


be specially designed to match a desired torque profile as a function
of cam angle. Previous works in these areas have used either closed-
form equations (e.g., Ref. [23]) or graphical synthesis (e.g.,
Ref. [28]) to determine the profile of the cam. These methods can
provide a cam profile that will generate the desired torque profile
exactly. However, they suffer from multiple drawbacks. For
certain desired torque profiles, (1) the methods can return non-
convex cams (which are needed for continued tangency between
the wrapped wire and the cam), (2) there is no explicit guarantee
the spring stay below the maximum allowable deflection and in
many cases necessitate unrealistically large spring deflections, and
(3) there is no consideration of how uncertainty in the spring stiff-
ness may affect the balancing performance. Additionally, previous
works have treated the torque on the cam as resulting from a point
force applied at the wire-cam tangency point, ignoring the distribu-
ted friction, and pressure between the rest of the wire and the cam.
While it may be feasible to search for a set of input parameters

that address the non-convexity problem of the closed-form solution,
we believe this may not always be a feasible approach. The location
and size of the idler are subject to space constraints. Similarly, the
cam size is also governed by geometric constraints within a realistic
design. The spring parameters that would satisfy cam convexity
may also not be feasible when realistic spring design considerations
are applied. Finally, this process of sampling the design space is
essentially a time-consuming, ad-hoc design optimization process.
In this paper, we offer an alternative approach that allows automatic
consideration of geometric constraints, robustness to variation in
spring parameters, and cam convexity. As such, our approach
offers a design that considers realistic constraints while offering
the best feasible approximation for the static balancing problem.
Design optimization for static balancing has been used in the past

to determine which static robot configuration to perfectly balance to
achieve the best balancing across its workspace [37] and to select
torsional springs to balance a medical robot [38]. It has also been
used to determine the Fourier coefficients of the cam dynamic
equations [39] and to optimize mechanism parameters for
multi-degrees-of-freedom (DOF) robots [40]. To the best of our
knowledge, design optimization has not been used to address the
concerns with wire-wrapped cams listed in the previous paragraph.

1.3 Contribution and Paper Organization. The contribution
of this paper relative to previous works is a cam design procedure
that uses optimization to select modal coefficients for the cam
shape and spring pre-extensions that minimize the difference
between the actual cam torque and the desired cam torque. It also
minimizes the sensitivity of the output torque to unanticipated
changes in spring constant. The optimization problem is constrained
to guarantee cam convexity and ensures the cam will not violate the
maximum allowable spring deflections. As an additional contribu-
tion of this work, we model the effect of friction between the cam
and the wire. This optimization routine is applied to a novel two
DOF cam design. This two DOF system can be used for systems
when the desired torque on one or both cams is a function of
both cam angles. The major drawback of our method is that the
torque on the cams is not guaranteed to exactly match the desired
torque. However, for robotic applications, it is much more desirable
to have a physically build-able cam system that approximately bal-
ances the static torques than a cam design that theoretically, exactly
balances the static torques but violates the maximum allowable
spring extensions and is not convex (i.e., does not work in practice).
This paper is organized as follows. In Sec. 2, we present the

design of a novel one DOF cam system and solve for the wire tan-
gency point. In Sec. 3, we solve for the spring extensions for the one
DOF cam design and extend the equations for a two DOF cam
design. Later, in Sec. 4, we calculate the torque on the one DOF
cam system with and without ignoring frictional effects. In Sec.
5, we extend the equations for the two DOF cam design. Then in
Sec. 6, we describe the modal basis chosen for the cam design
and derive the conditions on the cam modal basis required for

cam convexity. In Sec. 7, we derive a first-order approximation of
the sensitivity of the cam torque to unmodeled changes in spring
torque. The optimization problem used to design the cams is formu-
lated in Sec. 8. In Sec. 10, we present the results of two simulation
case studies, and in Sec. 11 our model for the torque on the cams is
experimentally validated. Lastly, the results are discussed in Sec. 12
and conclusions are drawn in Sec. 13.

2 The Tangency Points in a Wire-Cam Mechanism

The calculation of spring extensions in wire-cam mecha-
nisms requires knowledge of the tangency point between the
idler and the cam. In this section, we present a numerical solu-
tion to finding the tangency point for a general wire-cam
design. Specifically, we refer the reader to Fig. 1, where a fol-
lower idler is pressed horizontally against the cam using one
spring and the wire rope is tensioned using another spring.
Figure 1(a) shows the system with initial spring preload and
zero cam rotation. Figure 1(b) shows the same system for a
cam rotation θ > 0.
The spring extensions x1 and x2 shown in Fig. 1(b) are functions

of the angles α and γ. These two angles characterize the location of
the tangency point p on the cam and idler, respectively. To solve for
these angles, we use the fact that the cam and idler are tangent to one
another at p. To do this, we will calculate the unit vectors that are
tangent to the cam t̂(α) and idler t̂(γ) and set them equal.
The local tangents to the cam and idler, t(α) and t(γ) are shown in

Fig. 1. These vectors are defined as

t(α) =
d

dα
r p/o, t(γ) =

d

dγ
r p/q (1)

where the position vectors rp/o and rp/q are given by2

r p/o = ρ(α)

cos (α − θ)

sin (α − θ)

0

⎡

⎣

⎤

⎦, r p/q = r

cos (γ)

sin (γ)

0

⎡

⎣

⎤

⎦ (2)

The explicit expressions for these tangent vectors are

t(α) = ρ′(α)

cos (α − θ)

sin (α − θ)

0

⎡

⎣

⎤

⎦ + ρ(α)

− sin (α − θ)

cos (α − θ)

0

⎡

⎣

⎤

⎦ (3)

t(γ) = r − sin (γ), cos (γ), 0[ ]T (4)

Normalizing these vectors using ‖t(α)‖ =
���������������

ρ(α)2 + ρ′(α)2
√

and
‖t(γ)‖= r gives the local tangent unit vectors

t̂(α) =
t(α)

���������������

ρ(α)2 + ρ′(α)2
√ t̂(γ) =

t(γ)

r
(5)

The local tangency constraint between the idler and cam is

t̂(α) = −t̂(γ) (6)

The above constraint could be solved numerically, but can return
more than one answer if α and γ are not related through an added
constraint. We choose the constraint that the y coordinate of rp/o
is equal to sum of the y coordinates of rq/o and rp/q. For example,

if rTq/oŷ0 = a0 (i.e., the vertical offset of the idler in Fig. 1), then

ρ(α) sin (α − θ) = r sin (γ) + a0 (7)

Combining Eq. (6) with Eq. (7) allows us to formulate the follow-
ing optimization problem

min
α,γ

‖t̂(α) + t̂(γ)‖2 + ρ(α) sin (α − θ) − r sin (γ) − a0
( )2

(8)

2We use rx/y≜ x− y where x ∈ R3 and y ∈ R3 are points.
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For any cam angle θ, the Levenberg–Marquardt algorithm [41] can
be used to solve for α and γ (e.g., using MATLAB’s lsqnonlin
function).

3 Spring Extensions for Wire-Cam Mechanisms

Next, we will determine the spring deflections for design variants
with one and two DOF.

3.1 One Degree-of-FreedomWire-Wrapped Cams. Referring
to Fig. 1, the deflection in spring 1 can be solved using the assump-
tion that the length l of the wire remains constant. This wire length is
shown in Fig. 1 as the sum of three portions shown using dashed
line lcam, dotted line lidler, and solid line lextra.

l = lcam + lidler + lextra (9)

lcam can be found using the line integral along the cam from 0 to α.
The profile of the cam is expressed using the polar function ρ(ϕ)
where ϕ parameterizes the angle swept along the cam. This line
integral can be written as

lcam =

∫α

0

����������������

ρ(ϕ)2 + ρ′(ϕ)2
√

dϕ (10)

Next, lidler can be expressed as

lidler = rγ (11)

where r is the radius of the idler and γ is the angle between the hor-
izontal and the idler tangency point as shown in Fig. 1. Now, lextra
can be found using

lextra = le,0 − x1 − x10
( )

(12)

In this equation, le,0 is the length of wire between spring 1 when
θ = 0, x1 is the total extension of spring 1, and x10 is the extension
of spring 1 when θ= 0 (i.e., the pre-extension of spring 1). Because
the wire is inextensible, the change in string length between when
θ > 0 and θ= 0 (i.e., Δl≜l(θ)− l(0)) must be zero

Δl = Δlcam(θ) + Δlidler(θ) + Δlextra(θ) = 0 (13)

where the length change terms in Eq. (13) are measured with respect
to the respective lengths when θ= 0.
Plugging Eqs. (10)–(12) into Eq. (13) and solving for x1 gives

x1 =

∫α

α0

����������������

ρ(ϕ)2 + ρ′(ϕ)2
√

dϕ + r(γ − γ0) + x10 (14)

The vector rq/o≜q− o is calculated as

rq/o =

ρ(α) cos (α − θ) − r cos (γ)

a0
0

⎡

⎣

⎤

⎦ (15)

The total extension of spring 2 can be found using its pre-
extension x20 and the change in the x component of rq/o

x2 = ρ(α) cos (α − θ) − r cos (γ) − (ρ(α0) cos (α0) − r cos (γ0)) + x20

(16)

3.2 Two Degrees-of-Freedom Wire-Wrapped Cams. A two
DOF design variant is shown in Fig. 2. This system is designed so
that the torque on the cams are functions of both cam angles (i.e.,
τ1(θ1, θ2) and τ1(θ1, θ2)). A planar RR (R refers to a revolute
joint) manipulator arm is a potential application of this design
variant. This system contains two cams with very similar structure
to the one DOF cam system shown in Fig. 1. However, instead of
being connected to ground, spring 2 connects the prismatic plat-
forms for both cams. This means that changing θ1 affects the
torque on cam 2 and vice versa. In this section, we again assume
infinite friction between the cam and wire and assume that the
springs are linear functions of displacement.
Because the angles α1 and γ1 are independent of θ2 and α2 and γ2

are independent of θ1, the equations in Sec. 2 can be directly applied
to solve for the tangency angles of each cam.
Next, we will derive the spring displacements x1, x2, and x3.

Because the displacement of springs 1 and 3 does not depend on
the angle of the cam they are not wrapped around, Eq. (14) can
be used to solve for the spring displacements x1 and x3 as shown
in Fig. 2. Because the displacement of spring 2 depends on both
θ1 and θ2, we must apply Eq. (16) to solve for the displacement
of spring 2 while taking into account the individual contributions

Fig. 1 Cam design concept for a 1DOF system: (a) θ=0 and (b) θ>0

Fig. 2 Cam design concept for a two DOF system
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of each cam. To designate the contribution of cam i to the extension
of spring 2 we use the notation x2,i, i= 1, 2. Referring to Fig. 2, we
can write the extension of the second spring

x2 = x20 + x2,1 + x2,2 (17)

where x20 is the initial spring extension and the individual cam con-
tributions to the spring extension are given by

x2,i = ρi(αi) cos (αi − θi) − ri cos (γi)

− (ρi(αi0 ) cos (αi0 ) − ri cos (γi0 )), i = 1, 2
(18)

where the subscript i indicates the cam number. Having expressed
the spring extensions due to cam rotations, we next compute the
resulting balancing torques. In the beginning of Sec. 4, we consider
a model using a practice prevalent in the literature which assumes
infinite friction between the cam and wire. In Sec. 4.1, we relax
the assumption of infinite friction and present a model that accounts
for a finite friction coupling between the cam and wire.

4 One Degree-of-FreedomWire-Wrapped Cam Torque

Substituting the solution of Eq. (8) for α and γ in Eqs. (14) and
(16) provides the spring extensions x1 and x2. Assuming infinite
friction coupling and referring to Fig. 1, the force f1 applied by
the wire rope on the cam is concentrated at the tangency point p
and pointing tangential to the cam

f1 = k1x1 t̂ (19)

In this equation, k1 is the stiffness of spring 1 and t̂ = t̂(α) = −t̂(γ) is
a unit vector tangent to the idler/cam contact given by Eq. (5). The
moment of spring 1 on the cam is the cross-product of rp/o and f1.
Similarly, the force applied by spring 2 on the cam is

f2 = k2x2n̂ (20)

where k2 is the stiffness of spring 2 and n̂ = (d/dα)t̂(α) =

−(d/dγ)t̂(γ) is the unit vector normal to the idler/cam contact.
The moment of spring 1 on the cam is the cross-product of rp/o
and f2.
The scalar moment acting on the cam is given by the spring force

moments about point o, therefore

τ1 = ( r p/o × f1
︸


︷︷


︸

τ1,1

+ r p/o × f2
︸


︷︷


︸

τ1,2

)T ẑ (21)

where the single subscript in τ1 designates the cam number. It is
included to maintain consistency with the notation for the two
DOF case. Also, in τ1,1 and τ1,2 the first subscript refers to the
cam number and the second subscript refers to the spring number.

4.1 Wire-Wrapped Cam Torque With Finite Friction
Coupling. In this section, we explore the effect of finite capstan/
wire-rope friction on the resulting torque on the cam. We model
the forces at a quasi-static equilibrium where we assume θ is fixed.

4.1.1 Wire Model. We will assume that the wire is inextensible
and can only support tension forces (i.e., it cannot support trans-
verse shear forces and bending moments). The tendon curve is
assumed to match the planar cam shape parameterized by angle
ϕ, as shown in Fig. 1(b).
Following Ref. [42], we define the wire internal force ψ(ϕ) ∈ R3

as the force applied by the material at ϕ+ δϕ on the material at ϕ.
To be bent into the cam curve, the wire must have an external force
or moment distribution applied to it. Referring to Fig. 3, we use fc to
designate the distributed normal/contact force between the wire
and the cam and ff as the distributed friction force between the

wire and the cam. The force balance for a section [a, ϕ] is given by

ψ(ϕ) − ψ(a) +

∫ϕ

a

f(σ)dσ = 0 (22)

where f is the resultant of the contact and friction force on the wire
(per unit of wrapping angle ϕ)

f = f f + fc (23)

We then take a derivative of this with respect to ϕ

ψ ′(ϕ) + f(ϕ) = 0 (24)

where (′) denotes a derivative with respect to ϕ.
Assuming the tendon is always in contact with the cam, and since

the internal force is always tangent to the wire path (since the wire
cannot support transverse shear and moment loads), we can write
the internal force in the wire

ψ(ϕ) = η(ϕ)
r′(ϕ)

‖r′(ϕ)‖
(25)

where r′(ϕ)/‖r′(ϕ)‖ designates the local tangent, which can be
found using a similar derivation of t(α) in Eq. (3), but for α− θ=ϕ.
Also, η(ϕ) > 0 designates the wire tension and r(ϕ) denotes the
polar vector in a cam-attached frame.

r(ϕ) = ρ(ϕ) cos (ϕ), sin (ϕ), 0[ ]T (26)

4.1.2 Capstan Equation. We next derive the tension distribu-
tion η(ϕ) following the approach in Ref. [43]. Referring to the
wire rope segment shown in Fig. 4, we define the distributed
normal force dN over a wire segment given by dϕ and the tension
force magnitudes given by η(ϕ) and η(ϕ)+ dη. Writing the force
balance on this infinitesimal wire segment yields

dN = η + dη
( )

sin
dϕ

2
+ η sin

dϕ

2
(27a)

Fig. 3 Free body diagram of the wire with distributed loads and

internal forces

Fig. 4 Differential forces due to friction between the cam and
the wire
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η + dη
( )

cos
dϕ

2
= η cos

dϕ

2
+ μ dN (27b)

Applying small angle approximations sinϕ≈ϕ, cosϕ≈ 1 and
neglecting the product of two small differentials, we get

dN = η + dη
( ) dϕ

2
+ η

dϕ

2
≈ η dϕ (28a)

μ dN = dη (28b)

Substituting Eq. (28a) into Eq. (28b), separating variables, and inte-
grating from the initial angular coordinate ϕ up to the roller/cam
tangency point (designated by angular coordinate α) results in

∫α

ϕ

μ dϕ =

∫η(α)

η(ϕ)

1

η
dη (29)

Writing the above integrals and taking the exponent, gives

eμ(α−ϕ) =
η(α)

η(ϕ)
(30)

Solving for the wire tension η(ϕ) at any location ϕ gives

η(ϕ) = η(α)eμ ϕ−α( ) ϕ ∈ [0, α] (31)

Next, we will use this result to compute the distributed force in the
wire and the resulting torque on the cam.

4.1.3 Distributed Wire Force and Cam Torque. The wire force
vector was given by Eq. (25). Substituting Eq. (31) in Eq. (25) gives

ψ(ϕ) = η(α)eμ ϕ−α( ) r′(ϕ)

‖r′(ϕ)‖
(32)

Differentiating the above equation with respect to ϕ gives

ψ ′(ϕ) =
η(α)eμ ϕ−α( )

‖r′‖
μr′ + r′′ − r′(r′

T
r′)3(r′′

T
r′)

( )

(33)

Using the above result in Eq. (24), we obtain the resultant distribu-
ted force on the wire

f(ϕ) = −
η(α)eμ ϕ−α( )

‖r′‖
μr′ + r′′ − r′(r′

T
r′)3(r′′

T
r′)

( )

(34)

The torque applied by the wire on the cam is given by the
moment arm of the force ψ at the wire-anchor-point ϕ= 0 and the
moment of the distributed force f(ϕ)

τ1,1 = r(0) × ψ(0) +

∫α

0

r(σ) × −f(σ) dσ (35)

This is an alternate formulation for τ1,1 given in Eq. (21) that now
removes the assumption of infinite friction.

5 Two Degrees-of-Freedom Wire-Wrapped Cams

Regardless of the type of friction coupling between the cam and the
wire rope, the results for the two DOF case are simply a superposition
of the reactions applied by each spring on each cam. Referring to
Fig. 2, we note that cam 1 is subject to torque contributions from
spring 1 and spring 2. Similarly, cam 2 is subject to torque contribution
due to reactions from spring 2 and spring 3. Adopting the notation τi,j
to designate the torque contribution of spring j on cam i, we can write

τi = τi,i + τi,i+1
( )T

ẑ i = 1, 2 (36)

For the two DOF cam system shown in Fig. 2, the torque on cam 1 and
cam 2, τ1 and τ2, can be found by applying the equations from Sec. 4
using the spring displacements from Sec. 3.2. τ2,3 should be calculated
using Eqs. (21) or (35).

We will next present considerations for cam convexity, which
will feed into the cam optimization process.

6 Modal Cam Shape and Condition for Convexity

In this work, we represent the profile of the cam profile using a
polar representation

x(ϕ) = ρ(ϕ) cos (ϕ) y(ϕ) = ρ(ϕ) sin (ϕ) (37)

where ρ and ϕ are the radial and polar coordinates. The radial coor-
dinate ρ(ϕ) can be expressed via a modal representation

ρ(ϕ) = βT 1, ϕ, ϕ2
, . . . , ϕn−1

, ϕn
[ ]T

(38)

where β ∈ Rn+1 is a vector of polynomial coefficients.
In making the above choice of using a polynomial basis, we

implicitly limit ourselves to cam representations with orders
below n= 7 since polynomial bases are known to suffer from
poor numerical conditioning for large powers (n> 7) [44].
In order for the wire to maintain contact with the cam, the cam

should be convex at all points along its surface. As shown in
Ref. [45], a curve f : (x(ϕ), y(ϕ)) → R

2 is convex if

x′(ϕ)y′′(ϕ) − y′(ϕ)x′′(ϕ) > 0, ∀ϕ (39)

where (·)′ and (·)′′ designate first and second derivatives with respect
to ϕ. Using Eq. (37) in Eq. (39) yields the constraint for ensuring
cam convexity

ρ(ϕ)2 + 2ρ′(ϕ)2 − ρ(ϕ)ρ′′(ϕ) > 0 (40)

7 Sensitivity to Changes in Spring Constant

If a cam design has one spring with constant k, the cam torque
deviation Δτ for a fixed cam angle that ensues due to spring cons-
tant deviation Δk can be found using a first-order approximation
[46]

Δτ =
∂τ

∂k
Δk (41)

For the one DOF cam, to minimize the effect of deviations in spring
constant, the design parameters (the cam modal coefficients β and
the spring pre-extensions x0) are selected to minimize the following
weighted sum

min
β, x0

∑2

i=1

w1,i

∫θmax

θmin

∂τ1

∂ki

∣
∣
∣
∣

∣
∣
∣
∣
dθ

( )

(42)

where τ1 is given by Eq. (21). The scalar weights w1,1 and w1,2 rep-
resent the relative importance of minimizing the effect of unmo-
deled deviations in the stiffness of springs 1 and 2, respectively.
For example, larger weights can be set for springs with larger uncer-
tainty in their spring constant.
For the infinite friction case, we note that ∂τ1,1/∂k2= ∂τ1,2/∂k1= 0

and use the commutativity of the dot product in Eq. (21), to obtain

∂τ1

∂k1
= ẑT r p/o × x1 t̂

( )

,
∂τ1

∂k2
= ẑT r p/o × x2n̂

( )

(43)

For the finite friction case, the partial of τ1 with respect to k2
remains the same as in Eq. (43). However, the partial of τ1 with
respect to k1 needs to be updated with the equations in Sec. 4.1.
Given that the wire tension at the contact point is η(α)= k1x1, this
can be found by taking the partial of Eq. (35)

∂

∂k1
τ1 = ẑT r(0) × x1e

−μα r′(0)

‖r′(0)‖

(

+

∫α

0

r(σ) ×
x1e

μ σ−α( )

‖r′‖
μr′ + r′ ′ − r′(r′

T
r′)3(r′ ′

T
r′)

( )

dσ

)

(44)

Journal of Mechanisms and Robotics FEBRUARY 2024, Vol. 16 / 021001-5

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

s
m

e
d
ig

ita
lc

o
lle

c
tio

n
.a

s
m

e
.o

rg
/m

e
c
h
a
n
is

m
s
ro

b
o
tic

s
/a

rtic
le

-p
d
f/1

6
/2

/0
2
1
0
0
1
/6

9
9
2
9
8
4
/jm

r_
1
6
_
2
_
0
2
1
0
0
1
.p

d
f b

y
 V

a
n
d
e
rb

ilt U
n
iv

e
rs

ity
 L

ib
ra

ry
 u

s
e
r o

n
 2

0
 D

e
c
e
m

b
e
r 2

0
2
3



The two DOF design in Fig. 2 has three springs and two cams, the
objective function is therefore modified as

min
β1 , β2, x0

∑3

i=1

w1,i

∫θ2,max

θ2,min

∫θ1,max

θ1,min

∂τ1

∂ki

∣
∣
∣
∣

∣
∣
∣
∣
dθ1 dθ2

(

+

∑3

i=1

w2,i

∫θ2,max

θ2,min

∫θ1,max

θ1,min

∂τ2

∂ki

∣
∣
∣
∣

∣
∣
∣
∣
dθ1 dθ2

)

(45)

In this equation, τi, i= 1, 2, are given by Eq. (36) and w1,i w2,i are
scalar weights representing the relative importance of minimizing
the effect of uncertainty in spring i on torques for cams 1 and 2.

8 Optimal Wire-Cam Mechanism Design

8.1 One Degree-of-Freedom Cam System. Now that we can
calculate the torque on the cam from Sec. 4 and the sensitivity of the
torque to unmodeled changes in the spring constant from Sec. 7, we
can formulate the optimization problem used to design the cam
system. The optimization variables used for this problem are the
cam polynomial coefficients β and the spring pre-extensions

x0 = x10 x20
[ ]

. The following parameters are taken to be con-

stants: the idler radius r, the spring constants ki, i= 1, 2, the
maximum spring deflections xi,max, and the wire-cam coefficient
of friction μ. The desired cam torque τd(θ), which is the torque
needed to statically balance the joint, is also taken as an input.
The condition for convexity from Sec. 6 and practical limits on
the cam geometry and spring deflections are taken as constraints

min
β,x0

w1

∫θmax

θmin

τd,1(θ)− τ1(θ)
( )2

dθ +
∑2

i=1

wi+1

∫θmax

θmin

∂τ1(θ)

∂ki

∣
∣
∣
∣

∣
∣
∣
∣
dθ

s.t. ρ2 + 2ρ′2 − ρρ′′ > 0

ρmin < ρ< ρmax
0 ≤ xi < xi,max, i= 1, 2

0 ≤ x0

(46)

where w1, w2, and w3 are scalar weights which represent the relative
importance of the terms.

8.2 Two Degrees-of-Freedom Cam System. For the two
DOF system, the desired torque on the cams may be functions of
both cam angles: τd,1(θ1, θ2) and τd,2(θ1, θ2). The cam 1 polynomial
coefficients β1, cam 2 polynomial coefficients β2 and spring pre-

extensions x0 = x10 x20 x30
[ ]

are the optimization variables.

We also assume that the desired cam torques τd,1(θ1, θ2) and
τd,2(θ1, θ2) are specified by the design task (i.e., the static balancing
torques). In the equation below, the arguments from τi(θ1, θ2), i= 1,
2 and τd,i(θ1, θ2) i= 1, 2 are dropped for notational brevity.

min
β1,β2 ,x0

∫θmax,2

θmin,2

∫θmax,1

θmin,1

∑2

j=1

wj τd,j − τj
( )2

dθ1 dθ2

+

∑3

i=1

wi+2

∫θmax,2

θmin,2

∫θmax,1

θmin,1

∂τ1

∂ki

∣
∣
∣
∣

∣
∣
∣
∣
dθ1 dθ2

+

∑3

i=1

wi+5

∫θmax,2

θmin,2

∫θmax,1

θmin,1

∂τ2

∂ki

∣
∣
∣
∣

∣
∣
∣
∣
dθ1 dθ2

s.t. ρ2i + 2ρ′2i − ρiρ
′′
i > 0, i = 1, 2

ρmin < ρi < ρi,max, i = 1, 2

0 ≤ xi < xi,max, i = 1, 2, 3

0 ≤ x0

(47)

where w1 through w8 are scalar weights which represent the relative
importance of the terms. For example, a spring with a loose
manufacturer-specified stiffness tolerance would require a higher
weight to reduce the effect of this variability on the cam torque error.

9 Wire-Cam Coefficient of Friction Characterization

Because the static coefficient of friction is used as an input into
Eq. (47), we must characterize the static coefficient of friction
between the cam and the wire before we can use Eq. (47) to
solve for the cam shape. In this work, we 3D printed the cams
using Formlabs™ Grey Pro resin and chose the wire to be a stain-
less steel, 7 × 49 construction, 0.08 in. diameter wire rope. To test
the static coefficient of friction between these materials, we
printed a cylindrical portion of the cam material (② in Fig. 5)
and draped the wire over the cylinder such that it was wrapped
180◦ along the cylinder’s circumference as shown in Fig. 5. A
small force f0 was added to one end of the wire and then a force
was added to the other end of the wire until static friction was
broken and the wire slipped. The slippage force f was recorded
and the coefficient of friction was calculated using the capstan equa-
tion

μ =
1

π
ln

f

f0

( )

(48)

This experiment was repeated ten times. The mean coefficient of
friction was found to be 0.3273 with a standard deviation of 0.0274.

10 Simulation Case Studies

10.1 Comparison to Closed-Form Solution. To demonstrate
the benefit of our approach relative to the closed-form solution,
we offer here an example of a single-DOF cam design for satis-
fying the desired torque function τd= 0.08θ2. Figure 6 shows a
comparison of our method to the method of Ref. [23] with an
assumed idler horizontal location of 0.1 m, McMaster–Carr
spring (part number 5108N486), and idler radius of 0.01 m. For
the method of Ref. [23], the spring was assumed to have no
pre-extension.
The initial conditions of our optimization-based approach were

x0= [10, 10]Tmm and β= [0.1, 0.1, 0.1, 0.1]T. The scalar weights
were w1= 10, w2=w3= 0. No size limit was placed on the cam.
Obviously, the closed-form cam profile shown in Fig. 6(a) is

not convex and would pose a problem for design implementation.
Our method, on the other hand, remains convex (cam ). Addi-
tionally, as can be seen in Fig. 6(b), the method in Ref. [23] does
not respect the extension limits of the spring. Our method, on the
other hand, does not violate the extension limits. This more realistic

Fig. 5 (a) Friction characterization experimental setup: ①

benchtop vise, ② cylindrical portion of cam material, ③ wire-
rope, ④ basket for holding mass that creates f0, ⑤ basket for
holding mass that creates f and (b) schematic of experimental
setup showing terms used in Eq. (48)
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design comes at the cost of 27.87N mm of root-mean-square error
(RMSE) between τ and τd.

10.2 Desired Torque Functions. To demonstrate our method,
we will solve the optimization problem of Eq. (47) for the following
desired torque functions:

τd,1 = m1glc1 sin (θ1) + m2g l1 sin (θ1) + lc2 sin (θ1 + θ2)
[ ]

τd,2 = m2glc2 sin (θ1 + θ2)
(49)

These equations represent the torque required to balance the gravi-
tational load on the joints of the RR manipulator arm shown in
Fig. 7. In this equation, m1 is the mass of link 1; lc1 is the location
of the center of mass of link 1; l1 is the length of link 1; m2 is the
mass of link 2; and lc2 is the center of mass of link 2. The values
of the aforementioned link masses and lengths are summarized in
Table 1.
We will solve this optimization problem twice: once without

trying to minimize the sensitivity of the cam torque to unmodeled
changes in the spring constant and once allowing the optimization
routine to minimize the aforementioned sensitivity. In the next
section, we will discuss the constants and initial conditions used
in both simulations.

10.3 Simulation Constants and Initial Conditions. While in
some cases, it may be desirable to let the optimization routine select
the spring geometries, the springs in this case study were pre-
selected and used as constants. The springs were chosen from
McMaster–Carr stock springs. Spring 1 was selected to be part
number 5667N212; spring 2 was selected to be part number
7749N634; and spring 3 was selected to be part number
1942N653. The rate and maximum extensions of these springs
are shown in Table 2 along with the idler radii, coefficient of
friction between the cam and the wire, minimum and maximum
cam radii, and the idler vertical offsets. The optimization problems
were solved using the active-set algorithm implemented in
MATLAB™ 2021b’s fmincon function. The computer used for these
simulations is running Windows 10 on an Intel i7-7700 3.6GHz
processor and has 16GB of RAM. The initial conditions assumed
for this simulation were 10mm of pre-extension for all springs
and β1= β2= [0.001, 0.001, 0.001, 0.001]T.

10.4 Two Degrees-of-Freedom System Without Minimizing
Sensitivity. For this simulation, the scalar weights were chosen to be
w1=w2= 10 and w3= · · ·=w8= 0. Setting w3 through w8 to zero
makes optimizer not attempt to minimize the sensitivity to changes
in spring constant. Figure 8 shows the results of the simulation.
Figure 8(a) shows a polar plot of the cam designs; Fig. 8(b) shows
the difference between the desired cam 1 torque τd,1 and the actual
cam torque returned by the optimizer τ1; Fig. 8(c) shows the differ-
ence between the desired cam 2 torque τd,2 and the actual cam
torque returned by the optimizer τ2; Fig. 8(d) shows the deflection
of springs 1 and 3 as a function of θ1 and θ2, respectively. Addition-
ally, the plot shows the maximum allowable deflections in the
springs; Fig. 8(e) shows the deflection in spring 2 as a function of
θ1 and θ2. It also shows the maximum spring deflection. Table 3
shows the cam polynomial coefficients and spring pre-extensions
returned by the optimization routine. Also, Table 3 shows the
RMSE and maximum error between τ1 and τd,1 and between τ2 and
τd,2. Our implementation generated these results in 8.60min.

10.5 Two Degrees-of-Freedom System With Minimizing
Sensitivity. For this simulation, the scalar weights were chosen
to be w1=w2= 1 and w3= · · ·=w8= 1000. This will cause the opti-
mizer to minimize the sensitivity to changes in spring constant.
These values were chosen so that the terms of Eq. (47) have
similar magnitudes. Figure 9 shows the results of the simulation.
Figure 9(a) shows a polar plot of the cam designs; Fig. 9(b)
shows the difference between the desired cam 1 torque τd,1 and
the actual cam torque returned by the optimizer τ1; Fig. 9(c)
shows the difference between the desired cam 2 torque τd,2 and
the actual cam torque returned by the optimizer τ2; Fig. 9(d )
shows the deflection of springs 1 and 3 as a function of θ1 and
θ2, respectively. Additionally, the plot shows the maximum allow-
able deflections in the springs; Fig. 9(e) shows the deflection in
spring 2 as a function of θ1 and θ2. It also shows the maximum
spring deflection. Table 4 shows the cam polynomial coefficients
and spring pre-extensions returned by the optimization routine.
Also, Table 4 shows the RMSE and maximum error between τ1
and τd,1 and between τ2 and τd,2. Our implementation generated
these results in 5.67min.

10.6 Sensitivity Minimization Results. To demonstrate that
the method indeed minimizes the sensitivity of the cam torques,

Fig. 6 (a) Cam shapes and idlers for our method (c1 and I1) and
Ref. [23] (c2 and I2) when θ=0, (b) spring deflections: ①

maximum allowable spring deflection, ② spring 2 deflection x2

for ourmethod,③ spring deflection in Ref. [23],④ spring 1 deflec-
tion x1 for our method, and (c) desired versus actual torque cam
torque for our method: ① our method, ② desired torque

Fig. 7 RR manipulator arm used to generate the desired torque
functions

Table 1 Desired torque function constants

m1 (kg) m2 (kg) lc1 (m) l1 (m) lc2 (m) θ

0.5 0.5 0.25 0.5 0.25 [0◦, 90◦]
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the spring constants shown in Table 2 were increased by 20%,
10%, and 5% and the torque on both cam designs was calculated
with the increased spring constants. The RMSEs between the orig-
inal cam torques and the cam torques with increased spring
constants were calculated and the results are shown in Table 5.
From these results, it is clear that the deviation in cam torque due
to unexpected changes in spring constant is reduced by the optimi-
zation routine.

11 Experimental Verification

To experimentally validate our model of the cam torques, we
manufactured a desktop prototype of the 2DOF cam system as
shown in Fig. 10 using the springs listed in Sec. 10.3. The setup
consists of 3D printed cams (Fig. 10① and ②) attached to
Hebi™ X8-16 actuators (Fig. 10⑧). The cams roll against
bearing mounted, 3D printed idlers (Fig. 10③ and ④). The idlers
are mounted on linear bearings (Fig. 10⑩) between which spring
2 is mounted (Fig. 10⑥). The wire ropes are attached to the cams
on one end, pass through grooves in the idlers, and are terminated
on springs 1 (Fig. 10⑤) and 3 (Fig. 10⑦).
The torque on the cams is measured using the deflection in the

series-elastic elements on the Hebi™ actuators. The spring con-
stants of the series-elastic elements were calibrated by applying
known moments to the actuators, recording the deflections, and
finding the spring constants that best fit the data. The calibrated
spring constant for the Hebi™ actuator attached to cam 1 was
337.83Nm/rad and the calibrated spring constant of the Hebi
attached to cam 2 was 148.68Nm/rad.

According to the manufacturer, spring 2 has 23.22N of pre-
tension. However, the spring force given in Eq. (20) assumes
there is no pre-tension in the spring. To account for this, the pre-
extension in spring 2 given in Table 4 was lowered to 8.52mm
so that the force on the cams from spring 2 when θ1= θ2= 0 is
equal to the force that was expected using Eq. (20).
As shown in this paper’s multimedia extension,3 both actuators

start at θ1 = θ2 = 0◦. Cam 1 is kept fixed and cam 2 sweeps from
0◦ to 90◦ in 0.02 rad increments. At each increment, 20 torque mea-
surements are taken on each cam. When θ2 = 90◦, θ1 is incremented
by 0.02 rad and then θ2 decreases to 0◦ by 0.02 rad increments,
taking 20 measurements at each increment. This process is repeated
until θ1 = 90◦. The results of this experiment are shown in Fig. 11.

Table 2 Simulation constants

k1, k2, k3 (N/mm) x1,max, x2,max, x3,max (mm) r1, r2 (mm) μ ρmin, ρmax (mm), a01 , a02 (mm)

1.10, 7.35, 0.58 57.66, 32.00, 105.00 20, 20 0.3273 25, 500 15, 15

Fig. 8 Two DOF simulation results without sensitivity minimization: (a) cam profiles, (b) τ1 versus τd,1, (c) τ2 versus τd,2,
(d ) x1, x1,max, x3, and x3,max, and (e) x2 and x2,max

Table 3 Simulation results without minimizing sensitivity

Parameter Value

β1 [−0.0052, 0.0133, 0.0046, 0.0250]T

β2 [−0.0009, −0.0016, 0.0068, 0.0417]T

x0 [0, 9.33, 0]mm
τ1 versus τd,1 RMSE 243.12Nmm
τ1 versus τd,1 Max. error 868.25Nmm
τ2 versus τd,2 RMSE 124.04Nmm
τ1 versus τd,2 Max. error 389.92Nmm

3https://youtu.be/tqnUBkm˙f˙M
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In this test, the RMSE between the model predicted torque and the
actual torque for cam 1 was 353.0Nmm. However, when friction
was ignored, the RMSE increased to 518.6Nmm. The RMSE
between the model predicted torque and the actual torque for
cam 2 was 166.3Nmm. With infinite friction, the RMSE was
174.1Nmm. The RMSE between the actual torque and τd,1 was
579.9Nmm and 356.2Nmm between the actual torque and τd,2.
Potential sources of error in this experiment include the accuracy

and noise of the torque sensing on the Hebi actuators, friction in the
linear bearings, the accuracy of the friction characterization exper-
iment from Sec. 9, inexact pre-extension adjustment, and deflection/
hysteresis in the wire rope. Additionally, the stiffness of springs 1–3

were assumed to be equal to the manufacturer-specified value. This
assumption introduced additional error between the experimental
and model predicted torques.

12 Discussion

While this method is guaranteed to return a physically realizable
cam system, there is no guarantee that the resulting cam torques will
exactly match the desired torque. We believe this is acceptable for
robotic applications where the actuators are able to compensate for
differences between the static torques and the torques provided by
the cams. For discontinuous or highly non-monotonic desired
torque profiles, the torque matching performance will degrade.
Additionally, if the desired torque on one of the cams is a stronger
function of the other cam angle than of its own angle, the optimiza-
tion routine may struggle to match the desired torque profile.
However, some of this can be alleviated by increasing |a0| (i.e.,
increasing the moment arm of spring 2’s force). Additionally, if
the constraints on the cam design (e.g., ρmin, ~ρmax, etc.) are too
narrow, the desired and actual torques may not match well. Addi-
tionally, this cam design only works for scenarios when the distance
between the cam centers of rotation remains constant.
Because the partial derivative of the cam torques with respect to

the spring constants (Eqs. (43) and (44)) are strong functions of the

Fig. 9 Two DOF simulation results with sensitivity minimization: (a) cam profiles, (b) τ1 versus τd,1, (c) τ2 versus τd,2, (d ) x1,
x1,max, x3, and x3,max, and (e) x2 and x2,max

Table 4 Simulation results with minimizing sensitivity

Parameter Value

β1 [−0.0041, 0.0125, 0.0007, 0.0250]T

β2 [−0.0019, 0.0052,− 0.0014, 0.0251]T

x0 [0, 11.68, 0]Tmm
τ1 versus τd,1 RMSE 415.00Nmm
τ1 versus τd,1 Max. error 788.33Nmm
τ2 versus τd,2 RMSE 384.84Nmm
τ2 versus τd,2 Max. error 428.17Nmm

Table 5 Deviation in cam torque after increase in spring constants

Without Sens. Min. (Fig. 8) With Sens. Min. (Fig. 9) Reduction in RMSE

20% increase Cam 1 RMSE 702.76Nmm 647.05Nmm 55.71Nmm
Cam 2 RMSE 204.69Nmm 143.84Nmm 60.85Nmm

10% increase Cam 1 RMSE 351.38Nmm 323.52Nmm 27.86Nmm
Cam 2 RMSE 102.34Nmm 71.92Nmm 30.42Nmm

5% increase Cam 1 RMSE 175.69Nmm 161.76Nmm 13.93Nmm
Cam 2 RMSE 51.17Nmm 35.961Nmm 15.21Nmm

Journal of Mechanisms and Robotics FEBRUARY 2024, Vol. 16 / 021001-9

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

s
m

e
d
ig

ita
lc

o
lle

c
tio

n
.a

s
m

e
.o

rg
/m

e
c
h
a
n
is

m
s
ro

b
o
tic

s
/a

rtic
le

-p
d
f/1

6
/2

/0
2
1
0
0
1
/6

9
9
2
9
8
4
/jm

r_
1
6
_
2
_
0
2
1
0
0
1
.p

d
f b

y
 V

a
n
d
e
rb

ilt U
n
iv

e
rs

ity
 L

ib
ra

ry
 u

s
e
r o

n
 2

0
 D

e
c
e
m

b
e
r 2

0
2
3



spring deflections and cam-idler contact point locations, minimizing
the sensitivity to unexpected changes in spring constant is essen-
tially equivalent to minimizing the size of the cams. This means
that increasing values of w3 through w8 will sometimes decrease
how well the torque matches the desired torque.
Lastly, the friction model presented in Sec. 4.1 has less impact on

the torque for relatively circular cams. This is because the distribu-
ted forces that are locally perpendicular to the cam fc pass through
the cam center of rotation and therefore cannot create a moment
about the cam center of rotation. This can be seen in the experimen-
tal results presented in Sec. 11. In Fig. 11(a), the difference between
the finite and infinite torque curves is much larger than in Fig. 11(b).
This is because cam 2 is much closer to circular than cam 1, which
can be seen in Figs. 9(a) and 10.

13 Conclusions

Collaborative robots must simultaneously pose minimal risk to
workers and be powerful enough to assist workers in industrial
tasks such as lifting heavy equipment. One method for navigating
these conflicting design requirements is through the use of static
balancing mechanisms to offset the robot’s self-weight, thus
enabling the selection of low-powered (i.e., safer) actuators.

Because of their simple, lightweight, and compact design, wire-
wrapped cam mechanisms are a promising option for static balanc-
ing. However, previous works on wire-wrapped cam mechanisms
can return non-convex cams, require unrealistically long spring
torques, and ignore the effect of friction between the wire and the
cam. These methods are also sensitive to unmodeled deviations in
spring constant.
To address these limitations, in this paper, we presented the

design of a novel, two DOF wire-wrapped cam system where the
torque on each cam is a function of both cam angles. We also pre-
sented a model of how the friction and distributed pressure between
the cam and the wire affects the torque on the cams. This friction
model takes into account the distributed friction and contact pres-
sure between the wire and the cam. This relaxes key assumptions
made in previous works that treated the torque on the cam as result-
ing from a single point force at the wire tangency point. Using this
model, we presented an optimization-based cam design procedure
that (1) ensured the cam is convex, (2) guaranteed the spring deflec-
tions stay below the maximum allowable values, and (3) minimized
sensitivity to unexpected changes in spring constant.
Using this cam design method, we built a prototype of the pro-

posed mechanism and experimentally determined that our model
predicts the torque on the cams to within 353.0Nmm of root
mean square error. The results also indicate that the distributed

Fig. 10 Experimental setup:① cam 1,② cam 2,③ idler 1,④ idler 2,⑤
spring 1, ⑥ spring 2, ⑦ spring 3, ⑧ Hebi™ X8-16 actuator, ⑨ linear
shaft, and ⑩ linear ball bearing

Fig. 11 Experimental cam torques compared to simulated cam torques with friction model and simulated cam
torques with infinite friction: (a) cam 1 and (b) cam 2
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force between the wire and the cam can have a significant effect on
cam torque for more non-circular cams.
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