(s) > 0 for all
s, together with zero function.

Recall T(A)
w

denotes the closure of T(A) in T̃(A) with respect to pointwise convergence
on Ped(A) (see the end of 2.1). Suppose that 0 ̸∈ T(A)

w
and that T(A) generates T̃(A), in

particular. (By 4.5 below, these properties hold, in the case that A = Ped(A).) Then A has
strict comparison for positive elements using traces if and only if dτ (a) < dτ (b) for all τ ∈ T(A)

w

implies a ! b, for any a, b ∈ (A⊗K)+.

Definition 2.6. Let A be a C*-algebra such that 0 ̸∈ T(A)
w
. There is a linear map raff : As.a. →

Aff(T(A)
w
), from As.a. to the set of all real affine continuous functions on T(A)

w
, defined by

raff(a)(τ) = â(τ) = τ(a) for all τ ∈ T(A)
w

and for all a ∈ As.a.. Denote by Aq
s.a. the space raff(As.a.) and by Aq

+ the cone raff(A+) (see [9]).
Denote by Aff0(T1(A)) the set of all real continuous affine functions which vanish at zero,

and denote by Aff0+(T1(A)) the subset of those f ∈ Aff0(T1(A)) such that f(t) > 0 for all
t ∈ T1(A) \ {0} and the zero function. Denote by LAff0+(T(A)

w
) the set of those functions f

on T(A)
w
(with values in [0,+∞]) such that there exists an increasing sequence of continuous

affine functions fn ∈ Aff0+(T1(A)) such that fn|T(A)
w ↗ f (as n → ∞) and the zero function.

In particular, if f ∈ Aff0+(T1(A)), then f |T(A)
w ∈ LAff0+(T(A)

w
). Denote by LAffb,0+(T(A)

w
)

the subset of bounded functions in LAff0+(T(A)
w
).

Note if T (A) = T(A)
w
, Then LAff0+(T(A)

w
) is the set of all those functions f on T (A)

which is the limit of an increasing sequence of strictly positive continuous affine functions fn ∈
Aff(T (A)) and zero function. In this case the set will also be denoted by LAff+(T(A)). We will
also use LAffb,+(T(A)) for LAffb,0+(T(A)

w
) in this case.
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Definition 2.7 (cf. [44]). Let A be a non-unital C*-algebra. We shall say that A almost has
stable rank one if for any integer m ≥ 1 and any hereditary sub-C*-algebra B of Mm(A),

B ⊂ GL(B̃), where GL(B̃) is the group of invertible elements of B̃. This definition is slightly
different from that in [44].

Suppose that A⊗K is σ-unital, almost has stable rank one, and contains a full projection e,
then B = e(A⊗K)e is unital. Since B almost has stable rank one, it follows that B has stable
rank one. By Theorem 6.4 of [42], B ⊗K has stable rank one. By Brown’s stable isomorphism
theorem ([3]), A ⊗ K has stable rank one. This implies that A has stable rank one (see, for
example, 3.6 of [4]). Therefore, a σ-unital simple C*-algebra A which almost has stable rank
one but does not have stable rank one must be stably projectionless. (We know of no such
example.)

Definition 2.8. Let A and B be C*-algebras and let ϕn : A → B be completely positive
contractive maps. We shall say that (ϕn)∞n=1 is a sequence of approximately multiplicative
completely positive contractive maps if

lim
n→∞

∥ϕn(a)ϕn(b)− ϕn(ab)∥ = 0 for all a, b ∈ A.

Definition 2.9. Let A be a C*-algebra. Denote by A1 the closed unit ball of A, and by Aq,1
+

the image of the intersection A+ ∩A1 in Aq
+.

We would like to end this section with the following proposition which is probably known.

Proposition 2.10. Let A be a σ-unital C*-algebra and B be another C*-algebra. Suppose that
ϕ : A → B is a contractive positive linear map and suppose that e ∈ A+ is a strictly positive
element. Then ϕ(e)Bϕ(e) = ϕ(A)Bϕ(A).

Proof. Let C = ϕ(A)Bϕ(A). Consider an approximate identity (bα) of B. Then ϕ(e)bαϕ(e) →
ϕ(e)2. It follows that ϕ(e)2 ∈ C. Consequently ϕ(e) ∈ C. It follows that ϕ(e)Bϕ(e) ⊂ C.

Let g be a state of C. Suppose that g(ϕ(e)) = 0. We will show that g = 0.
For any n ≥ 1, there exists λn > 0 such that f1/n(e) ≤ λne. It follows that g(ϕ(f1/n(e))) ≤

λng(ϕ(e)) = 0. Fix a ∈ A+. Then

g(ϕ(f1/n(e)af1/n(e))) ≤ ∥a∥g(ϕ(f1/n(e)2)) ≤ ∥a∥g(ϕ(f1/n(e))) = 0.

Since limn→∞ ∥ϕ(a)−ϕ(f1/n(e)af1/n(e)∥ = 0, one concludes that g(ϕ(a)) = 0. This implies that
g(ϕ(x)) = 0 for all x ∈ A.

We claim that, for any a ∈ A+ \ {0}, g(ϕ(a)bϕ(y)) = 0 for any b ∈ B and y ∈ A. In fact,

|g(ϕ(a)bϕ(y))|2 ≤ g(ϕ(a)ϕ(a))g(ϕ(y)∗b∗bϕ(y)) = g(ϕ(a)2)g(ϕ(y)∗b∗bϕ(y)) (e 2.2)

= g(∥a∥2ϕ(
a

∥a∥
)2)g(ϕ(y)∗b∗bϕ(y)) = ∥a∥2g(ϕ(

a

∥a∥
)2)g(ϕ(y)∗b∗bϕ(y)) (e 2.3)

≤ ∥a∥2g(ϕ(
a

∥a∥
))g(ϕ(y)∗b∗bϕ(y)) = 0. (e 2.4)

Recall that, for any x ∈ A, we may write x = (x1−x2)+ i(x3−x4), where xi ∈ A+, i = 1, 2, 3, 4.
Therefore, for any b ∈ B and y ∈ A,

g(ϕ(x)bϕ(y)) = g(
4∑

i=1

ϕ(xi)bϕ(y)) =
4∑

i=1

g(ϕ(xi)bϕ(y)) = 0. (e 2.5)

It follows that g(z) = 0 if z =
∑m

j=1 ϕ(aj)bjϕ(cj), where bj ∈ B and aj , cj ∈ A, j = 1, 2, ...,m.
Since the set {

∑m
j=1 ϕ(aj)bjϕ(cj) : bj ∈ B, aj , cj ∈ A} is dense in C, one concludes that g(c) = 0

for all c ∈ C. In other words, g = 0.
This shows that ϕ(e) is a strictly positive element of C. Therefore ϕ(e)Cϕ(e) = C. On the

other hand, C ⊃ ϕ(e)Bϕ(e) ⊃ ϕ(e)Cϕ(e) = C. So C = ϕ(e)Bϕ(e).
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3 Some results of Rørdam

For convenience, we would like to have the following version of a lemma of Rørdam:

Lemma 3.1 (Rørdam, Lemma 2.2 of [46]). Let a, b ∈ A with 0 ≤ a, b ≤ 1 be such that
∥a− b∥ < δ/2. Then there exists z ∈ A with ∥z∥ ≤ 1 such that

(a− δ)+ = z∗bz.

Proof. It follows from the hypothesis that there exists 2 > α > 1 such that

δ0 := ∥a− bα∥ < δ/2. (e 3.1)

Put c = bα. By Lemma 2.2 of [46],

fδ(a)
1/2(a− δ0 · 1)fδ(a)1/2 ≤ fδ(a)

1/2cfδ(a)
1/2,

where fδ is as defined in 2.2. Therefore,

fδ(a)
1/2(a− δ0 · 1)+fδ(a)1/2 ≤ fδ(a)

1/2cfδ(a)
1/2.

Thus,
(a− δ)+ ≤ fδ(a)

1/2(a− δ0 · 1)+fδ(a)1/2 ≤ fδ(a)
1/2cfδ(a)

1/2.

Choose 0 < β < 1 such that βα > 1. Put a1 = (a− δ)+ and b1 = fδ(a)1/2cfδ(a)1/2. Then, as in

the proof of Lemma 2.3 of [46], by 1.4.5 of [38], there is r1 ∈ A such that ∥r1∥ ≤ ∥b1/2−β/21 ∥ ≤ 1

and a1/21 = r1b
β/2
1 . Therefore, a1 = r1b

β
1r

∗
1. Note that bβ1 = (fδ(a)1/2cfδ(a)1/2)β. Write y =

fδ(a)1/2c1/2. Then yy∗ = b1. Let y = v(y∗y)1/2 be the polar decomposition of y in A∗∗ (so that

v ∈ A∗∗). It follows from 1.4 of [8] that vx ∈ A for all x ∈ (y∗y)A(y∗y) and v(y∗y)βv∗ = bβ1 .
Note that

(y∗y)β = (c1/2fδ(a)c
1/2)β ≤ cβ = bαβ. (e 3.2)

Put γ = 1/(αβ). Then 0 < γ < 1. Let x = (c1/2fδ(a)c1/2)β/2. Then x2 ≤ cβ = bαβ . Put
un = x((1/n) + (bαβ)1/2)(bαβ)1/2−γ/2, n = 1, 2, .... Then, as in the proof of 1.4.5 of [38], ∥un∥ ≤
∥(bαβ)1/2−γ/2∥ ≤ 1 and (un)n≥1 converges to u ∈ A in norm. Moreover, x = u(bαβ)γ/2. It follows
that that (y∗y)β = xx = xx∗ = u(bαβ)γu∗ = ubu∗. Note that, x = (y∗y)β/2, vx, v∗x ∈ A.
Therefore vun ∈ A for all n. It follows that vu ∈ A. Note also that ∥vu∥ ≤ 1. Now

(a− δ)+ = a1 = r1b
β
1r1 = r1(v(y

∗y)βv∗)r∗1 = (r1vu)b(u
∗v∗r1) = z∗bz,

where z = u∗v∗r1 = (vu)∗r1 ∈ A and ∥z∥ ≤ 1.

Lemma 3.2 (cf. (v) of Proposition 2.4 of [45] and Theorem 3 of [7]). Suppose that A is a (non-
unital) C*-algebra which almost has stable rank one. Suppose that a, b ∈ A+ are such that a ! b.
Then, for any 0 < δ, there exists a unitary u ∈ Ã such that

u∗fδ(a)u ∈ bAb.

Moreover, there exists x ∈ A such that

x∗x = a and xx∗ ∈ bAb.

Furthermore, if 0 ≤ a1, a2, b ≤ 1 are in A, and a1a2 = a1, and a2 ! b, then there exists a unitary
u ∈ Ã such that

u∗a1u ∈ bAb. (e 3.3)

In addition, if d ∈ (A⊗K)+, then, for any ε > 0, there exists a unitary u ∈ Ã⊗K such that
ufε(d)u∗ ∈ Mn(A) for some large n. This last statement also holds when A is unital.
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Proof. The first statement follows from the proof of part (v) of [45]. The second statement (also
the first one) follows from Proposition 3.3 of [44] (see also Corollary 6 of [39] and Lemma 1.4 of
[33]).

To see the third statement, note that, by the first statement, for any δ > 0, there exists a
unitary u ∈ Ã such that

u∗fδ(a2)u ∈ bAb. (e 3.4)

Since a1a2 = a1 = a2a1, one has fδ(a2)1/2a1 = a1. Therefore,

u∗a1u = u∗fδ(a2)
1/2a1fδ(a2)

1/2u ≤ u∗fδ(a2)u ∈ bAb. (e 3.5)

To see the last statement, let (en)n≥1 be an approximate identity of A ⊗ K such that en ∈
Mn(A), n = 1, 2, .... Without loss of generality, we may assume that 0 ≤ d ≤ 1. Then, for any
ε > 0, there exists n ≥ 1 such that ∥d − enden∥ < ε/4. By 3.1, fε/2(d) ! enden. Thus the last
conclusion follows from the first statement. One also notes that we do not use the condition
that A is not unital in the last few lines.

We shall also need the following variant of 3.1.

Lemma 3.3. Let 1 > ε > 0 and 1 > σ > 0 be given. There exists δ > 0 satisfying the following
condition: If A is a C*-algebra, and if x, y ∈ A+ are such that 0 ≤ x, y ≤ 1 and

∥x− y∥ < δ,

then there exists a partial isometry w ∈ A∗∗ with

ww∗fσ(x) = fσ(x)ww
∗ = fσ(x), and (e 3.6)

w∗cw ∈ yAy, ∥w∗cw − c∥ < ε∥c∥ for all c ∈ fσ(x)Afσ(x). (e 3.7)

If A almost has stable rank one, then w may be chosen to be a unitary in Ã.

Proof. Let ε/4 > δ1 > 0 be such that, for any C*-algebra B, and any pair of positive elements
x′, y′ ∈ B with 0 ≤ x′, y′ ≤ 1 such that

∥x′ − y′∥ < δ1,

then

∥fσ/2(x′)− fσ/2(y
′)∥ < σ · ε/8. (e 3.8)

Put η = (σδ1/16)2. Define g(t) = fσ/2(t)/t for all 0 < t ≤ 1 and g(0) = 0. Then g ∈ C0((0, 1]).
Note that ∥g∥ ≤ 2/σ. Set δ2 = ηδ1/16 and choose 0 < δ < η/3 such that, for any C*-algebra B,
and any pair of positive elements x′′, y′′ ∈ B with 0 ≤ x′′, y′′ ≤ 1 such that

∥x′′ − y′′∥ < 2δ,

one has

∥(x′′)1/2 − (y′′)1/2∥ < δ2. (e 3.9)

Now let A be a C*-algebra and let x, y ∈ A be such that 0 ≤ x, y ≤ 1 and ∥x− y∥ < δ.
Then

∥x2 − y2∥ = ∥x2 − xy + xy − y2∥ < 2δ. (e 3.10)
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Set z = yfη(x2)1/2. Then, by (e 3.9),

∥(z∗z)1/2 − x∥ = ∥(fη(x2)1/2y2fη(x2)1/2)1/2 − x∥ (e 3.11)

< δ2 + ∥(fη(x2)1/2x2fη(x2)1/2)1/2 − x∥ (e 3.12)

< δ2 +
√
η < σ · δ1/8. (e 3.13)

Also,

∥(z∗z)1/2 − z∥ < σ · δ1/8 + ∥x− yfη(x
2)1/2∥ (e 3.14)

< σ · δ1/8 + δ + ∥x− xfη(x
2)1/2∥ (e 3.15)

< σ · δ1/8 + δ +
√
η < σ · δ1/4. (e 3.16)

Consider the polar decomposition z = v(z∗z)1/2 of z in A∗∗. Then

∥vfσ/2(x)− fσ/2(x)∥ ≤ ∥vfσ/2(x)− vfσ/2((z
∗z)1/2)∥+ ∥vfσ/2((z∗z)1/2)− fσ/2(x)∥

< σ · ε/8 + ∥v(z∗z)1/2g((z∗z)1/2)− fσ/2(x)∥ (using (e 3.8))

= σ · ε/8 + ∥zg((z∗z)1/2)− fσ/2(x)∥

≤ σ · ε/8 + ∥zg((z∗z)1/2)− (z∗z)1/2g((z∗z)1/2)∥
+∥(z∗z)1/2g((z∗z)1/2)− fσ/2(x)∥

< ε/8 + δ1/2 + ∥(z∗z)1/2g((z∗z)1/2)− fσ/2(x)∥ (using (e 3.16))

< ε/4 + ∥fσ/2((z∗z)1/2)− fσ/2(x)∥
< ε/4 + σ · ε/8 < ε/2. (using (e 3.8) and (e 3.13))

Hence, for any c ∈ fσ(x)Afσ(x) with ∥c∥ ≤ 1,

∥vcv∗ − c∥ = ∥vfσ/2(x)cfσ/2(x)v∗ − c∥ (e 3.17)

< ε/2 + ∥fσ/2(x)cfσ/2(x)v∗ − c∥ (e 3.18)

= ε/2 + ∥vfσ/2(x)c∗fσ/2(x)− c∗∥ (e 3.19)

< ε/2 + ε/2 = ε. (e 3.20)

It follows from (the proof of) 2.2 of [46] that

(η − ∥x2 − y2∥)fη(x2) ≤ fη(x
2)1/2y2fη(x

2)1/2 ≤ fη(x
2).

So fη(x2)Afη(x2) is the same as the hereditary sub-C*-algebra generated by z∗z = fη(x2)1/2y2fη(x2)1/2.
Note also that the hereditary sub-C*-algebra generated by zz∗ is contained in yAy. It follows
that

vcv∗ ∈ yAy for all c ∈ fη(x2)Afη(x2). (e 3.21)

Choose w = v∗. Then, since
√
η < σ/4,

fσ(x)fη(x
2) = fσ(x) and hence ww∗fσ(x) = fσ(x)ww

∗ = fσ(x). (e 3.22)

Thus (e 3.21) holds for all c ∈ fσ(x)Afσ(x). If A almost has stable rank one, we can choose δ for
ε/2 and σ/4 first. Then, for b = vfσ/4(x), by Theorem 5 of [39], there is a unitary u ∈ Ã such

that b = u∗fσ/4(x). Then, for any c ∈ fσ(x)Afσ(x), u∗cu = vcv∗ and so w can be replaced by u.
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Lemma 3.4 ([46]). Let A be a C*-algebra and a ∈ A+ be a full element. Then, for any b ∈ A+,
any ε > 0 and any g ∈ C0((0,+∞)) whose support is in [ε,+∞), there are x1, x2, ..., xm ∈ A
such that

g(b) =
m∑

i=1

x∗i axi.

Proof. Fix ε > 0. Since a is full, and, a and b are positive, there are z1, z2, ..., zm ∈ A such that

∥
m∑

i=1

z∗i azi − b∥ < ε.

Therefore, by 2.2 and 2.3 of [46], there is y ∈ B such that

fε(b) = y∗(
m∑

i=1

z∗i azi)y.

Therefore, since fεg = g,

g(b) = g(b)1/2y∗(
m∑

i=1

z∗i azi)yg(b)
1/2.

We shall also need the following slight variant of a result of Rørdam:

Theorem 3.5 (cf. 4.6 of [48]). Let A be an exact simple C*-algebra which is Z-stable. Then A
has the strict comparison property for positive elements: If a, b ∈ (A ⊗ K)+ are two elements
such that

dτ (a) < dτ (b) < +∞ for all τ ∈ T̃(A) \ {0}, (e 3.23)

then a ! b.

Proof. Let a, b ∈ (A⊗K)+ be as in (e 3.23), and set

{τ ∈ T̃(A) : dτ (b) = 1} = S.

The assumption (e 3.23) implies that

dτ (a) < dτ (b) for all τ ∈ S. (e 3.24)

Since A is simple and b ̸= 0, for every ε > 0, ⟨(a− ε)+⟩ ≤ K⟨b⟩ for some integer K ≥ 1. Hence,

f(a) < f(b) for all f ∈ S(Cu(A), ⟨b⟩)

(see [48] for the notation) Since, by Theorem 4.5 of [48], W (A⊗K) is almost unperforated, and
by 3.2 of [48], a ! b.

Corollary 3.6. Let A be an exact simple separable C*-algebra which is Z-stable. Then A
has the following strict comparison property for positive elements: If a, b ∈ (B ⊗ K)+ are two
elements such that

dτ (a) < dτ (b) < +∞ for all τ ∈ T(B)
w
,

where B = cAc for some c ∈ Ped(A)+ \ {0}, then a ! b.
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Proof. The condition (e 3.23) of 3.5 holds since R+T(B)
w
= T̃(A).

We would like to include the following statement.

Lemma 3.7. Let B be a separable semiprojective C*-algebra and A be another C*-algebra such
that there is an isomorphism j : A ⊗ K → B ⊗ K. Then, for any ε > 0 and any finite subset
F ⊂ A, there exist δ > 0 and a finite subset G ⊂ A with the following property: If D is a
C*-algebra and L : A → D is a G-δ-multiplicative completely positive contractive map, then
there exists a homomorphism h : A → D ⊗K such that

∥h(a) − L(a)⊗ e1,1∥ < ε for all a ∈ F ,

where {ei,j} is a system of matrix units for K.

Proof. Let us write B ⊗ Mn ⊂ B ⊗ Mn+1 for all n and
⋃∞

n=1B ⊗ Mn is dense in B ⊗ K. Let
en =

∑n
i=1 ei,i. Define dn : B ⊗ K → B ⊗Mn by sending b ⊗ c to b ⊗ (encen) for all b ∈ B and

c ∈ K. There is an integer N such that

∥j(a) − dN (j(a))∥ < ε/8 for all a ∈ F . (e 3.25)

Write dN (j(a)) =
∑m(a)

i=1 ba,i ⊗ ca,i, where ba,i ∈ B and ca,i ∈ MN , 1 ≤ i ≤ m(a). Put FM =

{ca,i : 1 ≤ i ≤ m(a), a ∈ F} and F1 = {
∑m(a)

i=1 ba,i ⊗ ca,i : a ∈ F}. Set Λ = max{(∥ba,i∥ +
1)(∥ca,i∥+ 1)m(a) : 1 ≤ i ≤ m(a) : a ∈ F}.

Since B⊗MN is semiprojective, there are a finite subset G1 ⊂ B⊗MN and δ0 > 0 satisfying
the following condition: if L′ : B ⊗MN → D′ (for any C*-algebra D′) is a G1-δ0-multiplicative
completely positive contractive map, there exists a homomorphism H : B⊗MN → D′ such that

∥H(b)− L′(b)∥ < ε/8 for all b ∈ F1. (e 3.26)

Since j is an isomorphism, there exist a finite subset G ⊂ A and δ > 0 satisfying the following
condition: if L : A → D (for any C*-algebra D) is a G-δ-multiplicative completely positive
contractive map, then (L ⊗ idK)(j−1) is a G1-δ-multiplicative completely positive contractive
map.

Let ι : MN⊗K → K⊗K denote the inclusion and let ϕ : K⊗K → MN⊗K be an isomorphism.

There is a unitary U ∈ M̃N ⊗K such that

AdU ◦ ϕ ◦ ι ≈ε/4Λ idMN⊗K on FM ⊗ 1K.

Put ϕ1 = AdU ◦ϕ. Consider Ψ = (idB ⊗ ϕ1) ◦ (j ⊗ idK) : A⊗K⊗K → B ⊗MN ⊗K. Thus, for
all a ∈ F (we identify A with the first corner of A⊗K),

Ψ(a⊗ e1,1 ⊗ e1,1) = (idB ⊗ ϕ1)(j(a) ⊗ e1,1) ≈ε/8 (idB ⊗ ϕ1))(dN (j(a)) ⊗ e1,1)

= (idB ⊗ ϕ1)(

m(a)∑

i=1

ba,i ⊗ ι(ca,i ⊗ e1,1)) ≈ε/4

m(a)∑

i=1

ba,i ⊗ ca,i ⊗ e1,1

≈ε/8 j(a) ⊗ e1,1. (e 3.27)

Now assume L : A → D is a G-δ-multiplicative completely positive contractive map. Consider
the maps L⊗ idK : A⊗ K → D ⊗K and (L⊗ idK)(j−1) : B ⊗ K → D ⊗K, and the restriction
Φ := (L⊗ idK)(j−1)|B⊗MN : B ⊗MN → D ⊗K.

Now Φ is a G1-δ0-multiplicative completely positive contractive map. Therefore there is a
homomorphism h0 : B ⊗MN → D ⊗K such that

∥h0(b)−Φ(b)∥ < ε/8 for all b ∈ F1. (e 3.28)
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Then, for all a ∈ F , by (e 3.27), (e 3.25), and (e 3.28),

(h0 ⊗ idK) ◦Ψ(a⊗ e1,1 ⊗ e1,1) ≈ε/2 (h0 ⊗ idK)(j(a) ⊗ e1,1) ≈ε/4 (Φ⊗ idK)(dN (j(a)) ⊗ e1,1)

≈ε/8(L⊗ idK)(a⊗ e1,1 ⊗ e1,1) = L(a)⊗ e1,1.

Define h : A → D⊗K as the composed map (idD⊗ψ)◦h0◦Ψ◦ιA, where ιA(a) = a⊗e11⊗e1,1
for all a ∈ A and ψ : K⊗K → K is any isomorphism. From the last estimate the lemma follows.
The above proof may be summarized by the following non-commutative diagram with the upper
triangle approximately commutative on F , and the lower right one approximately commutative
on F1 ⊗ e1,1 :

A

dN◦j◦ιA
!!

(j⊗idK)◦ιA

""✐✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐

B ⊗K ⊗K

j−1⊗idK ##

idB⊗ϕ1
$$❴❴❴❴❴❴ B ⊗MN ⊗K

j−1⊗idK
!!

h0⊗idK $$❴❴❴❴❴❴ D ⊗K⊗K
idD⊗ψ

$$ D ⊗K.

A⊗K⊗K
L⊗idK⊗K

%%❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

h=(idD⊗ψ)◦(h0⊗idK)◦(idB⊗ϕ1)◦(j⊗idK)◦ιA

4 Compact C*-algebras

Definition 4.1. A σ-unital C*-algebra A is said to be compact, if there is e ∈ (A ⊗ K)+ with
0 ≤ e ≤ 1 and a partial isometry w ∈ (A⊗K)∗∗ such that

w∗a, w∗aw ∈ A⊗K, ww∗a = aww∗ = a, and ew∗aw = w∗awe = w∗aw for all a ∈ A,

where A is identified with A⊗ e11.

Proposition 4.2. Let C be a σ-unital C*-algebra and let c ∈ C+ \ {0} with 0 ≤ c ≤ 1 be a full
element of C. Suppose that there is e1 ∈ C with 0 ≤ e1 ≤ 1 such that e1c = ce1 = c. Then cCc
is compact.

Proof. Set cCc = B. Consider the sub-C*-algebra

E = {(aij)2×2 : a11 ∈ B, a12 ∈ BC, a21 ∈ CB, a22 ∈ C} ⊂ M2(C),

containing B1 = B⊗ e11 and C2 = C ⊗ e22 as full corners, where {ei,j : 1 ≤ i, j ≤ 2} is a system
of matrix units for M2. We may then in a natural way view B1 ⊗K and C2 ⊗K as full corners
of E ⊗K. We may write

E ⊗K = {(aij)2×2 : a11 ∈ B1 ⊗K, a12 ∈ BC ⊗K, a21 ∈ CB ⊗K, a22 ∈ C1 ⊗K} ⊂ M2(C ⊗K).

We also write B2 = B⊗e22. Moreover, let p1 be the range projection of B1⊗K and let p2 be the
range projection of C1⊗K; then p1, p2 ∈ M(E⊗K). Put U = (aij)2×2, where a11 = a12 = a22 = 0
and a21 = p1. Then Uc ∈ E⊗K for all c ∈ E⊗K and UxU∗ ∈ B2⊗K ⊂ C2⊗K for all x ∈ B1⊗K.

By 2.8 of [3], there is a partial isometry W ∈ M(E ⊗K) such that W ∗(B1 ⊗K)W = C2 ⊗K,
WW ∗ = p1, and W ∗W = p2. Since W ∈ M(E ⊗ K), Wb ∈ E ⊗ K for all b ∈ B2 ⊗K. It follows
that

Up1Wb = UWb ∈ B2 ⊗K for all b ∈ B2 ⊗K.
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In what follows we identify B with B2. Put w = W ∗p1U∗ = W ∗U∗. Then, for any b ∈ B(=
B2),

(w)∗b = Up1Wb ∈ B2 ⊗K, w∗bw = UWbW ∗U∗ ∈ B2 ⊗K(= B ⊗K).

This also implies that w∗is a left multiplier of B2 ⊗K. So we may write w ∈ (B2 ⊗K)∗∗ (which
we identify with (B ⊗K)∗∗). Moreover, with e = Up1We1W ∗p1U∗ ∈ B2 ⊗ K(= B ⊗ K) (where
e1 := e1 ⊗ e22),

ew∗bw = UWe1W
∗U∗UWbW ∗U∗ = UWe1p2bW

∗U∗ = UWe1bW
∗U = UWbW ∗U∗ = w∗bw

for all b ∈ B2. We also have w∗bwe = ew∗bw, ww∗b = W ∗U∗UWb = p2b = b, and bww∗ = b for
all b ∈ B2(= B).

Thus, B is compact.

Corollary 4.3. A σ-unital full hereditary sub-C*-algebra of a σ-unital compact C*-algebra is
compact.

Proof. Let A be a compact C*-algebra and let b ∈ A+ be a full element. Put B = bAb. Let e
and w be as in Definition 4.1. Put c = w∗bw, B1 = w∗Bw, and C = A ⊗ K. Then B ∼= B1.
Moreover, B1 = cCc and ec = ce = c. So, by 4.2, B1 is compact.

Lemma 4.4. Let A be a σ-unital C*-algebra which is compact. Then, there exists an integer
N ≥ 1, a partial isometry w ∈ MN (A)∗∗ and e ∈ MN (A) with 0 ≤ e ≤ 1 such that

w∗a, w∗aw ∈ MN (A), ww∗a = aww∗ = a, and w∗awe = ew∗aw = w∗aw for all a ∈ A.

Proof. If A is unital, then we may choose N = 1 and e = 1A.
Let b ∈ A be a strictly positive element with 0 ≤ b ≤ 1. We may assume, by Definition 4.1,

that A is a full hereditary sub-C*-algebra of a σ-unital C*-algebra C such that there is e1 ∈ C
with 0 ≤ e1 ≤ 1 such that be1 = b = e1b. Moreover, bCb = A. Since b is full in C, by Lemma
3.4, there exist x1, x2, ..., xm ∈ C such that

m∑

i=1

x∗i bxi = f1/4(e1).

Note that f1/4(e1)b = b = bf1/4(e1). Consider X∗ := (x∗1b
1/2, x∗2b

1/2, ..., x∗mb1/2) as a 1-row
element of Mm(C). Then

X∗X = f1/4(e1) and XX∗ ∈ Mm(b1/2Cb1/2) = Mm(A).

Consider the polar decomposition X = v|X∗X|1/2 of X in Mm(C)∗∗. Then

vav∗ = v|X∗X|1/2a|X∗X|1/2v∗ = XaX∗ ∈ Mm(A) for all a ∈ A.

Note that Xb1/n ∈ Mm(A) for all n. Denote by p the range projection of b. Then Xp ∈ Mm(A)∗∗.
Note also that Xp = v|X∗X|1/2p = vp. Set w = (Xp)∗. Then w∗ = vp and ww∗ = pX∗Xp =
pf1/4(e1)p = p. So w is a partial isometry. Note that, for any a ∈ A, w∗b1/na = vpb1/na =

Xb1/na ∈ A. It follows that w∗a ∈ A. Then

w∗aw = XaX∗ ∈ Mm(A) for all a ∈ A.

Set e = XX∗. Then,

w∗awe = XaX∗XX∗ = Xaf1/4(e1)X
∗ = XaX∗ = w∗aw and

ew∗aw = XX∗XaX∗ = Xf1/4(e1)aX
∗ = XaX∗ = w∗aw. (e 4.1)
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Lemma 4.5. Let A be a σ-unital compact C*-algebra. Then 0 ̸∈ T(A)
w
. Hence if a ∈ A with

0 ≤ a ≤ 1 is full, then there is d > 0 such that

dτ (a) ≥ d for all τ ∈ T(A)
w
.

Proof. We may assume that T(A) ̸= Ø. As in the proof of Lemma 4.4, without loss of generality,
we may assume that A is a full hereditary sub-C*-algebra of B⊗K for some σ-unital C*-algebra
B such that there is e1 ∈ (B⊗K)+, 0 ≤ e1 ≤ 1, and e1x = xe1 = x for all x ∈ A. Put C = B⊗K.
Note that A ⊂ Ped(C). Since A is full in C, we may also assume that each τ ∈ T(A) has been
extended to a unique element of T̃(C). Let e0 ∈ A+ be a strictly positive element of A. Recall
from 2.1 that T(A)

w
is weak*-compact subset of T1(A). Consider the set

S = {τ ∈ T1(A) : τ(f1/4(e1)) ≥ 1}.

Then S is closed and 0 ̸∈ S. Note that

T(A) = {τ ∈ T̃(C) : dτ (e0) = 1}.

Then, for any τ ∈ T(A),

τ(f1/4(e1)) ≥ dτ (e0) = 1. (e 4.2)

It follows that T(A) ⊂ S, and so T(A)
w ⊂ S. Therefore, 0 ̸∈ T(A)

w
.

Since a is full in A, τ(a) > 0 for all nonzero traces. In particular, τ(a) > 0 for all τ ∈ T(A)
w
.

Thus the lower semicontinuous function τ *→ dτ (a) si strictly positive on the compact set T(A)
w
.

Therefore d := inf{dτ (a) : τ ∈ T(A)
w} > 0.

Corollary 4.6. Let A be a σ-unital C*-algebra which is compact and let a ∈ A be a strictly
positive element with 0 ≤ a ≤ 1. Suppose that

d := inf{dτ (a) : τ ∈ T(A)
w} > 0.

Then, for any d/3 < d0 < d, there exists an integer n ≥ 1 such that, for all m ≥ n,

τ(f1/m(a)) ≥ d0 and τ(a1/m) ≥ d0 for all τ ∈ T(A)
w
.

Proof. This holds as both increasing sequences (τ(f1/m(a)))∞m=1 and (τ(a1/m))∞m=1 converge

pointwise to dτ (a), and T(A)w is comapct.

Theorem 4.7. Let A be a σ-unital C*-algebra. Then A is compact if and only if Ped(A) = A.

Proof. Let a ∈ A+ be a strictly positive element.
First assume that A is compact. We will identify A with A⊗ e11 ⊂ A⊗K. Then there exists

e ∈ (A⊗K)+ and a partial isometry w ∈ (A⊗K)∗∗ such that

w∗xw ∈ A⊗K, ww∗x = xww∗ = x, and w∗xwe = ew∗xw = w∗xw for all x ∈ A.

Set z = w∗a1/2. Then zz∗ ∈ Ped(A ⊗ K)+. Hence, by 5.6.2 of [38], a = z∗z ∈ Ped(A ⊗ K)+.
Therefore the hereditary sub-C*-algebra generated by a is contained in Ped(A ⊗ K). In other
words, A ⊂ Ped(A⊗K). By Theorem 2.1 of [51], A = Ped(A).

Conversely, assume that Ped(A) = A. Then there are bi ∈ A+ with ∥bi∥ ≤ 1, i = 1, 2, ...,m,
such that

a1/2 ≤
m∑

i=1

gi(bi),
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where gi ∈ C0((0,∞)) and the support of gi is in [σ,∞) for some 1/2 > σ > 0. Note that for
each i, gi =

∑K
j=1 gi,j for some 0 ≤ gi,j ≤ 1 with the support of gi,j still in [σ,∞). Thus, without

loss of generality, we may assume that 0 ≤ gi ≤ 1.
Let ci = (gi(bi))1/2, i = 1, 2, ...,m. Define

Z = (c1, c2, ..., cm),

which we view as a m×m matrix with zero rows other than the first row. Define

E = diag(fσ/2(b1), fσ/2(b2), ..., fσ/2(bm)) ∈ Mm(A).

Note that
ZZ∗ =

m∑

i=1

c2i ≥ a and Z∗Z = (di,j)m×m,

where
di,j = cicj , i, j = 1, 2, ...,m.

It follows that
E(Z∗Z) = E(cicj)m×m = (cicj)m×m = (Z∗Z)E.

Consider the polar decomposition Z∗ = V |Z∗|. Then

V x ∈ Mm(A), V V ∗|Z| = |Z|V V ∗ = |Z|, and (V xV ∗)E = E(V xV ∗) = (V xV ∗)

for all x ∈ (ZZ∗)Mm(A)(ZZ∗). Note that A ⊂ (ZZ∗)Mm(A)(ZZ∗). Therefore A is compact.

The number n below will be used later.

Lemma 4.8. Let A be a σ-unital C*-algebra with 0 ̸∈ T(A)
w
. Suppose that A almost has

stable rank one and has the following property: If a, b ∈ Mm(A)+ for some integer m ≥ 1, and
dτ (a) < dτ (b) for all τ ∈ T(A)

w
, then a ! b. Then A is compact. Moreover, let a ∈ A with

0 ≤ a ≤ 1 be a strictly positive element, set

d = inf{dτ (a) : τ ∈ T(A)
w},

and let n be an integer such that nd > 1. There exist elements e1, e2 ∈ Mn(A) with 0 ≤ e1, e2 ≤ 1,
e1e2 = e2e1 = e1, and w ∈ Mn(A)∗∗ such that

w∗c, cw ∈ Mn(A), ww
∗c = cww∗ = c for all c ∈ A, and (e 4.3)

w∗cwe1 = e1w
∗cw = w∗cw for all c ∈ A. (e 4.4)

Furthermore, there exist a full element b0 ∈ Ped(A) with 0 ≤ b0 ≤ 1 and e0 ∈ Ped(A)+ such
that b0e0 = e0b0 = b0.

Proof. Let a ∈ A+ with 0 ≤ a ≤ 1 be a strictly positive element. Since 0 ̸∈ T(A)
w
and T(A)

w

is compact (see the end of 2.1), and dτ (a) is lower semicontinuous, as stated in Lemma 4.5,

inf{dτ (a) : τ ∈ T(A)
w} = d > 0.

Let n be an integer such that nd > 1.
By 4.6 there exists ε > 0 such that

inf{τ(fε(a)) : τ ∈ T(A)
w} = d0 > 2d/3
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and nd0 > 1. So, for any τ ∈ T(A)
w
,

dτ (a) ≤ 1 < nd0 ≤ nτ(fε(a)) ≤ dτ (fε(a)).

Therefore,

a ! diag(

n︷ ︸︸ ︷
fε(a), fε(a), ..., fε(a)) in Mn(A).

Put b = diag(

n︷ ︸︸ ︷
fε(a), fε(a), ..., fε(a)). Since A is assumed almost to have stable rank one, by 3.2,

there exists x ∈ Mn(A) such that

x∗x = a1/2 and xx∗ ∈ bMn(A)b.

By considering the polar decomposition of x in Mn(A)∗∗, one obtains a partial isometry w ∈
Mn(A)∗∗ such that wA,Aw∗ ⊂ Mn(A), w∗wc = cw∗w = c for all c ∈ A, and wAw∗ ⊂ bMn(A)b.

Put e = diag(

n︷ ︸︸ ︷
fε/2(a), fε/2(a), ..., fε/2(a)). Then 0 ≤ e ≤ 1 and

ewcw∗ = wcw∗e = wcw∗ for all c ∈ A.

This shows that A is compact. The second part of the statement with (e 4.3) and (e 4.4) also
holds.

For the last part of the statement, choose b0 = fε(a) and e0 = fε/2(a).

Remark 4.9. Let A be a σ-unital C*-algebra and let e ∈ A be a strictly positive element. Set

λs = inf{dτ (e) : τ ∈ T(A)}. (e 4.5)

By 2.3, 0 ≤ λs ≤ 1. Note that 0 ̸∈ T(A)
w

if and only if λs > 0. In particular, by 4.5, if A is
compact, λs > 0. Note also λs = inf{dτ (e) : τ ∈ T(A)

w}.
Now let A be a σ-unital exact simple C*-algebra. Let e ∈ Ped(A)+ \ {0}. Consider the set

of traces normalized on e, Te(A) = {τ ∈ T̃(A) : τ(e) = 1}. It is a compact convex set (see 2.6
of [51] and 2.6 of [27]). If A has strict comparison, A is said to have bounded scale if dτ (a) is
a bounded function on Te(A) (see [1]). In the absence of strict comparison, let us say that A
has bounded scale if there exists an integer n ≥ 1 such that n⟨e⟩ ≥ ⟨a⟩ for any a ∈ A+. As first
noted in [1], this is equivalent to saying that A is algebraically simple, and this in turn (in view
of 4.7 above) is equivalent to saying that A is compact.

Proposition 4.10. Let A be a σ-unital C*-algebra with 0 ̸∈ T(A)
w

such that every trace in
T̃(A) is finite (equivalently, bounded) on A. Let B⊂A be a σ-unital full hereditary sub-C*-algebra.
Then 0 ̸∈ T(B)

w
.

Proof. Let b ∈ B+ with ∥b∥ = 1 be such that B = bBb. Let e ∈ A+ with ∥e∥ = 1 such that
A = eAe.

Since b is full, τ(b) > 0 for all τ ∈ T(A)
w
. Then, by continuity and compactness,

1 > r0 = inf{τ(b) : τ ∈ T(A)
w
} > 0.

For any t ∈ T(B), the unique extension τ ∈ T̃(A) is finite, i.e., bounded, by hypothesis. Set
τ0 = τ/∥τ∥ ∈ T(A) and t = ∥τ∥ · τ0|B . It follows (since τ0(b) ≥ r0 and ∥τ∥ ≥ 1) that

t(b) ≥ ∥τ∥ · r0 ≥ r0.

This shows that 0 ̸∈ T(B)
w
.
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Proposition 4.11. Let A be a σ-unital simple C*-algebra, let c ∈ Ped(A) be a positive element
and set C = cAc. Then each τ ∈ T(C)

w
extends to a unique element ı(τ) ∈ T̃ (A). Moreover

ı(T(C)
w
) is compact in T̃ (A) and 0 ̸∈ ı(T(C)

w
).

Proof. Note that the extension is unique. So ı is well defined. Moreover map ı is one-to-one.
Note, by 4.3 and 4.7, C = Ped(C). Put K = T(C)

w
. Then, by 4.5, 0 ̸∈ K.

Consider τα, τ ∈ K such that τα(b) → τ(b) for all b ∈ C. Let us show that ı(τα)(a) → ı(τ)(a)
for all a ∈ Ped(A)+.

By the definition of the Pedersen ideal, a ≤
∑n

i=1 xi for some xi = g(yi), where yi ∈ A+, and
g ∈ C0((0,+∞))+ with compact support, i = 1, 2, ..., n. It follows from 3.4 that ⟨g(yi)⟩ ≤ m⟨c⟩
for some integer m ≥ 1. Therefore, ⟨a⟩ ≤ nm⟨c⟩. It follows that

dı(τα)(a),dı(τ)(a) ≤ nm. (e 4.6)

Then, for any b ∈ aAa with ∥b∥ ≤ 1, |ı(τα)(b)| ≤ nm and |ı(τ)(b)| ≤ nm. In other words,

∥ı(τα)|aAa∥ ≤ nm and ∥ı(τ)|aAa∥ ≤ nm. (e 4.7)

For any ε > 0, by 3.4, there are z1, z2, ..., zN ∈ A such that

N∑

i=1

z∗i czi = fε(a). (e 4.8)

It follows that
N∑

i=1

a1/2z∗i czia
1/2 = a1/2fε(a)a

1/2. (e 4.9)

Consider the element b =
∑N

i=1 a
1/2z∗i czia

1/2 ∈ aAa. Set z′i = zia1/2, i = 1, 2, ..., N. Then, since
c1/2z′iz

′∗
i c

1/2 ∈ C,

ı(τα)(b) =
N∑

i=1

ı(τα)(z
′∗
i czi) =

N∑

i=1

ı(τα)(c
1/2z′iz

′∗
i c

1/2) =
N∑

i=1

τα(c
1/2z′iz

′∗
i c

1/2)

→
N∑

i=1

τ(c1/2z′iz
′∗
i c

1/2) =
N∑

i=1

ı(τ)(c1/2z′iz
′∗
i c

1/2)

=
N∑

i=1

ı(τ)(z′∗i czi) = ı(τ)(b). (e 4.10)

Since a1/2fε(a)a1/2 → a in norm, by (e 4.7) and by (e 4.9),

ı(τα)(a) → ı(τ)(a).

This shows that ı is continuous. Since K is compact, ı(K) is compact in T̃ (A). Since 0 ̸∈ K,
0 ̸∈ ı(K) = ı(T(C)

w
).

Definition 4.12. Let A be a σ-unital C*-algebra with T̃(A) ̸= {0}. Suppose that there is a
nonzero element e ∈ Ped(A)+ which is full in A.

Set Ae = eAe. Then, by Lemma 4.7, Ae is compact. Consequently, by Lemma 4.5, 0 ̸∈
T(Ae)

w
. Assume that A is not unital. Each τ ∈ T(Ae)

w
extends uniquely to a tracial state on

Ãe. There is a canonical order-preserving homomorphism ρÃe
: K0(Ãe) → Aff(T(Ae)

w
). By [3],

one may identify K0(A) with K0(Ae). The composition of maps from K0(A) to K0(Ae), then
from K0(Ae) to K0(Ãe) and then to Aff(T(Ae)

w
) is a homomorphism which will be denoted by

ρA. Denote by kerρA the subgroup of K0(A) consisting of those x ∈ K0(A) such that ρA(x) = 0.
Elements in kerρA are called infinitesimal elements.
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5 Continuous scale and fullness

Definition 5.1. The previous section discussed C*-algebras with bounded scale. Let us recall
the definition of continuous scale ([27] and [31]).

Let A be a σ-unital C*-algebra. Fix an increasing approximate unit (en) for A with the
property that

en+1en = enen+1 = en for all n ≥ 1.

The C*-algebra A is said to have continuous scale if, for any b ∈ A+ \ {0}, there exists N ≥ 1
such that

em − en ! b, m > n ≥ N.

This definition does not depend on the choice of (en) above. By 5.3 below, if A has continuous
scale and T (A) ̸= Ø, then λs = 1.

Remark 5.2. Let A be a exact simple C*-algebra such that A ⊗ Z ∼= A. Then, by 6.6 of [19]

(see also 6.2.3 of [43]), the map ⟨a⟩ *→ ⟨̂a⟩ is an isomorphism of the ordered semigroup of purely
non-compact elements of Cu(A) with LAff+(T̃ (A)). Hence 5.4 below implies that there exist a
non-zero hereditary sub-C*-algebra B of A⊗K such that B has continuous scale.

In fact slightly more can be said. Let a ∈ A+ be a strictly positive element. One finds a

non-zero element b ∈ (A ⊗ K)+ such that ⟨̂b⟩ is continuous and ⟨̂b⟩ < ⟨̂a⟩. Write C = A ⊗ K
and view A as a hereditary sub-C*-algebra of C. Note that C is also Z-stable. It follows from
part (ii) of Theorem 1.2 of [44] that there exists a nonzero positive element b1 ∈ C such that
b1C ⊂ aC such that ⟨b21⟩ = ⟨b1⟩ = ⟨b⟩. Note that b21 = b1b∗1 ∈ aCa = A. In other words, A

contains a positive element b1 such that ⟨̂b1⟩ is continuous.
Thus Theorem 5.3 together with 5.4 imply that there exists a non-zero hereditary sub-C*-

algebra B of A such that B has continuous scale (see 11.9 below).

Theorem 5.3 (cf. [31]). Let A be a σ-unital non-elementary simple C*-algebra with continuous
scale. Then

(1) T(A) is compact;
(2) dτ (a) is continuous on T̃(A) for any strictly positive element a of A;
(3) dτ (a) is continuous on T(A)

w
for any strictly positive element a of A.

Conversely, if A has strict comparison for positive elements using tracial states (see 2.5),
and A is algebraically simple, then (1), (2), and (3) are equivalent and also equivalent to each
of the following conditions:

(4) A has continuous scale;
(5) dτ (a) is continuous on T(A)

w
for some strictly positive element a of A;

(6) dτ (a) is continuous on T̃(A) for some strictly positive element a of A.

Proof. Most parts of the theorem are well known. That (1) holds is perhaps less well known.
Since A has continuous scale, A is algebraically simple (3.3 of [27]). In particular, A =

Ped(A). As noted in Definition 2.1, K = T(A)
w

is compact. Let a ∈ A be a strictly positive
element. Fix an element b ∈ A+ \ {0} with ∥b∥ = 1. Put B = f1/2(b)Af1/2(b). Since A is
not elementary, B+ contains infinitely many mutually orthogonal non-zero elements {xn} with
0 ≤ xn ≤ 1, n = 1, 2, .... By repeatedly applying Lemma 3.5.4 of [29], one then finds, for each
n, n nonzero mutually orthogonal positive elements {xn,1, xn,2, ..., xn,n} in A with 0 ≤ xn,j ≤ 1
such that xn,1 ! xn,2 ! · · · ! xn,n (see also 2.3 of [27]).

Note that τ(f1/8(b)) is bounded on K and

dτ (f1/4(b)) ≤ τ(f1/8(b)) for all τ ∈ K. (e 5.1)
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Since f1/4(b)xn,j = xn,j for all 1 ≤ j ≤ n and all n, it follows that, for any ε > 0, there exists
xn(ε),1 such that dτ (x(ε),1) < ε for all τ ∈ K. Note that

dτ (a) = lim
n→∞

τ(f1/2n(a)) for all τ ∈ K.

Note that, with en = f1/2n(a), n = 1, 2, ..., (en)∞n=1 forms an approximate identity with en+1en =
en for all n. Since A has continuous scale, for any ε > 0, there exists N ≥ 1 such that

em − en ! xk(ε),1 for all m > n ≥ N.

In particular,
τ(em)− τ(en) < ε for all τ ∈ K. (e 5.2)

It follows that dτ (a) is continuous on K. Since dτ (a) = 1 on T(A) and T(A) is dense in K,
dτ (a) = 1 for all τ ∈ K. This implies that T(A) = K. This proves (1) and (3). Note that (2) is
equivalent to (3), as A = Ped(A), and so T̃(A) = R+T(A).

Conversely, suppose that A is as stated, suppose that dτ (a) is continuous, and suppose that
en = f1/2n(a), n = 1, 2, .... Then, τ(en) converges to dτ (a) uniformly on K. For any nonzero
b ∈ A+, there exists N ≥ 1 such that dτ (em−en) < dτ (b) for all τ ∈ T (A) and for all m > n ≥ N.
Since A has strict comparison for positive elements, it follows that,

em − en ! b for all m > n ≥ N.

Thus, A has continuous scale.
In other words, in this case, if A does not have continuous scale, dτ (a) is not continuous

on K. In particular, dτ (a) is not identically 1. This implies K ̸= T(A). The above shows that,
under the assumption that A is as stated in the second part of the theorem, (1), (4) and (5) are
equivalent. Since (5) and (6) are equivalent, these are also equivalent to (6). Since the notion
of continuous scale is independent of the choice of a, these conditions are also equivalent to (2)
and (3).

Proposition 5.4. Let A be a σ-unital exact simple C*-algebra with strict comparison for positive
elements. Suppose that T(A) ̸= Ø. Let a ∈ A+ be such that dτ (a) is continuous on T̃(A). Then
aAa has continuous scale. If, in addition, A is algebraically simple and dτ (a) is just assume to
be continuous on T(A)

w
, then aAa has continuous scale.

Proof. Put B = aAa. We may assume that a ̸= 0. Choose a nonzero element c ∈ Ped(A) with
0 ≤ c ≤ 1. Put C = cAc. By 4.3 and 4.7, C = Ped(C). Put K = T(C)

w
. Then, by 4.5, 0 ̸∈ K.

Note that each τ ∈ K extends uniquely to an element of T̃(A). Let ı : K → T̃(A) denote
this map as in 4.11. By 4.11, 0 ̸∈ ı(K) and ı(K) is compact. Therefore dτ (a) is continuous
on ı(K). Let en = f1/2n(a), n = 1, 2, ... Then (en)∞n=1 is an approximate identity for B such
that en+1en = en for all n. Then dτ (en) ↗ dτ (a) uniformly on the compact set K. For any
b0 ∈ B+ \ {0}, there exists N ≥ 1 such that, for all m > n ≥ N,

dτ (em − en) < dτ (b0) for all τ ∈ K. (e 5.3)

Since K generates T̃ (A) as a cone, (e 5.3) holds for all τ ∈ T̃ (A) \ {0}. It follows that, for all
m > n ≥ N,

em − en ! b0. (e 5.4)

Therefore B has continuous scale.
The last part of the statement follows since T̃ (A) = R+T (A).
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Now we turn to the important concept of local uniform fullness.

Definition 5.5. Let A be a sub-C*-algebra of a C*-algebra B. An element a ∈ A+ \ {0} is
said to be uniformly full in B, if there are a positive number M(a) > 0 and an integer N(a) ≥ 1
such that, for any b ∈ B+ with ∥b∥ ≤ 1 and any ε > 0, there are xi(a), x2(a), ..., xn(a)(a) ∈ B
such that ∥xi(a)∥ ≤ M(a), n(a) ≤ N(a), and

∥
n(a)∑

i=1

xi(a)
∗axi(a)− b∥ < ε.

In this case, we shall also say that a is (N(a),M(a)) full.
We shall say that a is strongly uniformly full in B, if the above property holds with ε = 0

and replacing “< ε” by = 0.
We shall say that A is locally uniformly full, if every element a ∈ A+ \ {0} is uniformly full;

and we say A is strongly locally uniformly full if every a ∈ A+ \ {0} is strongly uniformly full.
If B is unital and A is full in B, then A is always strongly locally uniformly full. In fact, for

each a ∈ A \ {0}, there are x1, x2, ..., xm ∈ B such that

m∑

i=1

x∗i axi = 1B .

Choose M(a) = max{∥xi∥ : 1 ≤ i ≤ m} and N(a) = m.
Let A be a C*-algebra, let B be non-unital C*-algebra, and let L : A → B be a positive

linear map. Let F : A+ \ {0} → N×R+ \ {0}. Suppose that H ⊂ A+ \ {0} is a subset. We shall
say that L is F -H-full if, for any a ∈ H, for any b ∈ B+ with ∥b∥ ≤ 1, and any ε > 0, there are
x1, x2, ..., xm ∈ B such that m ≤ N(a) and ∥xi∥ ≤ M(a), where (N(a),M(a)) = F (a), and

∥
m∑

i=1

x∗iL(a)xi − b∥ ≤ ε. (e 5.5)

We shall say L is exactly F -H-full, if (e 5.5) holds for ε = 0.

Proposition 5.6. Let A be a nonzero σ-unital sub-C*-algebra of a C*-algebra B. Suppose that
B is σ-unital and algebraically simple. Then A is strongly locally uniformly full in B.

Proof. Let b ∈ A be a strictly positive element. Then bBb is a full hereditary sub-C*-algebra
B. It suffices to show that bBb is strongly locally uniformly full in B. Put B1 = bBb. In what
follows we will identify B with B ⊗ e11 in Mn(B).

Since B is algebraically simple, B = Ped(B). By 4.7, B is compact. Applying 4.4, let
e ∈ Mn(B) for some n ≥ 1 with 0 ≤ e ≤ 1 and w ∈ Mn(B)∗∗ be such that

w∗a, w∗aw ∈ Mn(B), ww∗a = aww∗ = a, and w∗awe = ew∗aw = w∗aw for all a ∈ B.

Note that also aw ∈ Mn(B) for all a ∈ B.
By Lemma 3.4, for any 1/4 > ε > 0 and any a ∈ (B1)+\{0}, there are x1, x2, ..., xm ∈ Mn(B)

such that

fε(e) =
m∑

i=1

x∗i axi.

Let p denote the range projection of B. Then pxi ∈ Mn(B) for i = 1, 2, ...,m. We may assume
that pxi = xi, i = 1, 2, ...,m.
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Fix x ∈ B+ with ∥x∥ ≤ 1. Then

fε(e)w
∗xw = w∗xwfε(e) = w∗xw.

Let M(a) = max{∥xi∥ : 1 ≤ i ≤ m} and N(a) = m. Then, w∗x1/2wfε(e)w∗x1/2w = w∗xw.
Therefore,

x1/2wfε(e)w
∗x1/2 = w(w∗xw)w∗ = x.

Put zi = xiw∗x1/2, i = 1, 2, ...,m. Then zi ∈ B, i = 1, 2, ...,m. Then ∥zi∥ ≤ M(a) and

m∑

i=1

z∗i azi = x1/2w(
m∑

i=1

x∗i axi)w
∗x1/2

= x1/2wfε(e)w
∗x1/2 = x. (e 5.6)

Theorem 5.7. Let A be a non-unital separable simple C*-algebra with A = Ped(A) and with
T(A) ̸= Ø. Fix an element e ∈ A+ \ {0} with ∥e∥ = 1 and

0 < d < min{inf{τ(e) : τ ∈ T(A)}, inf{τ(f1/2(e)) : τ ∈ T(A)}}.

Then there exists a map T : A+ \ {0} → N × R+ \ {0} with the following property: For any
finite subset H1 ⊂ A1

+ \ {0}, there are a finite subset G ⊂ A and δ > 0 satisfying the following
conditions: For any C*-algebra B with QT(C) = T(C) for all hereditary sub-C*-algebras C of
B, and T(B) ̸= Ø, and 0 ̸∈ T(B)

w
which has strict comparison and almost has stable rank one,

and for any G-δ-multiplicative completely positive contractive map ϕ : A → B such that

τ(f1/2(ϕ(e))) > d/2 for all τ ∈ T(B),

necessarily ϕ is exactly T -H1-full. Moreover, for any c ∈ H1,

τ(f1/2(ϕ(c))) ≥
d

8min{M(c)2 ·N(c) : c ∈ H1}
for all τ ∈ T(B).

Proof. Since A is a simple C*-algebra with A = Ped(A), there is a map T1 : A+ \ {0} →
N× R+ \ {0} such that the identity map idA is exactly T1-A+ \ {0}-full.

Write T1 = (N1,M1), where N1 : A+ \ {0} → N and M1 : A+ \ {0} → R+ \ {0}.
Let n ≥ 2 be an integer such that nd/2 > 1. Set N = 2nN1 and M = 2M1 and T = (N,M).
Let H1 ⊂ A+ \ {0} be a fixed finite subset.
Suppose that xi,h, ..., xN1(h),h ∈ A with ∥xi,h∥ ≤ M1(h) are such that

N1(h)∑

i=1

x∗i,hh
2xi,h = f1/64(e) for all h ∈ H1. (e 5.7)

Choose a large enough G and small enough δ > 0 that, for any G-δ-multiplicative completely
positive contractive map ϕ from A,

∥ϕ(f1/64(e)) − f1/64(ϕ(e))∥ < 1/64 and (e 5.8)

∥
N1(h)∑

i=1

ϕ(xi,h)
∗ϕ(h)2ϕ(xi,h)− f1/64(ϕ(e))∥ < 1/64 for all h ∈ H1. (e 5.9)

19



Now let that ϕ : A → B (for any B that fits the description in the theorem) be a G-δ-
multiplicative completely positive contractive map such that

τ(f1/2(ϕ(e))) ≥ d/2 for all τ ∈ T(B)
w
. (e 5.10)

Applying Lemma 3.1 (using (e 5.9)), one finds yi,h ∈ B with ∥yi,h∥ ≤ 2∥xi,h∥, i = 1, 2, ..., N1(h)
such that

N1(h)∑

i=1

y∗i,hϕ(h)
2yi,h = f1/16(ϕ(e)) for all h ∈ H1. (e 5.11)

By the hypotheses on B, and since A is σ-unital, applying 4.8, we may choose e1, e2 ∈
Mn(B)+ and w ∈ Mn(B)∗∗ as described there. Put

E0 = diag(

2n︷ ︸︸ ︷
f1/8(ϕ(e)), f1/8(ϕ(e)), ..., f1/8(ϕ(e))) and (e 5.12)

E1 = diag(

2n︷ ︸︸ ︷
f1/16(ϕ(e)), f1/16(ϕ(e)), ..., f1/16(ϕ(e))) ∈ M2n(B)+. (e 5.13)

Then, by the strict comparison,
e2 ! E0 ∈ M2n(B).

Since B almost has stable rank one, there exists a unitary u ∈ M̃2n(B) such that

u∗f1/16(e2)u ∈ E0(M2n(B))E0.

Then
u∗f1/16(e2)uE1 = E1u

∗f1/16(e2)u = u∗f1/16(e2)u. (e 5.14)

We then may write
2nN1(h)∑

i=1

(y′i,h)
∗ϕ(h)2y′i,h = E1 for all h ∈ H1,

where y′i,h ∈ M2n(B) and ∥y′i,h∥ = ∥yj,h∥ for some j ∈ {1, 2, ..., N1(h)}, i = 1, 2, ..., 2nN1(h).
Then

2nN1(h)∑

i=1

(f1/16(e2)
1/2uy′i,h

∗)ϕ(h)2(y′i,hu
∗f1/16(e2)

1/2) = f1/16(e2).

Therefore, for any b ∈ B+ with ∥b∥ ≤ 1,

2nN1(h)∑

i=1

(w∗b1/2w)(f1/16(e2)
1/2uy′i,h

∗)ϕ(h)1/2ϕ(h)ϕ(h)1/2(y′i,hu
∗f1/16(e2)

1/2)(w∗b1/2w) = w∗bw.

Then
2nN1(h)∑

i=1

(b1/2w)(f1/16(e2)
1/2uy′i,h

∗ϕ(h)1/2)ϕ(h)(ϕ(h)1/2(y′i,hu
∗f1/16(e2)

1/2)w∗b1/2 = b.

Note that b1/4w ∈ Mn(B) and f1/16(e2) ∈ Mn(B). Therefore

(b1/4w)f1/16(e2) ∈ Mn(B).

It follows that
(b1/2w)(f1/16(e2)

1/2uy′i,h
∗ϕ(h)1/2) ∈ B and (e 5.15)

∥(b1/2w)(f1/16(e2)1/2uy′i,h
∗ϕ(h)1/2∥ ≤ 2M(h) for all h ∈ H1. (e 5.16)

This implies that ϕ is exactly T -H1-full.

Remark 5.8. In the light of 6.3 below, Theorem 5.7 can be applied with C*-algebras B in the
class C′ defined just before 6.2.
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6 Non-unital and non-commutative one dimensional complexes

Definition 6.1. Let F1 and F2 be two finite dimensional C*-algebras. Suppose that there are
homomorphisms ϕ0,ϕ1 : F1 → F2. Consider the mapping torus Mϕ1,ϕ2 :

A = A(F1, F2,ϕ0,ϕ1) := {(f, g) ∈ C([0, 1], F2)⊕ F1 : f(0) = ϕ0(g) and f(1) = ϕ1(g)}.

For t ∈ (0, 1), define πt : A → F2 by πt((f, g)) = f(t) for all (f, g) ∈ A. For t = 0,
define π0 : A → ϕ0(F1) ⊂ F2 by π0((f, g)) = ϕ0(g) for all (f, g) ∈ A. For t = 1, define
π1 : A → ϕ1(F1) ⊂ F2 by π1((f, g)) = ϕ1(g) for all (f, g) ∈ A. In what follows, we will call πt a
point evaluation of A at t. There is a canonical map πe : A → F1 defined by πe(f, g) = g every
(f, g) ∈ A. It is a surjective map.

The class of all C*-algebras described above will be denoted by C.
If A ∈ C, then A is the pull-back of

A $$❴❴❴❴❴❴

πe

!!
✤

✤

✤
C([0, 1], F2)

(π0,π1)
!!

F1
(ϕ0,ϕ1)

$$ F2 ⊕ F2.

(e 6.1)

Every such pull-back is an algebra in C. Infinite dimensional C*-algebras in C are sometime
called one-dimensional non-commutative finite CW complexes (NCCW) (see [12] and [13]) and
Elliott-Thomsen building blocks (see [15]).

Suppose that F1 = MR1(C) ⊕MR2(C) ⊕ · · · ⊕MRl(C) and F2 = Mr1(C) ⊕Mr2(C) ⊕ · · · ⊕
Mrk(C). In what follows we may write C([0, 1], F2) =

⊕k
j=1C([0, 1]j ,Mrj ), where [0, 1]j denotes

the j-th interval.
Denote by C0 the class of all C*-algebras A in C which satisfy the following conditions:
(1) K1(A) = {0},
(2) K0(A)+ = {0},
(3) 0 ̸∈ T(A)

w
.

C*-algebras in C0 are stably projectionless. Condition (3) is equivalent to compact spectrum.
Examples of C*-algebras in C0 can be found in [41]. Let F1 = Mk for some k ≥ 1 and

F2 = M(m+1)k for some m ≥ 1. Define ψ0,ψ1 : F1 → F2 by

ψ0(a) = diag(
m︷ ︸︸ ︷

a, a, ..., a, 0) and ψ1(a) = diag(
m+1︷ ︸︸ ︷

a, a, ..., a, a)

for all a ∈ F2. Let us write

A = A(F1, F2,ψ0,ψ1) := R(k,m,m+ 1). (e 6.2)

Then, as shown in [41], K0(A) = {0} = K1(A) and it is easy to check that 0 ̸∈ T(A)
w
. Let

e ∈ R(k,m,m+ 1) be a strictly positive element. Then (see 4.9)

λs(R(k,m,m+ 1)) = inf{dτ (e) : τ ∈ T(R(k,m,m+ 1))} = m/(m+ 1).

Denote by Raz the class of C*-algebras which are finite direct sums of C*-algebras as in (e 6.2).
Denote by C0

0 the subclass of C*-algebras in C0 which also satisfy the stronger condition (2)’
K0(A) = {0}.

Let F1 = C⊕ C, F2 = M2n(C). For (a, b) ∈ C⊕ C = F1, define

ψ0(a, b) = diag(a, a...a︸ ︷︷ ︸
n−1

, b, b...b︸ ︷︷ ︸
n−1

, 0, 0) and ψ1(a, b) = diag(a, a...a︸ ︷︷ ︸
n

, b, b...b︸ ︷︷ ︸
n

).
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Then A(F1, F2,ψ0,ψ1) = A has the property that K0(A) = {(k,−k) ∈ Z ⊕ Z)} (which is
isomorphic to Z) but K0(A)+ = {0}. Also, K1(A) = {0}. Thus A ∈ C0 but A /∈ C0

0 .
Let C′ denote the class of all full hereditary sub-C*-algebras of C*-algebras in C, let C′

0 denote
the class of all full hereditary sub-C*-algebras of C*-algebras in C0, and let C0

0
′
denote the class

of all full hereditary sub-C*-algebras of C*-algebras in C0
0 .

Remark 6.2. Let A = A(F1, F2,ψ0,ψ1) ∈ C0. Then Ã ∈ C. Moreover, Ã = A(F ′
1, F2,ψ′

0,ψ
′
1)

with both ψ′
0 and ψ′

1 unital, defined as follows:
Let F ′

1 = F1 ⊕ C and let p = ψ0(1F1) ∈ F2 and q = ψ1(1F1) ∈ F2. Define ψ′
0, ψ

′
1 : F ′

1 → F2

by
ψ′
0((a,λ)) = ψ0(a)⊕ λ · (1F2 − p) and ψ′

1((a,λ)) = ψ1(a)⊕ λ · (1F2 − q)

for all a ∈ F1 and λ ∈ C.
One checks that K0(Ã) is finitely generated (see Proposition 3.4 of [22]). In fact, K0(Ã)+

is finitely generated (see Theorem 3.15 of [22]). Let π : Ã → C denote the quotient map.
Suppose that {[pi] : 1 ≤ i ≤ k} generates the semigroup K0(Ã)+. Let x ∈ K0(A) ⊂ K0(Ã). Then
x =

∑k
i=1(mi[pi]− ni[pi]) = [p]− [q], where mi ≥ 0, ni ≥ 0 and p, q ∈ MN (Ã) (for some integer

N ≥ 1) are projections such that [p] =
∑k

i=1 mi[pi] and [q] =
∑k

i=1 ni[pi]. One also has, since
x ∈ K0(A), π(p) and π(q) are equivalent in MN . Let n denote the rank of π(p) and ri the rank
of π(pi), 1 ≤ i ≤ k. Then

∑k
i=1 miri = n =

∑k
i=1 niri. Consequently,

(
k∑

i=1

(mi(([pi]− ri[1Ã]))− (ni[pi]− ri[1Ã]))) = (
k∑

i=1

mi[pi]− n[1Ã)− (ni[(pi]− n[1Ã])

=
k∑

i=1

(mi[pi]− ni[pi]) = x. (e 6.3)

It follows that K0(A) is generated by {([pi] − ri[1Ã]) : 1 ≤ i ≤ k}. In other words, K0(A) is
finitely generated.

Since A ∈ C0, either ψ0 or ψ1 is not unital. Hence at least one of ψ′
0 and ψ′

1 is nonzero on
the second direct summand C in F ′

1 = F1 ⊕ C.

Proposition 6.3. (1) Let A ∈ C′. Then, for any a1, a2 ∈ A+, a1 ! a2 if and only if
dtr◦π(π(a1)) ≤ dtr◦π(π(a2)) for every irreducible representation π of A, where we use tr for
the tracial state on matrix algebras.

(2) Let A ∈ C′, and let c ∈ A+ \{0}. Then c is full if and only if, for any τ ∈ T(A), τ(c) > 0.

Proof. For (1), we first consider the case that A ∈ C. By considering Ã, one sees that this case
follows from 3.18 of [22].

Since a C*-algebra A ∈ C′ is a hereditary sub-C*-algebra of some B in C, it is easy to see
that A also has the above-mentioned comparison property.

For (2), let us first assume again that A ∈ C. It is clear that if c ∈ A+ and τ(c) = 0, for
some τ ∈ T(A) then c has zero value somewhere in Sp(A) =

⊔
j(0, 1)j ∪ Sp(F1). Therefore c is

in a proper closed two-sided ideal of A.
Now assume that τ(c) > 0 for all τ ∈ T(A). It follows that π(c) > 0 for every finite

dimensional irreducible representation of A. Therefore c is full in A. In general, let A be a full
hereditary sub-C*-algebra of B ∈ C. Let c ∈ A+. Then c ∈ A+ is full if and only if it is full in
B. Therefore the general case follows from the case that A ∈ C.

Proposition 6.4. (1) Every C*-algebra in C′ has stable rank one;
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(2) If A ∈ C and A is unital, then the exponential rank of A is at most 2 + ε. If A ∈ C and
A is not unital, then Ã has exponential rank at most 2 + ε.

(3) Every C*-algebra in C is semiprojective.
(4) Let A ∈ C and let k ≥ 1 be an integer. Suppose that every irreducible representation of

C has dimension at least k. Then, for any f ∈ LAffb,0+(T(A)
w
) with 0 ≤ f ≤ 1, there exists a

positive element a ∈ M2(A) such that

max
τ∈T(A)

|dτ (a)− f(τ)| ≤ 2/k.

Proof. (1) follows from 3.3 of [22]. (2) follows from 3.16 of [22] (see also 5.19 of [36]).
It was shown in [12] that every C*-algebra in C is semiprojective. (4) follows exactly the

same proof as 10.4 of [22].

7 Maps from 1-dimensional non-commutative complexes

Lemma 7.1 (Lemma 2.1 of [6]). Let A be a simple C*-algebra with A = Ped(A) and n ≥ 1 be
an integer.

Let a ∈ Mn(Ã)+ \ {0} be such that 0 is a limit point of the spectrum of a. Then, for any
ε > 0, there exist δ > 0 and a continuous affine function f : T1(A) → R+ with f(0) = 0 such
that

dτ ((a− ε)+) < f(τ) < dτ ((a− δ)+) for all τ ∈ T(A)
w
.

Proof. This is essentially proved in the proof of Lemma 2.1 of [6]. Note that f is just a function.
The proof of Lemma 2.1 of [6] does not involve comparison since no elements in A need to be
produced. It does require that dτ (b) > 0 for any b ∈ Mn(Ã)+ \ {0} and for any nonzero trace τ
of A. The rest of the proof is a compactness argument and an application of the Portmanteau
theorem. It should be noted that, as exactly in the proof of Lemma 2.1 of [6], since the function
dτ ((a − δ)+) is in LAffb,0+(T(A)

w
), the sequence fn can be chosen as gn|T(A)

w , where each gn
are in Aff0+(T1(A)).

Lemma 7.2. Let A be a non-unital simple C*-algebra with strict comparison for positive element
which almost has stable rank one. Suppose that QT(A) = T(A), A = Ped(A) and the canonical
map ı : W (A)+ → LAffb,0+(T(A)

w
) is surjective.

Let 0 ≤ a ≤ 1 be a non-zero element in A which is not Cuntz equivalent to a projection.
Then, for any ε > 0 there exist δ > 0 and an element e ∈ A with

0 ≤ fε(a) ≤ e ≤ fδ(a) (e 7.1)

such that the function τ *→ dτ (e) is continuous on T(A)
w
.

Proof. Fix ε > 0. By 7.1, there are continuous affine functions g1, g2 ∈ Aff0(T1(A)) such that

dτ (fε/8(a)) < g1(τ) < dτ (fδ1(a)) < g2(τ) < dτ (fδ2(a)) for all τ ∈ T(A)
w
, (e 7.2)

where 0 < δ2 < δ1 < 1. Since ι is surjective, there is c ∈ Mm(A) for some integer m ≥ 1 such
that 0 ≤ c ≤ 1 and dτ (c) = g2(τ) for all τ ∈ T(A)

w
. It follows from 3.2 and (e 7.2) that there

exists x ∈ Mm(A) such that

x∗x = c and xx∗ ∈ fδ2(a)Afδ2(a).
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Put c0 = xx∗. Then 0 ≤ c0 ≤ 1. Note that

dτ (c0) = dτ (c) for all τ ∈ T(A)
w
. (e 7.3)

Since g1 is continuous, there is m ≥ 2 such that

g1(τ) < τ(f1/m(c0)) for all τ ∈ T(A)
w
. (e 7.4)

By (e 7.2) and 3.2 again, there is a unitary u in the unitization of fδ2(a)Afδ2(a) such that

u∗fε/8(fε/8(a))u ∈ f1/m(c0)Af1/m(c0). (e 7.5)

Set c1 = uc0u∗. Then

fε/8(fε/8(a)) ∈ f1/m(c1)Af1/m(c1) ⊂ c1Ac1. (e 7.6)

There is a g ∈ C0((0, 1]) with 0 ≤ g ≤ 1 such that g(t) ̸= 0 for all t ∈ (0, 1], g(t)f1/m = f1/m.
Put e = g(c1). Then ⟨e⟩ = ⟨c1⟩ = ⟨c0⟩ = ⟨c⟩. Moreover,

dτ (e) = dτ (c1) = g2(τ) for all τ ∈ T(A)
w

and (e 7.7)

fε(a) ≤ fε/8(fε/8(a)) ≤ e ≤ fδ2/2(a). (e 7.8)

Choose δ = δ2/2.

The following theorem is a restatement of a result of Robert.

Theorem 7.3 (Theorem 6.2.3 of [43]). Let A be a stably projectionless simple C*-algebra with
strict comparison for positive elements which has stable rank one and QT(A) = T(A). Suppose
that A = Ped(A) and ı : Cu(A) → LAff0+(T(A)

w
) is an ordered semigroup isomorphism in Cu.

Then the map defined in (6.6) of [43] is an isomorphism. of ordered semigroups.
Moreover, if a, b ∈ (Ã⊗K)+ with ⟨π(a)⟩ = k < ∞, ⟨π(b)⟩ = m < ∞, where π : Ã → C is the

quotient map, are such that

dτ (a) +m < dτ (b) + k for all τ ∈ T(A)
w
, (e 7.9)

then

⟨a⟩+m⟨1Ã⟩ ≤ ⟨b⟩+ k⟨1Ã⟩. (e 7.10)

Furthermore, if either ⟨a⟩, or ⟨b⟩ is not represented by a projection, and

dτ (a) +m ≤ dτ (b) + k for all τ ∈ T(A)
w
, (e 7.11)

then ⟨a⟩ ≤ ⟨b⟩.

Proof. The proof of 6.2.3 of [43] applies since we assume that A has stable rank one and the
conclusion of 6.2.1 of [43] holds for A⊗K. Denote the map defined in (6.6) of [43] by Γ. For the
reader’s convenience we include a detailed proof that the inverse of Γ is order preserving, since
we will use this in an important way. Let us first check that the inverse of Γ restricted to the
elements LAff∼

+(T̃(A)) is order preserving.

We will use some notation from [43] (but recall that our T̃(A) is T0(A) in [43]). Let a1 ∈
Cu(Ã), ⟨a1⟩ ≠ ⟨p⟩ for any projection and ⟨π(a1)⟩ = k. Suppose also that ⟨a2⟩ ∈ Cu(Ã) such that
⟨π(a2)⟩ = m, where k and m are integers, and

⟨̂a1⟩ − k⟨̂1Ã⟩ ≤ ⟨̂a2⟩ −m⟨̂1Ã⟩. (e 7.12)
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There are β1,β2 ∈ Aff+(T̃(A)) and γ1, γ2 ∈ LAff+(T̃(A)) such that

⟨a1⟩+ β1 = k⟨1Ã⟩+ γ1 (e 7.13)

⟨a2⟩+ β2 = m⟨1Ã⟩+ γ2 and (e 7.14)

γ1 − β1 ≤ γ2 − β2. (e 7.15)

Note that we have used the notation in the proof of 6.2.3, and in particular, we identify
β1,β2, γ1, γ2 with elements of Cu(A). Thus,

γ1 + β2 ≤ γ2 + β1 and (e 7.16)

⟨a1⟩+ β1 + β2 +m⟨1Ã⟩ = (k +m)⟨1Ã⟩+ γ1 + β2 (e 7.17)

≤ (k +m)⟨1Ã⟩+ γ2 + β1 (e 7.18)

= k⟨1Ã⟩+ ⟨a2⟩+ β2 + β1. (e 7.19)

Put β = β1 + β2. We have

⟨a1⟩+ β +m⟨1Ã⟩ ≤ k⟨1Ã⟩+ ⟨a2⟩+ β. (e 7.20)

Exactly as proved in 6.2.3 of [43], one has

⟨(a1 − ε)+⟩+ β ≪ ⟨a1⟩+ β (e 7.21)

which implies that, also,

⟨(a1 − ε)+⟩+ β +m⟨1Ã⟩ ≪ ⟨a1⟩+ β +m⟨1Ã⟩. (e 7.22)

Therefore,

⟨(a1 − ε)+⟩+ β +m⟨1Ã⟩ ≪ k⟨1Ã⟩+ ⟨a2⟩+ β. (e 7.23)

Since A has stable rank one, by weak cancellation (4.3 of [49]),

⟨(a1 − ε)+⟩+m⟨1Ã⟩ ≤ ⟨a2⟩+ k⟨1Ã⟩. (e 7.24)

It follows that

⟨a1⟩+m⟨1Ã⟩ ≤ ⟨a2⟩+ k⟨1Ã⟩. (e 7.25)

In particular, this shows that Γ is injective.
Note that, above, we do not assume that ⟨a2⟩ is not represented by a projection. Therefore

it remains to show the following:
If (⟨a⟩ − k⟨1Ã⟩)̂ < (⟨b⟩ −m⟨1Ã⟩)̂ on T(A)

w
, then

⟨a⟩ − k⟨1Ã⟩ ≤ ⟨b⟩ −m⟨1Ã⟩

for all ⟨a⟩ − k⟨1Ã⟩, ⟨b⟩ −m⟨1Ã⟩ ∈ Cu∼(A).

We only need to consider the case that ⟨a⟩ is represented by a projection. Then ⟨̂a⟩ is
continuous. It follows that there are non-zero elements β0,β ∈ Aff+(T̃(A)) such that

(⟨a⟩+ β + β0 +m⟨1Ã⟩)̂ < (⟨b⟩ + β + k⟨1Ã⟩)̂ on T(A)
w
. (e 7.26)

Since A is stably projectionless, from what has been proved,

⟨a⟩+ β + β0 +m⟨1Ã⟩ ≤ ⟨b⟩+ β + k⟨1Ã⟩. (e 7.27)
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Then, since ⟨a⟩ is represented by a projection,

⟨a⟩+ β + (1/2)β0 +m⟨1Ã⟩ ≪ ⟨a⟩+ β + β0 +m⟨1Ã⟩ ≤ ⟨b⟩+ β + k⟨1Ã⟩. (e 7.28)

By the weak cancellation,

⟨a⟩+ (1/2)β0 +m⟨1Ã⟩ ≤ ⟨b⟩+ k⟨1Ã⟩. (e 7.29)

It follows that

⟨a⟩+m⟨1Ã⟩ ≤ ⟨b⟩+ k⟨1Ã⟩. (e 7.30)

Lemma 7.4. With the same assumption on A as in 7.3, we have the following statement: Let
0 ≤ a ≤ 1 be a non-zero element of Ã ⊗ K with π(a) a projection of rank m for some integer
m ≥ 1 and a not Cuntz equivalent to a projection. Then, for any 1/2 > ε > 0 there exist
1 > δ > 0 and an element e ∈ Ã⊗K with

0 ≤ fε(a) ≤ e ≤ fδ/2(a) (e 7.31)

such that the function τ *→ dτ (e) is continuous on T(A)
w
.

Proof. Note that this statement is similar to that of 7.2 (the case m = 0). By the last statement
of 3.2, we may assume that, for any ε > 0, there exists n ≥ 1, fε(a) ∈ Mn(Ã). By 7.1, there
exists f ∈ Aff0+(T1(A)) such that, for some δ > 0.

dτ (fε(a)) < f(τ) < dτ (fδ(a)) for all τ ∈ T(A)
w
.

Since we assume that π(a) is a projection, π(fε(a)) = π(fδ(a)) = π(a), where π : Ã → C is
the quotient map. The surjectivity of Γ in 7.3 implies that there is c ∈ (Ã ⊗ K)+ such that
π(c) = π(a),

dτ (c) = f(τ) and ⟨fε/8(a)⟩ ≪ ⟨c⟩ ≪ ⟨fδ(a)⟩. (e 7.32)

It remains to show that we can find e with ⟨e⟩ = ⟨c⟩ but also satisfies (e 7.31). For this we will
use the same argument used in the proof of 7.2. Since Ã has stable rank one, the proof may be
completed as in 7.2.

We shall need the following two lemmas.

Lemma 7.5 (Lemma 2.2 of [6]). Let A and a ∈ (Ã ⊗ K)+ be as in 7.4. Then there exists a
sequence (an)∞n=1 of elements in (Ã⊗K)+ which satisfies the following:

(1) ⟨a⟩ = supn⟨an⟩;
(2) an ∈ Mn(k)(Ã) for some n(k) ∈ N and ⟨π(an)⟩ = ⟨π(a)⟩, where π : Ã → C is the quotient

map;
(3) the function τ *→ dτ (an) is continuous on T(A)

w
for each n ∈ N; and

(4) dτ (an) < dτ (an+1) for all τ ∈ T(A)
w
and n ∈ N.

Lemma 7.6. Let A be as in 7.3. Suppose that a, b ∈ Ped(Ã ⊗ K)+ (with 0 ≤ a ≤ 1 and
0 ≤ b ≤ 1) such that neither are Cuntz equivalent to a projection. Suppose that ⟨a⟩ ≪ ⟨b⟩. Then
there exist δ > 0 and c ∈ Ped(Ã⊗K)+ with 0 ≤ c ≤ 1 such that

⟨a⟩ ≤ ⟨fδ(c)⟩, fδ/2(c) ≤ fδ/4(b) and inf{τ(fδ(c))− dτ (a) : τ ∈ T(A)
w} > 0. (e 7.33)
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Proof. By 7.5, choose bn ∈ (Ã⊗ K)+ such that (bn) satisfies (1), (2), (3), and (4) in 7.5. Since
⟨a⟩ ≪ ⟨b⟩, there is n0 ≥ 1 such that ⟨a⟩ ≤ ⟨bn⟩ for all n ≥ n0. Therefore we have

dτ (a) ≤ dτ (bn0) < dτ (bn0+1) < dτ (bn0+2) < dτ (bn0+3) ≤ dτ (b). (e 7.34)

Note that
τ(f1/n(b)) ↗ dτ (b) and τ(f1/n(bn0+1)) ↗ dτ (bn0+1).

It follows, for example, from 5.4 of [34] that there exists n1 ≥ 1 such that, for all n ≥ n1,

τ(f1/n(b)) > dτ (bn0+2) and τ(f1/n(bn0+1)) > dτ (bn0)) for all τ ∈ T(A)
w
.

Note that π(f1/2n(b)) = π(b) and ⟨π(bn)⟩ = ⟨π(b)⟩. By 7.3, we conclude that

⟨f1/2n(b)⟩ ≥ ⟨bn0+2⟩ and ⟨f1/2n(bn0+1)⟩ ≥ ⟨bn0⟩.

Put c = b0+1. Since A has stable rank one, one may assume that f1/2n(c) ≤ f1/4n(b). Thus we
may choose 0 < δ < 1/2n1.

Since T(A)
w
is compact and both functions in the above inequality are continuous, together

with (e 7.34), we obtain inf{τ(fδ(b))− dτ (a) : τ ∈ T(A)
w} > 0.

In what follows, C(1) is the collection of all C*-algebras which are inductive limits of full
hereditary sub-C*-algebras of 1-dimensional non-commutative CW complexes with trivial K1

groups whose connecting maps are injective.

Definition 7.7. Fix a C*-algebra C ∈ C(1). A C*-algebra A is said to have the property (R)
associated with C, if the following condition holds: For any finite subset F ⊂ C and ε > 0 there
exists a finite subset G ⊂ Cu∼(C) such that for any two homomorphisms ϕ,ψ : C → A, if

Cu∼(ϕ)(g′) ≤ Cu∼(ψ)(g) and Cu∼(ψ)(g′) ≤ Cu∼(ϕ)(g) (e 7.35)

for all g′, g ∈ G with g′ ≪ g, then there exists a unitary u ∈ Ã such that

∥u∗ϕ(f)u− ψ(f)∥ < ε for all f ∈ F . (e 7.36)

This definition is taken from 3.3.1 of [43] and we adapt the notation from there. Note, by 3.3.1
of [43], every C*-algebra with stable rank one has the property (R) associated with C.

Theorem 7.8. (See Theorem 3.3.1 of [43], Theorem 5.2.7 of [36], and Theorem 8.4 of [22]) Let
C be in C(1) and assume that Ped(C) = C and let ∆ : Cq,1 \ {0} → (0, 1) be an order preserving
map. Then, for any ε > 0 and any finite subset F ⊂ C, there exist a finite subset G ⊂ C, a
finite subset P ⊂ K0(C), a finite subset H1 ⊂ C1

+ \ {0}, a finite subset H2 ⊂ Cs.a., δ > 0, and
γ > 0 satisfying the following condition: for any two G-δ-multiplicative contractive completely
positive linear maps ϕ1,ϕ2 : C → A for some A which is σ-unital, simple, stably projectionless,
has stable rank one, QT(A) = T(A), and the property that the map Cu+(A) → LAff0+(T(A)

w
)

is an ordered semigroup isomorphism, and Ped(A) = A such that

[ϕ1]|P = [ϕ2]|P , (e 7.37)

τ(ϕi)(a) ≥ ∆(â) for all a ∈ H1 and for all τ ∈ T(A)
w
, and (e 7.38)

|τ(ϕ1(b))− τ(ϕ2(b))| < γ for all b ∈ H2 and for all τ ∈ T(A)
w
, (e 7.39)

there exists a unitary u ∈ Ã such that

∥u∗ϕ2(f)u− ϕ1(f)∥ < ε for all f ∈ F .
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Proof. We will use 3.3.1 of [43].
Let ε > 0 be given. There exists e0 with ε/16 > ε0 > 0 satisfying the following condition: In

any C*-algebra, if 0 ≤ x ≤ 1 is an element in the C*-algebra and ∥xg−g∥ < ε0 and ∥gx−g∥ < ε0
for any ∥g∥ ≤ 1 in the C*-algebra, then

∥x1/2g − gx1/2∥ < ε/64. (e 7.40)

Let us first assume that C is a single full hereditary sub-C*-algebra of a 1-dimensional non-
commutative CW complex. Fix ε0 > 0 as above and F ⊂ C. Let G ⊂ Cu∼(C) be as required
by Property (R) associated with C for ε0/16 (in place of ε) and F . Without loss of generality,
we may assume that F is contained in the unit ball of A.

Recalling that C has stable rank one, as shown in [43], we may assume that G consists of a
finite subset P ⊂ K0(C) and a finite subset {[a1]− k1[1Ã], [a2]− k2[1C̃ ], ..., km[1C̃ ]} of the Cuntz

semigroup of Cu∼(C) such that [ai] can be represented by positive elements 0 ≤ ai ≤ 1 in C̃⊗K
which are not Cuntz equivalent to a projection, and ki are non-negative integers, i = 1, 2, ...,m.
Write P = {z1 − k′1[1C̃ ], z2 − k′2[1C̃ ], ..., zm0 − k′m0

[1C̃ ]}, where the elements zi are represented

by projections in C̃ ⊗ K. Note here we assume that ⟨π(ai)⟩ = ki⟨1⟩ and [π∗(zl)] = k′l[1], where

π : C̃ → C is the quotient map, i = 1, 2, ...,m and j = 1, 2, ...,m0.
Suppose that ⟨ai⟩+kj[1C̃ ] ≪ ⟨aj⟩+ki[1C̃ ]. For each of these pairs i, j, put aij = ai⊕1Mkj

and

aji = aj⊕1Mki
. Then, since C̃⊗K also has stable rank one, there are a number 1/4 > η(i, j) > 0

and an element 0 ≤ ci,j ≤ 1 in (C̃ ⊗K)+ such that

⟨aij⟩ ≤ ⟨fηi,j (ci,j)⟩ and fηi,j/2(ci,j) ≤ fηi,j/4(aji). (e 7.41)

Since aij is not Cuntz equivalent to a projection, we may choose η(i, j) so that

fηi,j/4(aji)− fηi,j/2(ci,j) ̸= 0.

Choose a finite subset H1 ⊂ C+ which contains non-zero positive elements bi,j such that

bi,j ! fηi,j/4(aji)− fηi,j/2(ci,j)

for all possible pairs of i and j such that ⟨aij⟩ ≪ ⟨aji⟩.
Let

δ0 = inf{∆(ĝ) : g ∈ H1}. (e 7.42)

Choose a finite subset H′
2 of (C̃ ⊗ K)+ which contains fηi,j (ci,j), fηi,j/2(ci,j), fηi,j/4(aji) for

all possible i, j as described above.
Let the finite subset H2 ⊂ Cs.a. containing H1 and δ1 > 0 be such that

|τ(h∼1 (g)) − τ(h∼2 (g))| < δ0/16 for all g ∈ H1 ∪H′
2 (e 7.43)

and for all τ ∈ T(B)
w
, whenever h1, h2 : C → B are homomorphisms with B any C*-algebra

with T(B) ̸= Ø and 0 ̸∈ T(B)
w
such that

|τ ◦ h1(f)− τ ◦ h2(f)| < δ1 for all f ∈ H2 and τ ∈ T(B)
w
, (e 7.44)

where h∼i : C̃ → B̃ is the unital extension of hi, i = 1, 2.
Put γ = min{δ0/16, δ1/4}. Since 1-dimensional NCCW complexes are semiprojective ([12]),

by choosing a large G and small δ, by applying 3.7, we may assume that there are homomorphisms
ψi : C → A⊗K such that

(ψi)∗0|P = [ϕi]|P and ∥ψi(g) − ϕi(g)∥ < min{ε0/16, γ}, i = 1, 2, (e 7.45)
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for all g ∈ F ∪H1 ∪H2, where ϕ1 and ϕ2 are G-δ-multiplicative completely positive contractive
maps from C to a C*-algebra A satisfying the assumptions of the theorem.

Since Ped(C) = C, ψi(C) ⊂ Ped(A⊗K).
Assume that ϕ1,ϕ2 : C → A have the described properties for the above defined G, δ, P,

H1, H2, γ.
Let ψi : C → A be as provided in (e 7.45), i = 1, 2. Then

(ψ1)∗0|P = (ψ2)∗0|P , (e 7.46)

τ ◦ ψi(g) ≥ δ0/2 for all g ∈ H1, and (e 7.47)

|τ ◦ ψ1(b)− τ ◦ ψ2(b)| < δ0/2 for all b ∈ H2 (e 7.48)

for all τ ∈ T(A)
w
. In particular, if ⟨aij⟩ ≪ ⟨aji⟩, then, by the choice of H1, H2, and γ above,

dτ (ψ1(aij)) ≤ τ(ψ1(fηi,j (ci,j))) < δ0/2 + τ(ψ2(fηi,j (ci,j))) (e 7.49)

≤ (τ(ψ2(fηi,j/4(aj))− τ(ψ2(fηi,j (ci,j)))) + τ(ψ2(fηi,j (ci,j))) (e 7.50)

≤ dτ (aji) (e 7.51)

for all τ ∈ T(A)
w
. Therefore, if ⟨aij⟩ ≪ ⟨aji⟩,

⟨ψ1(aij)⟩ ≤ ⟨ψ2(aji)⟩. (e 7.52)

Note also, if ⟨ai⟩ + k′l⟨1C̃⟩ ≪ zl + k′i⟨1C̃⟩, then ⟨ψ1(ai)⟩ + kl[1Ã] ≪ Cu∼(ψ1)(zl + k′i⟨1C̃⟩) =
Cu∼(ψ2)(zl + k′i⟨1C̃⟩). Combining these with (e 7.46), we conclude that, using the terminology
of [43],

Cu∼(ψ1(g)) ≤ Cu∼(ψ2(g
′) and Cu∼(ψ2(g)) ≤ Cu∼(ψ1(g

′)) (e 7.53)

for all g, g′ ∈ G and g ≪ g′. Since A has the property (R) associated with C, by the choice of
G, there exists a unitary v ∈ (A⊗K)∼ such that

∥vψ2(f)v
∗ − ψ1(f)∥ < ε0/16 for all f ∈ F .

From this and (e 7.45), we obtain that

∥vϕ2(f)v
∗ − ϕ1(f)∥ < ε0/16 + ε0/16 for all f ∈ F .

Choose 0 ≤ e1, e2 ≤ 1 in A such that

∥ϕi(f)ei − ϕi(f)∥ < ε0/32 and ∥eiϕi(f)− ϕi(f)∥ < ε0/32 for all f ∈ F . (e 7.54)

Put y = e1v∗e2 and x = y∗y = e2ve1e1v∗e2. Then

∥ϕ2(f)x− ϕ2(f)∥ = ∥v∗v(ϕ2(f)x− ϕ2(f))∥ (e 7.55)

< ∥v∗vϕ2(f)y
∗v − v∗vϕ2(f)v

∗v∗∥+ ε0/32 (e 7.56)

< ε0/32 + ∥v∗(vϕ2(f)v
∗)e2 − v∗vϕ2(f)v

∗v∥+ ε0/32 < ε0/2 (e 7.57)

for all f ∈ F . Similarly,

∥xϕ2(f)− ϕ2(f)∥ < ε0/2 for all f ∈ F . (e 7.58)

Consider y = W |y| = Wx1/2 the polar decomposition of y in A∗∗. Since A almost has stable rank
one, by Theorem 5 of [39], there exists a unitary u ∈ Ã such that ufε/16(x

1/2) = Wfε/16(x
1/2).

By the choice of ε0, we have

∥u∗ϕ2(f)u− ϕ1(f)∥ < ε for all f ∈ F . (e 7.59)
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(Note that if C is a 1-dimensional non-commutative CW complex, then ϕi can be chosen to map
C into A so that v can be chosen in Ã.)

For the general case, given a finite subset F ⊂ C, we may assume that F ⊂ Cn for some
Cn which is a full hereditary sub-C*-algebra of a 1-dimensional non-commutative CW complex.
Then the above argument applies.

Proposition 7.9. Let C ∈ C′
0 and let A be a σ-unital stably projectionless simple exact C*-

algebra with K0(A) = {0}, with stable rank one and with continuous scale. Suppose that Cu(A) =
LAff0+(T(A)

w
). Let ϕ : C → A be a homomorphism. Then, for any ε > 0, any finite subset

F ⊂ C, and any integer n ≥ 1, there is another homomorphism ϕ0 : C → B = B ⊗ e11 ⊂
Mn(B) ⊂ A, where B is a hereditary sub-C*-algebra of A, such that

∥ϕ(x)− diag(

n︷ ︸︸ ︷
ϕ0(x),ϕ0(x), ...,ϕ0(x))∥ < ε for all x ∈ F . (e 7.60)

Proof. Fix a strictly positive element e ∈ A+ with ∥e∥ = 1. We may assume that A is an
infinite dimensional. There are mutually orthogonal elements nonzero e1, e2, ..., en ∈ A+ such
that ⟨ei⟩ = ⟨e1⟩ in Cu(A) and ⟨

∑n
i=1 ei⟩ = ⟨e⟩ (see also the proof of 5.3). Let B = e1Ae1 ⊂ A.

Then, with D := (
∑n

i=1 ei)A(
∑n

i=1 ei), we have D ∼= Mn(B) ⊂ A. Note that K0(A) = {0}. So
Cu∼(A) = LAff∼

+(T̃(A)) (see 7.3 above and 6.2.3 of [43]). Let j : LAff∼
+(T̃(A)) → LAff∼

+(T̃(A))
be defined by j(f) = (1/n)f. Define λ : Cu∼(C) → Cu∼(B) by λ = j ◦ (Cu∼(ϕ). By Theorem
1.0.1 of [43], there exists a homomorphism ϕ′

0 : C → B such that Cu∼(ϕ′
0) = λ. Define ψ : C →

Mn(B) by ψ(a) = diag(

n︷ ︸︸ ︷
ϕ′
0(a),ϕ

′
0(a), ...,ϕ

′
0(a)) for all a ∈ C. Then Cu∼(ψ) = Cu∼(ϕ). It follows

from Theorem 1.0.1 of [43] that ϕ and ψ are approximately unitarily equivalent, as desired.

8 Tracially one-dimensional complexes

Definition 8.1. Let A be a simple C*-algebra with a strictly positive element a ∈ A with
∥a∥ = 1. Suppose that there exists 1 > fa > 0, for any ε > 0, any finite subset F ⊂ A and any
b ∈ A+ \ {0}, there are F-ε-multiplicative completely positive contractive maps ϕ : A → A and
ψ : A → D, with ϕ(A) ⊥ D, i.e., ϕ(A)D = {0}, for some sub-C*-algebra D ⊂ A, such that

∥x− (ϕ+ψ)(x)∥ < ε for all x ∈ F ∪ {a}, (e 8.1)

D ∈ C0
0
′
(or D ∈ C′

0), (e 8.2)

ϕ(a) ! b, and (e 8.3)

t(f1/4(ψ(a))) ≥ fa for all t ∈ T(D). (e 8.4)

Then we shall say A ∈ D0 (or A ∈ D).

Proposition 8.2. Let A be a σ-unital simple C*-algebra in D (D0). Then, in Definition 8.1,
we may further require that ∥ψ(x)∥ ≥ (1− ε)∥x∥ for all x ∈ F and that ψ(a) be strictly positive
in D (and so full in D). Moreover, (e 8.3) may be replaced by c ! b for some strictly positive
element c of ϕ(A)Aϕ(A).

Proof. Fix a strictly positive element a ∈ A with ∥a∥ = 1.
Let ε > 0, let F ⊂ A be a finite subset, and let b0 ∈ A+ \ {0} be given. Without loss of

generality, we may assume that there is 1/16 > η > 0 such that

fη(a)x = xfη(a) = x for all x ∈ F .
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By hypothesis, there exist a sequence of algebras Dn ∈ C′
0 (or Dn ∈ C0

0
′
), and two sequences of

completely positive contractive maps ϕn : A → An and ψn : A → Dn, with Dn ⊥ Imϕn, such
that

lim
n→∞

∥ϕn(xy)− ϕn(x)ϕn(y)∥ = 0 and (e 8.5)

lim
n→∞

∥ψn(xy)− ψn(x)ψn(y)∥ = 0 for all x, y ∈ A, (e 8.6)

lim
n→∞

∥x− (ϕn(x) + ψn(x))∥ = 0 for all x ∈ A, (e 8.7)

ϕn(a) ! b0, and (e 8.8)

τ(f1/4(ψn(a))) ≥ fa for all τ ∈ T(Dn) (e 8.9)

Put D′
n = fη/2(ψn(a))Dnfη/2(ψn(a)), n = 1, 2, .... By (e 8.9) and 6.3, f1/4(ψn(a)) is full in

Dn. Therefore fη/2(ψn(a)) is also full in Dn. This implies that D′
n ∈ C′

0 or D′
n ∈ C0

0
′
. Define

ψn,0 : A → D′
n by

ψn,0(x) = (fη/2(ψn(a)))
1/2ψn(x)(fη/2(ψn(a)))

1/2 for all x ∈ A.

It follows that ψn,0(a) is full in D′
n. Note that

f1/4(ψn,0(a)) = f1/4(ψn(a)).

Therefore,
τ(f1/4(ψn,0(a))) ≥ fa for all τ ∈ T(D′

n).

Choosing large n, replacing Dn by D′
n, ψ by ψn,0, and using (e 8.6) and (e 8.7), we see that in

Definition 8.1, we may add the condition that ψ(a) is a strictly positive element of D.
By 2.10, ϕn(a) is strictly positive in ϕn(A)Aϕn(A). Therefore, one can replace (e 8.3) by the

condition that c ! b for any other strictly positive element of ϕn(A)Aϕn(A).
To get the inequality ∥ψ(x)∥ ≥ (1− ε)∥x∥ for all x ∈ F , we note that, by (e 8.7) and (e 8.9)

lim
n→∞

∥ψn∥ ≥ fa. (e 8.10)

Then, by (e 8.6) and (e 8.10), since A is simple,

lim
n→∞

∥ψn(x)∥ = ∥x∥ for all x ∈ A. (e 8.11)

This implies that, choosing ψ = ψn with sufficiently large n, we may always assume that
∥ψ(x)∥ ≥ (1− ε)∥x∥ for all x ∈ F .

Theorem 8.3. Let A be a σ-unital simple C*-algebra in D (or in D0). Then the following
holds. Fix a strictly positive element a ∈ A with ∥a∥ = 1 and let 1 > fa > 0 be a positive
number associated with a as in Definition 8.1. There is a map T : A+ \ {0} → N × R (c *→
(N(c),M(c)) for all c ∈ A+ \ {0}) with the following property: For any finite subset F0 ⊂
A+ \{0}, any ε > 0, any finite subset F ⊂ A, and any b ∈ A+ \{0}, there are F-ε-multiplicative
completely positive contractive maps ϕ : A → A and ψ : A → D for some sub-C*-algebra D ⊂ A
with D ⊥ ϕ(A) such that

∥x− (ϕ+ ψ)(x)∥ < ε for all x ∈ F ∪ {a}, (e 8.12)

D ∈ C0
0
′
(or C′

0), (e 8.13)

ϕ(a) ! b, (e 8.14)

∥ψ(x)∥ ≥ (1− ε)∥x∥ for all x ∈ F , and (e 8.15)

(e 8.16)
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ψ(a) is strictly positive in D. Moreover, ψ may be chosen to be T -F0 ∪ {f1/4(a)}-full in DAD.
Furthermore, we may ensure that

t ◦ f1/4(ψ(a)) ≥ fa and t ◦ f1/4(ψ(c)) ≥
fa

4 inf{M(c)2 ·N(c) : c ∈ F0 ∪ {f1/4(a)}}

for all c ∈ F0 and for all t ∈ T(D).

Proof. Since A is simple, and f1/32(a) ∈ Ped(A), for any b ∈ A+ \ {0}, there exist N0(b) ∈ N,
M0(b) > 0 and x1(b), x2(b), ..., xN0(b)(b) ∈ A such that ∥xi(b)∥ ≤ M0(b), and

N0(b)∑

i=1

xi(b)
∗bxi(b) = f1/32(a). (e 8.17)

Choose an integer n0 such that n0fa ≥ 4.
Set N(b) = n0N0(b) and M(b) = 2M0(b) for all b ∈ A+\{0}. Let T : A+\{0} → N×R+\{0}

be defined by T (b) = (N(b),M(b)) for b ∈ A+ \ {0}.
Choose δ0 > 0 and a finite subset G0 ⊂ A such that

∥
N0∑

i=1

ψ(xi(b))
∗ψ(b)ψ(xi(b))− f1/32(ψ(a))∥ < 1/210 for all b ∈ F0, (e 8.18)

whenever ψ is a G0-δ0-multiplicative completely positive contractive map from A into a C*-
algebra.

Let ε > 0 and a finite subset F ⊂ A be given. Set δ = min{ε/4, δ0/2} and G = F ∪ G0 ∪
{a, f1/4(a)}. Let n ≥ 1 be an integer and let b0 ∈ A+ \ {0}.

By the assumption and by 8.2, there are G-δ-multiplicative completely positive contractive
maps ϕ : A → A and ψ : A → D for some sub-C*-algebra D ⊂ A with ϕ(A) ⊥ D such that
D ∈ C0 (or D ∈ C0

0
′
), ψ(a) is strictly positive in D, and

∥x− (ϕ+ ψ)(x)∥ < ε for all x ∈ G, (e 8.19)

D ∈ C0
0
′
(or C′

0), (e 8.20)

ϕ(a) ! b0, (e 8.21)

∥ψ(x)∥ ≥ (1− ε)∥x∥ for all x ∈ F , and (e 8.22)

τ(f1/4(ψ(a))) ≥ fa for all τ ∈ T(D). (e 8.23)

At this point, we can apply (the proof of) Theorem 5.7 and Remark 5.8 to conclude that ψ is
T -F0 ∪ {f1/4(a0)}-full. The last part of the conclusion then follows.

Corollary 8.4. In Definition 8.1, for any integer k ≥ 1, one may assume that every irreducible
representation of D has dimension at least k.

Proof. Let T be as in the statement of 8.3. Fix an integer k ≥ 1. This corollary can be easily
seen by taking F0 containing k mutually orthogonal non-zero positive elements e1, e2, ..., ek with
∥ei∥ = 1 in 8.3 as follows.

When F0 is chosen. Set σ0 = fa
4 inf{M(c)2·N(c):c∈F0∪{f1/4(a)}}

. There exists η0 > 0 such that, if

0 < b1, b2 ≤ 1 are in any C*-algebra with ∥b1 − b2∥ < η0, then

∥f1/4(b1)− f1/4(b2)∥ < σ0/2. (e 8.24)
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By 10.1.12 of [37], there exists δ0 > 0 satisfying the following property: if 0 ≤ hi ≤ 1 and
∥hihj∥ < δ0 (i ̸= j : 1 ≤ i, j ≤ k) are in a C*-algebra, then there are mutually orthogonal
h′1, h

′
2, ..., h

′
k in that C*-algebra such that ∥hi − h′i∥ < η0, i = 1, 2, ..., k.

Choose any finite subset F containing F0 and δ > 0 with δ < δ0. We apply 8.3. Then

t(f1/4(ψ(ei)) > σ0 for all t ∈ T(D), i = 1, 2, ..., k. (e 8.25)

By the choice of δ0 and applying 10.1.12 of [37], there are mutually orthogonal non-zero elements
d1, d2, ..., dk ∈ D such that

∥di − ψ(ei)∥ < η0, i = 1, 2, .... (e 8.26)

It follows that ∥f1/4(di)− f1/4(ψ(ei)∥ < σ0/2, i = 1, 2, ..., k. We then estimate that

t ◦ f1/4(di) > t ◦ f1/4(ψ(ei))− σ0/2 ≥ σ0/2 for all t ∈ T(D), i = 1, 2, ..., k. (e 8.27)

Thus, π(D) admits k mutually orthogonal non-zero elements in each irreducible representation
π which implies π(D) has dimension at least k.

Note that, if D is in C0
0
′
or in C′

0, then Mk(D) is in C0
0
′
or in C′

0 for every integer k ≥ 1.
Therefore, the following proposition follows immediately from the definition.

Proposition 8.5. Let A be a σ-unital simple C*-algebra in the class D (or in D0). Then Mk(A)
is in the class D (or in D0) for every integer k ≥ 1.

Proposition 8.6. Let A be a separable simple C*-algebra and let B ⊂ A be a hereditary sub-
C*-algebra. Then, if A is in D (or in D0), so also is B. Moreover, if A ̸= {0}, then T(A) ̸= Ø.

Proof. Let S denote C′
0 or C0

0
′
. We may assume neither A nor B is zero. Let b ∈ A+ with ∥b∥ = 1

and B = bAb. Let e ∈ A+ be a strictly positive element with ∥e∥ = 1 and let fe be as given by
8.1, as A is in D or in D0. Fix b0 ∈ B+ \ {0}.

By 8.3, there exists a sequence of sub-C*-algebras Dn of A in S and two sequences of
completely positive contractive maps ϕn : A → A and ψn : A → Dn with ϕn(A) ⊥ Dn such that

lim
n→∞

∥ϕn(xy)− ϕn(x)ϕn(y)∥ = 0 and (e 8.28)

lim
n→∞

∥ψn(xy)− ψn(x)ψn(y)∥ = 0 for all x, y ∈ A, (e 8.29)

lim
n→∞

∥x− (ϕn + ψn)(x)∥ = 0 for all x ∈ A, (e 8.30)

ϕn(e) ! b0, (e 8.31)

lim
n→∞

∥ψn(x)∥ = ∥x∥ for all x ∈ A, (e 8.32)

f1/4(ψn(b)) is full in Dn, and ψn(e) is a strictly positive element of Dn, n = 1, 2, .... Moreover,
we may also assume that

t ◦ f1/4(ψn(e)) ≥ fe, t ◦ f1/4(ψn(b)) ≥ r0 (e 8.33)

for all t ∈ T(Dn) and n, where r0 is as previously defined (as fe
4 inf{M(c)2·N(c):c={b,f1/4(e)}}

).

By (e 8.32),
lim
n→∞

∥ψn|B∥ = 1.

We also have

lim
j→∞

∥b− f1/2j(b)
1/2bf1/2j(b)

1/2∥ = 0, whence (e 8.34)

lim
j→∞

∥x− f1/2j(b)
1/2xf1/2j(b)

1/2∥ = 0 for all x ∈ B. (e 8.35)
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Put Ln(x) = ϕn(x) +ψn(x) for all x ∈ A. By (e 8.30), applying 3.3, for any j ≥ 2, we obtain
n(j) ≥ j and a partial isometry vj ∈ A∗∗ such that

vjv
∗
j f1/2j(Ln(j)(b)) = f1/2j(Ln(j)(b))vjv

∗
j = f1/2j(Ln(j)(b)), (e 8.36)

v∗j cvj ∈ B for all c ∈ f1/2j(Ln(j)(b))Af1/2j(Ln(j)(b)), and (e 8.37)

lim
j→∞

(sup{∥v∗j cvj − c∥ : 0 ≤ c ≤ 1 and c ∈ f1/2j(Ln(j)(b))Af1/2j(Ln(j)(b))}) = 0. (e 8.38)

Note that f1/2j(ψn(j)(b)) ≤ f1/2j(Ln(j)(b)), j = 1, 2, .... It follows that

v∗j cvj ∈ B

for all c ∈ f1/2j(ψn(j)(b)Af1/2j(ψn(j)(b)). Since f1/4(ψn(j)(b)) is full in Dn(j), f1/2j(ψn(j)(b)) is
full in Dn(j) for all j ≥ 2. Consider the hereditary sub-C*-algebra of Dn(j)

E′
n(j) = f1/2j(ψn(b))Dn(j)f1/2j(ψn(b)), j = 2, 3, ....

Then E′
n(j) ∈ S, j = 2, 3, .... Put

Ej = v∗jE
′
n(j)vj, j = 3, 4, ....

Then Ej ∈ S and Ej ⊂ B, j = 3, 4, ....
Define Φj : B → B by Φj(a) = v∗jϕn(j)(a)vj for all a ∈ B, and Ψj : B → Ej by Ψj(x) =

v∗j f1/2j(ψn(j)(b))ψn(j)(x)f1/2j(ψn(j)(b))vj , j = 3, 4, .... For j > 4,

f1/4(f1/2j(ψn(j)(b))ψn(j)(b)f1/2j(ψn(j)(b))) = f1/4(ψn(j)(b)) (e 8.39)

= f1/2j(ψ(b))f1/4(ψn(j)(b))f1/2j(ψn(j)(b)). (e 8.40)

It follows that f1/4(Ψj(b)) is full in Ej , j = 4, 5, .... We have

lim
j→∞

∥Φj(xy)− Φj(x)Φj(y)∥ = 0 for all x, y ∈ B and (e 8.41)

lim
j→∞

∥Ψj(xy)−Ψj(x)Ψj(y)∥ = 0 for all x, y ∈ B. (e 8.42)

Moreover, applying (e 8.30), (e 8.38), and (e 8.35), we have

lim
j→∞

∥x− (Φj +Ψj)(x)∥ = 0 for all x ∈ B and (e 8.43)

lim
n→∞

∥Ψn(x)∥ = ∥x∥ for all x ∈ B. (e 8.44)

We also have
Φj(b) ! b0.

Moreover, by (e 8.33) and (e 8.39),

t ◦ f1/4(Ψj(b)) ≥ r0/2 for all t ∈ T(En(j)). (e 8.45)

The first part of the proposition follows on choosing a sufficiently large j.
To see that, if A is nonzero, T(A) is non-empty, in the preceding argument, take B = A

and choose tj ∈ T(En(j)) for all j large enough that En(j) is nonzero. Let t be a weak* limit of
(tj ◦Ψj). Then, by (e 8.45), t is a non-zero linear functional on A. Moreover, since tj ∈ T(En(j)),
by (e 8.42), t is a trace. This implies T(A) ̸= Ø.
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Lemma 8.7. Let B = A(F1, F2,ϕ0,ϕ1). Suppose that g := (h, a) ∈ B+ is such that hj := h|[0,1]j
has range projection Pj satisfying the following conditions:
There is a partition 0 = t0j < t1j < t2j < · · · < t

nj

j = 1 such that

(1) on each open interval (tlj , t
l+1
j ), Pj(t) is continuous and rank(Pj(t)) = rj,l is a constant,

(2) for each tlj, Pj((tlj)
+) = lim

t→(tlj)
+
Pj(t) (if tlj < 1) and Pj((tlj)

−) = lim
t→(tlj)

−
P (t) (if tlj > 0)

exist,
(3) Pj(tlj) ≤ Pj((tlj)

+) and Pj(tlj) ≤ Pj((tlj)
−), and

(4) πj(ϕ0(p)) = Pj(t0j ) = Pj(0) = Pj(0+) and πj(ϕ1(p)) = Pj(t
nj

j ) = Pj(1) = Pj(1−), where p is
the range projection of a ∈ F1.

Then gBg ∈ C.

Proof. For each closed interval [tlj , t
l+1
j ], since the limits

Pj((t
l
j)

+) = lim
t→(tlj)

+
Pj(t) and Pj((t

l+1
j )−) = lim

t→(tl+1
j )−

Pj(t)

exist, we can extend Pj |(tlj ,tl+1
j ) to the closed interval [tlj , t

l+1
j ], and denote this projection by P l

j .

Then we can identify P l
jC([tlj, t

l+1
j ],Mrj )P

l
j with C([0, 1],Mrj,l) by identifying tlj with 0 and tl+1

j

with 1, where rj,l = rank(P l
j). Set E

j,l
2 := Mrj,l and set Ej,l

1 := Pj(tlj)MrjPj(tlj)
∼= MRj,l .

Since Pj(tlj) ≤ Pj((tlj)
+), we may identify Ej,l

1 with a unital hereditary sub-C*-algebra of

Ej,l
2 . Denote this identification by ψj,l

0 : Ej,l
1 → Ej,l

2 .

Similarly since Pj(tlj) ≤ Pj((tlj)
−), we obtain a homomorphism ψj,l

1 : Ej,l
1 → Ej,l−1

2 which

identifies Ej,l
1 with a unital hereditary sub-C*-algebra of Ej,l−1

2 .

Set E1 := pF1p ⊕
⊕k

j=1(
⊕nj−1

l=1 Ej,l
1 ) (note we do not include Ej,l

1 for l = 0 and l = nj.

Instead, we include pF1p) and let E2 =
⊕k

j=1(
⊕nj−1

l=0 Ej,l
2 ). Let ψ0,ψ1 : E1 → E2 be defined by

ψ0|pF1p = ϕ0|pF1p : pF1p →
⊕k

j=1E
j,0
2 , ψ1|pF1p = ϕ1|pF1p : pF1p →

⊕k
j=1E

j,nj−1
2 , ψ0|Ej,l

1
= ψj,l

0 :

Ej,l
1 → Ej,l

2 and ψ1|Ej,l
1

= ψj,l
1 : Ej,l

1 → Ej,l−1
2 . We then check A′ = gBg ∼= A(E1, E2,ψ0,ψ1) ∈ C.

Namely, each element (f, a) =
(
(f1, f2, · · · , fk), a

)
∈ gBg corresponds to an element (F, b) ∈

{C([0, 1], E2)⊕ E1 : F (0) = ψ0(b), F (1) = ψ1(b))} = A(E1, E2,ψ0,ψ1), where

F =
(
f0
1 , f

1
1 , · · · , f

n1−1
1 , f0

2 , f
1
2 , · · · , f

n2−1
2 , · · · , f0

k , f
1
k , · · · , f

nk−1
k ) and

b =
(
a, f1(t

1
1), f1(t

2
1), · · · , f1(t

n1−1
1 ), f2(t

1
2), f2(t

2
2), · · · , f2(t

n2−1
2 ), · · · fk(t1k), fk(t2k), · · · , fk(t

nk−1
k )

)

and where f l
j(t) ∈ Ej,l

2 is defined by

f l
j(t) = fj((t

l+1
j − tlj)t+ tlj) for all t ∈ [0, 1], j ∈ {1, 2, · · · , k}, l ∈ {0, 1, · · · , nj − 1}.

8.8. Let A = A(F1, F2,ϕ0,ϕ1) ∈ C be as 6.1. Let h = (f, a) ∈ A+ with ∥h∥ = 1. Recall that
we may write C([0, 1], F2) =

⊕k
j=1C([0, 1]j ,Mrj ), where [0, 1]j denotes the j-th interval. For

each fixed j, consider fj = f |[0,1]j . By a simple application of Weyl’s theorem, one can write the
eigenvalues of fj(t) as continuous functions of t,

{0 ≤ λ1,j(t) ≤ λ2,j(t) ≤ · · ·λi,j(t) ≤ · · · ≤ λrj ,j(t) ≤ 1}.

Let e1, e2, ..., erj be mutually orthogonal rank one projections and put f ′
j =

∑rj
i=1 λi,jei. Then, on

each [0, 1]j , fj and f ′
j have exactly the same eigenvalues at each point t ∈ [0, 1]j . Let p ∈ F1 denote
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the range projection of a ∈ (F1)+. By using a unitary in C([0, 1]j ,Mrj ), it is easy to construct a
set of mutually orthogonal rank one projections p1, p2, · · · pi, · · · , prj ∈ C([0, 1],Mrj ) such that

gj(t) =
∑rj

i=1 λi(t)pi satisfies gj(0) = fj(0) and gj(1) = fj(1). In particular
∑

{i,λi(0)>0} pi(0) =

πj(ϕ0(p)) ∈ Mrj and
∑

{i,λi(1)>0} pi(1) = πj(ϕ1(p)) ∈ Mrj , where πj : F2 → F j
2 = Mrj is

the canonical quotient map to the jth summand. Then, with g|[0,1]j = gj , (g, a) ∈ A+. By a
result of Thomsen, (see Theorem 1.2 of [50]) (or [43]), for each j there is a sequence of unitaries
ujn ∈ C([0, 1],Mrj ) with ujn(0) = ujn(1) = 1rj (Note that as g(0) = f(0) and g(1) = f(1), we can

choose ujn(0) = ujn(1) = 1) such that gj = lim
n→∞

ujnfj(u
j
n)∗. Since ujn(0) = ujn(1) = 1rj , we can

put ujn ∈ C([0, 1],Mrj ) together to define unitary un ∈ Ã and get (g, a) = lim
n→∞

un(f, a)u∗n. In

other words, (g, a) ∼a.u (f, a) in A. Note this, in particular, implies that ⟨(f, a)⟩ = ⟨(g, a)⟩.

Lemma 8.9. Let c = (g, a) ∈ A(F1, F2,ϕ0,ϕ1)+ with ∥(g, a)∥ = 1 (see 6.1). Suppose that

gj := g|[0,1]j =
rj∑

i=1

λi,j(t)pi,j(t),

where λi,j ∈ C([0, 1])+, and pi,j ∈ C([0, 1],Mrj ) are mutually orthogonal rank one projections.
Then, for any ε > 0, there exists 0 ≤ h ≤ g such that ∥h − g∥ < ε, (h, a) ∈ A(F1, F2,ϕ0,ϕ1),
and hj := h|[0,1]j satisfies the conditions described in 8.7.

Proof. Fix ε1 > 0 and j. Let gj = g|[0,1]j . Let Gi,j = {t ∈ [0, 1] : λi,j(t) = 0}. Since all Gi,j are
closed sets, there is δ0 > 0 such that if 0 /∈ Gi,j (or 1 /∈ Gi,j, respectively), then dist(0, Gi,j) > 2δ0
(or dist(1, Gi,j) > 2δ0, respectively). Fix δ > 0. such that δ < δ0. For each i, there is a closed
set Si,j which is a union of finitely many closed interval containing the set Gi,j such that

dist(s,Gi,j) < δ/4 for all s ∈ Si,j. (e 8.46)

Hence, dist(0, Si,j) > δ (and dist(1, Si,j) > δ) if Gi,j does not contain them. Choose fi,j ∈
C([0, 1])+ such that fi,j|Si,j = 0, 1 ≥ f i,j(t) > 0, if t ̸∈ Si,j and fi,j(t) = 1 if dist(t, Si,j) > δ/2.

Put λ′i,j = fi,jλi,j. Then 0 ≤ λ′i,j ≤ λi,j. Define hj =
∑rj

i=1 λ
′
i,jpi,j. Then hj ≤ gj . We can choose

δ sufficiently small to begin with so that

∥hj −
rj∑

i=1

λi,jpi,j∥ < ε. (e 8.47)

Put h ∈ C([0, 1], F2) such that h|[0,1]j = hj , j = 1, 2, ..., k. Therefore

∥h− g∥ < ε. (e 8.48)

From the construction, we have hj(0) = gj(0) and hj(1) = gj(1) (note that if 0 /∈ Gi,j (or
1 /∈ Gi,j), then fi,j(0) = 1 (or fi,j(1) = 1)). It follows that h(0) = g(0) and h(1) = g(1).
Therefore (h, a) ∈ A(F1, F2,ϕ0,ϕ1). Moreover, (h, a) ≤ (g, a).

Let qi,j(t) = pi,j(t) if λ′i,j(t) ̸= 0 and qi,j(t) = 0 if λ′i,j(t) = 0. For each i, there is a partition

0 = t(0)i,j < t(1)i,j < · · · < t
(lj)
i,j = 1 such that qi,j is continuous on (t(l)i,j , t

(l+1)
i,j ). Namely, on each

interval (t(l)i,j , t
(l+1)
i,j ), qi,j(t) either constant zero projection or rank one projection pi,j(t) and

therefore both lim
s→t

(l)
i,j+

qi,j(s) and lim
s→t

(l+1)
i,j −

qi,j(s) exist. Furthermore, if qi,j(t) is zero on

the open interval (t(l)i,j , t
(l+1)
i,j ), then qi,j(t) is also zero on the boundary (since λ′i,j(t) is continuos).

Hence we have

qi,j((t
(l)
i,j)

+) := lim
s→t

(l)
i,j+

qi,j(s) ≥ qi,j(t
(l)
i,j) and qi,j((t

(l+1)
i,j )−) := lim

s→t
(l+1)
i,j −

qi,j(s) ≥ qi,j(t
(l+1)
i,j ).

Define Pj(t) =
∑rj

i=1 qi,j(t). Then Pj satisfies the conditions described in 8.7.
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We would like to include the following known fact.

Corollary 8.10. Let A ∈ C (or C0, or C0
0), let a ∈ A+ be a full element, and set B = aAa.

Then, for any ε > 0, there is 0 ≤ b ≤ a such that b is full in A, ∥a− b∥ < ε, bBb = bAb ∈ C (or
C0, or C0

0).

Proof. Let us first assume that a satisfies the condition on c in 8.9. Then, by 8.9 and by 8.7,
there is 0 ≤ b ≤ a such that, for any ε > 0, ∥a − b∥ < ε and bAb ∈ C. Write a = (f, d) ∈
A(F1, F2,ϕ0,ϕ1)+, where f ∈ C([0, 1], F2) and d ∈ F1. Note that, if a is full, ∥f(t)∥ ̸= 0 for
all t ∈ [0, 1]j , j = 1, 2, ..., k, and d is full in F1. Since f(t) is also continuous on each [0, 1]j ,
inf{∥f(t)∥ : t ∈ [0, 1]j} > 0. Therefore, b = (g, d1) ∈ A(F1, F2,ϕ0,ϕ1) can be chosen so that
∥g(t)∥ ̸= 0 for all t ∈ [0, 1]j , j = 1, 2, ..., k, and also d1 is full in F1. In other words, b can also be

chosen to be full. Thus τ(b) > 0 for all τ ∈ T (A). If 0 ̸∈ T(A)
w
, Then inf{τ(b) : τ ∈ T (A)} > 0.

This implies that 0 ̸∈ T(bAb)
w
. Then B := bAb is stably isomorphic to A by Brown’s theorem

([3]). It follows that Ki(B) ∼= Ki(A) and K0(B)+ = K0(A)+. Thus, if A is in C0 (or is in C0
0),

so also is B.
In general, by 8.8, a is approximately unitarily equivalent to a′ ∈ A which satisfies the

condition for c in 8.9. Therefore there is an isomorphism ϕ : a′Aa′ → aAa. Let b′ ≤ a′ be as
given by the first part of the proof. Choose b = ϕ(b′). The conclusion then holds for b.

Remark 8.11. Let C ∈ C′
0 (or C0

0
′
), let e ∈ C+ be such that τ(f1/2(e)) > f > 0 for all τ ∈ T(C),

let F be a finite subset in the unit ball of C, and let ε > 0. Put ε0 = min{f/4, ε/4}. Choose
η > 0 such that

∥f1/2(a′)− f1/2(b
′)∥ < ε0 (e 8.49)

if 0 ≤ a′, b′ ≤ 1 and ∥a′ − b′∥ < η. We may assume that η < ε0. Let eC ∈ C be a strictly positive
element such that ∥eC∥ = 1 and

∥eCfeC − f∥ < η/4 for all f ∈ F ∪ {e, f1/2(e)}. (e 8.50)

By 8.10, there exists b ∈ C+ with b ≤ eC and ∥b − eC∥ < η/4 such that B := bCb in C0 (or in
C0
0). Define ψ : C → B by ψ(c) = bcb for all c ∈ C. Then, for all f ∈ F ∪ {e, f1/2(e)},

∥ψ(f)− f∥ < η < ε, and τ(f1/2(ψ(e))) > f/2 for all τ ∈ T(C). (e 8.51)

Consequently, as B is a hereditary sub-C*-algebra of C,

τ(f1/2(ψ(e))) > f/2 for all τ ∈ T(B). (e 8.52)

It follows that, in the definition of D and D0, we may assume that D ∈ C0 (or D ∈ C0
0).

Corollary 8.12. Let A be a simple C*-algebra which is an inductive limit of C*-algebras in C′
0

(or in C0
0
′
). Then A can be also written as an inductive limit of C*-algebras in C0 (or in C0

0).

Proof. Let C ∈ C′
0 (or C ∈ C0

0
′
). Then, by 8.10, C =

⋃∞
k=1Ck, where each Ck ∈ C0 (or Ck ∈ C0

0),
Ck ⊂ Ck+1 and Ck is a hereditary sub-C*-algebra of C. k = 1, 2, ....

Suppose that A = limn→∞(An,ϕn), where An ∈ C′
0 (or A ∈ C0

0
′
) and ϕn : An → An+1 is a

homomorphism, n = 1, 2, ..., If m > n, put ϕn,m = ϕm ◦ ϕm−1 ◦ · · · ◦ ϕn : An → Am and ϕn,∞ :
An → A the homomorphism induced by the inductive system. Choose a dense sequence {xn}
in the unit ball of A such that {x1, x2, ..., xn} ⊂ ϕn,∞(An), n = 1, 2, .... Write An =

⋃∞
k=1Cn,k,

where Cn,k ∈ C0 (or Cn,k ∈ C0
0), Cn,k ⊂ Cn,k+1, k = 1, 2, .... Without loss of generality, we may
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assume that xj ∈ ϕj,∞(Cj,j), j = 1, 2, .... Let yj,i ∈ Cj,j such that ϕj,∞(yj,i) = xi, i = 1, 2, ..., j
and j = 1, 2, ....

Let {zn,k} be a dense sequence in An. We may assume that yj,i ∈ {zj,k} for i = 1, 2, ..., j,
and j = 1, 2, .... We may also assume ϕn(zn,k) ⊂ {zn+1,k}, n = 1, 2, .... Put Fn = {yn,i : 1 ≤
i ≤ n} ∪ {zn,i : 1 ≤ i ≤ n}, n = 1, 2, .... By the semi-projectivity of C*-algebras in C, one easily
produces a sequence of homomorphisms ψn : Cn,kn → Cn+1,kn+1 for some kn ≥ n such that
∥ψn(a)− ϕn(a)∥ < 1/2n for all a ∈ Fn, n = 1, 2, ....

Let B = limn→∞(Cn,kn ,ψn). Then B is an inductive limit of C*-algebras in C0 (or in C0
0).

Let C =
⋃∞

n=1 ϕn,∞(Cn,kn). Then C is a sub-C*-algebra of A. Since {xn} ⊂ C, C = A. Let
ın : Cn,kn → Cn,kn be the identity map. Then,

∥ϕn ◦ ın(a)− ın+1 ◦ ψn(a)∥ < 1/2n for all a ∈ Fn. (e 8.53)

By the Elliott approximate intertwining argument, there is an isomorphism j : B → C which is
induced by {ın}. It follows that A is an inductive limit of C*-algebras in C0 (or in C0

0).

9 Traces and comparison for C*-algebras in the class D

Proposition 9.1. Let A be a non-zero separable simple C*-algebra in D. Then QT(A) =
T(A) ̸= Ø. Moreover, 0 ̸∈ T(A)

w
.

Proof. Let a0 ∈ A be a strictly positive element of A with ∥a0∥ = 1. Let fa0 > 0 be as in the
definition 8.1. Fix any b0 ∈ A+ \ {0}. Choose a sequence of positive elements (bn)n≥1 which
has the following property: bn+1 ! bn,1, where bn,1, bn,2, ..., bn,n are mutually orthogonal positive
elements in bnAbn such that bnbn,i = bn,ibn = bn,i, i = 1, 2, ..., n, and ⟨bn,i⟩ = ⟨bn,1⟩, i = 1, 2, ..., n.

One obtains (from Theorem 8.3) two sequences of sub-C*-algebras A0,n, Dn of A, where
Dn ∈ C′

0, and two sequences of completely positive contractive maps ϕ0,n : A → A0,n and
ϕ1,n : A → Dn with A0,n ⊥ Dn with the following properties:

lim
n→∞

∥ϕi,n(ab)− ϕi,n(a)ϕi,n(b)∥ = 0 for all a, b ∈ A, (e 9.1)

lim
n→∞

∥a− (ϕ0,n + ϕ1,n)(a)∥ = 0 for all a ∈ A, (e 9.2)

cn ! bn, (e 9.3)

lim
n→∞

∥ϕ1,n(x)∥ = ∥x∥ for all x ∈ A, (e 9.4)

τ(f1/4(ϕ1,n(a0))) ≥ fa0 for all τ ∈ T(Dn), (e 9.5)

and ϕ1,n(a0) is a strictly positive element of Dn, where cn is a strictly positive element of A0,n.
Since quasitraces are norm continuous (Corollary II 2.5 of [2]), by (e 9.2),

lim
n→∞

(sup{|τ(a) − τ((ϕ0,n + ϕ1,n)(a))| : τ ∈ QT(A)}) = 0 for all a ∈ A. (e 9.6)

Since ϕ0,n(a)ϕ1,n(a) = ϕ1,n(a)ϕ0,n(a) = 0, for any τ ∈ QT(A),

τ((ϕ0,n + ϕ1,n)(a)) = τ(ϕ0,n(a)) + τ(ϕ1,n(a)) for all a ∈ A. (e 9.7)

Note that, by (e 9.3),

lim
n→∞

(sup{τ(ϕ0,n(a)) : τ ∈ QT(A)}) = 0 for all a ∈ A. (e 9.8)

Therefore

lim
n→∞

(sup{|τ(a) − τ ◦ ϕ1,n(a)| : τ ∈ QT(A)}) = 0 for all a ∈ A. (e 9.9)
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Since Dn is exact, τ |Dn extends to a trace, say tn. Then, for any a, b ∈ A,

τ ◦ ϕ1,n(a+ b) = tn ◦ ϕ1,n(a+ b) = tn ◦ ϕ1,n(a) + tn ◦ ϕ1,n(b) (e 9.10)

= τ ◦ ϕ1,n(a) + τ ◦ ϕ1,n(b) for all a, b ∈ A. (e 9.11)

It follows from (e 9.9) that, for every τ ∈ QT(A),

τ(a+ b) = τ(a) + τ(b) for all a, b ∈ A.

Thus τ extends to a trace on A. This proves QT(A) = T(A).
Choose sn ∈ T(Dn), n = 1, 2, ... Consider a positive linear functional Fn : A → C defined by

Fn(a) = tn ◦ ϕ1,n, n = 1, 2, ... Let F0 be a weak*-limit of (Fn)n≥1. Note that, by (e 9.5),

Fn(8a0) = sn(8ϕ1,n(a0)) ≥ sn(f1/4(ϕ1,n(a0)) ≥ fa0 for all n. (e 9.12)

It follows that F0 ̸= 0. By (e 9.1), since sn is a trace on Dn, F0 is a nonzero trace on A. It follows
that T (A) ̸= Ø.

Now let τk ∈ T (A) such that, for some positive linear functional τ, limn→∞ τk(a) = τ(a)
for all a ∈ A. Then, for each k, by (e 9.9), limn→∞ ∥τk|Dn∥ = 1. Consider the restriction tk,n =
(∥τk|Dn∥−1)τ |Dn for large n. Then tk,n ∈ T(Dn) for all k. It follows from (e 9.5) that

tk,n(f1/4(ϕ1,n(a0))) ≥ fa0 , n = 1, 2, .... (e 9.13)

By (e 9.9) and (e 9.1),

τk(f1/4(a0)) = lim
n→∞

τk,n(f1/4(ϕ1,n(a0))) ≥ fa0 , k = 1, 2, .... (e 9.14)

Therefore τ ̸= 0. This implies that 0 ̸∈ T(A)
w
.

Remark 9.2. Let A ∈ D and let a ∈ A+ be a strictly positive element with ∥a∥ = 1. In view
of 9.1,

r0 := inf{τ(f1/4(a)) : τ ∈ T(A)} > 0.

The proof above shows that we may choose fa = r0/2. In fact in the case that A = Ped(A), one
may choose fa arbitrarily close to

λs(A) = inf{τ(a) : τ ∈ T(A)
w}.

In the case that A has continuous scale, we may choose the strictly positive element in such a
way that r0 is arbitrarily close to 1.

Proposition 9.3. Every C*-algebra in D is stably projectionless.

Proof. Let A ∈ D. Since, by 8.5 and 8.6, A ∈ D if and only if Mn(A) ∈ D for each n, we only
need to show that A itself has no nonzero projections. Let p ∈ A be a nonzero projection. By
9.1,

r := inf{τ(p) : τ ∈ T(A)
w} > 0.

Choose r/4 > ε > 0. Then, by 8.1,
∥p− (x1 + x2)∥ < ε/2, (e 9.15)

where x1 ∈ (A0)+ and x2 ∈ D+, where A0 = bAb for some b ∈ A+ with dτ (b) < r/4 for all
τ ∈ T(A)

w
, D ∈ C′

0, and A0 ⊥ D. If ε is chosen to be a small enough, there are projections
p1 ∈ A0 and p2 ∈ D such that ∥p− (p1+p2)∥ < ε. Since D is projectionless, p2 = 0. This implies
that τ(p) < τ(p1) + ε < r/2 for all τ ∈ T(A), in contradiction with (e 9.15).
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Theorem 9.4. Let A ∈ D. Suppose that A = Ped(A). Let a, b ∈ (A ⊗ K)+ be such that
dτ (a) ≤ dτ (b) for all τ ∈ T(A)

w
. Then

a ! b.

Proof. Recall that, by 4.5, 0 ̸∈ T(A)
w
. Let us first prove the case that a, b ∈ A+ and dτ (a) < dτ (b)

for all τ ∈ T(A)
w
.

Fix a strictly positive element a0 ∈ A with 0 ≤ a0 ≤ 1. We may assume that ∥a∥=∥b∥ = 1.
Let 1/2 > ε > 0. By 9.3, A is projectionless, and so zero is not an isolated point of sp(a).
Therefore, there is a non-zero element c′ ∈ aAa+ such that c′c = cc′ = 0, where c = fε/64(a). It
follows that

r0 := inf{dτ (b)− dτ (c) : τ ∈ T(A)
w} > 0.

(Note that dτ (b)− dτ (c) ≥ dτ (c′) and use 0 ̸∈ T(A)
w
.)

Set c1 = fε/16(a), so that cc1 = c1. Then a compactness argument (cf. Lemma 5.4 of [34])
shows that there is 1 > δ1 > 0 such that

τ(fδ1(b)) > τ(c) (≥ dτ (c1)) for all τ ∈ T(A)
w
.

Put b1 = fδ1(b). Then

r := inf{τ(b1)− dτ (c1) : τ ∈ T(A)} ≥ inf{τ(b1)− τ(c) : τ ∈ T(A)} > 0. (e 9.16)

Note that ∥b∥ = 1. Choosing a smaller δ1, we may assume that there exist non-zero elements
e, e′ ∈ f2δ1(b)Af2δ1(b) with 0 ≤ e ≤ e′ ≤ 1 and e′e = ee′ = e such that

τ(e′) < r/8 for all τ ∈ T(A)
w
.

Set r1 = inf{τ(e) : τ ∈ T(A)}. Note that, as above, since A is simple and 0 ̸∈ T(A)
w
, r1 > 0.

Set b2 = (1− e′)b1(1− e′). Thus (cf. above), there is 0 < δ2 < δ1/2 < 1/2 such that

7r/8 < inf{τ(fδ2(b2))− dτ (c1) : τ ∈ T(A)} < r − r1. (e 9.17)

Since fδ2(b2)f3/4(b2) = f3/4(b2) and since f3/4(b2)Af3/4(b2) is non-zero, there is e1 ∈ A+ with
∥e1∥ = 1 with e1fδ2(b2) = e1 and dτ (e1) < r/18 for all τ ∈ T(A). Choose η < 1/4 and set
e2 = fη/4(e1) and e3 = fη(e1). Note that fδ2(b2)e2 = e2. Let σ0 = inf{τ(e2) : τ ∈ T(A)} > 0.

By 3.4, there are x1, x2, ..., xm ∈ A such that

m∑

i=1

x∗i e3xi = f1/16(a0). (e 9.18)

Choose a nonzero element e0 ∈ eAe+ such that dτ (e0) < σ0/16 for all τ ∈ T(A).
Let fa0 > 0 be as in Definition 8.1. Set

σ = fa0 ·min{ε2/217(m+ 1), δ1/8, r1/2
7(m+ 1),σ0/16}.

By (e 9.17),

τ(fε2/212(c1)) + τ(e2) < τ(fε2/212(c1)) + r/18 < τ(fδ2(b2)) for all τ ∈ T(A). (e 9.19)

Then, by 7.5 of [9], there are z1, z2, ..., zK ∈ A and b′ ∈ A+ such that

∥fε2/212(c1)−
K∑

j=1

z∗j zj∥ < σ/4 and (e 9.20)

∥fδ2(b2)− (b′ + e2 +
K∑

j=1

zjz
∗
j )∥ < σ/4.
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Since A ∈ D, there exist sub-C*-algebras A0, D ⊂ A, with D ∈ C′
0 and A0 ⊥ D, such that

∥fε2/214(c1)− (fε2/214(c0,2) + fε2/214(c2))∥ < σ, (e 9.21)

∥fδ1/2(b2)− (fδ1/2(b0,3) + fδ1/2(b3))∥ < σ, (e 9.22)

∥fδ2/4(b2)− (fδ2/4(b0,3) + fδ2/4(b3))∥ < σ, (e 9.23)

∥ei − (e0,i + e1,i)∥ < σ, i = 1, 2, and e2,1e1,1 = e1,1 (e 9.24)

c0 ! e0, (e 9.25)

∥a0 − (a0,0 + a1,0)∥ < σ, and (e 9.26)

τ(f1/4(a1,0)) ≥ fa0 for all τ ∈ T(D)
w
, (e 9.27)

where c0 ∈ A0 is a strictly positive element of A0, and where a0,0, b0,3, c0,2, e0,1 ∈ (A0)+ and
a1,0, b3, c2, e1,1 ∈ D+. By (e 9.20), we may also obtain z′j , z

′
j , x

′
i ∈ D and b′′ ∈ D+, i = 1, 2, ...,m

and j = 1, 2, ...,K, such that

∥
m∑

i=1

(x′i)
∗e1,1x

′
i − f1/16(a1,0)∥ < σ, (e 9.28)

∥fε2/214(c2)−
K∑

j=1

(z′j)
∗z′j∥ < σ and (e 9.29)

∥fδ2(b3)− (
K∑

j=1

z′j(z
′
j)

∗ + e2,1 + b′′)∥ < σ. (e 9.30)

Note that, by (e 9.28) and by Lemma 3.1,

⟨f1/4(a1,0)⟩ ≤ ⟨
m∑

i=1

(x′i)
∗e1,1x

′
i⟩ ≤ m⟨e1,1⟩. (e 9.31)

Then, by (e 9.27),

t(e2,1) ≥ dt(e1,1) ≥ fa0/(m+ 1) > 2σ for all t ∈ T(D). (e 9.32)

Therefore, by (e 9.28), (e 9.29) and (e 9.30),

dt(fε2/213(c2)) ≤ t(fε2/214(c2)) ≤ σ +
K∑

j=1

t((z′j)
∗z′j)

= σ +
K∑

j=1

t(z′j(z
′
j)

∗) ≤ t(e2,1)− σ +
K∑

j=1

t(z′j(z
′
j)

∗)

≤ t(fδ1(b3)) ≤ dt(fδ1/2(b3))

for all t ∈ T(D). It follows by Proposition 6.3 that

fε2/213(c2) ! fδ1/2(b3).

By (e 9.23) and Lemma 2.2 of [45] (note σ < δ1/8 and b0,3 ⊥ b3),

fδ1/2(b3) ! fδ2/4(b2) ≤ b2.

It then follows (also by Lemma 2.2 of [45]) that

fε/2(c) ! fε2/211(c0,2 + c2) ! c0 ⊕ fε2/211(c2)

! e+ b2 ! b1 ! b.
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We also have

fε(a) ! fε/2(fε/16(a)) ! fε/2(c) ! b.

Since this holds for all 1 > ε > 0, by 2.4 of [45], we conclude that a ! b.
If we only have dτ (a) ≤ dτ (b) for all τ ∈ T(A)

w
, since A is stably projectionless as mentioned

above, as shown at the beginning of the proof, for any ε > 0, τ(fε/2(a)) < dτ (b) for all τ ∈ T(A)
w
.

From what has been proved, fε(a) ! b for all ε > 0. Therefore a ! b. This shows the case that
a, b ∈ A+. For a, b ∈ Mn(A)+ for some n ≥ 1, one notes that, by 8.5, Mn(A) ∈ D. Therefore
this case is easily reduced to the case that n = 1. In general, if a, b ∈ (A ⊗ K)+, then, for
any ε > 0, by the last part of 3.2, we may assume that fε/16(a) is in Mn(A) for some n ≥ 1.

Hence τ *→ τ(fε/16(a)) is bounded and continuous. Since T(A)
w
is compact, one concludes, as

shown above, for some small δ1 > 0, τ(fε/16(a)) < τ(fδ1(b)) for all τ ∈ T(A)
w
. As mentioned

above, we may also assume that fδ(b) ∈ Mn(A) (with possibly larger n). Thus, we conclude
that fε(a) ! fδ(b) ! b. It follows that a ! b.

Definition 9.5. Let us denote by M0 the class of (non-unital) simple C*-algebras which are
inductive limits of sequences of C*-algebras in C0

0 . We stipulate that the maps in the sequence
be injective and preserve strictly positive elements, i.e., each map should send strictly positive
elements to strictly positive elements. In fact, a decomposition with such maps can always be
chosen.

Every algebraically simple C*-algebra A inM0 is inD0. To see this, write A = limn→∞(Cn,ϕn),
where each Cn is in C0

0 and ϕn : Cn → Cn+1 is a homomorphism which preserves strictly positive
elements and is injective.

Let a1 ∈ C1 be a strictly positive element with ∥a1∥ = 1. Then an = ϕ1,n(a1) ∈ Cn is a
strictly positive element of Cn, n = 1, 2, .... Then a = ϕn,∞(an) is a strictly positive element

with ∥a∥ = 1. For any n, since 0 ̸∈ T(Cn)
w
(see Definition 6.1),

rn := inf{τ(an) : τ ∈ T(Cn)
w} > 0.

Since ϕm,n is a homomorphism preserving strictly positive elements, t ◦ ϕm,n ∈ T(Cm) for all
t ∈ T(Cn) and for all n ≥ m. Thus, rn ≥ rm for all n ≥ m.

Since A is algebraically simple and f1/4(a) ̸= 0, there are x1, x2, ..., xk ∈ A such that

k∑

i=1

x∗i f1/4(a)xi = a.

Set M = 2kmax{∥xi∥ : 1 ≤ i ≤ k}. For some m ≥ 1, there are y1, y2, ..., yk ∈ Cm such that

∥
k∑

i=1

y∗i ϕ1,m(f1/4(a1))yi − am∥ < r1/2.

We may assume that ∥yi∥ ≤ 2∥xi∥, i = 1, 2, ..., k. Since r1 ≤ rm, this implies that

τ(ϕ1,m(f1/4(a1))) ≥ (rm/2)/2M for all τ ∈ T(Cm).

Put
fa = inf{τ(ϕ1,m(f1/4(a1))) : τ ∈ T(Cm)}.

Note since t ◦ ϕm,n ∈ T(Cn) for all t ∈ T(Cn),

t(ϕm,n(f1/4(a1))) ≥ fa for all t ∈ T(Cn).

From this, one concludes that A ∈ D0 (with ϕ = 0 and ψ = idA in Definition 8.1).
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Definition 9.6. Recall that W is an inductive limit of C*-algebras as described in (e 6.2) (see
[41], [53], and [24]) which has K0(W) = K1(W) = {0} and has a unique tracial state. Moreover,
W =

⋃∞
n=1Cn, where Cn ⊂ Cn+1 and each Cn is in Raz (in fact as in (e 6.2)) and inclusion

preserves the strictly positive elements. In particular, W ∈ M0 and W ∈ D0. Furthermore, we
may also assume that (see 6.1 and 4.9 for λs)

λs(Cn) = inf{τ(eCn) : τ ∈ T(Cn)} → 1,

where eCn is a strictly positive element of Cn (for example, limi→∞ ai/(ai + 1) = 1 as shown in
[24]). By [41], W is unique with these properties.

10 Tracial approximate divisibility

Definition 10.1. Let A be a (non-unital) σ-unital simple C*-algebra. Let us say that A is
(non-unital) tracially approximately divisible if the following property holds:

For any ε > 0, any finite subset F ⊂ A, any b ∈ A+ \ {0}, and any integer n ≥ 1, there are
σ-unital sub-C*-algebras A0, A1 ⊗ e1,1 ⊂ Mn(A1) ⊂A such that A0 ⊥ Mn(A1),

dist(x,Bd) < ε for all x ∈ F ,

where Bd = A0 +A1 ⊗ 1n, and a0 ! b, where a0 is a strictly positive element of A0.

In the unital case, this definition is equivalent to 5.3 of [32]. (Note, as seen in the proof of
5.4 of [32], the unit of the finite dimensional sub-C*-algebra is required to be 1− q there.)

Lemma 10.2. Let D be a (non-unital) separable simple C*-algebra which can be written as
D = limk→∞(Dk,ϕk), where each Dk ∈ C0

0
′
. Let K ≥ 1 be an integer, let ε > 0, and let

F ⊂ Dn be a finite subset for some n ≥ 1. There exist an integer m ≥ n, a sub-C*-algebra
D′

m = MK(D′′
m) ⊂ Dm, where D′′

m is a hereditary sub-C*-algebra of Dm, and a finite subset
F1 ⊂ D′′

m such that

dist(ϕn,m(f),F1 ⊗ 1K) < ε for all f ∈ F . (e 10.1)

If each Dk is just assumed to belong to C′
0, then there exist an integer m ≥ n, a sub-C*-algebra

D′
m = MK(D′′

m) ⊂ Dm, where D′′
m is a hereditary sub-C*-algebra of Dm, and a finite subset

F1 ⊂ D′′
m such that

∥ϕn,m(f)− (r(f) + gf ⊗ 1K)∥ < ε for all f ∈ F , (e 10.2)

where r(f) ∈ eDme and gf ∈ F1 for all f ∈ F , e ∈ (Dm)+, and e ! ed, where ed is a strictly
positive element of D′′

m.

Proof. We may assume that F is in the unit ball of D. Consider first the case Dk ∈ C0
0
′
for all

k. By 8.12, without loss of generality, we may assume that Dk ∈ C0
0 . One notes that K0(D) =

K1(D) = {0}. One also notes that D⊗Q is an inductive limit of C*-algebras in C0
0 . Moreover, D

and D ⊗Q have the same (lower semicontinuous) traces and the same tracial states. It follows
from 6.2.4 of [43] (see Theorem 1.2 of [24], also [41] and [53]) that D ∼= D ⊗ Q. Fix n such
that F ⊂ Dn. Without loss of generality, we may assume that F ⊂ D1

n. Note also that Q is
self-absorbing. Hence the map a *→ a⊗ 1Q (for all a ∈ D) is approximatly unitarily equivalent
to the identity map. Therefore, there exists a sub-C*-algebra C of D with C ∼= D such that

∥ϕn,∞(a)− c(a) ⊗ 1K∥ < ε/4 for all a ∈ F , (e 10.3)
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for all a ∈ F and for some c(a) ∈ C ⊗ e11 ⊂ C ⊗MK ⊂ D.
For each a ∈ F , there exists n1 ≥ n and c(a)′ ∈ Dn1 such that ∥ϕn1,∞(c(a)′) − c(a) ⊗

e11∥ < ε/16K2. Without loss of generality, we may assume that ∥c(a)∥, ∥c(a)′∥ ≤ 1. To simplify
notation, without loss of generality, let us assume that there is c0 ∈ C+ with ∥c0∥ = 1 such that
c0c(a) = c(a)c0 = c(a) for all a ∈ F . Consider the sub-C*-algebra B = C0 ⊗MK , where C0 is
the sub-C*-algebra of C generated by c0. Since C is stably projectionless, sp(c0) = [0, 1]. Then
C0 ⊗MK

∼=C0((0, 1]) ⊗MK . Fix a finite subset G ⊂ B which contains {c0 ⊗ eij : 1 ≤ i, j ≤ 1},
and 0 < δ < ε/8. Since B is semiprojective (see, for example, [12]), there is a homomorphism
H : B → Dm1 for some m1 ≥ n1 ≥ n such that

∥ϕm1,∞ ◦H(g) − g∥ < δ/K2 for all g ∈ G. (e 10.4)

Set c00 = H(c0 ⊗ e11).
Fix m > m1. Define D′′

m = ϕm1,m(c00)Dmϕm1,m(c00). Then the sub-C*-algebra D′
m gener-

ated by D′′
m and ϕm1,m(H(B)) is isomorphic to D′′

m ⊗MK ⊂ Dm. Define

x1,j(a) = (c00 ⊗ ej1)ϕn1,m1(c(a)
′)(c00 ⊗ e1j) ∈ H(B), and

y1,j(a) = ϕm1,m(c00 ⊗ ej1)ϕn1,m(c(a)′)ϕm1,m(c00 ⊗ e1,j), j = 1, 2, ...,K, (e 10.5)

for all a ∈ F . Note y1,j = ϕm1,m(x1,j(a)). Moreover, one may write
∑N

j=1 x1,j(a) =
∑N

j=1 x11(a)⊗
eii = x11(a)⊗ 1K . By (e 10.4), for a ∈ F ,

ϕm1,∞(
K∑

j=1

x1,j(a)) ≈δ

K∑

j=1

(c0 ⊗ ej1)ϕn1,∞(c(a)′)(c0 ⊗ e1,j)

≈ε/16

K∑

j=1

(c0 ⊗ ej1)(c(a) ⊗ e11)(c0 ⊗ e1j)

=
K∑

j=1

(c0c(a)c0)⊗ ejj =
K∑

j=1

c(a) ⊗ ejj = c(a)⊗ 1K . (e 10.6)

Define F1 = {y1,1(a) : a ∈ F} ⊂ D′′
m⊗MK ⊂ Dm. Then, by (e 10.3) and (e 10.6) above, without

loss of generality, choosing a larger m if necessary, we may assume that

∥ϕm1,m(ϕn,m1(a))− ϕm1,m(x11(a)⊗ 1K)∥ < ε/2 for all a ∈ F . (e 10.7)

It follows that

dist(ϕn,m(a),F1 ⊗ 1K) < ε for all a ∈ F . (e 10.8)

This proves the first part of the statement.
In the case Dn ∈ C′

0, by [51], D ⊗ Z ∼= D. In Z (see the proof of Lemma 2.1 of [44], and
also Lemma 4.2 of [48]), there are e1, e2, ..., eK , d ∈ Z+ such that

∑K
j=1 ej +d = 1Z , e1, e2, ..., eK

are mutually orthogonal, d ! e1, and there exist w1, w2, ..., wK ∈ Z such that ej = wjw∗
j

and ej+1 = w∗
jwj . Moreover, as in the proof of Lemma 4.2 of [48], since Z has stable rank

one, there is a unitary v ∈ Z such that v∗dv ≤ e1. Without loss of generality, identifying
D with D ⊗ Z, we may assume that ϕn,∞(x) = y ⊗ 1 for some y = y(x) ∈ D for every

element x ∈ F . Let d′ = c0 ⊗ d, v′ = c1/20 ⊗ v, e′j = c0 ⊗ ej , w′
j = c1/20 ⊗ wj , j = 1, 2, ...,K.

Note that d′ +
∑K

j=1 e
′
j = c0. With sufficiently large m and with a standard perturbation,

we may assume that d′, v′, e′j , w
′
j ∈ ϕm,∞(Dm), j = 1, 2, ...,m, and ϕn,∞(x) commutes with

d′, e′j and w′
j for all x ∈ F . With possibly even larger m, without loss of generality, there are

44



d′′, v′′, e′′j , w
′′
j ∈ Dm such that d′′ +

∑K
j=1 = c′0, d

′′ = v′′(v′′)∗, (v′′)∗v′′ ≤ e′′1 , e
′′
1 , e

′′
2 , ..., e

′′
K are

mutually orthogonal, (w′′
j )(w

′′
j )

∗ = e′j and e′′j+1 = (w′′
j )

∗(w′′
j ), where c′0 ∈ (Dm)+ is such that

c′0ϕn,m(x) = ϕn,m(x)c′0 = ϕn,m(x) for all x ∈ F and

∥[ϕn,m(x), y]∥ < ε/16K2 for all x ∈ F (e 10.9)

and y ∈ {d′′1/2, d′′, v′′, e′′j , w′′
j , j = 1, 2, ...,K}. Define D′′

m = e′′jDme′′j , r(f) = (d′′)1/2ϕn,m(d′′)1/2

and F1 = {e′′1ϕn,m(x)e′′1 : x ∈ F} and identify d(e′′1ϕn,m(x)e′′1) with

K∑

j=1

e′′jϕn,m(x)e′′j ∈ MK(D′′
m) for all x ∈ F .

The conclusion of the lemma follows.

Theorem 10.3. Let A ∈ D (or A ∈D0) be a separable C*-algebra with A = Ped(A). Then the
following statement holds: Let a0 be a strictly positive element of A with ∥a0∥ = 1. There exists
1 > dA > 0 satisfing the following condition: For any ε > 0, any finite subset F ⊂ A, and any
b0 ∈ A+ \ {0}, there exist a separable simple C*-algebra D = limn→∞(Dn,ψn), where Dn ∈ C0
(or Dn ∈ C0

0) and an F-ε-multiplicative completely positive contractive map ϕ : A → D1 such
that, for any n > 1, there exist a completely positive contractive map Φn : A → A and an
embedding jn : Dn → A with Φn(A) ⊥ jn ◦ (ψ1,n◦ϕ(A)) such that

∥x− (Φn + jn ◦ ψ1,n ◦ ϕ)(x)∥ < ε for all x ∈ F , (e 10.10)

cn ! b0, and (e 10.11)

τ(f1/4(ψ1,n ◦ ϕ(a0))) > dA for all τ ∈ T(Dn), (e 10.12)

where cn is a strictly positive element of Φn(A)AΦn(A). Moreover, if K0(A) = {0}, we may
assume that (ψ1,n|D1)∗0 = 0.

Proof. Let 1 > fa0 > 0 be as in Definition 8.1. Fix an integer k0 ≥ 1 such that (fa0)
2 > 2−k0 .

Replacing a0 by g(a0) for some g ∈ C0((0, 1]) with 0 ≤ g ≤ 1, we may assume that

τ(a0) > fa0 for all τ ∈ T(A) (e 10.13)

(see 9.2). Fix any b0 ∈ A+ \ {0}. Choose a sequence of nonzero positive elements (bn)n≥1 in A
with the following property: b1 ! b0 and bn+1 ! bn,1, where bn,1, bn,2, ...., bn,2n+k0+5 are mutually

orthogonal positive elements in bnAbn such that bnbn,i = bn,ibn = bn,i, i = 0, 1, 2, ..., n, and
⟨bn,i⟩ = ⟨bn,1⟩, i = 1, 2, ..., 2n+k0+3.

It should be noted that
∞∑

j=m

sup{τ(bj) : τ ∈ T(A)
w} < (fa0)

2/2m+5 for all m ≥ 1. (e 10.14)

One obtains (see also the end of 8.11) two sequences of sub-C*-algebras A0,n and Dn of A,
with A0,n ⊥ Dn and Dn ∈ C0 (or Dn ∈ C0

0), and two sequences of completely positive contractive

maps ϕ(0)
n : A → A0,n and ϕ(1)

n : A → Dn with ∥ϕ(i)
n ∥ = 1 (i = 0, 1) satisfying the following

conditions:

lim
n→∞

∥ϕ(i)
n (ab)− ϕ(i)

n (a)ϕ(i)
n (b)∥ = 0 for all a, b ∈ A, i = 0, 1, (e 10.15)

lim
n→∞

∥a− (ϕ(0)
n + ϕ(1)

n )(a)∥ = 0 for all a ∈ A, (e 10.16)

cn ! bn, (e 10.17)

τ(f1/4(ϕ
(1)
n (a0))) ≥ fa0 for all τ ∈ T(Dn), (e 10.18)
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and ϕ(1)
n (a0) is a strictly positive element of Dn, where cn is a strictly positive element of A0,n

with ∥cn∥ = 1. As in the proof of 9.1, it follows that

lim
n→∞

(sup{|τ(a) − τ ◦ ϕ(1)
n (a)| : τ ∈ T(A)}) = 0 for all a ∈ A. (e 10.19)

Consider the sequence (an) defined inductively by a1 := ϕ(1)
1 (a0), a2 := ϕ(1)

2 (a1), ..., an :=

ϕ(1)
n (an−1), n = 1, 2, ....
For fixed n, by (e 10.17), (e 10.14), (e 10.15), and (e 10.16),

lim
k→∞

( sup{τ(f1/4(ϕ
(1)
k (ϕ(0)

n (b)))) : τ ∈ T(Dk)}) ≤ (fa0)
2/2n (e 10.20)

for any 0 ≤ b ≤ 1. It follows that, for fixed n, and any fixed m ≥ n,

lim
k→∞

(sup{|τ(f1/4(ϕ
(1)
m+k(am − an)))| : τ ∈ T(Dm+k)}) ≤ (fa0)

2/2n−1. (e 10.21)

Without loss of generality, passing to a subsequence if necessary, by (e 10.16), we may assume
that, for all m > n,

∥an − (ϕ(0)
m (an) + ϕ(1)

m (an))∥ <
(fa0)

2

2(n+4)2
, (e 10.22)

∥f1/4(an)− (f1/4(ϕ
(0)
m (an)) + f1/4(ϕ

(1)
m (an)))∥ <

(fa0)
2

2(n+4)2
, and (e 10.23)

∥ϕ(1)
m ◦ · · · ◦ ϕ(1)

n+1(f1/4(an))− f1/4(an+m)∥ <
(fa0)

2

2(n+4)2
, n = 1, 2, ..., (e 10.24)

and, by (e 10.21), whenever m+ k ≥ n+ 1,

sup{|τ(f1/4(ϕ
(1)
m+k(an+1 − an))| : τ ∈ T(Dm+k)} ≤

(fa0)
2

2(n+4)2
. (e 10.25)

Claim (1):

lim inf
n→∞

(inf{τ(f1/4(ϕ(1)
m (an))) : τ ∈ T(Dm) and m > n}) ≥

(fa0)
2

8
. (e 10.26)

Claim (2): If we first take a subsequence (N(k)) and as above define a1 := ϕ1
(N(1))(a0),

a2 := ϕ(1)
N(2)(a1), ..., an := ϕ(1)

N(n)(an−1), n = 0, 1, ..., then Claim (1) still holds, when m is

replaced by N(m).
Let us first explain that Claim (2) follows from Claim (1) since we may first pass to another

subsequence in the above construction and then apply Claim (1).
We now prove Claim (1).

Assume Claim (1) is false. Then there exists η0 > 0 such that
(fa0 )

2

8 − η0 > 0 and

lim inf
n→∞

(inf{τ(f1/4(ϕ(1)
m (an))) : τ ∈ T(Dm) and m > n}) ≤

(fa0)
2

8
− η0. (e 10.27)

By (e 10.25), there is n0 ≥ 1 such that, for all m ≥ n ≥ n0 and k ≥ 1,

τ(f1/4(ϕ
(1)
m+k(am))) ≤ τ(f1/4(ϕ

(1)
m+k(an))) + η0/2 for all τ ∈ T(Dm+k). (e 10.28)

Hence there exists a subsequence (nk) which has the following property: if k′ ≥ k, then

tnk′
(f1/4(ϕ

(1)
nk′

(ank))) ≤ (fa0)
2/8 − η0/2. (e 10.29)
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Consider the positive linear functional τk defined by τk(a) = tk(ϕ
(1)
nk (a)) for all a ∈ A,

k = 1, 2, .... Let τ be a weak* limit of (τk)k≥1. It follows (e 10.18) that 1 ≥ ∥τ∥ ≥ fa0 . Moreover,
by (e 10.15), τ is a trace. On the other hand, by (e 10.29) and (e 10.23),

τ(f1/4(ank)) < (fa0)
2/8 for all k. (e 10.30)

It follows from (e 10.23), (e 10.14) and (e 10.17) that, if m > n ≥ 1,

τ(f1/4(ϕ
(1)
m (an))) ≥ τ(f1/4(an))− (fa0)

2/2m+5 − (fa0)
2/2(n+4)2 . (e 10.31)

Therefore, also using (e 10.13), for all k,

τ(f1/4(ank)) ≥ τ(f1/4(a0))− (
n+k∑

j=1

((fa0)
2/2j+5 − (fa0)

2/2(j+1)2)) > (fa0)
2/4. (e 10.32)

This contradicts with (e 10.30) and so Claim (1) is proved.
Since A = Ped(A), by 5.7, we obtain a map T : A+ \ {0} → N × R+ \ {0} which has the

properties described by 5.7. Set T (a) = (N(a),M(a)) and λ(a) = (N(a)+1)(M(a)+1) for each
a ∈ A+ \ {0}.

Now fix a finite subset F ⊂ A+ \ {0} and 1/16 > ε > 0. We may assume that ∥a∥ ≤ 1 for
all a ∈ F , a0 ∈ F . Let eDn be a strictly positive element of Dn with 0 ≤ eDn ≤ 1. Let (F ′

k,n)
be an increasing sequence of finite subsets of (Dk)+ such that the union of these subsets is

dense in (Dk)+. We may assume that ϕ(1)
k (F) ⊂ F ′

k,1. By (e 10.16) and (e 10.18), without loss

of generality, by choosing larger k, if necessary, we may also assume that the elements ϕ(1)
k (F)

and therefore those in F ′
k,n are nonzero. Choose 1/4 > η0 > 0 such that

∥f1/4(a′)− f1/4(a
′′)∥ < min{ε, f2a0}/64 (e 10.33)

whenever 0 ≤ a′, a′′ ≤ 1 and ∥a′ − a′′∥ < η0. We may assume that

∥x− (ϕ(0)
1 + ϕ(1)

1 )(x)∥ < min{η0, ε}/162 for all x ∈ F . (e 10.34)

Set

F ′′
1,n = {(a− ∥a∥/2)+ : a ∈ F ′

1,n} and F ′′′
1,n = F ′

1,n ∪ F ′′
1,n. (e 10.35)

Choose σ1 > 0 such that

∥fσ1(eD1 )xfσ1(eD1 )− x∥ < min{ε, η0}/162 for all x ∈ ϕ(1)
1 (F) and (e 10.36)

∥fσ1(c1)ϕ
(0)
1 (x)fσ1(c1)− ϕ(0)

1 (x)∥ < min{fa0 , η0, ε}/163 for all x ∈ F . (e 10.37)

Define Φ1 : A → A0,1 by Φ1(x) = fσ1(c1)ϕ
(0)
1 (x)fσ1(c1). Put ε0 = min{f2a0 , ε/16, η0/16,σ1/2}.

Let F1,n be a finite subset which also contains F ′′′
1,n ∪ {a1, eD1 , fσ1(eD1 ), fσ1/2(eD1 )}. By 5.7,

since D1 is assumed to be in the class C0, there exist an integer n2 ≥ 2 and a homomorphism
ψ1 : D1 → Dn2 such that

m1(a)∑

i=1

ϕ(1)
n2

(x(a)i,1)
∗ϕ(1)

n2
(a)ϕ(1)

n2
(x(a)i,1) = f1/16(ϕ

(1)
n2

(a1)), (e 10.38)

where x(a)i,1 ∈ A, m1(a) ≤ N(a) and ∥x(a)i,1∥ ≤ M(a), i = 1, 2, ...,m1(a), and

∥ψ1(a)− ϕ(1)
n2

(a)∥ < ε0/4 · 16λ(a) (e 10.39)
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for all a ∈ F ′′′
1,1, It follows that

∥
m1(a)∑

i=1

ϕ(1)
n2

(x(a)i,1)
∗ψ1(a)ϕ

(1)
n2

(x(a)i,1)− f1/16(ϕ
(1)
n2

(a1))∥ < ε0/32 (e 10.40)

for all a ∈ F ′′
1,1. Therefore, applying 3.1, one obtains y(a)i,n2 ∈ Dn2 with ∥y(a)i,n2∥ ≤ ∥x(a)i,1∥+

(fa0)
2/16 such that

m2(a)∑

i=1

y(a)∗i,n2
ψ1(a)y(a)i,n2 = f1/8(ϕ

(1)
n2

(a1)) for all a ∈ F ′′′
1,1. (e 10.41)

By (e 10.15), we may assume, choosing n2 large, that

∥x− (ϕ(0)
n2

+ ϕ(1)
n2

)(x)∥ < ε0/16
2 for all x ∈ F ∪ {c1} ∪ F1,1, (e 10.42)

∥ϕ(1)
n2

(fσ1/2(c1))ϕ
(1)
n2

(fσ1/2(e
D
1 ))∥ < ε0/16, (e 10.43)

∥fσ′(ϕ(1)
n2

(c1))− ϕ(1)
n2

(fσ′(c1))∥ < ε0/16, σ
′ ∈ {σ1,σ1/2,σ1/4}, and (e 10.44)

∥fσ1/2(ϕ
(1)
n2

(c1))
1/2ϕ(1)

n2
(Φ1(x))fσ1/2(ϕ

(1)
n2

(c1))
1/2 − ϕ(1)

n2
(Φ1(x))∥ < ε0/16 (e 10.45)

for all x ∈ F . Put ϕ1 : A → D1 by ϕ1(x) = fσ1(e
D
1 )ϕ

(1)
1 (x)(fσ1(e

D
1 )) for x ∈ A. Define ϕ(1)′

n2 by

ϕ(1)′
n2 (x) = fσ1/2(ϕ

(1)
n2 (c1))

1/2ϕ(1)
n2 (Φ1(x))fσ1/2(ϕ

(1)
n2 (c1))

1/2 for all x ∈ A. Define Φ2 : A → A0,n2

by (note, below, the two sums are orthogonal sums)

Φ2(x) = (1− ψ1(fσ1/2(e
D
1 )))(ϕ

(0)
n2

((Φ1 + ϕ(1)
1 )(x)) + ϕ(1)′

n2
(x))(1 − ψ1(fσ1/2(e

D
1 )))

for all x ∈ A. Note that Φ2 is a completely positive contractive map and Φ2(A) ⊥ j2(ψ1 ◦ϕ1(A))
(recall that jn : Dn → A is the embedding). Also (note the sum is orthogonal)

ψ1(fσ1/2(e
D
1 ))(ϕ

(0)
n2

(Φ1 + ϕ(1)
1 )(x)) = 0 for all x ∈ A. (e 10.46)

By (e 10.39) and (e 10.43),

ϕ(1)′
n2

(x)ψ1(fσ1/2(e
D
1 )) ≈ε0/16 ϕ

(1)′
n2

(x)ϕ(1)
n2

fσ1/2(e
D
1 ) ≈ε0/16 0. (e 10.47)

Thus, on F , by (e 10.45) and (e 10.37),

Φ2(x) ≈ε0/8 ϕ
(0)
n2

((Φ1 + ϕ(1)
1 )(x)) + ϕ(1)′

n2
(x) ≈ε0/16 ϕ

(0)
n2

((Φ1 + ϕ(1)
1 )(x)) + ϕ(1)

n2
(Φ1(x))

ε/162 ≈ ϕ(0)
n2

((ϕ(0)
1 + ϕ(1)

1 )(x)) + ϕ(1)
n2

(ϕ(0)
1 (x)). (e 10.48)

We then verify

∥x− (Φ2(x) + j2(ψ1 ◦ ϕ1(x)))∥ < ε/16 for all x ∈ F . (e 10.49)

Note that, by (e 10.42),

∥(ϕ(0)
n2

(c1) + ϕ(1)
n2

(c1))− c1∥ < ε0/16. (e 10.50)

By 3.1, since ε0 < σ1/2 and ϕ(0)
n2 (c1) ⊥ ϕ(1)

n2 (c1),

fσ1/2(ϕ
(1)
n2

(c1))! fσ1/2((ϕ
(0)
n2

(c1) + ϕ(1)
n2

(c1))) ! c1. (e 10.51)
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Note, by the definition of Φ2, for any x ∈ A+,

⟨Φ2(x)⟩ ≤ ⟨(ϕ(0)
n2

((Φ1 + ϕ(1)
1 )(x)) + ϕ(1)′

n2
(x))⟩

≤ ⟨cn2⟩+ ⟨fσ1/2(ϕ
(1)
n2

(c1))⟩ ≤ ⟨bn2⟩+ ⟨c1⟩ ≤ ⟨b2⟩+ ⟨b1,2⟩ ≤ ⟨b1,1 + b1,2⟩.

It follows that, if c′2 is a strictly positive element of Φ2(A)AΦ2(A) (see 2.10), then

c′2 ! b1,1 + b1,2. (e 10.52)

To simplify notation, passing to a subsequence, if necessary, without loss of generality, we may
assume that n2 = 2.

Put e′2 = ψ1(eD1 ). Set

F ′′
2,n = {(a− ∥a∥/2)+ : a ∈ F ′

2,n} and F ′′′
2,n = F ′

2,n ∪ F ′′
2,n. (e 10.53)

Choose σ2 > 0 such that

∥fσ2(e′2)xfσ1(e′2)− x∥ < ε/163 for all x ∈ F ′
2,2 ∪ ψ1(F1,2) ∪ ϕ

(1)
2 (F) and (e 10.54)

∥fσ2(c′2)Φ2(x)fσ2(c
′
2)− Φ2(x)∥ < ε/163 for all x ∈ F . (e 10.55)

Recall that K0(D1) is finitely generated (see 6.2), say by [pj] − nj [1], where pj ∈ Mm(D̃1) is a

projection with [πd(pj)] = nj[1], πd : Mm(D̃1) → Mm is the quotient map, j = 1, 2, ..., k1. We

may write pj = qj + hj, where hj = (h(i,k)j ) with h(i,k)j ∈ D1, where qj = diag(

nj︷ ︸︸ ︷
1, 1, ..., 1, 0, ..., 0).

If K0(A) = {0}, without loss of generality, we may assume that there exists vj ∈ Mm(Ã) such
that

v∗j vj = pj and vjv
∗
j = qj, j = 1, 2, ..., k1, (e 10.56)

where we identify qj with the matrix in Mm(C · 1Ã). Write vj = λj + sj, where sj = (s(i,k)j )

with s(i,k)j ∈ D1, λj ∈ Mm(C · 1Ã) is a partial isometry and sj ∈ Mm(D1), 1 ≤ j ≤ k1.

Put ε1 = min{ε0/(m16)2,σ2/(m16)2}. Let F2,n be a finite subset which also contains F ′′′
2,n ∪

{a2, e′2, fσ2(e′2), fσ2/2(e
′
2)} ∪ ψ1(F1,2) ∪ ϕ(1)

2 (F) as well as h(i,k)j and s(i,k)j , Applying 5.7, since
D2 ∈ C0, as in the previous step, we obtain a homomorphism ψ2 : D2 → Dn3 such that

∥ψ2(a)− ϕ(1)
n3

(a)∥ < ε1/4 · 163λ(a) for all a ∈ F2,2 and (e 10.57)

∥
m2(a)∑

i=1

ϕ(1)
n3

(x(a)i,2)
∗ψ2(a)ϕ

(1)
n3

(x(a)i,2)− f1/16(ϕ
(1)
n3

(a2))∥ < ε1/16
2 (e 10.58)

for all a ∈ F2,2, where m2(a) ≤ N(a) and ∥x(a)i,2∥ ≤ M(a) for all a ∈ F ′′′
2,2. By 3.1, there are

y(a)i,n3 ∈ Dn3 with ∥y(a)i,n3∥ ≤ ∥x(a)i,2∥+ (fa0)
2/162 such that

m2(a)∑

i=1

y(a)∗i,n3
ψ2(a)y(a)i,n3 = f1/8(ϕ

(1)
n3

(a2)) for all a ∈ F ′′′
2,2. (e 10.59)

By (e 10.15), we may assume, by choosing large n3, that

∥x− (ϕ(0)
n3

+ ϕ(1)
n3

)(x)∥ < ε1/16
3 for all x ∈ F ∪ {c′2} ∪ F2,2, (e 10.60)

∥ϕ(1)
n3

(fσ2/2(c
′
2))ϕ

(1)
n3

(fσ2/2(e
′
2))∥ < ε1/16

3, (e 10.61)

∥fσ′(ϕ(1)
n2

(c′2))− ϕ(1)
n2

(fσ′(c
′
2))∥ < ε1/16

3, σ′ ∈ {σ2,σ2/2,σ2/4}, (e 10.62)

∥fσ2/2(ϕ
(1)
n3

(c′2))
1/2ϕ(1)

n3
(Φ2(x))fσ2/2(ϕ

(1)
n3

(c′2))
1/2 − ϕ(1)

n3
(Φ2(x))∥ < ε1/16

2 (e 10.63)
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for all x ∈ F . In particular (we continue to use ϕ(i)
k for ϕ(i)

k ⊗ idMm),

∥hj − (ϕ(0)
n3

(hj) + ϕ(1)
n3

(hj))∥ < ε1/16
3 and ∥sj − (ϕ(0)

n3
(sj) + ϕ(1)

n3
(sj))∥ < ε1/16

3

(when K0(A) = 0). By choosing smaller ε1, we may assume that (for 1 ≤ j ≤ k1) there is a
partial isometry uj ∈ Mm(D̃n3) such that

u∗juj = ψ∼
2 (pj) and uju

∗
j = qj, (e 10.64)

where ∥(ψ∼
2 (pj)+ϕ

(0)
n3 (hj))−pj∥ < ε1, ∥(uj+ϕ

(0)
n3 (sj))−vj∥ < ε1, where we identify Mm(C ·1D̃1

)

with Mm(C · 1Ã), and where ψ∼
2 is the extension of ψ2 on Mm(D̃1). In particular, (ψ2)∗0 = 0,

when K0(A) = {0}. Define ϕ(1)′
n3 by

ϕ(1)′
n3

(x) = fσ2/2(ϕ
(1)
n3

(c′2))
1/2ϕ(1)

n3
(Φ2(x))fσ2/2(ϕ

(1)
n3

(c′2))
1/2

for all x ∈ A. Define Φ3 : A → A by

Φ3(x) = (1− ψ2(fσ2/2(e
′
2))(ϕ

(0)
n3

((Φ2 + j2 ◦ ψ1 ◦ ϕ1)(x)) + ϕ(1)′
n3

(x))(1 − ψ2(fσ2/2(e
′
2))

for all x ∈ A. Note Φ3 is a completely positive contractive map and
Φ3(A) ⊥ j2(ψ1,2 ◦ ϕ1(A)), where ψ1,2 = ψ2 ◦ ψ1. Also

ψ2(fσ2/2(e
′
2))(ϕ

(0)
2 (Φ2 + j2 ◦ ψ1 ◦ ϕ1)(x) = 0 for all x ∈ A. (e 10.65)

By (e 10.57) and (e 10.61),

ϕ(1)′
n3

(x)ψ2(fσ1/2(e
′
2)) ≈ε1/162 ϕ

(1)′
n3

(x)ϕ(1)
n3

(fσ2/2(e
′
2)) ≈ε1/162 0. (e 10.66)

Thus, on F , by (e 10.63) and (e 10.49) (using also the orthogonality of the sum),

Φ3(x) + ϕ(1)
n3

(j2 ◦ ψ1(ϕ1(x))) ≈ε1/27 ϕ
(0)
n3

((Φ2 + j2 ◦ ψ1 ◦ ϕ1)(x)) + ϕ(1)′
n3

(x)

+ϕ(1)
n3

(j2 ◦ ψ1(ϕ1(x))) ≈ε1/28 ϕ
(0)
n3

((Φ2 + j2 ◦ ψ1 ◦ ϕ1)(x)) + ϕ(1)
n3

(Φ2 + j2 ◦ ψ1)(x))

ε/16 ≈ ϕ(0)
n3

(x) + ϕ(1)
n3

(x) ≈ε1/163 x.

Therefore, since ε1/27 + ε1/28 + ε1/163 + ε1/163 < ε/162, by (e 10.57),

∥x− (Φ3(x) + j3(ψ1,2 ◦ ϕ1(x)))∥ < ε/16 + ε/162 (e 10.67)

for all x ∈ F . Note that, by (e 10.42),

∥(ϕ(0)
n3

(c′2) + ϕ(1)
n3

(c′2))− c′2∥ < ε0/16. (e 10.68)

By 3.1 (recall that ϕ(0)
n3 (c

′
2) ⊥ ϕ(1)

n3 (c
′
2)),

fσ2/2(ϕ
(1)
n3

(c′2)) ! c′2 ! b1,1+b1,2. (e 10.69)

By the definition of Φ3 above, for any x ∈ A+,

⟨Φ3(x)⟩ ≤ ⟨cn3⟩+ ⟨fσ2/2(ϕ
(1)
n3

(c′2))⟩ ≤ ⟨bn3,1⟩+ ⟨c′2⟩. (e 10.70)

Let c′3 be a strictly positive element of Φ3(A)AΦ3(A). Then, by (e 10.52),

⟨c′3⟩ ≤ ⟨bn3,1⟩+ ⟨b1,1 + b1,2⟩. (e 10.71)
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To simplify notation, by passing to a subsequence, if necessary, without loss of generality,
we may assume that n3 = 3.

Continuing this process, one then obtains a sequence of homomorphisms ψn : Dn → Dn+1

such that

∥ψn(a)− ϕ(1)
n (a)∥ < ε0/4 · 16nλ(a) for all a ∈ Fn,n and (e 10.72)

mn(a)∑

i=1

y(a)∗i,n+1ψn(a)y(a)i,n+1 = f1/8(ϕ
(1)
n+1(an)) for all a ∈ Fn,n, (e 10.73)

where Fn,n contains F ′′′
n,n ∪ {an, e′n, fσn(e′n), fσn/2(e′n)} ∪ ψn(Fn−1,n−1) ∪ ϕ(1)

n (F), where (for
m ≥ n)

F ′′
n,m = {(a− ∥a∥/2)+ : a ∈ F ′

n,m} and F ′′′
n,m = F ′

n,m ∪F ′′
n,m. (e 10.74)

Moreover, mn(a) ≤ N(a), ∥y(a)i,n+1∥ ≤ M(a) + 1 for all n. Furthermore, there is a completely
positive contractive map Φn : A → A such that Φn(A) ⊥ jn(ψ1,n ◦ ϕ1(A)),

∥x− (Φn(x) + jn(ψ1,n ◦ ϕ1(x)))∥ <
n∑

k=1

ε/16k < ε for all x ∈ F and (e 10.75)

c′n ! b1,1 + b1,2 + b2,1 + · · ·+ bn,1 ! b0, (e 10.76)

n = 1, 2, ....
Consider the inductive limit C*-algebra D = limn→∞(Dn,ψn). (Again, one should note that

we have passed to a subsequence to simplify notation.) Note that, if A ∈ D0, then each Dn ∈ C0
0 .

Note also that, while, by construction, Dn ∈ A, for each n = 1, 2, ..., this is not true for D. Let us
verify that D is simple. Fix a non-zero positive element d0 ∈ (D)+ with ∥d0∥ = 1. Since each Dn

is stably projectionless, so is D. Fix 1/64 > ε1 > 0. There is d ∈ (D)+ such that d = ψm,∞(d′)
for d′ ∈ (D′

m)+ with ∥d′∥ = 1 and

∥d− d0∥ < ε1/32. (e 10.77)

It follows from 3.1 that there is z ∈ D such that

(d− ε1/16)+ = z∗d0z. (e 10.78)

By construction, there is d′′ ∈ Fm′,m′ for some m′ ≥ m+ 16 such that

∥ψm,m′((d′ − ε1/16)+)− d′′∥ < ε1/64. (e 10.79)

There is y ∈ Dm′ such that

(d′′ − ε1/8)+ = y∗ψm,m′((d′ − ε1/4)+)y. (e 10.80)

Note that ε1/2 ≤ ∥d′′∥/8.
By (e 10.73), there are x1, x2, ..., xL ∈ Dm′+1 such that

L∑

i=1

x∗iψm′,m′+1((d
′′ − ε1/2)+)xi = f1/8(am′+1). (e 10.81)
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Claim (3): The element a00 := ψm′+1,∞(am′+1) is full in D. In fact, for any m′′ > m′ + 1, it
follows from (e 10.72), (e 10.24), and Claim (2) that

τ(ψm′+1,m′′(f1/8(am′+1))) ≥ τ(ϕ(1)
m′′ ◦ · · · ◦ ϕ(1)

m′+2(f1/8(am′+1)))−
m′′∑

j=m′+2

(fa0)
2/16j

≥ τ(ϕ(1)
m′′ ◦ · · · ◦ ϕ(1)

m′+2((f1/4(am′+1))− (fa0)
2/16m

′+1

≥ τ(f1/4(am′′))−
(fa0)

2

2(m′+1+4)2
−

(fa0)
2

16m′+1
>

(fa0)
2

16
(e 10.82)

for all τ ∈ T(Dm′′). By 6.3, we conclude that ψm′+1,m′′(am′+1) is full in Dm′′ . Therefore a00
is full in ψm′′,∞(Dm′′) for all m′′ > m′ + 1. Hence, the closed two-sided ideal generated by a00
contains

⋃
m′′>m′+1 ψm′′,∞(Dm′′). This implies that a00 is full in D, which proves Claim (3).

It follows from (e 10.81) that ψm′,∞((d′′ − ε1/2)+) is full in D. By (e 10.80), the element
ψm,∞((d′ − ε1/4)+) is full in D. Then, by (e 10.78), d0 is full in D. Since d0 is arbitrarily chosen
in (D)+ \ {0} with ∥d0∥ = 1, this implies that D is indeed simple.

By (e 10.33), and then as in the estimate of (e 10.82),

τ(f1/4(ψ1,n(ϕ1(a0))) > τ(f1/4(ψ1,n(ϕ
(0)
1 (a0)))− fa0/64

= τ(ψ1,n(f1/4(a1))) − fa0/64 > τ(ϕ(1)
n ◦ · · ·ϕ(1)

2 (f1/4(a1)))−
n∑

j=2

(fa0)
2/16j − f2a0/64

≥ τ(f1/4(an))− (fa0)
2/2(1+4)2 − (fa0)

2/162)(16/15) − f2a0/64

≥ f2a0/8− f2a0/32 = f2a0/16 =: dA for all τ ∈ T(Dn).

We also note, since (ψ2)∗0 = 0, that (ψ1,n)∗0 = 0 for all n ≥ 2.

Theorem 10.4. Let A be a separable C*-algebra in D0. Then A is tracially approximately
divisible in the sense of 10.1.

Proof. Let ε > 0, F ⊂ A be a finite subset, b ∈ A+ \ {0}, and let K ≥ 1 be an integer. Let
eA ∈ A be a strictly positive element with 0 ≤ eA ≤ 1. Choose 1/2 > σ > 0 such that

∥fσ(eA)afσ(eA)− a∥ < ε/4 for all a ∈ F . (e 10.83)

Let F1 = {fσ(eA)afσ(eA) : a ∈ F} and A′ = fσ(eA)Afσ(eA). Then A′ is algebraically simple,
and so A′ = Ped(A′). Choose b0 ∈ (A′)+ \ {0} such that ⟨b0⟩ ≤ ⟨b⟩.

We apply 10.3 to A′, F1, ε/4 and b0. Let D be as in 10.3. Put Ck = ψ1,k(ϕ(A))Dkψ1,k(ϕ(A)),
k = 1, 2, ..., and C = limk→∞(Ck,ψk|Ck−1). Then C is a hereditary sub-C*-algebra of D and

Ck ∈ C0
0
′
. By 10.2, there exist n ≥ 1 and sub-C*-algebras D′

n = MK(D′′
n) ⊂ Cn such that

dist(ψ1,n ◦ ϕ(a),F2 ⊗ 1K) < ε/4 for all a ∈ F1, (e 10.84)

where D′′
n is a hereditary sub-C*-algebra of Cn and F2 ⊂ D′′

n is a finite subset.
Let Φn be as in 10.3. Then Φn(A) ⊥ jn(ψ1,n ◦ ϕ1(A)) and cn ! b0, where cn is a strictly

positive element of Φn(A)AΦn(A). Recall that, in 10.3, Dn ⊂ A. Define A0 = Φn(A)AΦn(A).
Then A0 ⊥ jn(C) and B = A0 ⊕MK(jn(D′′

n))] ⊂ A. Then

dist(Φ(x) + jn ◦ ψn(x), A0 +D′′
m ⊗ 1K) < ε/4 for all x ∈ F1. (e 10.85)

However, as part of the conclusion of 10.3,

∥x− (Φ(x) + jn ◦ ψn(x))∥ < ε/4 for all x ∈ F1. (e 10.86)
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By (e 10.83),

dist(a, A0 +D′′
m ⊗ 1K) < ε for all a ∈ F . (e 10.87)

Note we also have cn ! b0 ! b.

Remark 10.5. In fact, one can also prove the conclusion of 10.4 by replacing the condition
A ∈ D0 by A ∈ D and K0(A) = 0, and applying 7.9, since we will show that a C*-algebra in D
has stable rank one (which will be done in 11.5). This will be carried out in 11.10 below.

Corollary 10.6. Let A be a separable C*-algebra in the class D. Then A has the following
property: For any ε > 0, any finite subset F ⊂ A, any a0 ∈ A+ \ {0} and any integer n ≥ 1,
there are mutually orthogonal elements e0, e00, e01 ∈ A+, completely positive contractive maps
ϕ0 : A → E0, ϕ1 : A → E1, and ϕ2 : A → E2, where E0, E1, E2 are sub-C*-algebras of A,
E0 = e0Ae0, e00 ∈ E1, e01 ∈ E2, E0 ⊥ E1, Mn(E2) ⊂ E1, with E2 ∈ C′

0 and E2 ⊂ e01Ae01, such
that

∥x− (ϕ0 + ϕ1)(x)∥ < ε/2 and (e 10.88)

∥ϕ1(x)− (r(x) + ϕ2(a)⊗ 1n)∥ < ε/2, (e 10.89)

r(x) ∈ e00Ae00 for all x ∈ F , (e 10.90)

and e0 + e00 ! a0 and e00 ! e01.

Proof. The proof is almost the same as that of 10.4. One replaces C0
0
′
by C′

0 and instead of
applying the first part of 10.2, one applies the second part of 10.2. We omit the repetition.

Theorem 10.7. Let A be a separable C*-algebra in D0. Let a ∈ A+ with ∥a∥ = 1 be a strictly
positive element. Then the following statement is true.

There exists 1 > fa > 0 such that, for any ε > 0, any finite subset F ⊂ A and any b ∈
A+ \ {0} and any integer n ≥ 1, there are F-ε-multiplicative completely positive contractive
maps ϕ : A → A and ψ : A → D for some sub-C*-algebra D ∈ C0

0
′
with Mn(D) ⊂ A and

Mn(D) ⊥ ϕ(A) such that ∥ψ∥ = 1,

∥x− (ϕ(x) + ψ(x)⊗ 1n)∥ < ε for all x ∈ F ∪ {a}, (e 10.91)

c ! b, (e 10.92)

t(f1/4(ψ(a))) ≥ fa, t ∈ T(D), and (e 10.93)

ψ(a) is strictly positive in D, where c is a strictly positive element of A0 := ϕ(a)Aϕ(a).

Proof. Fix a strictly positive element a ∈ A+ with ∥a∥ = 1. It follows from 9.1 that 0 ̸∈ T(A)
w
.

Let

r0 = inf{τ(f1/2(a)) : τ ∈ T(A)
w} > 0. (e 10.94)

Let fa0 = r0/6. Choose an integer k0 ≥ 1 such that r0/16 > 1/k0.
Let 1 > ε > 0 and F ⊂ A be a finite subset. Choose ε1 = min{ε/16, r0/128}. Let F1 ⊃

F ∪ {a, f1/4(a)} be a finite subset of A. Let b ∈ A+ \ {0}, and any integer n ≥ 1 be given.

Choose b′0, b
′
1, ..., b

′
n+2k0

∈ bAb such that b′0, b
′
1, ..., b

′
n+2k0

are mutually orthogonal and mutu-
ally equivalent in the sense of Cuntz and there are non-zero and mutually orthogonal elements
b0, b1, ..., bn+2k0 ∈ A+ such that bib′0 = bi, i = 0, 1, ..., n + 2k0.

53



By 10.4, A has the property of tracial approximate divisibility. Therefore there are sub-C*-
algebras A0, A1 and Mn(A1) of A such that A0 ⊥ Mn(A1),

dist(x,A0 +A1 ⊗ 1n) < ε1/2 for all x ∈ F1,

and a0 ! b0, where a0 is a strictly positive element of A0. Moreover, there are y0 ∈ A0 and
y1 ∈ A1 such that

∥a− (y0 + diag(
n︷ ︸︸ ︷

y1, y1, ..., y1))∥ < ε/2 and (e 10.95)

∥f1/4(a)− (f1/4(y0) + diag(

n︷ ︸︸ ︷
f1/4(y1), f1/4(y1), ..., f1/4(y1)))∥ < ε1/2. (e 10.96)

Note that

τ(diag(

n︷ ︸︸ ︷
f1/4(y1), f1/4(y1), ..., f1/4(y1))) ≥ r0 − 1/(n + 2k0)− ε1/2 > r0/3 (e 10.97)

for all τ ∈ T(A).
Let A′

0 = a0Aa0 and A′
1 = y1Ay1. Note that 0 ̸∈ T(A′

1)
w

by 4.10. Moreover, if τ ∈ T(A),
then ∥τ |A1∥ ≥ r0/3. We also have

τ(f1/4(y1)) ≥ r0/3 for all τ ∈ T(A′
1). (e 10.98)

Note, by 9.2, in Definition 8.1 the constant fy1 can be chosen to be r0/6.
Let G ⊂ A1 be a finite subset such that the following holds

dist(f, {(x0 + diag(
n︷ ︸︸ ︷

x1, x1, ..., x1)) : x0 ∈ A0, x1 ∈ G}) < ε1/2 for all f ∈ F1 (e 10.99)

and y1 ∈ G.
Note that A′

1 is a hereditary sub-C*-algebra of A. By 8.6, A′
1 ∈ D0. Thus, there exist two

sub-C*-algebras B0 and D of A′
1, where D ∈ C0

0
′
and two G-ε1-multiplicative completely positive

contractive maps ϕ0 : A′
1 → B0 and ψ0 : A′

1 → D such that

∥x− (ϕ0 + ψ0)(x)∥ < ε1/2 for all x ∈ G, (e 10.100)

ϕ0(c0) ! b1, ∥ψ0∥ = 1, (e 10.101)

τ ◦ f1/4(ψ0(y1)) ≥ r0/6 for all τ ∈ T(D), (e 10.102)

and ψ0(y1) is a strictly positive element in D, where c0 is a strictly positive element of A′
1.

Set A00 = A0 ⊕

n︷ ︸︸ ︷
A′

0 ⊕A′
0 ⊕ · · ·⊕A′

0 and let c = a0 + diag(
n︷ ︸︸ ︷

c0, c0, ..., c0).
Choose a function g ∈ C0((0, 1]), define ϕ00 : A → A00 by

ϕ00(x) = g(a0)xg(a0) + diag(

n︷ ︸︸ ︷
ϕ0(x),ϕ0(x), ...,ϕ0(x)) for all x ∈ A.

Then, with a choice of g, we have

∥x− (ϕ00(x) + diag(

n︷ ︸︸ ︷
ψ0(x),ψ0(x), ...,ψ0(x)))∥ < ε for all x ∈ F . (e 10.103)

Moreover,
⟨c⟩ ≤ ⟨b0⟩+ ⟨b1⟩+ · · · ⟨bn⟩ ≤ ⟨b⟩.

Now let ϕ = ϕ00. Then ϕ(a) = ϕ0(a) ! c ! b. Put ψ = ψ0. Note also (e 10.102) holds. It follows
that ϕ, ψ, and D meet the requirements.
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The following corollary follows from the combination of 8.3 and 10.7.

Corollary 10.8. Let A be a separable algebraically simple C*-algebra in D0 (cf. 11.4). Then
the following property holds. Fix a strictly positive element a ∈ A with ∥a∥ = 1 and let 1 >
fa > 0 be as in 8.1 (see also 9.2). There is a map T : A+ \ {0} → N × R+ \ {0} (a *→
(N(a),M(a)) for all a ∈ A+ \ {0}) satisfying the following condition: For any finite subset
F0 ⊂ A+ \ {0}. for any ε > 0, any finite subset F ⊂ A and any b ∈ A+ \ {0} and any
integer n ≥ 1, there are F-ε-multiplicative completely positive contractive maps ϕ : A → A and
ψ : A → D = D ⊗ e11 for some sub-C*-algebra Mn(D) ⊂ A with ϕ(A) ⊥ Mn(D) such that

∥x− (ϕ(x) + ψ(x) ⊗ 1n)∥ < ε, x ∈ F ∪ {a}, (e 10.104)

D ∈ C0
0 , (e 10.105)

a0 ! b, ∥ψ∥ = 1, and (e 10.106)

ψ(a) is strictly positive in D, where a0 ∈ ϕ(a)Aϕ(a) is a strictly positive element. Moreover, ψ
is T -F0 ∪ {f1/4(a)}-full in D.

Furthermore, we may assume that

t(f1/4(ψ(a))) ≥ fa and (e 10.107)

t(f1/4(ψ(c))) ≥
fa

4 inf{M(c)2 ·N(c) : c ∈ F0 ∪ {f1/4(a)}}
(e 10.108)

for all c ∈ F0 and for all t ∈ T(D), and, we may also require that

ϕ(a) ! ψ(a). (e 10.109)

Proof. Note that the existence of the map T and the fact that ψ can be required to be T -
F0 ∪ {f1/4(a)}-full in D, and that (e 10.108) holds, are applications of 5.7.

To see the last part of conclusion, i.e., (e 10.109), let 1/2 > η > 0 be such that τ(fη(a)) > fa/2

for all τ ∈ T(A)
w
(see 9.2) and choose b ∈ A+\{0} such that dτ (b) < fa/4(n+1) for all τ ∈ T(A).

Then, with ε < η/4, (e 10.104) implies that

fη(a) ! ϕ(a) + diag(

n︷ ︸︸ ︷
ψ(a),ψ(a), ...,ψ(a)). (e 10.110)

It follows that dτ (ψ(a)) > fa/2(n + 1) for all τ ∈ T(A)
w
or

dτ (ψ(a)) > dτ (b) ≥ dτ (ϕ(a)) for all τ ∈ T(A)
w
. (e 10.111)

It follows by (1) of 5.3 and 9.4 that ϕ(a) ! ψ(a).

Remark 10.9. It is clear from the proof that, for n = 1, both 10.7 and 10.8 hold if A ∈ D
(with now D ∈ C0).

11 Stable rank one

The proof of the following result is very similar to that of Lemma 2.1 of [44].

Lemma 11.1. Let A be a separable, simple and stably projectionless C*-algebra such that every
hereditary sub-C*-algebra B has strict comparison for positive elements as formulated in the
conclusion of 9.4, and satisfies the conclusion of 10.6 without assuming that E2 belongs to a
specific class of C*-algebras. Then, for any hereditary sub-C*-algebra B of A,

B ⊂ GL(B̃)
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Proof. It is clearly sufficient to consider the case B = A.
Fix an element x ∈ A and ε > 0. Let e ∈ A with 0 ≤ e ≤ 1 be a strictly positive el-

ement. Upon replacing x by fη(e)xfη(e) for some small 1/8 > η > 0, we may assume that

x ∈ fη(e)Afη(e). Put B1 = fη(e)Afη(e).
By the assumption, we know that e is not a projection. We obtain a positive element

b0 ∈ B⊥
1 \ {0}.

Note that
B⊥

1 = {a ∈ A : ab = ba = 0 for all b ∈ B1}

is a non-zero hereditary sub-C*-algebra of A. Since we assume that A is infinite dimensional,
b0Ab0 contains non-zero positive elements b0,1, b′0,1, b0,2, b

′
0,2 ∈ B⊥

1 such that

b′0,1 ! b′0,2 and b0,1b
′
0,1 = b0,1, b0,2b

′
0,2 = b0,2 and b′0,1b

′
0,2 = 0.

Since A has the strict comparison for positive elements as in the conclusion of 9.4, we can
choose a large integer n ≥ 2 which has the following property: if a1, a2, ..., an ∈ A+ are n
mutually orthogonal and mutually equivalent positive elements, then

a1 + a2 ! b0,1.

There is B′
1 ⊂ B1 which has the form

B′
1 = B1,1 +D ⊗ 1n,

where B1,1 is a hereditary sub-C*-algebra with a strictly positive element b11 ! b0,1 and there
are x0 ∈ B1,1 and x1 ∈ D \ {0} such that

∥x− (x0 + x1 ⊗ 1n)∥ < ε/16. (e 11.1)

Let d0 ∈ D be a strictly positive element. By the choice of n, d0 ! b0,1.
Choose 0 < η1 < 1/4 such that

∥fη1(d0)x1fη1(d0)− x1∥ < ε/16. (e 11.2)

Put x′1 = fη1(d0)x1fη1(d0). Note that

fη1/8(d0) ! b′0,2. (e 11.3)

There are wi ∈ A such that

wiw
∗
i = diag(

i−1︷ ︸︸ ︷
0, 0, ..., 0, fη1/4(d0), 0, ..., 0), i = 1, 2, ..., n, (e 11.4)

w∗
iwi = diag((

i︷ ︸︸ ︷
0, 0, ..., 0, fη1/4(d0), 0, ..., 0), i = 1, 2, ..., n − 1, and (e 11.5)

w∗
nwn ∈ b′0,2Ab′0,2. (e 11.6)

There is v ∈ A such that

v∗v = x0 + diag(x′1, 0, ..., 0) and vv∗ ∈ (b′0,1 + b′0,2)A(b
′
0,1 + b′0,2). (e 11.7)

Put
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x′′i = diag(

i−1︷ ︸︸ ︷
0, 0, ..., 0, x′1, 0, ..., 0), i = 1, 2, ..., n, (e 11.8)

y′′i = diag(

i−1︷ ︸︸ ︷
0, 0, ..., 0, fη1/4(d0), 0, ..., 0), i = 1, 2, ..., n, and (e 11.9)

z1 = v∗, z2 = v, z3 =
n−1∑

i=1

w∗
i x

′′
i and z4 =

n−1∑

i=1

y′′i wi. (e 11.10)

Note that

z3z2 = 0, z1z4 = 0. (e 11.11)

Therefore,

(z1 + z3)(z2 + z4) = z1z2 + z3z4 (e 11.12)

= v∗v + diag(0, x′1, x
′
1, ..., x

′
1) (e 11.13)

= x0 + diag(

n︷ ︸︸ ︷
x′1, x

′
1, ..., x

′
1)= x0 + x′1 ⊗ 1n. (e 11.14)

On the other hand,

z21 = v∗v∗ = 0, z1z3 = 0. (e 11.15)

We also compute that

z23 =
∑

i,j

w∗
i x

′′
iw

∗
jx

′′
j =

n−1∑

i=2

w∗
i x

′′
iw

∗
i−1x

′′
i−1. (e 11.16)

Inductively, we compute that

zn3 = 0. (e 11.17)

Thus, by (e 11.15),

(z1 + z3)
k =

k∑

i=1

zi3z
k−i
1 for all k. (e 11.18)

Therefore, by (e 11.15), and (e 11.17), for k = n+ 1,

(z1 + z3)
n+1 = 0. (e 11.19)

We also have that z2z4 = 0 and z22 = 0. A similar computation shows that zn4 = 0. Therefore, as
above, (z2 + z4)n+1 = 0. One has the estimate

∥x− (z1 + z3)(z2 + z4)∥ < ε/4.

Suppose that ∥zi∥ ≤ M for i = 1, ..., 4. Consider the elements of Ã

z5 = z1 + z3 + ε/16(M + 1) and z6 = z2 + z4 + ε/16(M + 1).

Since (z1 + z3) and (z2 + z4) are nilpotent, both z5 and z6 are invertible in Ã. We also estimate
that, by (e 11.1),

∥x− z5z6∥ < ε.
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Corollary 11.2. Let A ∈ D be a separable C*-algebra. Then A almost has stable rank one (see
2.7).

Proof. This follows from 8.5, 8.6, 9.3, 10.6, and 11.1.

Corollary 11.3. Let A ∈ D. Suppose that A is separable. Then A = Ped(A).

Proof. By 8.5, Mn(A) is in D. The corollary then follows from the combination of 9.1, 11.2, 9.4,
4.8, and 4.7.

Remark 11.4. Note, by 11.3, the assumption that A = Ped(A) in 10.3 can be removed.

Theorem 11.5. Let A be a separable C*-algebra in D. Then A has stable rank one.

Proof. Let x ∈ Ã. We must show that x ∈ GL(Ã). Applying 3.2 and 3.5 of [46], without loss of
generality, we may assume that there exists a non-zero positive element e′0 ∈ Ã with ∥e′0∥ = 1

such that xe′0 = e′0x = 0. We may further assume that there exists e0 ∈ Ã+ with ∥e0∥ = 1 such
that e0e′0 = e′0e0 = e0. Define

σ = inf{τ(f1/4(e0)) : τ ∈ T(A)
w}. (e 11.20)

Multiplying by a scalar multiple of the identity, without loss of generality, we may assume
that x = 1 + a, where a ∈ A.

Let 0 < ε0 < ε be given and set ε1 = min{ε0/(∥x∥ + 1),σ}. Since A ∈ D, there exist a
hereditary sub-C*-algebra B0 ⊂ A and a sub-C*-algebra D ⊂ A with D ∈ C0 such that

∥a− (x0 + x1)∥ < ε1/64, ∥e0 − (e0,0 + e0,1)∥ < ε1/64, and (e 11.21)

∥fδ′(e0)− (fδ′(e00) + fδ′(e0,1))∥ < ε1/64, δ′ ∈ {1/2k : 2 ≤ k ≤ 6}, (e 11.22)

where x0, e0,0 ∈ B0 and x1, e0,1 ∈ D, B0D = DB0 = {0},

dτ (b0) < min{ε1/64,σ/64} for all τ ∈ T(A)
w
. (e 11.23)

where b0 is a strictly positive element of B0. Let pB0 denote the open projection associated with
B0. Then, for δ′ ∈ {1/2k : 2 ≤ k ≤ 6},

∥(1 + x1)fδ′(e0,1)∥ = ∥(1 + x1)(1− pB0)fδ′(e0,1)∥ (e 11.24)

= ∥(1 + x1 + x0)(1− pB0)(fδ′(e0,0) + fδ′(e0,1))∥ (e 11.25)

< ∥(1 + x1 + x0)(1− pB0)fδ′(e0)∥+ (∥x∥ + ε1/64)ε1/64 (e 11.26)

= ∥(1− pB0)(1 + x1 + x0))fδ′(e0)∥+ ε0/64 (e 11.27)

< ∥(1− pB0)xfδ′(e0)∥+ ε1/64 + ε0/64 (e 11.28)

= ε1/64 + ε0/64 < ε0/32. (e 11.29)

Put

x′1 = (−2f1/64(e0,1) + f1/64(e0,1)
2) + (1− f1/64(e0,1))x1(1− f1/64(e0,1)). (e 11.30)

Then x′1 ∈ D. By the calculation above,

(1− f1/64(e0,1))(1 + x1)(1 − f1/64(e0,1)) = 1 + x′1 and (e 11.31)

∥(1 + x′1)− (1 + x1)∥ < 3ε0/30. (e 11.32)
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Moreover,

(1 + x′1)f1/64(e0,1) = (1− f1/64(e0,1))(1 + x1)(1− f1/64(e0,1))f1/16(e0,1) = 0. (e 11.33)

We also have, by (e 11.22),

τ(f1/4(e0,1)) ≥ τ(f1/4(e0))− ε1/64 ≥ σ − ε0/64 > σ/2 for all τ ∈ T(A)
w
. (e 11.34)

Therefore, by (e 11.23),

dτ (b0) < τ(f1/4(e0,1)) for all τ ∈ T(A)
w
. (e 11.35)

By (9.4), b0 ! f1/8(e0,1). Note that f1/16(e0,1)f1/8(e0,1) = f1/8(e0,1).
To simplify notation, choosing sufficiently small ε0 and changing notations, we may assume

that

∥a− (x0 + x1)∥ < ε/16 and ∥e0 − (e0,0 + e0,1)∥ < ε/16, (e 11.36)

where x0, e0,0 ∈ B0 and x1, e0,1 ∈ D, and also

e0,1(1 + x1) = (1 + x1)e0,1 = 0 (e 11.37)

and b0 ! e′0,1, where 0 ≤ e′0,1 ≤ 1 and e′0,1fδ(e0,1) = e′0,1 for some 0 < δ < 1/4.
We may also assume, without loss of generality, that there are b0,1, b′0,1 ∈ B0 with 0 ≤

b0,1, b′0,1 ≤ 1 such that

b0,1x0 = x0b0,1 = x0, f1/16(b
′
0,1)b0,1 = b0,1. (e 11.38)

Set A2 = (fδ(e0,1) + b′0,1)A(fδ(e0,1) + b′0,1). Note that, and by 8.6, A2 ∈ D. Since b′0,1 ! b0 ! e′0,1,

and by 11.1, A2 almost has stable rank one, there is a unitary u′1 ∈ Ã2 (see 3.3) such that

(u′1)
∗b′0,1(u

′
1) ∈ fδ(e0,1)Afδ(e0,1). (e 11.39)

Let q0 denote the open projection in A∗∗ corresponding to b′0,1Ab
′
0,1, and q be the open

projection in A∗∗ corresponding to the hereditary sub-C*-algebra A2. Then q0 ≤ q. Note that

x0q0 = x0q0 = x0 and (e 11.40)

q0u′1q0 = (u′1)(u
′
1)

∗(q0u′1)q0 = (u′1)((u
′
1)

∗q0u′1)q0 = 0. (e 11.41)

Note also that

∥x− (1 + x0 + x1)∥ = ∥a− (x0 + x1)∥ < ε/16. (e 11.42)

Put z = 1 + x0 + x1. Then z ∈ Ã. Put

z0 = zq0 = (1 + x0)q0 = q0(1 + x0) and (e 11.43)

z1 = z(1− q0) = (1− q0)z = (1− q0) + x1. (e 11.44)

Keep in mind that z0 + z1 = z.
Now write u′1 = λ1Ã2

+ y for some y ∈ A2 and for some scalar λ ∈ C with |λ| = 1. Set

u1 = λq + y. Multiplying by λ̄ and changing notation, we may assume that u1 = q + y. Define

u = 1 + y = u1 + (1− q).
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Since q0 ≤ q = 1Ã2
, we have

q0u = q0qu = q0qu1 = q0qu
′
1 = q0u

′
1. (e 11.45)

Then, by (e 11.41),

(z0u)(z0u) = (1 + x0)q0uq0(1 + x0)u = (1 + x0)q0u
′
1q0(1 + x0) = 0. (e 11.46)

In other words, z0u is a nilpotent in A∗∗.
On the other hand, by (e 11.37),

z1fδ(e0,1) = (1− q0)(1 + x1)fδ(e0,1) = 0.

Therefore

z1c = ((1 − q0) + x1)c = cz1 = 0 for all c ∈ A2. (e 11.47)

Thus, as y ∈ A2,

z1u = z1(1 + y) = z1 + z1y = z1. (e 11.48)

Put D1 = D + C · (1− q0). Then D1 ∈ C. Let

D2 = {d′ ∈ D1 : d
′fδ(e0,1) = fδ(e0,1)d

′ = 0}. (e 11.49)

Then, by (e 11.47), z1 ∈ D2. Note that D2 is a hereditary sub-C*-algebra of D1. If D2 is unital,
say e′ is the unit, then e′ ̸= 1− q0. Then (1− q0)− e′ is also a nonzero projection. One of them
must be inD. SinceD is stably projectionless, that one has to be zero. Since (1−q0)−e′ ̸= 0, this
leads a contradiction. So D2 is not unital. Since D1 has stable rank one (see, for example, 3.3
of [22]), so is D2. Let eD2 be a strictly positive element of D2. In A∗∗, let pd = limn→∞(eD2)

1/n

(converges in A∗∗). In particular, pd ≤ 1− q0. So q0pd = 0. Moreover, since eD2fδ(e0,1) = 0,

pdfδ(e0,1) = 0. (e 11.50)

We also have pdB0 = B0pd = 0. It follows that pdq = 0. Therefore,

z0u(1− pd) = z0uq(1− pd) = z0uq = z0u. (e 11.51)

Hence, z0u ∈ (1− pd)A∗∗(1− pd).
Since D2 + Cpd has stable rank one, there is an invertible element z′1 ∈ D2 + Cpd such that

∥z1 − z′1∥ < ε/16. (e 11.52)

We may write z′1 = λ1pd+yd, where λ1 ∈ C and yd ∈ D2. We may also write yd = λ2(1−q0)+d0,
where λ2 ∈ C and d0 ∈ D.

Set I = D ∩D2. Then we have the natural short exact sequence

0 → I → D2 + Cpd →π C⊕ C → 0. (e 11.53)

Then ∥π(z1 − z′1)∥ < ε/16. Thus, |λ1| < ε/16 and |1− λ2| < ε/16. Put

z′′1 := (1/λ2)z
′
1 = ηpd + (1− q0) + d′0,

where η = λ1/λ2 and d′0 = d0/λ2 ∈ D. Then |η| < ε/8 and

∥z1 − z′′1∥ < 3ε/16. (e 11.54)
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Moreover, z′′1 is invertible in D2 + Cpd. Without loss of generality, we may require that η ̸= 0
(since elements near z′1 are invertible). We may also write

z′′1 = z1 + (z′′1 − z1) = z1 + (ηpd + (1− q0) + d′0 − (1− q0 + x1)) (e 11.55)

= z1 + ηpd + d′0 − x1. (e 11.56)

Therefore,

ηpd + d′0 − x1 = z′′1 − z1. (e 11.57)

Since z0u is a nilpotent, z0u + η(1 − pd) is invertible in (1 − pd)A∗∗(1 − pd). Let ζ1 denote the
inverse of z0u+ η(1− pd) in (1− pd)A∗∗(1− pd) and ζ2 the inverse of z′′1 in D2 + C · pd. Then

(z0u+ η(1 − pd)⊕ z′′1 )(ζ1 ⊕ ζ2) = (1− pd) + pd = 1. (e 11.58)

It follows that

z2 := z0u+ η(1 − pd) + z′′1 ∈ GL(A∗∗). (e 11.59)

However, by (e 11.56) and (e 11.48),

z2 = z0u+ η(1− pd) + z′′1 (e 11.60)

= z0u+ η(1− pd) + z1 + ηpd + (d′0 − x1) (e 11.61)

= z0u+ z1 + (d′0 − x1) + η · 1 (e 11.62)

= (z0 + z1)u+ (d′0 − x1) + η · 1 (e 11.63)

= zu+ (d′0 − x1) + η · 1 ∈ Ã. (e 11.64)

It follows that z2 ∈ GL(Ã). We have (by (e 11.64), (e 11.57), and (e 11.54))

∥zu− z2∥ = ∥(d′0 − x1) + η · 1∥ (e 11.65)

≤ ∥d′0 − x1 + ηpd∥+ η∥(1 − pd)∥ (e 11.66)

= ∥z′′1 − z1∥+ η < 3ε/16 + ε/8 = 5ε/16. (e 11.67)

Therefore (using also (e 11.42)),

∥xu− z2∥ < ε, or ∥x− z2u
∗∥ < ε. (e 11.68)

Since z2 is invertible so is z2u∗. However, u ∈ Ã. One concludes that z2u∗ is in GL(Ã).

At this point, we would like to introduce the following definition:

Definition 11.6. Let A be a simple C*-algebra. Suppose that A is stably projectionless. We
shall say that A has generalized tracial rank at most one, and write gTR(A) ≤ 1, if for any
a ∈ Ped(A)+, aAa ∈ D. (This extends the definition of generalized tracial rank at most one in
the unital case [22].)

Proposition 11.7. A separable stably projectionless simple C*-algebra A has generalized tracial
rank at most one, i.e., gTR(A) ≤ 1, if, and only if, for some a ∈ Ped(A)+ \ {0}, aAa ∈ D.
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Proof. Let A be a separable stably projectionless simple C*-algebra. Suppose that there is
a ∈ Ped(A)+ \ {0}, aAa ∈ D. It suffices to show that, for any b ∈ Ped(A)+ \ {0}, bAb ∈ D.

There are b1, b2, ..., bk ∈ A+ and gi ∈ C0((0,∞)+ such that b ≤
∑k

i=1 gi(bi). By repeated
application of 3.4, and applying 2.3 (a) of [46], one obtains x1, x2, ..., xn ∈ A such that

n∑

i=1

x∗i axi = b. (e 11.69)

Let Z = (x∗1a
1/2, x∗2a

1/2, ..., x∗na
1/2) be an n× n matrix in Mn(A) with zero rows except for the

first row. Then

ZZ∗ = diag(b,

n−1︷ ︸︸ ︷
0, 0, ..., 0) and Z∗Z ≤ Mn(aAa). (e 11.70)

Let Z∗ = U(ZZ∗)1/2 be the polar decomposition of Z∗ in Mn(A)∗∗. Then UZZ∗U∗ = ZZ∗ ∈
Mn(aAa). It follows that map x *→ UxU∗ from ZZ∗Mn(aAa)ZZ∗ to bAb is an isomorphism.
Since ZZ∗Mn(A)ZZ∗ ∼= bAb,

bAb ∼= ZZ∗Mn(aAa)ZZ∗. (e 11.71)

It follows from 8.5 that Mn(aAa) ∈ D. Then, by 8.6, ZZ∗Mn(aAa)ZZ∗ ∈ D. By (e 11.71),
bAb ∈ D, as desired.

Proposition 11.8. Let A ∈ D. Suppose that A = Ped(A) (see 11.3). Then the map Cu(A) →
LAff0+(T(A)

w
) is an isomorphism of ordered semigroups.

Proof. Let us first show that the map is surjective. This follows the same lines of the proof of
5.3 of [5] as shown in 10.5 of [22] using (4) of 6.4. (One can also use the proof 6.2.1 of [43] by
applying 10.6 as (D) in that proof.)

Let us provide the details. First, T(A)
w ⊂ T̃ (A) is compact (see 2.1) and (by 4.5), it does

not contain zero, and, as A is simple, for every a ∈ A+ \ {0}, τ(a) > 0 for all τ ∈ T(A)
w
.

The proof follows the same lines as Theorem 5.3 of [5]. Note that the injectivity of the map
follows from 9.4. it suffices to show that the map a *→ dτ (a) is surjective from W (A)+ onto
LAffb,0+(T(A)

w
). Let f ∈ LAffb,0+(T(A)

w
) with f(τ) > 0 for all τ ∈ T(A)

w
. We may assume

that f(τ) ≤ 1 for all τ ∈ T(A)
w
. As in the proof of 5.3 of [5], it suffices to find a sequence of

ai ∈ M2(A)+ such that ai ! ai+1, ⟨an⟩ ≠ ⟨an+1⟩ (in W (A)) and

lim
n→∞

dτ (an) = f(τ) for all τ ∈ T(A)
w
.

Since f ∈ LAffb,0+(T(A)
w
), by definition (see 2.6), we can find an increasing sequence fn ∈

Aff0(T1(A)) such that, for all τ ∈ T(A)
w
,

0 <fn(τ) < fn+1(τ), n = 1, 2, ..., and lim
n→∞

fn(τ) = f(τ). (e 11.72)

Since fn+1 − fn is continuous and strictly positive on the compact set T(A)
w
, there is εn > 0

such that (fn − fn+1)(τ) > εn for all τ ∈ T(A)
w
, n = 1, 2, .... We may choose εn so that εn ↘ 0

as n → ∞.
Since A is an infinite dimensional simple C*-algebra and since A ∈ D (see also 10.6), for

each n, there is a sub-C*-algebra Cn of A with Cn ∈ C and an element bn ∈ (Cn)+ such that

dimπ(Cn) ≥ (16/εn)
2 for each irreducible representation π of Cn, (e 11.73)

0 < τ(fn)− τ(bn) < εn/4 for all τ ∈ T(A)
w
. (e 11.74)
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Applying 6.4, one obtains an element an ∈ M2(Cn)+ such that

0 < t(bn)− dt(an) < εn/4 for all t ∈ T(Cn). (e 11.75)

It follows that

0 < τ(fn)− dτ (an) < εn/2 for all τ ∈ T(A)
w
. (e 11.76)

One then checks that limn→∞ dτ (an) = f(τ) for all τ ∈ T(A)
w
. Moreover, dτ (an) < dτ (an+1)

for all τ ∈ T(A), n = 1, 2, .... It follows from 9.4 that an ! an+1, [an] ̸= [an+1], n = 1, 2, .... This
ends the proof of surjectivity.

It is clear that the map is order preserving. By 9.4, if a, b ∈ (A⊗K)+ and dτ (a) = dτ (b) for
all τ ∈ T(A)

w
, then a ∼ b in Cu(A). So the map is injective. By 9.4 again, the inverse map is

also order preserving.

Corollary 11.9. Let A ∈ D. Then there exists an element a ∈ A+ \ {0} such that aAa has
continuous scale.

Proof. Note that, by 11.5, A has stable rank one. Pick a nonzero element c ∈ Ped(A)+ and set
B = cAc. Then B = Ped(B). So, we may assume that A = Ped(A). Hence, combining with 11.8
(see [7]), there exists an element a ∈ A+ \{0} such that dτ (a) is continuous on T(A)

w
. Applying

the second part of 5.3, one concludes that aAa has continuous scale.

Proposition 11.10. Let A ∈ D be a separable C*-algebra with K0(A) = {0}. Then A has the
properties described in 10.7 (and 10.8) but replacing C0

0
′
(and C0

0) by C0.

Proof. It follows from 11.8 that the map Cu(A) → LAff0+(T(A)
w
) is surjective. Note that A has

stable rank one (by 11.5). Then, by 7.9 and by Definition 8.1, A has the tracially approximate
divisible property. The proof of 10.7 applies to A with C0

0
′
replaced by C0. One then also obtains

the conclusion of 10.8 with C0
0 replaced by C0.

We would like to summarize some of the facts we have established.

Proposition 11.11. Let A be a separable simple C*-algebra. Suppose that A is stably projec-
tionless and gTR(A) ≤ 1. Then the following statements hold.

(1) A has stable rank one;
(2) Every quasitrace of A is a trace;
(3) Cu(A) = LAff+(T̃(A));
(4) If A = Ped(A), then A ∈ D;
(5) If B ⊂ A is a hereditary sub-C*-algebra, then gTR(B) ≤ 1;
(6) Mn(A) is stably projectionless and gTR(Mn(A)) ≤ 1 for every integer n ≥ 1.

12 The C*-algebras W and the class D0

Definition 12.1. Recall (see 9.6) that W is a unital separable simple C*-algebra with Ki(W) =
0, i = 0, 1, which is in both M0 and D0.

Let A be a non-unital separable C*-algebra, and let τ ∈ T(A). Let us say that τ is a W-trace
if there exists a sequence of completely positive contractive maps ϕn : A → W such that

lim
n→∞

∥ϕn(ab)− ϕn(a)ϕn(b)∥ = 0 for all a, b ∈ A and

τ(a) = lim
n→∞

τW(ϕn(a)) for all a ∈ A, (e 12.1)

where τW is the unique tracial state on W.
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Theorem 12.2. Let A be a separable simple C*-algebra with A = Ped(A). If every tracial state
τ ∈ T(A) is a W-trace, then K0(A) = kerρA (see 4.12 for the definition of ρA).

Proof. Suppose that there are two projections p, q ∈ Mk(Ã) such that x = [p]− [q] ∈ K0(A) and
τ(p) ̸= τ(q) for some τ ∈ T(A). Recall that [p]− [q] ∈ K0(A) means that π(p) and π(q) have the
same rank in Mk(C), where π : Mk(Ã) → Mk(C) is the quotient map.

Set d = |τ(p)− τ(q)|. Denote still by τ the canonical extension of τ to Ã and also to Mn(Ã).
If τ were a W-trace, then there would be a sequence (ϕn) of completely positive contractive
maps from Mk(A) into Mk(W) such that

lim
n→∞

∥ϕn(a)ϕn(b)− ϕn(ab)∥ = 0 for all a, b ∈ Mk(A) and

τ(a) = lim
n→∞

τW ◦ ϕn(a) for all a ∈ Mk(A). (e 12.2)

Denote by ϕ̃n : Mk(Ã) → Mk(W̃) the canonical unital extension of the completely positive
contractive map ϕn. then

lim
n→∞

∥ϕ̃n(a)ϕ̃(b)− ϕ̃(ab)∥ = 0 for all a, b ∈ Mk(Ã).

Let τW also denote the canonical extension of τW on Mk(W̃). Then we also have

τ(a) = lim
n→∞

t ◦ ϕ̃n(a) for all a ∈ Mk(Ã).

Passing to a subsequence, we may assume that

|τW ◦ ϕ̃n(p)− τW ◦ ϕ̃n(q)| ≥ d/2 for all n. (e 12.3)

There are projections pn, qn ∈ Mk(W̃) such that

lim
n→∞

∥ϕ̃n(p)− pn∥ = 0 and lim
n→∞

∥ϕ̃n(q)− qn∥ = 0. (e 12.4)

Since π(p) and π(q) have the same rank, there exists v ∈ Mk(Ã) such that π(v∗v) = π(p)

and π(vv∗) = π(q). Denote by πw : Mk(W̃) → Mk the quotient map. Then

lim
n→∞

∥πw ◦ ϕn(v
∗v)− πw(pn)∥ = 0 and lim

n→∞
∥πw ◦ ϕn(vv

∗)− πw(qn)∥ = 0. (e 12.5)

It follows that πw(pn) and πw(qn) are equivalent projections in Mk for all large n. Since K0(W) =

0, it follows that [pn]− [qn] = 0 in K0(W), which means that pn and qn are equivalent in Mk(W̃)

since W̃ has stable rank one. In particular,

τW(pn) = τW(qn)

for all sufficiently large n, in contradiction with (e 12.3) and (e 12.4).

Proposition 12.3. Let A be a separable simple C*-algebra with a W-trace τ ∈ T(A). Let
0 ≤ a0 ≤ 1 be a strictly positive element of A. Then there exists a sequence of completely
positive contractive maps ϕn : A → W such that ϕn(a0) is a strictly positive element, and

lim
n→∞

∥ϕn(a)ϕn(b)− ϕn(ab)∥ = 0 for all a, b ∈ A and

τ(a) = lim
n→∞

τW ◦ ϕn(a) for all a ∈ A. (e 12.6)
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Proof. We may assume that

τ(a1/n0 ) > 1− 1/2n, n = 1, 2, .... (e 12.7)

Since τ is aW-trace, there exists a sequence of completely positive contractive maps ψn : A → W
such that

lim
n→∞

∥ψn(a)ψn(b)− ψn(ab)∥ = 0 for all a, b ∈ A and

τ(a) = lim
n→∞

τW ◦ ψn(a) for all a ∈ A. (e 12.8)

Put bn = ψn(a
1/n
0 ). By (e 12.7) and (e 12.8), passing to a subsequence of (ψn), we may assume

τW(bn) ≥ 1− 1/n, n = 1, 2, .... (e 12.9)

Consider the the hereditary sub-C*-algebra Bn = ψn(A)Wψn(A). Since a
1/n
0 is a strictly pos-

itive element, by 2.10, bn is a strictly positive element of Bn. Recall that Cu
∼(Bn) = Cu∼(W) =

R ∪ {+∞}. Let rn = ⟨bn⟩ ∈ R+ ⊂ R ∪ {+∞}, n = 1, 2, .... Consider the map r → rn · r (for
r ∈ R) and +∞ → +∞. By Theorem 1.0.1 of [43] (see also 6.2.4 of [43], Theorem 1.2 of [24],
or Theorem 1.1 of [41], and 8.12), there is a homomorphism hn : Bn → W such that hn(bn) is
strictly positive. Since Bn has a unique trace, there is αn > 0 such that

αnτW(b) = τW ◦ hn(b) for all b ∈ Bn, n = 1, 2, ... (e 12.10)

Since hn(bn) is strictly positive,

lim
k→∞

τW ◦ hn(b1/kn ) = 1. (e 12.11)

Since Bn ⊂ W, and by (e 12.10), αnτW |Bn = τW ◦ hn, (e 12.11) implies that αn ≥ 1.
On the other hand, by (e 12.9), together with (e 12.10), we have that

1− 1/n ≤ τW(bn) =
τW ◦ hn(bn)

αn
≤ 1/αn, n = 1, 2, ....

Therefore,

1 ≤αn ≤
1

1− 1/n
, n = 1, 2, ...,

from which it follows that limn→∞ αn = 1. Set ϕn = hn ◦ ψn. Since ϕn(a
1/n
0 ) = bn is strictly

positive (in Bn), by 2.10 as above, the sequence (ϕn) meets the requirements.

The following two statements will be established in [17].

Theorem 12.4. Let A be a separable simple C*-algebra with finite nuclear dimension and with
A = Ped(A) such that T(A) ̸= Ø, K0(A) = kerρA, and every tracial state is a W-trace. Suppose
also that every hereditary sub-C*-algebra of A with continuous scale is tracially approximately
divisible. Then A ∈ D0.

Theorem 12.5. Let A be a separable simple C*-algebra with finite nuclear dimension and with
A = Ped(A). Suppose that T(A) ̸= Ø. Then A⊗W ∈ D0.
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