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Absence of edge states in the valley Chern insulator in moiré graphene
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We study the edge spectrum of twisted sheets of single layer and bilayer graphene in cases where the
continuum model predicts a valley Chern insulator—an insulating state in which the occupied moiré mini-bands
from each valley have a net Chern number, but both valleys together have no net Chern number, as required
by time-reversal symmetry. In a simple picture, such a state might be expected to have chiral valley polarized
counterpropagating edge states. We present results from exact diagonalization of the tight-binding model of
commensurate structures in the ribbon geometry. We find that for both the single-layer and bilayer moiré ribbons
robust edge modes are generically absent. We attribute this lack of edge modes to the fact that the edge induces
valley mixing.
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I. INTRODUCTION

Research in moiré materials has exploded in the past
few years since the discovery of superconductivity and Mott
insulators in twisted bilayer graphene (TBG) [1–3]. Subse-
quent experimental studies have shown similar physics in
graphene multilayers such as twisted double bilayer graphene
(TDBG) [4–8] and trilayer graphene on a hexagonal boron
nitride substrate [9–11].

At low energies and small twist angles, in the bulk
of a moiré system, one makes the continuum approxima-
tion [12,13], in which each valley is studied independently
and has a moiré band structure. The moiré bands in each val-
ley can have nonzero Chern numbers. However, time-reversal
symmetry forces bands arising in opposite valleys, and related
by time-reversal, to have opposite Chern numbers. This raises
the interesting possibility that when two such bands in op-
posite valleys are occupied one has a valley Chern insulator.
Since the Chern number dictates the chirality of edge modes,
the valley Chern insulator could, in principle, realize valley-
filtered counterpropagating edge modes. However, this picture
is questionable, since it is likely that absent any new mech-
anism, an edge would produce strong intervalley scattering.
Such intervalley scattering is expected to cause backscattering
between the counterpropagating edge modes resulting in the
localization of the would-be edge states.

Thus, it is somewhat surprising that a recent experiment on
twisted double bilayer graphene near charge neutrality [14]
found nonlocal transport in this system, which can be in-
terpreted in terms of robust edge states of the valley Chern
insulator phase. This raises the question of whether there
might be some hidden mechanism that suppresses intervalley
scattering at the edge in a moiré system.

To study this question further, we first study the contin-
uum model and find sets of parameters that result in a valley
Chern insulator (Sec. II). Turning to tight-binding models on

the lattice, show that in bulk commensurate systems at small
angles, a distinction between trivial and valley Chern insu-
lators requires the commensurate structure to have an exact
C3 symmetry (which is achieved by twisting around a carbon
site or honeycomb center with AA stacking) in Sec. III. Next,
we study generic lattice structures in the ribbon geometry and
find that protected edge modes are absent in Sec. IV A. We
repeat our calculations for the twisted double bilayer graphene
in Sec. IV B and show that no protected edge modes exist
here either. We briefly summarize our results and present our
conclusions in Sec. V.

II. VALLEY CHERN INSULATORS IN THE CONTINUUM
MODEL OF TWISTED BILAYER GRAPHENE

A good starting point for studying moiré physics is the
continuum model of twisted bilayer graphene [12,13]. This
model, which is well justified for small twist angles for bands
near the charge neutral point, is based on the tunneling be-
tween the two Dirac cones (in a single valley) of the two
graphene layers. In real space, the single valley continuum
model reads

Hcont (r) =
(

−ivFσ · ∇θ/2 U (r)

U †(r) −ivFσ · ∇−θ/2

)
, (1)

where σ = (σx, σy) is a Pauli matrix vector representing the
sublattice index of graphene. The diagonal elements of the
matrix represent the low-energy continuum Hamiltonian near
the Dirac point within each layer. Note that the gradient term
is rotated in each layer by ±θ/2. The graphene Fermi velocity
vF is expressed in terms of the nearest-neighbor hopping
strength t , as vF = −√

3ta/(2h̄), where h̄ is set to 1 and a
is the graphene lattice constant which we also set to 1 so
that vF has the units of energy. For the following, we use
the numerical value t = −2.7 eV to obtain the band structure
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(a) (b)

FIG. 1. Single valley band structure of the continuum model at
the magic angle (α = 0.6051 and κ = 0.7). (a) shows the bands
before adding sublattice masses to the layers and the Dirac touchings
at the K,K ′ points protected by the C2T symmetry. (b) A gap opens
up at the K,K ′ points when sublattice masses are added (We used
mt = 0.01,mb = 0.01eV ). The conduction and the valence bands
acquire opposite Chern numbers. By time-reversal symmetry, bands
in the other valley have the opposite Chern numbers as their time-
reversed partners.

(Fig. 1). The tunneling between the layers is encapsulated in
the U (r) term which reads

U (r) =
3∑
j=1

Tje
iq j ·r, (2)

where Tj = w0 + w1e(i2π/3) jσzσxe(−i2π/3) jσz with w0 and w1

denoting the strength of AA and AB hopping, respectively,
and q1 = (0,−kθ ), q2 = C3q1, q3 = C3q2, where kθ is the
difference between the rotated Dirac points in each layer.
Lattice relaxation effects generally make the AB hopping more
favorable than AA hopping [15,16]. This is incorporated into
the model by making w0 < w1 with κ = w0/w1 denoting
the ratio between the two. Taking the extreme limit w0 = 0
leads to the chiral model of TBG [17]. The rotation of the
Dirac Hamiltonian in each layer is usually ignored at small
twist angles due to the fact that θ is small (≈0.01). When
this approximation is made, the continuum model becomes
a function of a dimensionless parameter α = w1/(vFkθ ) and
the ratio κ . The most studied feature of the continuum model
is a pair of nearly flat (exactly flat in the chiral model) bands
(per valley per spin) at the magic angles [13,18]. These bands
are isolated from high-energy bands by an energy gap.

The single-valley continuum model has several emergent
symmetries that constrain its band structure and its topological
properties [19–21]. Of particular interest is theC2T symmetry
which protects a Dirac touching at the K and K ′ points of
the moiré Brillouin zone [BZ; see Fig. 1(a)]. Upon breaking
this symmetry a gap opens up at the K , K ′ points. This sym-
metry breaking can be achieved experimentally by aligning
the graphene layers with the hexagonal boron nitride (HBN)
substrate as has been shown before in the single layer [22–28].
The effect of the HBN substrates is modeled by adding a
uniform C2 breaking mass on the top and the bottom layer.
Thus, equation (1) becomes

H (r) = Hcont (r) +
(
mtσz 0

0 mbσz

)
. (3)

In addition to opening up a gap at the K,K ′ points, the
two flat bands can acquire nonzero Chern numbers while
the remote bands remain trivial (see Appendix C for a com-
plete discussion). Time-reversal forces the Chern numbers
of corresponding bands in opposite valleys to have opposite
Chern numbers [see Fig. 1(b)]. Adding the effects of electron-
electron interactions to this one-body picture can explain the
observation of the quantum anomalous Hall effect in TBG
devices that are aligned with HBN [29–31]. In brief, the
quantum anomalous Hall effect can be understood as the result
of spontaneously breaking time-reversal symmetry when the
electrons fill a single-valley flat band with nonzero Chern
number [32–38].

As described before, the valley Chern insulator is a time-
reversal-symmetric band insulator in which each valley has
a nonzero Chern number (but the two valleys have opposite
Chern numbers by time reversal). The valley Chern number
is defined by integrating the Berry curvature of one valley on
the moiré Brillouin zone. In the continuum model, the valley
Chern number in the TBG-HBN system is well defined due to
the conservation of charge in each valley. We note that, unlike
the quantum anomalous Hall phase, this state does not require
electron-electron interactions. The continuum model of the
TBG-HBN structure suggests that the system can realize a
valley Chern insulator phase at charge neutrality in which the
two valleys have opposite valley Chern numbers.

We map out the valley Chern number phase diagram in
the continuum model for different values of α. We see that,
at small α, which corresponds to weak interlayer hopping,
the Chern number is zero whenever the two masses have
opposite signs. This is to be expected due to the cancellation
of the Berry phase between the two layers. As we approach
the strong-coupling regime (large α) the zero Chern number
region shrinks in the phase diagram, and the system is mostly
in the valley Chern insulator phase (see Fig. 2).

III. STUDYING COMMENSURATE LATTICES
IN REAL SPACE

A. Geometry

In a lattice model or indeed a real sample of graphene,
the individual valley charges are not conserved. Only the total
charge is conserved and hence states in different valleys can
mix. However, there is no physical difference between com-
mensurate and incommensurate lattice models at small angles.
Lattice models, whether commensurate or not, manifest the
emergent symmetries of the continuum model [20] better and
better as the twist angle decreases. Our reason for studying
tight-binding commensurate models is twofold: We can sys-
tematically study how the bulk valley mixing effects vanish
as the twist angle decreases. More importantly, the translation
symmetry inherent in commensurate lattice models enables us
to study wide ribbons, essential for examining the presence or
absence of edge states.

We first review the geometry of commensurate TBG which
is constructed from two layers of honeycomb lattices that
are aligned on top of each other (AA stacking) then rotated
with a relative angle θ and a possible translation between the
layers. The system is not periodic for a general twist angle θ .
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(a) (b)

(c) (d)

FIG. 2. Phase diagram of the valley Chern insulator phase in the
continuum model. The Chern number is calculated for the conduc-
tion band near charge neutrality. (a),(b) At small interlayer coupling
(small α), the quadrants with the sublattice masses on top and bottom
layer (mt ,mb) having opposite signs are in a trivial phase with zero
Chern number. (c),(d) As the interlayer coupling increases, the strong
renormalization of the bands leads to shrinkage of the trivial phase
and to an enhancement of the valley Chern insulator. We obtained
these figures using κ = 0.7 and we get a qualitatively similar phase
diagram in the chiral limit (κ = 0).

However, for a set of discrete twist angles, the system
has exact translation symmetry with an enlarged super-
cell [12,39,40] (see Fig. 3). This set of discrete twist angles
is defined by co-prime positive integers (m, n) that are given
by the formula

cos θ = m2 + n2 + 4mn

2(m2 + n2 + mn)
. (4)

We assume that the top sheet rotates by angle θ/2 and the bot-
tom sheet by −θ/2, the translation vectors for the superlattice
are given by [41]

A1 = nat1 + mat2,A2 = −mat1 + (m + n)at2, (5)

where at1 = R(θ/2)a1 and at2 = R(θ/2)a2 are the translation
vectors of the top graphene layer with R(θ/2) being the two-
dimensional (2D) matrix of rotation and a1 and a2 are the
unrotated graphene lattice translation vectors. The length of
the supercell lattice translation vectors is expressed in terms
of the rotation angle as

A ≡ |A1| = |A2| = (m − n)a

2 sin θ/2
, (6)

where a is the length of the graphene lattice constant and it
is assumed that m > n. We note that, when m − n = 1, the

FIG. 3. An example moiré unit cell of TBG with a commensurate
angle θ ≈ 3.48◦ (m = 10, n = 9) with 1084 atoms in the unit cell.
A1 and A2 are the moiré lattice translation vectors. A ribbon with
a generic edge can be constructed by taking A2 to be infinite and a
number of moiré unit cells in the A1 direction defines the width of
the ribbon.

length of the commensurate superlattice vector coincides with
that of the emergent moiré pattern in the continuum. One can
see that the moiré pattern grows inversely with the angle θ

and, for a given m, n, the number of atoms in the unit cell (N)
is given by N = 4(m2 + mn + n2).

We conclude this section by considering the rotational
symmetry of the lattice. We start with the two layers in perfect
registry. In general, the center of rotation can be any point in
space. However, we restrict ourselves to either rotating about
a carbon site or about the center of a hexagon. Rotating about
these special points leads to the system either having C6 sym-
metry when rotating about the center of a hexagon [20,39,42]
or a C3 symmetry when the center of rotation is a carbon site.
These symmetries are removed upon translating one of the
layers in a generic direction after applying the twist.

B. Tight-binding model

We now study TBG in real space via a tight-binding model
based on the carbon pz orbital tight-binding models first in-
troduced in graphene and then further generalized to graphene
heterostructures in previous studies [41,43–45]. The Hamilto-
nian is given by

H =
∑

μ=1,2

∑
i, j

ti jc
†
μ,icμ, j +

∑
i, j

t⊥i j c
†
1,ic2, j + H.c., (7)

where cμ,i is annihilation operator for an electron in layer μ

and at lattice position i. The first term accounts for the hopping
within each graphene layer where we use the numerical value
of t = −2.7 eV for the nearest-neighbor intralayer hopping
strength, and set the further neighbor intralayer hoppings to
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zero. The second term accounts for the interlayer hopping.
To make a straightforward correspondence between the con-
tinuum and lattice models, we assume a simple form for the
interlayer hopping that is a function of the in-plane distance
between the two atoms (in different layers) and decays ex-
ponentially with increasing distance. The form assumed for
the interlayer hopping t⊥i j is t⊥(r) = tv exp(−r/ξ ), where r
is the in-plane distance between the two atoms with ξ being
the decay constant and tv the hopping amplitude. To match
the lattice calculations with the continuum model, we recall
the continuum model is a function of α = w1/(vFkθ ), and for
the form of interlayer hopping chosen, w1 is given by

w1 = 2πξ 2

�u.c
(
1 + k2

Dξ 2
)3/2 tv

(see Appendix A for the derivation). For a given α and ξ we
solve for the value of tv that enters in the tight-binding model.
The lattice relaxation effects are incorporated in the same
way as in the continuum model, by reducing the AA hopping
strength compared with the AB hopping strength. Finally, the
HBN substrate is modeled by adding a sublattice mass term on
each layer to our tight-binding Hamiltonian (7). A comparison
between the band structures of the lattice model and the con-
tinuum theory has been carried out previously [41,46–48] but
is provided in Appendix A for completeness. We thus have
a controlled correspondence between the continuum model
and the commensurately twisted lattice model. For this work,
a central feature of the band structure in the commensurate
supercell structure is that there is no strict separation between
the valleys at finite twist angle as there was in the continuum
model. Indeed the bands from both valleys of the continuum
model can mix and appear superposed in the moiré Brillouin
zone. However, the U(1) valley symmetry becomes better and
better as the twist angle decreases. This leads to a smaller
and smaller gap at the topological phase transition of the
continuum model, as we will see shortly. Thus, whenever we
refer to the valley Chern number, we are implicitly referring
to the continuum model.

In the continuum model there is a sharp topological tran-
sition between the trivial and valley Chern insulator phases,
which takes place simultaneously but independently in each
valley (in the presence of time-reversal symmetry). Since this
transition is accompanied by a change in the Chern number
in the continuum model, a gap closing must occur in the
spectrum (specifically at the K and K ′ points [32]). We now
consider how the band structure evolves in the commensu-
rate system as the corresponding continuum approximation is
taken from a phase with zero valley Chern number to a one
with nonzero valley Chern number (see Fig. 2). In addition
to the U(1) valley symmetry that the continuum model has
which makes the valley Chern insulator phase well defined,
the continuum model also has an emergent C3 symmetry.
However, an exact C3 symmetry is only present on the lattice
when the center of rotation is a center of a hexagon or a
carbon site but is removed upon carrying out a subsequent
generic translation. Computing the gap between the flat bands
in the tight-binding model when exact C3 symmetry is absent,
we find a tiny gap. We have checked that this gap decreases
as the twist angle decreases, consistent with the valley U(1)

(a) (b)

FIG. 4. The gap between the flat bands in the lattice tight-binding
model. Panel (a) shows the evolution of the gap between the middle
bands as we vary the Hamiltonian parameters (mt ,mb) going through
the topological transition defined by the continuum model. The path
is set by mt = 10 meV and varying mb from −6 to −3 meV. A
gap only closes when C3 symmetry is present on the lattice. When
an exact C3 symmetry is absent the gap does not close and hence
the trivial and valley Chern insulator phases of the continuum are
smoothly connected on the lattice. (b) WhenC3 symmetry is present,
the two bands touching at the K point exchange their C3 eigenvalues
across the topological transition. The two figures were obtained us-
ing θ ≈ 1.08 (m = 31, n = 30), α = 0.6051, κ = 0.7, and ξ = 0.3a.
The graphene lattice constant a is set to 1.

symmetry being emergent in the lattice model at small angles.
In contrast, when exact C3 symmetry is present on the lattice,
we find an exact gap closing, at the parameters corresponding
to the continuum topological transition [see Fig. 4(a)], which
occurs at the K or K ′ point. Furthermore, when C3 symmetry
is present, bands can be labeled by the C3 eigenvalues (which
we denote by λ) where λ can take any value of the cubic
roots of unity (1, ω, ω2). The two bands that touch at the
transition point exchange their C3 eigenvalues [see Fig. 4(b)].
In the absence of C3 symmetry (achieved in our simulation by
rotating and then carrying out a generic translation) we find
that the gap does not close and the two phases are connected
to each other smoothly [see Fig. 4(a)].

IV. EDGE STATES IN A RIBBON GEOMETRY

A. Twisted bilayer graphene

We now turn to the motivating question of our study:
Whether the moiré system when in a regime that has a valley
Chern insulator in the continuum has edge states when studied
in a lattice system with a boundary. Our tight-binding model
allows us to get the band structure in a ribbon geometry, thus
allowing access to the edge states of the TBG aligned with
HBN system. An infinite ribbon can be constructed by taking
the system to be infinite along one of the lattice primitive
lattice vectors (A2, with momentum being a good quantum
number along this direction) and finite in the other direction
with the width of the ribbon set by the number of unit cells
along the finite direction. Since the number of atoms in the
unit cell in the ribbon geometry at small angles is quite large
(the number of atoms in one moiré unit cell is ≈10 000 atoms),
we only obtain the bands near charge neutrality where the
most interesting physics occurs.
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(a) (b)

(c) (d)

FIG. 5. Band structure of a TBG ribbon with a width of 20
moiré unit cells. We used m = 31 and n = 30 which corresponds
to a commensurate angle θ ≈ 1.08◦ and further a generic translation
between the layers is applied. The value of ξ = 0.3 is used. The color
of the energy levels are assigned based on the average transverse
location of the states—the green states are delocalized and the red
and blue states are localized on the top and bottom edge respectively.
Panels (b) and (d) were obtained at the chiral limit where panels
(a) and (c) were obtained with κ = 0.7. The lower panels are detailed
views of the upper panels in the region of energies corresponding to
charge neutrality. Both layers have sublattice masses of magnitude
mt = 15 meV and mb = 10 meV, which puts the system in the valley
Chern insulator phase in the continuum model. (c), (d) Absence of a
dispersing gap crossing edge modes at charge neutrality is shown as
we zoom in on the bands.

Upon diagonalizing this Hamiltonian, we obtain two kinds
of states; those that are inherited from the infinite system
(bulk bands) and states that are localized at the edge (edge
states). We determine the character of the states by computing
the position expectation value of the wave function along the
width of the ribbon [49]. We then give each state a color that
labels its character, with green denoting bulk states, and red
(blue) denoting states localized on the top (bottom) edge.

We now discuss our findings for the ribbon’s band structure
in the chiral and the nonchiral limits. Our results for the ribbon
band structure are shown in Fig. 5. We have studied the spec-
trum both for κ = 0 [Figs. 5(b) and 5(d)], the chiral limit and
the more generic value of κ = 0.7 [Figs. 5(a) and 5(c)]. The
lower panels are zoom-ins of the upper panels to emphasize
the behavior close to charge neutrality. First, we find edges
states, blue and red states that occur between the flat bulk
bands and the higher energy bulk bands. We identify these
as the “moiré edge states” which were previously studied in
the literature [45,49–53]. Since these do not occur between
the flat bands they will not affect the low-energy behavior
at the edge at charge neutrality, which is the focus of this
study. Most strikingly for our study, even when the system
has mass parameters that lie in the valley Chern insulator
phase within the continuum model, we find a clear absence
of dispersing edge states that connect the two flat bands that
acquire a nonzero Chern number in the continuum model.

(a) (b)

FIG. 6. Continuum model and tight-binding calculation in
TDBG. Panel (a) shows the continuum model band structure ob-
tained at θ = 1.3◦ and V = 0.05 eV. The two bands in the middle
have nonzero Chern number which is twice that of TBG bands.
Panel (b) shows the band structure of a ribbon of width 20 moiré
unit cells using the same parameters used in the continuum model
and at a commensurate angle θ ≈ 1.3◦ (m = 26, n = 25), κ = 0, and
ξ = 0.3. Like TBG, we do not find gap crossing edge states near
charge neutrality.

We note that we have obtained the same result with different
values of mt and mb and for different types of edges. We recall
that in a naive interpretation of the continuum model, a valley
Chern insulator should have valley polarized edge states with
each valley contributing state of opposite chirality. Our find-
ing appears in contradiction to this expectation. We identify
two reasons for this absence. First, intervalley scattering is
generically present at the edge, and, second, C3 symmetry
(whose importance was established in the previous section)
is generally broken at the edge. Either effect is enough to gap
out the would-be edge states associated with the valley Chern
insulator in TBG.

B. Twisted double bilayer graphene

In this section we carry out a similar tight-binding cal-
culation for the TDBG system which was the subject of the
experimental study in Ref. [14] (see Fig. 6). A continuum
model [12,13,54–56] can be formulated to study the bands of
TDBG in the same way as for TBG. The single-valley TDBG
Hamiltonian obtained by twisting two bilayers of AB stacked
graphene is given by

H (r) =
(

Ht
AB Ũ (r)

Ũ †(r) Hb
AB

)
, (8)

where the continuum model of the AB stacked graphene of the
top and bottom bilayer (Ht

AB and Hb
AB) is given by

Ht
AB =

(
−ivFσ · ∇θ/2 + V

2 TAB

T †
AB −ivFσ · ∇θ/2 + V

6

)
, (9)

Hb
AB =

(
−ivFσ · ∇−θ/2 − V

6 TAB

T †
AB −ivFσ · ∇−θ/2 − V

2

)
. (10)

An applied electric field perpendicular to the system results
into a voltage difference between the bilayers [V in Eqs. (9)
and (10)]. The interlayer hopping within an AB stacked bilayer
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is captured in

TAB =
(

0 0
γ 0

)
, (11)

where we only keep the direct hopping between the two
layers with γ being the strength of the hopping. We use the
numerical value of γ = 0.361 eV when we compute the band
structure [57,58].

The moiré hopping between the bilayers is given by

Ũ (r) =
(

0 0

U (r) 0

)
, (12)

withU (r) defined in equation (2). Similar to TBG, The TDBG
system also has a magic angle where the two bands near
charge neutrality become (almost) flat. Upon applying an elec-
tric field perpendicular to the sample, these bands get gapped
and can acquire a nonzero valley Chern number with a rich
phase diagram that depends on both the twist angle and the
applied electric field [59]. We will focus on the case where
the valence and the conduction bands have Chern numbers
C = ±2. Time-reversal symmetry forces the bands in the
opposite valley to have opposite Chern number so at charge
neutrality the system is in the valley Chern insulator phase, as
in TBG.

The lattice setup is the following; we start with two bilayers
of AB stacked graphene directly on top of each other then
we apply a relative twist θ between them. A semi-infinite
ribbon is formed by taking the system to be infinite in one
primitive superlattice direction (taken to be A2) and finite in
the other. The resulting band structure of TDBG in a ribbon
geometry shows qualitatively similar behavior to TBG where
there lie edge states between the flat and the high-energy
bands. There are, however, no edge states that connect the
two flat bands that would be associated with the valley Chern
insulator phase.

V. SUMMARY AND CONCLUSIONS

We have studied the continuum model for TBG aligned
with HBN substrate and the TDBG system in a perpendic-
ular electric field where single valley bands can acquire a
nonzero Chern number in both systems. Due to the presence of
time-reversal symmetry, opposite valleys have opposite Chern
numbers making such systems candidates for realizing a val-
ley Chern insulator with counterpropagating valley-polarized
edge modes. We then studied the problem within a tight-
binding model constructed on a lattice with the two layers
rotated with respect to each other by a commensurate angle
where Bloch theorem is applicable. We found that C3 sym-
metry in the bulk does distinguish between the zero and the
nonzero Chern number bands in the continuum as seen by
a gap closing at the K and K ′ points in the moiré BZ that
occurs at the transition point between the two phases. More-
over, the two touching bands exchange their C3 eigenvalues at
the critical point. There may be further interesting physics in
this fine-tuned case connected to the recently described “shift
insulator” [60] that we leave for future work. We then solve
the problem on a ribbon geometry where we can study the
edge states of the system. Although edge states could be found

between the flat bands and higher energy bands, edge states
connecting the two flat bands at charge neutrality are absent.
We attribute this to the mixing of the two valleys at the edge,
and to the fact that generic edges will break the C3 symmetry
of the bulk.

Our findings serve to intensify the puzzle posed by the
experimental result of Ref. [14]. The experiment reports the
observation of nonlocal transport, attributed to edge modes at
charge neutrality in TDBG under the same conditions where
we do not find edge modes. The physics missing from our
model is that of electron-electron interactions. It is possible
that the physical (sharp) edge is screened and modified by
interactions in such a way as to reduce intervalley scattering.
An extension of our model, with the addition of Coulomb in-
teractions even at the mean-field level, can serve to investigate
this possibility, which we leave for a future work.
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APPENDIX A: COMPARISON BETWEEN THE
CONTINUUM AND THE LATTICE MODEL

In this Appendix we show a comparison between the band
structure obtained by our tight-binding model at a commensu-
rate angle and the continuum models of TBG and TDBG. This
also serves as a way to verify our method. First we review the
derivation of the interlayer hopping in the continuum model
of TBG. One starts with Bloch waves in the two layers and
then compute the Hamiltonian matrix element between the
two Bloch states. The resulting matrix element takes the form

T αβ

ktkb
=

∑
GtGb

t̃ (kt + Gt )e
−i(kt+Gt )·(dtα−dbβ )δkt+Gt ,kb+Gb, (A1)

where kt , kb are the momenta in the top and bottom layer,
respectively, and α, β are labeling the graphene sublattices
with dtα , db

β denoting the position of the atoms within the unit
cell. The sum is over the reciprocal lattice vectors (Gt ,Gb)
of the top and the bottom layer. t̃ (kt + Gt ) is the Fourier
transform of the interlayer hopping function and the Kro-
necker delta ensures the conservation of momentum. One of
the main assumptions of the continuum model is restricting
the sum in (A1) to the Dirac points in the graphene BZ. This
rests on the fact that the hopping between the layers decays
very rapidly with momentum [13,61]. Taking the form of the
interlayer hopping given in the main text we have

t̃ (q) =
∫

d2re−r/ξe−iq·r = 2πξ 2

(1 + q2ξ 2)3/2 , (A2)
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(a) (b)

(c)

FIG. 7. Comparing the band structure obtained by the continuum
and the lattice model in TBG. Both the twist angle and α are fixed
at θ ≈ 1.08◦ (m = 31, n = 30) and α = 0.6051. κ = 0.7 was used.
The tight-binding model bands (black) are computed for different ξ

going from ξ = 0.1 in panel (a), ξ = 0.3 in panel (b), and ξ = 0.6 in
panel (c). The lattice model bands are converging to the continuum
model (in red) as ξ is increasing.

which shows t̃ (q) is indeed a rapidly decaying function with
momentum. The first-order term that enters into the con-
tinuum model is w1 = t̃ (kD)/�u.c. The next-order hopping
process beyond the Dirac points has the momentum q = 2kD
with kD = 4π/3 is the momentum of the Dirac points in the
graphene BZ (the lattice constant of graphene is set to 1). The
ratio between the two amplitudes is given by

t̃ (2kD)

t̃ (kD)
=

(
1 + ξ 2k2

D

1 + 4ξ 2k2
D

)3/2

. (A3)

This shows that t̃ (2kD) is always less than t̃ (kD) and the
ratio gets smaller as ξ (the range of hopping in real space)
gets bigger. There is a subtlety here, however, as one cannot
keep increasing the range of the hopping uncontrollably as
the continuum model is a low-energy theory which assumes
the linear dispersion of the bands. Having the range of the
hopping too large will send the lattice theory beyond the
low-energy regime assumed in the continuum. With these
restrictions in mind, we do a comparison between the band
structure obtained via the lattice and the continuum model in
both of TBG and TDBG. We show the bands of the lattice
model converge to the continuum model bands as the range of
the hopping increases (see Figs. 7 and 8).

APPENDIX B: FINITE-SIZE SCALING

In this Appendix we support our numerical findings by
examining how the ribbon band structure in TBG and TDBG
evolves as the width of the ribbon increases. This way we gain
confidence that what we find at finite width is going to survive
in the thermodynamic limit. We obtain the band structure for
ribbons with successive increase in their width. We start from
5 to 10 and then reach 20 moiré unit cells. We indeed see that
the bands near charge neutrality remain virtually unchanged

(a) (b)

(c)

FIG. 8. Comparing the band structure obtained by the continuum
and the lattice model in TDBG. Both the twist angle and α are fixed
at θ ≈ 1.3◦ (m = 26, n = 25) and α = 0.586. The values of κ = 0.0
and V = 50 meV were used. The tight-binding model bands (black)
are computed for different ξ going from ξ = 0.1 in panel (a), ξ = 0.3
in panel (b), and ξ = 0.6 in panel (c). The lattice model bands are
converging to the continuum model (in red) as ξ is increasing.

(a) (b)

(c) (d)

(e) (f)

FIG. 9. Comparing the band structure as a function of the ribbon
width. Panels (a), (c), (e) show the bands near charge neutrality
in TBG obtained at a width of 5, 10, and 20 moiré unit cells,
respectively. Panels (b), (d), (f) show the bands near charge neutrality
in TDBG obtained at a width of 5, 10, and 20 moiré unit cells,
respectively. In both systems we see that the bands do not change as
the width is increased implying a convergence to the thermodynamic
limit.
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FIG. 10. Tracing the gap between the flat bands as a function of
α in the continuum model. The hard gap between the two flat bands
is computed as the interlayer coupling strength given by the value
of α (as defined in the main text) is varying. The data are shown
for the two layers have the masses mt = mb = 10 meV. The fact that
gap remain open means that no Chern number has been exchanged
between the valence and the conduction bands from which we can
conclude that the remote bands carry zero Chern number.

(see Fig. 9) as the width of the ribbon is increased for both
TBG and TDBG. The bands were obtained with κ = 0.0 for
simplicity.

APPENDIX C: DO THE REMOTE BANDS CARRY
CHERN NUMBER?

In this Appendix we answer the following question: Is
computing the Chern number of the occupied flat band in
a given valley enough to determine whether the system is a
valley Chern insulator? The confounding factor is that the
occupied remote bands (all bands other than the flat bands)
may also carry nonzero Chern number. If the Chern number

carried by the remote occupied bands cancels that carried by
the occupied flat band, the system would be trivial insulator.

We show, in a range of parameters for which the flat bands
carry a nontrivial Chern number, that the occupied remote
bands are trivial. Thus, in this range of parameters, computing
the Chern number of the flat bands is enough to determine
whether the system is a valley Chern insulator.

We approach the question indirectly. Let us take two un-
coupled graphene layers, twisted with respect to each other,
which gives two massive Dirac cones (from the sublattice
masses mt , mb) as the starting point. Each massive Dirac
cone from the top or bottom layer gives a contribution of
1
2 sgn(mt/b) to the Chern number. We can see that if the two
masses have the same sign they add up to ±1 Chern number
for all the occupied bands together (with all the unoccupied
bands together having the opposite Chern number). As the
tunnel-coupling α between the layers is turned on the bands
reconstruct and we reach the point where two flat bands get
separated from the remote bands. Consider a point in the
mt , mb parameter space where the occupied carry a + 1 Chern
number (this occurs when mt , mb have the same sign). As
seen in Fig. 10, the gap between the flat bands at charge
neutrality remains open as α increases all the way to the value
appropriate to the magic angle. This means that the sum of the
Chern numbers of all occupied bands remains constant during
the α evolution. Computing the Chern number of the occupied
flat band at the magic angle, we get a Chern number of +1.
This means that the remote bands in this case must carry zero
Chern number.

The case when mt , mb have opposite signs is more subtle
because a given point in that region can be trivial at small α

but topological at large α. We are unable to make a definitive
statement about the Chern number carried by the remote bands
when mt/mb < 0.
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