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A B S T R A C T

With the penetration of ride-hailing services, the impacts of transportation network companies
(TNC) on network performance grow. TNC comes with a ubiquitous sensing and pricing system
that may be leveraged by public agencies to improve transportation system performance. This
study first formulates and solves a mixed equilibrium (ME) of personal driving vehicles and
ride-hailing vehicles, where TNCs centrally assign routes to ride-hailing vehicles to achieve
fleet-wide optimum. We propose a novel fleet behavior desired by TNCs, named fleet-optimal
behavior with service constraint (FOSC), which provides a good compromise between total
fleet cost minimization and fairness among riders. However, we show that the system state of
FOSC can be far from the system optimum state. To this end, we propose a novel Optimal
Ride-hailing Pricing (ORHP) scheme for public agencies as an efficient manner to intervene
ride-hailing online platforms. The essential idea of ORHP is to regulate and subsidize TNCs, in
exchange for guaranteed network performance improvement. Under ORHP, public agencies set
the value of a subsidy for each link for any TNC rider using this link. The subsidies are provided
to TNCs, not directly to riders. TNC receives subsidies, and determines the best way to provide
compensations for each rider who deviates from his/her "shortest" route, determined by FOSC.
TNC’s ultimate goal is to reduce their total cost, including total fleet vehicle travel time and
total compensations, subtracted by the total subsidy received from public agencies. The ORHP
is likely less controversial than other pricing schemes, since it calls for voluntary participation
of travelers who are provided with multiple route options. Because it is built into the TNCs’
fare system, it is cost effective to implement and hard to game. This would be a win-win: a win
for public agencies to cost-effectively improve system performance leveraging TNC’s platform
without building physical infrastructure or services; and a win for TNC to profit from subsidies
and improve service quality. ORHP is formulated as a bi-level optimization problem, solved with
a sensitivity analysis based algorithm and tested on two networks implying the ORHP scheme
can be effective: a small total subsidy provided to TNC can lead to significant improvement in
system performance.

1. Introduction

Transportation systems are designed for all: to meet the travel needs of individuals, as well as to connect and support regional
conomies. Transportation managers, however, face unprecedented challenges due to increasing congestion, emissions, energy use
nd infrastructure deterioration. Many solutions have been proposed and deployed to address those challenges, which however, can
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hardly please all. Transportation systems are largely driven by uncoordinated (and selfish) travelers’ decisions that result in traffic
states at the busiest times and locations that can be far away from a social system optimum. This calls for controlling demand,
oftentimes in the form of incentivizing travelers to align their behaviors, with broad objectives such as minimizing system-wide
travel delays, mitigating environmental impacts, and minimizing social costs. Unfortunately, existing incentives, such as congestion
pricing (Newell, 1987), tradable credits (Xiao et al., 2013) and parking pricing (Qian et al., 2012), unavoidably bring in technical,
financial and social equity concerns. For example, it is often questioned that optimal incentives are difficult to derive, and existing
ones lead to inefficient outcomes and disproportionate impacts on various users. Furthermore, implementing incentives in the
real world could be very costly. What is missing is an easily deployable and ubiquitous system that can control demand (e.g.,via
incentives) in an inexpensive, effective, and fair manner, with voluntary participation from travelers.

Transportation network companies (TNC) offering ride-hailing services, e.g., Uber, Lyft, Didi, Grab, hold great potential to
become elements of an ubiquitous demand control system. The premises are based on voluntary participation from travelers who
have money exchange through a platform. If any incentives or disincentives are added to those platforms by either the private
platform owners or public agencies’ regulations, potential controversy that mandating all populations to participate, such as in
congestion pricing or tradable credits, would have been mitigated. It is worth noting that such efforts via the platform would be cost
effective to public agencies. Instead of procuring from private contractors for a ubiquitous charging and sensing system (e.g. tolling
systems, or online trading systems), all incentives would be provided and regulated in an existing platform. Those service platforms
are led and maintained by the private sector in the first place, and potentially profitable to the service providers under many business
models.

Next we argue that TNCs could willingly work with public agencies to provide incentives, because this can be profitable to TNCs
and benefit all riders in respective platforms with a higher service quality. Prior research implies that, with even a small fraction
of market penetration, TNCs have motives to coordinate all vehicles/riders within their respective platform, routing in different
ways from individual selfish routing (i.e. User Equilibrium) (Harker and Pang, 1988; Yang and Zhang, 2008; Battifarano and Qian,
2023). This is to TNCs’ benefit by reducing their own travel time from individual selfish routing, so to offer highest service quality
and enable more orders per time unit. This, however, comes at the price of dis-proportionally benefiting individual riders. In a low
TNC’s market penetration, this may even harm some riders as they can be directed to a route that benefits TNCs, but not necessarily
those riders. This paper precisely addresses this concern. We show that in theory, a TNC platform would have motives to offer a
set of incentives that would benefit all riders equally, and the incentives can be regulated and passed along to TNCs from public
agencies that come more cost-effectively reducing total system congestion (not only TNCs’ total travel time, but population total
travel time) than other pricing schemes. The same theory and design could be applied to any platform that has significant market
share of vehicles, such as delivery fleets (e.g., UPS) or information dissemination platforms (e.g., Google Maps). Ride-hailing services
are one of those good examples.

The potential of regulating those platforms (TNCs as an example) is clear: These TNC platforms offer unprecedented opportunities
to align travel behaviors with TNC-wide goals that, interestingly, would turn out benefiting all stakeholders: users, ride-sharing
providers, and society. This promise is contingent on that, in many urban areas, ride-sharing systems have grown to represent a
considerable fraction of traffic (e.g., over 10% in some cases) and are still growing quickly. Ride-hailing (shared rides or non-shared
rides) creates two major paradigm shifts: (i) unlike atomistic travelers, ride-sharing operations can have substantial impacts on
traffic flows and resulting system performance, and (ii) they are by nature an ideal platform for ubiquitous sensing, information
provision and real-time control, e.g., Uber’s ‘‘surge price’’ or ride-pooling option (‘‘uberPOOL’’) through built-in technology-enabled
price incentives. With those great features and advantages, TNCs can thus be leveraged by the communities to design and implement
novel control schemes that ultimately promote the profitability of the service providers and reduce the social costs of transportation.
In a simple example, a service provider, with subsidies from the city, incentivizes users (via surcharge or credit to their respective
fares) for intended choices of departure time, route and pooling that aim for improving both its profits and system-wide performance.
Meanwhile, the city can effectively improve system-wide performance through a subsidy to the service provider in exchanged for
guaranteed performance improvement. This paper shows this could be possible in theory.

The literature acknowledges that the popularization of mobile internet has prompted the rapid expansion of such ride-hailing
services, but their impact to traffic systems is unclear. For example, Uber offers ride-hailing services to more than 91 million users
with 15 million daily trips as of mid-2019 (DMR, 2021). Impacts of ride-hailing systems on network are not trivial but increasingly
significant (Wang and Yang, 2019). Some literature study impacts of ride-hailing systems on other transportation services, such
as public transit (Zhang and Zhang, 2018; Babar and Burtch, 2017; Pham et al., 2020), and conventional taxis (Wallsten, 2015;
Harding et al., 2016; Nie, 2017), while others analyze social and environmental impacts of ride-hailing systems, such as private car
wnership (Anderson, 2014), energy consumption and emission (Yu et al., 2017). In general, as Jin et al. (2018) argue, the impacts
f ride-hailing systems on traffic congestion is still unclear. This paper focuses on direct service impacts on network traffic flow
hrough routing, provided with exogenous vehicle trips without modal choices.
Ride-hailing vehicles compete with personal driving vehicles for limited road network resources, which was mathematically

ormulated as mixed equilibrium (Harker and Pang, 1988; Yang and Zhang, 2008; Battifarano and Qian, 2023). The mixed
quilibrium may lead to a different network congestion pattern from UE, depending on the travel behavior of ride-hailing vehicles.
ince ride-hailing vehicles from one TNC can be centralized routed, the ride-hailing vehicles from one TNC are regarded as one
ehicle fleet, and the behavior of vehicles within the fleet is denoted as the fleet behavior. Present studies indicate the ride-hailing
ehicle fleet might follow UE (Geisberger et al., 2009) or fleet optimum (FO) fleet behavior (Harker, 1988; Yang and Zhang,
008). UE behavior means ride-hailing vehicles would choose the best path to minimize individual travel time/cost, which benefits
2

assengers the most but not necessarily for TNC as a whole fleet. In this case, the mixed equilibrium is exactly same as the system
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UE. However, if the ride-hailing fleet has influences on network congestion patterns, then a TNC would be motivated to route its
vehicles differently from UE to benefit itself the most. Ride-hailing vehicles following FO fleet behavior would cooperate to minimize
total travel time of all vehicles within the fleet, which implies overall better service quality to riders and more opportunities for
taking additional orders. In this case, ride-hailing vehicles are assigned to paths with minimum marginal fleet cost. With the growth
of ride-hailing services, such effects of ride-hailing vehicles would continue to grow.

FO is optimal for TNC since it minimizes TNC’s total fleet travel time and opens more vehicle times to take additional ride-hailing
rders. FO may benefit the entire system including all drivers, because FO may drive the system from selfish UE towards System
ptimum (SO), as indicated by a number of studies (Harker and Pang, 1988; Yang and Zhang, 2008; Battifarano and Qian, 2023).
n an extreme case, if a TNC owns all vehicles on the roadway, it would operate all its fleet vehicles to achieve SO. However, FO is
ot necessarily optimal for passengers because paths with minimum marginal fleet cost are not necessarily the minimum cost paths
o an individual.
In this study, we propose a new fleet route choice behavior under (dis) incentives, called fleet optimum with service constraints

FOSC). With FOSC, TNC would still assign ride-hailing vehicles to minimize its generalized total fleet cost with one additional
onsideration: to ensure its mobility service remains attractive to passengers, namely, passengers not assigned to their respective
inimum cost paths would be compensated for their ‘sacrifice’. Note those compensations are also included in the generalized total
leet cost, counted towards the operation cost for TNCs. We show that FOSC with compensations are feasible, and thus would benefit
oth TNC and ride-hailing passengers. By modeling a mixed equilibrium with personal driving vehicles and ride-hailing vehicles, we
ind ride-hailing vehicles, even with a small penetration rate, are able to affect network congestion substantially if following goals
owards a fleet optimum. Hence, another question is, can public agencies leverage such impacts of ride-hailing vehicles to mitigate
etwork congestion in a more cost effective way than creating its own (dis) incentivization system?
Existing online TNC platforms along with a build-in fare system provide an inexpensive and efficient way to implement travel

emand management measures. For example, one can utilize existing platforms to implement tolls/subsidies to affect ride-hailing
ehicle behavior to improve network efficiency. Toll/subsidy information and payment can be easily integrated into the online
latforms, and there is no need to install any additional infrastructure such as toll gantry or toll booths. More importantly,
olls/subsidies can be set for any road segments on such platforms. Recently some airports have already implemented a surcharge
or ride-hailing vehicles, which is one example of this ubiquitous traffic management system. One key benefit on top of all
ricing flexibility is that traveling with TNC is voluntary rather than mandatory. This is likely to be less controversial than other
ncentivization designs. In a nutshell, this study proposes an optimal ride-hailing pricing scheme (ORHP) with subsidy from public
gencies to intervene with TNC aiming at improving network performance, while considering ride-hailing service’s quality and
rofitability.
Zhang and Nie (2018) shows when a fraction of vehicles (e.g., a fleet of autonomous vehicles (AVs)) follow SO behavior, the

ystem total travel time can be effectively reduced. If the fleet size is sufficiently large (but not necessarily 100%), the SO system
tate can be realized (Chen et al., 2020). This study is fundamentally different. In practice, ride-hailing vehicles would not follow SO
ehavior without incentives, since the SO behavior is not necessarily optimal for TNC as a whole fleet nor individual ride-hailing
sers. We argue public agencies can work collaboratively with TNCs, and reduce generalized system cost by leveraging existing
nline ride-hailing platforms and implementing link-based subsidies/surcharge exclusively for ride-hailing vehicles. The generalized
ystem cost to public agencies includes the system total travel time and the subsidy cost. With the parameter weighing the system
otal travel time over the subsidy cost, the public agency is able to balance among the savings of system total travel time and the
ost of subsidies paid to ride-hailing vehicles. The ORHP will then lead to a win–win: a win for public agencies to effectively reduce
ystem cost leveraging TNC’s platform; and a win for TNC to profit from collected fares with subsidies from public agencies and
eanwhile reducing TNC’s own total travel time.
Our intention is not to scrutinize ride-hailing fleet operation. Rather, we choose to use OD demand of ride-hailing vehicles

xogenously that would have built in searching, idling and service timing behaviors. The novelty of our paper is that, by working
ith an arbitrary set of ride-hailing demand (exogenous demand), even at a small penetration across all O–D pairs, public agencies
an leverage that to achieve an improved services rather than investing its own sensing/pricing infrastructure. We fully acknowledge
his is not a perfect model for ride-hailing operations, and any intervention to the network would in turn change the searching, idling
nd service timing behaviors and demand of ride-hailing vehicles, so to impact the system performance endogenously. However, this
ould rely on sophisticated network-level simulation of behaviors of drivers, riders and system managers, which is not necessary at
he stage of proof of concept for our innovative traffic management strategy leveraging public–private partnership. It would also lose
he mathematical tractability of system-level optimizations, thus not helping us identify analytical insights for the newly proposed
trategies. Our study, as its first step, intends to propose a new concept, shows its promises under arbitrary network flow demand
f both private and ride-hailing vehicles, and demonstrates how it can be solved analytically in real-world networks.
The contributions of this study are four-fold.

• We analyze the impacts of ride-hailing vehicles on network performance with different penetration rates. Cases where TNC
choose different fleet behaviors for ride-hailing vehicles are studied and compared.

• A novel fleet behavior desired by TNCs, fleet optimum with service constraints (FOSC), is proposed to consider compensations
provided to riders to ensure service quality, and a heuristic algorithm is developed to solve the respective system state under
mixed equilibrium. UE fleet behavior benefits riders but may not be optimal for TNC, while FO behavior would trade longer
travel times of some riders for fleet improvement, which leads to fairness issues among riders. In contrast, the proposed FOSC
3

reduces fleet travel time while ensuring fairness among riders, which would be desired by TNCs.
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• Most importantly, we design a novel Optimal Ride-hailing Pricing (ORHP) scheme for public agencies as an efficient manner
to manage network traffic and improve system performance. It intervenes and leverages ride-hailing online platforms without
requiring any additional capital investments on infrastructure, services or systems. The essential idea of ORHP is for public
agencies to regulate and subsidize TNCs, in exchange for guaranteed network performance improvement. The ORHP is likely
less controversial than other pricing schemes, since it calls for voluntary participation of travelers, provided with multiple
route options. Because it is built into the TNCs’ fare system, it is cost effective to implement and may eliminate scamming
behavior that may occur in other credit-based schemes. The ORHP benefits both the public agencies for effectively reducing
system cost and TNC for being more profitable.

• To solve ORHP, we extend the sensitivity analysis method in Yang and Huang (2005) to the multi-class traffic assignment
problems. The sensitivity analysis-based solution algorithm converges fast even though ORHP problem is highly non-convex.
Using the mathematical formulations and numerical examples in real-world networks, we show that this is practically plausible
to benefit the entire system, TNC riders, non-TNC private drivers, and the TNC as well: everyone wins.

The remainder of this paper is organized as follows. In Section 3, we first introduce FO fleet behavior, and then the proposed
OSC fleet behavior is illustrated and the solution algorithms for its mixed equilibrium are developed. Section 4 formulates the
proposed ORHP as a bi-level optimization problem, and then a sensitivity analysis-based algorithm is developed to solve for optimal
pricing schemes. Section 5 gives two numerical examples to illustrate the impacts of ride-hailing vehicles on network and the effects
of ORHP and solution algorithms. The paper is concluded with a summary of main findings and future research in Section 6.

2. Related work

For realism of network modeling with different types of vehicles, Dafermos (1972) proposed a multi-class traffic assignment
model by adopting different cost functions for vehicle class, and the corresponding equilibrium state is also known as the mixed
equilibrium. Since then, multi-class traffic assignment has been utilized to model heterogeneity among vehicles, such as travel
modes (Florian, 1977), travel behaviors (Dafermos, 1972; Harker, 1988; Van Vuren et al., 1990; Yang et al., 2007; Yang and Zhang,
2008; He et al., 2013; Zhang and Nie, 2018; Chen et al., 2020; Delle Site, 2021), value of time (Yang and Huang, 2004; Nagurney
and Dong, 2002), perceptions of travel time (Van Vuren and Watling, 1991; Yang, 1998; Wang et al., 2019), and desired arrival
times (Lo et al., 2006; Shao et al., 2006). Though personal driving and ride-hailing trips are two different travel modes, driving
vehicles and ride-hailing vehicles have the same impacts on traffic flow and consequently link travel time functions. The key impact
to network performance varied by driving vehicles and ride-hailing vehicles is that they may have different route choice behavior,
which is the focus of this paper.

In the literature, routing behaviors considered in the mixed equilibrium mainly include UE behavior, SO behavior and FO
behavior. UE behavior means vehicles choose paths with minimum travel time/cost of all possible paths, while SO (FO) behavior
means vehicles choose path with minimum marginal system cost (marginal fleet cost). Dafermos (1972) and Van Vuren et al. (1990)
studied the mixed UE and SO behaviors, and Dafermos (1972) showed the multi-class traffic assignment problem can be reduced to a
single class traffic assignment problem. Harker (1988) argued vehicles (e.g., motor carriers and mass transit) from the same mobility
company would cooperate to minimize the total cost of the fleet vehicles from the same company, namely FO behavior, while the
other vehicles follow UE behavior. The mixed equilibrium with UE and FO behaviors has unique solution if link cost function is a
strictly monotone and linear function with regard to total link flow, and variational inequalities methods can be used to solve this
mixed equilibrium (Harker, 1988). Yang et al. (2007) studied the mixed equilibrium with UE, SO and FO behaviors, and also used
variational inequity methods to solve for the mixed equilibrium. A Stackelberg routing game where a SO player is the leader and UE
and FO players are the followers were proposed, which is then compared to a Nash routing game in which UE, SO and FO players
play against each other. Numerical results suggest the SO player can further improve efficiency with full knowledge of how other
players would react in the Stackelberg game. Zhang and Nie (2018) and Chen et al. (2020) studied the mixed equilibrium where
autonomous vehicles hypothetically follow the SO behavior and human-driving vehicles (HVs) follow the UE behavior. A small
fraction of vehicles directed by SO behavior can drive the network system performance towards SO. In this research, we consider
a more realistic network setting, a mobility service provider, e.g. TNC, would have a fleet of vehicles to route to its own benefit.
Thus, a mixed equilibrium with UE and FO behaviors is studied, where driving vehicles follow UE and ride-hailing vehicles follow
FO. Intuitively, this mixed equilibrium without system interventions (e.g. management measures) is not optimal for the network
performance, because the fleet objective does not necessarily align with the system objective. This is exactly what is happening or
is predicted to take place as TNCs, delivery companies, or navigation system markets continue to grow. Accordingly, we investigate
what this mixed equilibrium entails for ride-hailing riders and how to provide incentives or compensations to ensure they are not
worse off under the fleet objectives. Most importantly, we derive methods to suggest public agencies to regulate and subsidize TNC,
in exchange for guaranteed network performance improvement, namely ORHP, that leverages ride-hailing vehicles to reduce system
total travel time/cost.

To minimize system cost, different from the control methods (Ni and Cassidy, 2020; Xu et al., 2022), the proposed ORHP utilizes
link-based subsidies (or equivalently surcharges) to influence vehicles routing. This is very relevant to the congestion pricing problem
introduced in Yang and Huang (2005) from the public view. Ride-hailing fare pricing problems are summarized in Wang and
Yang (2019), but is not the focus of this paper. The idea of congestion pricing was firstly proposed by Pigou (1920). The core
concept behind congestion pricing is quite intuitive: highly congested road is charged a high price for road users accounting for
high externalities, and less congested road is charged a low price or free of charge. By applying tolls (or equivalently credits) on
4
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roads, vehicles can be distributed in a desired efficient way. The well-known first-best pricing problem considers a scenario, where
all the links can be tolled. In order to minimize the system cost, the toll equals the marginal external cost which is the difference
between marginal cost and the individual cost (Pigou, 1920; Vickrey, 1963). When not all the links can be tolled, it comes to the
second-best pricing problem. Most second-best pricing literature studies how to calculate the optimal tolls given a small set of links
that are allowed to toll. A simple case in which the network has two parallel links and only one link can be tolled is extensively
studied (Verhoef et al., 1996; Liu and McDonald, 1999).

In general, there are four types of congestion pricing schemes (May and Milne, 2000), travel-distance based scheme, travel-time
based scheme, link-based scheme, and cordon-based scheme. In travel-distance or travel-time based schemes, the toll is proportional
to travel distance or travel time. The toll in link-based scheme is implemented on selected links, such as bottlenecks and bridges. The
cordon-based scheme aims to reduce the travel demand of a central area, and vehicles are charged when crossing the cordon (May
et al., 2002; Mun et al., 2003). In our study, subsidies (or equivalent surcharges) are applied to all the links at the discretion of
public agencies, but only for ride-hailing vehicles. This is analogous to surcharges to ride-hailing vehicles at airports or selected
curb spaces. To our best knowledge, the most related work in literature is Delle Site (2021) which studied a congestion pricing
cheme where only connected autonomous vehicles (CAVs) are charged. Our study differs from Delle Site (2021) in two ways.
irst, Delle Site (2021) assumed CAVs are willing to sacrifice individual benefits to improve fleet/system efficiency, while this
tudy relaxed this assumption by proposing a novel cooperative fleet behavior (i.e., FOSC) that ensures fairness among travelers
hile reducing fleet travel time through cooperative routing. On the other hand, Delle Site (2021) studied two individual scenarios,
ncluding a zero-toll-sum scenario and a minimum-toll-sum scenario. In this study, we introduced a continuous parameter to trade
ff the system travel time reduction and the subsidy cost. Furthermore, Pareto frontiers for system travel time reduction and subsidy
ost are provided, from which public agencies are able to adapt to a range of subsidy budgets or expected travel time reductions
y setting up customized trade-off goals.
Intuitively, the congestion pricing problem except for the first-best pricing lends itself a classical bi-level optimization prob-

em, where the upper level optimizes the tolls/subsidies, and the lower level calculates the network equilibrium given a set
f tolls/subsidies. The bi-level optimization problem is commonly formulated as the mathematical programs with equilibrium
onstraints (MPEC), in which the lower level problem is regarded as an equilibrium constraint of the upper level problem (Harker
nd Pang, 1988). One approach to solve the MPEC is the sensitivity analysis based method (Tobin and Friesz, 1988; Yang, 1997; Yang
nd Huang, 2005). The gradients of equilibrium flows with regard to decision variables (i.e., tolls/subsidies) are calculated using
ensitivity analysis of the restricted equilibrium problem. Then, the decision variables are updated using the gradients to optimize
he objective function of the upper level. Another approach is the gap function based method (Chen and Florian, 1995; Marcotte
nd Zhu, 1996; Meng et al., 2001). The lower level problem is represented by a gap function, and then the gap function is treated
s a penalty term of the objective function of the upper level problem. By doing so, the MPEC is reformulated as a differentiable
ingle level optimization problem which can be solved by the standard optimization algorithms, such as the augmented Lagrangian
lgorithm. The sensitivity analysis based method has been widely used to solve bi-level problem with the low level problem being a
ingle class traffic assignment (Tobin and Friesz, 1988; Yang, 1997). In this study, we adapt the sensitivity analysis based algorithm
o solve the bi-level problem, however, with the low level problem being a multi-class mixed traffic assignment.

. Mixed equilibrium of driving vehicles and ride-hailing vehicles

.1. Problem formulation

Suppose there are two classes of vehicles, personal driving vehicles and ride-hailing vehicles, on the network. We do not consider
ravel mode choices or stochastic demands (e.g., Xu et al., 2023). Rather, we assume the personal driving demand and ride-hailing
emand are exogenous and fixed for simplicity. Our study, as its first step, intends to propose a new concept and traffic management
trategy, show its promises under arbitrary network flow demand of both private and ride-hailing vehicles, and demonstrate how
t can be solved analytically in real-world. The driving vehicles behave per UE principle, while the ride-hailing vehicles follow a
ertain fleet behavior which is decided by a TNC platform as a whole. If the ride-hailing vehicles act on their own and there is no
oordination among the TNC platform, then ride-hailing vehicles follow UE fleet behavior, and the whole system would reach UE.
NC would be motivated to coordinate its fleet vehicles to save total travel time, also known as FO behavior. The mixed equilibrium
ith driving vehicles following UE and ride-hailing vehicles following FO is denoted as ME-FO thereafter. Notations used in this
aper are summarized in Table 1.
Note we are assuming a simultaneous game between the TNC platform vehicles and personal driving vehicles. Both the fleet of

ide-hailing vehicles and personal driving vehicles are considered as players in a non-cooperative game where each player seeks
o minimize their costs. Given the competition between ride-hailing fleet and personal driving vehicles, each group of vehicles
s likely to adjust their behavior in response to the other group’s behavior until a stable state is reached, and because they are
nfinitesimal players, this is known as Wardrop Equilibrium. At a Wardrop Equilibrium, no player can improve their generalized
osts by unilaterally changing their respective strategies.
We denote 𝐱𝐷 = (… , 𝑥𝐷𝑎 ,…)𝑇 and 𝐱𝑅 = (… , 𝑥𝑅𝑎 ,…)𝑇 as the personal driving link flows and the ride-hailing link flows, where 𝑥𝐷𝑎

nd 𝑥𝑅𝑎 denote the driving link flow and the ride-hailing link flow of the link 𝑎. Similarly, the driving demands and the ride-hailing
emands are denoted as 𝐪𝐷 = (… , 𝑞𝑟𝑠𝐷 ,…)𝑇 and 𝐪𝑅 = (… , 𝑞𝑟𝑠𝑅 ,…)𝑇 , where 𝑞𝑟𝑠𝐷 and 𝑞𝑟𝑠𝑅 denote the driving demand and the ride-hailing

𝑟𝑠,𝑘 𝑇 𝑟𝑠,𝑘 𝑇
5

emand of OD pair 𝑟𝑠. 𝐟𝐷 = (… , 𝑓𝐷 ,…) and 𝐟𝑅 = (… , 𝑓𝑅 ,…) denote the driving path flows and the ride-hailing path flows,
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Table 1
Table of notations.
𝐴 Set of links
𝑅,𝑆 Sets of origins and destinations
𝑟, 𝑠 Indices of origins and destinations
𝐾𝑟𝑠 Set of paths between OD pair 𝑟𝑠
𝑘 Index of a path
𝑎 Index of a link
𝛿𝑟𝑠,𝑘𝑎 𝛿𝑟𝑠,𝑘𝑎 = 1 if link 𝑎 is on path 𝑘 ∈ 𝐾𝑟𝑠 and 0 otherwise
𝑥𝐷𝑎 , 𝑥

𝑅
𝑎 Driving link flow and ride-hailing link flow of link 𝑎

𝑞𝑟𝑠𝐷 , 𝑞
𝑟𝑠
𝑅 Driving demand and ride-hailing demand of OD pair 𝑟𝑠

𝑓 𝑟𝑠,𝑘
𝐷 , 𝑓 𝑟𝑠,𝑘

𝑅 Driving path flow and ride-hailing path flow of path 𝑘 of OD pair 𝑟𝑠
𝑥𝑎 , 𝑞𝑟𝑠 , 𝑓 𝑟𝑠,𝑘 Total link flow of link 𝑎, total demand of OD pair 𝑟𝑠, and total path flow of path 𝑘 of OD pair 𝑟𝑠
𝑡𝑎 Link travel time of link 𝑎
𝜏𝑎 Subsidy of link 𝑎 for ride-hailing vehicles
𝑐𝑟𝑠,𝑘𝐷 Cost of path 𝑘 of OD pair 𝑟𝑠 for driving vehicles
𝑐𝑟𝑠,𝑘𝑅 Cost of path 𝑘 of OD pair 𝑟𝑠 for ride-hailing vehicles (the cost function used in ride-hailing routing)
𝑐𝑝𝑟𝑠,𝑘𝑅 Cost of path 𝑘 of OD pair 𝑟𝑠 for ride-hailing passengers
𝑑𝑟𝑠,𝑘 Deviating compensation of path 𝑘 of OD pair 𝑟𝑠 for ride-hailing passengers paid by TNC
𝐹𝐶 Generalized fleet cost for the fleet of ride-hailing vehicles
𝜇𝑢 The value of time of the ride-hailing passengers (e.g., 0.5 $/min)
𝜇𝑡 The operating cost of travel time for the ride-hailing company (e.g., 1.5 $/min)
𝜇𝑝 The average price of ride-hailing per unit travel time (e.g., 2.0 $/min)
𝛼 Demand ratio of ride-hailing vehicles such that 𝑞𝑟𝑠𝑅 = 𝛼𝑞𝑟𝑠

𝜏𝑎 Subsidy of link 𝑎 for ride-hailing vehicles
𝛾 Trade-off parameter of ORHP objective function
𝐱𝐷 , 𝐱𝑅 ,𝐪𝐷 ,𝐪𝑅 , 𝐟𝐷 , 𝐟𝑅 Vectors of 𝑥𝐷𝑎 , 𝑥𝑅𝑎 , 𝑞

𝑟𝑠
𝐷 , 𝑞

𝑟𝑠
𝑅 , 𝑓

𝑟𝑠,𝑘
𝐷 , 𝑓 𝑟𝑠,𝑘

𝑅 . For example 𝐱𝐷 = (… , 𝑥𝐷𝑎 ,…)𝑇

𝐱,𝐪, 𝐟 Vectors of link flows, demands and path flows among two classes. For example, 𝐱 = (𝐱𝑇𝐷 , 𝐱
𝑇
𝑅)

𝑇

𝐝 Vector of path-based compensations, 𝐝 = (… , 𝑑𝑟𝑠,𝑘 ,…)𝑇

𝝉 Vector of link-based subsidies, 𝝉 = (… , 𝜏𝑎 ,…)𝑇

where 𝑓 𝑟𝑠,𝑘
𝐷 and 𝑓 𝑟𝑠,𝑘

𝑅 denote the driving path flow and the ride-hailing flow on path 𝑘 between OD pair 𝑟𝑠. Given the driving demands
𝐪𝐷 and ride-hailing demands 𝐪𝑅, the feasible sets of driving link flows 𝐱𝐷 and ride-hailing link flows 𝐱𝑅 are given below:

𝛺𝐷 = {𝐱𝐷|𝑥𝐷𝑎 =
∑

𝑟∈𝑅

∑

𝑠∈𝑆

∑

𝑘∈𝐾𝑟𝑠
𝑓 𝑟𝑠,𝑘
𝐷 𝛿𝑟𝑠,𝑘𝑎 , 𝑞𝑟𝑠𝐷 =

∑

𝑘∈𝐾𝑟𝑠
𝑓 𝑟𝑠,𝑘
𝐷 , 𝑓 𝑟𝑠,𝑘

𝐷 ≥ 0,∀𝑎 ∈ 𝐴, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑘 ∈ 𝐾𝑟𝑠} (1)

𝛺𝑅 = {𝐱𝑅|𝑥𝑅𝑎 =
∑

𝑟∈𝑅

∑

𝑠∈𝑆

∑

𝑘∈𝐾𝑟𝑠
𝑓 𝑟𝑠,𝑘
𝑅 𝛿𝑟𝑠,𝑘𝑎 , 𝑞𝑟𝑠𝑅 =

∑

𝑘∈𝐾𝑟𝑠
𝑓 𝑟𝑠,𝑘
𝑅 , 𝑓 𝑟𝑠,𝑘

𝑅 ≥ 0,∀𝑎 ∈ 𝐴, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑘 ∈ 𝐾𝑟𝑠} (2)

where 𝛿𝑟𝑠,𝑘𝑎 = 1 if link 𝑎 is on path 𝑘 of OD pair 𝑟𝑠 and 0 otherwise, 𝐴 is the set of links, 𝑅 is the set of origins 𝑟, 𝑆 is the set of
destinations 𝑠, and 𝐾𝑟𝑠 is the set of paths of OD pair 𝑟𝑠. Path flows, link flows and demands satisfy following constraints:

𝑥𝐷𝑎 =
∑

𝑟∈𝑅

∑

𝑠∈𝑆

∑

𝑘∈𝐾𝑟𝑠
𝑓 𝑟𝑠,𝑘
𝐷 𝛿𝑟𝑠,𝑘𝑎 , 𝑥𝑅𝑎 =

∑

𝑟∈𝑅

∑

𝑠∈𝑆

∑

𝑘∈𝐾𝑟𝑠
𝑓 𝑟𝑠,𝑘
𝑅 𝛿𝑟𝑠,𝑘𝑎 ,∀𝑎 ∈ 𝐴, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑘 ∈ 𝐾𝑟𝑠 (3a)

𝑞𝑟𝑠𝐷 =
∑

𝑘∈𝐾𝑟𝑠
𝑓 𝑟𝑠,𝑘
𝐷 , 𝑞𝑟𝑠𝑅 =

∑

𝑘∈𝐾𝑟𝑠
𝑓 𝑟𝑠,𝑘
𝑅 ,∀𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑘 ∈ 𝐾𝑟𝑠 (3b)

𝑓 𝑟𝑠,𝑘
𝐷 ≥ 0, 𝑓 𝑟𝑠,𝑘

𝑅 ≥ 0,∀𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑘 ∈ 𝐾𝑟𝑠 (3c)

Driving vehicles aim to minimize individual travel time given 𝐱𝑅, so the driving flows 𝐱𝐷 can be obtained by solving:

min
𝐱𝐷∈𝛺𝐷

∑

𝑎∈𝐴
∫

𝑥𝐷𝑎

0
𝑡𝑎(𝑥 + 𝑥𝑅𝑎 )𝑑𝑥 (4)

where 𝑡𝑎(⋅) is the travel time function of link 𝑎 with respect to the total link flow across two classes. If TNC adopts an FO behavior
for ride-hailing vehicles, the ride-hailing flows are solved by minimizing fleet travel time:

min
𝐱𝑅∈𝛺𝑅

∑

𝑎∈𝐴
𝑥𝑅𝑎 𝑡𝑎(𝑥

𝑅
𝑎 + 𝑥𝐷𝑎 ) (5)

here 𝐱𝐷 is given.
Solving optimization problems (4) and (5) simultaneously leads to a solution to ME-FO. To proceed, we introduce the following

ssumptions:

ssumption 1. Link travel time function is first-order and second-order differentiable. In particular, 𝑡′𝑎(𝑥𝑎) > 0 and 𝑡′′𝑎 (𝑥𝑎) ≥ 0,∀𝑎 ∈
,∀𝑥𝑎 ≥ 0.

With Assumption 1, the objective functions of optimization problems (4) and (5) both are convex, implying congestion increases
n each link more drastically when the link flow grows. Solving the optimization problems (4) and (5) is equivalent to solving
6

ariational inequalities (Nagurney, 1998). More specifically, Harker (1988) proved the following proposition.
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Proposition 1. (Harker, 1988) With Assumption 1, the vector 𝐱∗ = (𝐱∗𝑇𝐷 , 𝐱∗𝑇𝑅 )𝑇 is ME-FO if and only if the following variational inequality
VI) holds:

∑

𝑎∈𝐴
[𝑡𝑎(𝑥∗𝑎)(𝑥

𝐷
𝑎 − 𝑥𝐷∗

𝑎 ) + (𝑡𝑎(𝑥∗𝑎) + 𝑥𝑅∗𝑎 𝑡′𝑎(𝑥
∗
𝑎))(𝑥

𝑅
𝑎 − 𝑥𝑅∗𝑎 )] ≥ 0,∀𝐱∗ ∈ 𝛺 (6)

here 𝑥∗𝑎 = 𝑥𝐷∗
𝑎 + 𝑥𝑅∗𝑎 , and 𝛺 = 𝛺𝐷 ×𝛺𝑅.

Path cost function for personal driving vehicles reads,

𝑐𝑟𝑠,𝑘𝐷 =
∑

𝑎∈𝐴
𝑡𝑎(𝑥𝑎)𝛿𝑟𝑠,𝑘𝑎 (7)

here 𝑥𝑎 = 𝑥𝐷𝑎 + 𝑥𝑅𝑎 is the total flow of link 𝑎. Ride-hailing vehicles choose their respective routes to minimize the fleet travel time,
o path cost function for ride-hailing vehicles in ME-FO reads,

𝑐𝑟𝑠,𝑘𝑅 =
∑

𝑎

(

𝑡𝑎(𝑥𝑎) + 𝑥𝑅𝑎 𝑡
′
𝑎(𝑥𝑎)

)

𝛿𝑟𝑠,𝑘𝑎 (8)

A thorough discussion regarding VI formulation (6) and when its solution 𝐱∗ meanwhile attains classical UE or SO is provided
n Battifarano and Qian (2023). Now consider a general case where ME-FO is attained somewhere between the classical UE and SO.

.2. Fleet optimal behavior with service constraint

If TNC hypothetically dictates ride-hailing vehicles to follow FO path assignments, clearly some passengers may be worse off
eviating away from their respective optimal path. This degrades service quality, which can be perceived by passengers. In the short
erm, TNCs can benefit from saving total travel time, but this is not the best interest to TNCs in the long term if they could lose
ome consumers. Thus, we first propose a concept of service constraint (SC) for TNCs. With SC, a TNC pays compensations to those
eviating passengers accounting for their individual-level additional travel time. Without loss of generality, we assume the average
umber of passengers in ride-hailing vehicles is one. Now, the generalized cost of ride-hailing passengers is given by:

𝑐𝑝𝑟𝑠,𝑘𝑅 = 𝜇𝑢
∑

𝑎∈𝐴
𝑡𝑎(𝑥𝑎)𝛿𝑟𝑠,𝑘𝑎 + 𝑝𝑟𝑠,𝑘 − 𝑑𝑟𝑠,𝑘 (9)

where 𝜇𝑢 is the value of time (VOT) of riders, 𝑝𝑟𝑠,𝑘 is the ride-hailing fare calculated based on travel time and/or travel distance,
and 𝑑𝑟𝑠,𝑘 is the compensation for anyone on path 𝑘 between OD pair 𝑟𝑠. For simplicity, we use a ride-hailing fair structure based on
travel time, denoted as 𝜇𝑝, thus 𝑝𝑟𝑠,𝑘 = 𝜇𝑝

∑

𝑎∈𝐴 𝑡𝑎(𝑥𝑎)𝛿
𝑟𝑠,𝑘
𝑎 . Note that 𝑝𝑟𝑠,𝑘 can always be generalized to embed other factors in the

following formulations.

Assumption 2 (Equal Generalized Travel Costs for all Riders). To guarantee service quality and fairness, we set that the generalized
cost of any ride-hailing riders within each O–D pair must be equalized to the generalized cost of riders on the path(s) with the
minimum travel time:

𝜇𝑢
∑

𝑎∈𝐴
𝑡𝑎(𝑥𝑎)𝛿𝑟𝑠,𝑘𝑎 + 𝑝𝑟𝑠,𝑘 − 𝑑𝑟𝑠,𝑘 = min

𝑘∈𝐾𝑟𝑠

(

𝜇𝑢
∑

𝑎∈𝐴
𝑡𝑎(𝑥𝑎)𝛿𝑟𝑠,𝑘𝑎 + 𝑝𝑟𝑠,𝑘

)

,∀𝑘 ∈ 𝐾𝑟𝑠 (10)

Then, the deviation compensation reads,

𝑑𝑟𝑠,𝑘 = (𝜇𝑢 + 𝜇𝑝)
∑

𝑎∈𝐴
𝑡𝑎(𝑥𝑎)(𝛿𝑟𝑠,𝑘𝑎 − 𝛿𝑟𝑠,𝑘

∗
𝑟𝑠

𝑎 ) (11)

where 𝑘∗𝑟𝑠 = argmin𝑘∈𝐾𝑟𝑠
∑

𝑎∈𝐴 𝑡𝑎(𝑥𝑎)𝛿
𝑟𝑠,𝑘
𝑎 .

With SC in place, the optimization problem for TNC is to minimize the total generalized fleet cost, denoted as 𝐹𝐶, consisting of
the fleet total travel time and the total compensation cost:

min
𝐟𝑅

𝐹𝐶 = 𝜇𝑡
∑

𝑎∈𝐴
𝑥𝑅𝑎 𝑡𝑎(𝑥𝑎) +

∑

𝑟

∑

𝑠

∑

𝑘
𝑓 𝑟𝑠,𝑘
𝑅 𝑑𝑟𝑠,𝑘 (12a)

s.t. Eqs. (3) and (11) (12b)

where personal driving demand 𝐱𝐷 is given. We call such fleet assignment (in other words TNC’s fleet routing behavior) fleet optimal
with service constraint (FOSC). If optimization problems (4) and (12) are solved simultaneously, the solution is a mixed equilibrium
of the UE and FOSC players, denoted as ME-FOSC. Note we assume a TNC is able to centrally assign routes to ride-hailing vehicles
with compensations, so the path cost function used in TNC’s routing is the marginal fleet cost:

𝑐𝑟𝑠,𝑘𝑅 = 𝜕𝐹𝐶
𝜕𝑓 𝑟𝑠,𝑘

𝑅

(13)

= 𝜇𝑡
∑

(

𝑡𝑎(𝑥𝑎) + 𝑥𝑅𝑎 𝑡
′
𝑎(𝑥𝑎)

)

𝛿𝑟𝑠,𝑘𝑎
7

𝑎
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+ 𝑑𝑟𝑠,𝑘 + (𝜇𝑢 + 𝜇𝑝)
∑

𝑟′

∑

𝑠′

∑

𝑘′

(

𝑓 𝑟′𝑠′ ,𝑘′
𝑅

∑

𝑎
𝑡′𝑎(𝑥𝑎)𝛿

𝑟𝑠,𝑘
𝑎 (𝛿𝑟

′𝑠′ ,𝑘′
𝑎 − 𝛿

𝑟′𝑠′ ,𝑘∗
𝑟′𝑠′

𝑎 )

)

(14)

In theory, the TNC’s goal may vary by the total cost or total revenue. However, in practice, most of those cost items boil down to
he total travel time of the fleet, as any time savings can be directly translated to additional orders, trips and thus revenues and high
eview ratings. Uber, for instance, has KPIs on average ETA, the total number of trips completed given a period of time are directly
elated to total travel time, among many other KPIs. Therefore, travel time is the main consideration in the fleet cost function of FO
leet behavior. While with the FOSC fleet behavior, the fleet cost function also consider the compensation that ensures high service
uality and balance fare/service time, in order to retain consumers in the long run.

.3. Solution algorithms for mixed equilibrium

.3.1. Mixed equilibrium-FO
ME-FO is obtained by solving two convex problems (4) and (5) simultaneously. There are mainly two types of methods to solve

t, including diagonalization methods (Harker, 1988; Van Vuren et al., 1990) and method of successive average (MSA) (Sheffi and
Powell, 1982; Van Vuren and Watling, 1991). In diagonalization methods, the problem is decomposed into two sub-problems. At a
sub-problem, the ride-hailing (driving) flows are calculated assuming fixed driving (ride-hailing) flows. Two sub-problems are solved
successively until convergence is reached. In the MSA methods, the optimal paths for vehicles are calculated at each iteration, which
are used for all-or-nothing path flow assignments. The optimal paths for driving vehicles are paths with minimum path cost, while
the optimal paths for ride-hailing vehicles are paths with minimum path marginal cost in Eq. (8). Here we used a path-based MSA
to solve ME-FO for its simplicity, summarized in Algorithm 1.

Note that ME-FO can also be solved through the VI problem (6) that is then cast into an optimization model. This is particularly
compelling if the link travel time function is not separable among flows on different links. However, solving ME-FO is not the focus
of this study.

Algorithm 1: Path-based MSA for ME-FO
Initialization: Iteration 𝑖 = 0, given demands 𝐪𝐷 and 𝐪𝑅, initialize path sets, path flows (𝐟0𝐷, 𝐟

0
𝑅), gap tolerances 𝜖𝐷 and 𝜖𝑅,

maximum iteration 𝐼
do

1. Given path flows (𝐟 𝑖𝐷, 𝐟
𝑖
𝑅), update path costs

2. Find optimal paths 𝑘𝑟𝑠∗𝐷 and 𝑘𝑟𝑠∗𝑅 . Generate auxiliary path flow patterns 𝐠𝐷(𝐟 𝑖𝐷, 𝐟
𝑖
𝑅) and 𝐠𝑅(𝐟 𝑖𝐷, 𝐟

𝑖
𝑅) by assigning all

demands onto 𝑘𝑟𝑠∗𝐷 and 𝑘𝑟𝑠∗𝑅
3. 𝐟 𝑖+1𝐷 = 𝑖

𝑖+1 𝐟
𝑖
𝐷 + 1

𝑖+1𝐠𝐷(𝐟
𝑖
𝐷, 𝐟

𝑖
𝑅), 𝐟

𝑖+1
𝑅 = 𝑖

𝑖+1 𝐟
𝑖
𝑅 + 1

𝑖+1𝐠𝑅(𝐟
𝑖
𝐷, 𝐟

𝑖
𝑅), and 𝑖 = 𝑖 + 1

while (GAP𝐷 > 𝜖𝐷 or GAP𝑅 > 𝜖𝑅) and 𝑖 ≤ 𝐼
Output 𝐟∗ = (𝐟 𝑖𝐷, 𝐟

𝑖
𝑅)

The gap functions in Algorithm 1 are defined as:

GAP𝐷 =
∑

𝑟,𝑠
∑

𝑘 𝑓
𝑟𝑠,𝑘
𝐷 (𝑐𝑟𝑠,𝑘𝐷 − 𝑐𝑟𝑠,∗𝐷 )

∑

𝑟,𝑠
∑

𝑘 𝑓
𝑟𝑠,𝑘
𝐷 𝑐𝑟𝑠,∗𝐷

, GAP𝑅 =
∑

𝑟,𝑠
∑

𝑘 𝑓
𝑟𝑠,𝑘
𝑅 (𝑐𝑟𝑠,𝑘𝑅 − 𝑐𝑟𝑠,∗𝑅 )

∑

𝑟,𝑠
∑

𝑘 𝑓
𝑟𝑠,𝑘
𝑅 𝑐𝑟𝑠,∗𝑅

(15)

where ∗ is the index for the optimal path. 𝑐𝑟𝑠,𝑘𝐷 is path travel time given in Eq. (7), whereas 𝑐𝑟𝑠,𝑘𝑅 is ride-hailing path cost in ME-FO
given in Eq. (8).

3.3.2. Mixed equilibrium-FOSC
For ME-FOSC, Problem (12) is not convex because compensation 𝑑𝑟𝑠,𝑘 is dependent on flows. As such, ME-FOSC cannot be solved

by applying existing solution algorithms, such as diagonalization methods and MSA. Thus, we propose a heuristic solution algorithm
for ME-FOSC. Conceptually, we first fix compensations 𝐝 to solve ME-FOSC for paths flows 𝐟 (𝐝). Then compensations 𝐝 are updated
using Eq. (11) given path flows 𝐟∗(𝐝). These two steps are conducted iteratively until a convergence criterion is satisfied.

We first introduce how to solve ME-FOSC with fixed compensations 𝐝. In this case, the total fleet cost is dependent on
compensations 𝐝. The optimization problem (12) becomes:

min
𝐟𝑅

𝐹𝐶(𝐝) = 𝜇𝑡
∑

𝑎∈𝐴
𝑥𝑅𝑎 𝑡𝑎(𝑥𝑎) +

∑

𝑟

∑

𝑠

∑

𝑘
𝑓 𝑟𝑠,𝑘
𝑅 𝑑𝑟𝑠,𝑘 (16a)

s.t. 𝐟𝑅 satisfies constraint (3) (16b)

Then, we write the path cost function of ride-hailing vehicles dependent on 𝐝:

𝑐𝑟𝑠,𝑘𝑅 (𝐝) = 𝜇𝑡
∑

𝑎

(

𝑡𝑎(𝑥𝑎) + 𝑥𝑅𝑎 𝑡
′
𝑎(𝑥𝑎)

)

𝛿𝑟𝑠,𝑘𝑎 + 𝑑𝑟𝑠,𝑘 (17)
8

Proposition 2. Under Assumptions 1 and 2, given compensations 𝐝, 𝐹𝐶(𝐝) is convex with respect to path flows 𝐟𝑅.
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Proof. We show the convexity of 𝐹𝐶(𝐝) by showing its Hessian matrix 𝐇 is positive semi-definite. The secondary partial derivative
f 𝐹𝐶(𝐝) is given by:

𝜕𝑐𝑟𝑠,𝑘𝑅 (𝐝)

𝜕𝑓 𝑟′𝑠′ ,𝑘′
𝑅

= 𝜇𝑡
∑

𝑎

(

2𝑡′𝑎(𝑥𝑎) + 𝑥𝑅𝑎 𝑡
′′
𝑎 (𝑥𝑎)

)

𝛿𝑟𝑠,𝑘𝑎 𝛿𝑟
′𝑠′ ,𝑘′
𝑎 (18)

or simplicity, we use 𝛿𝑎,𝑖 and 𝛿𝑎,𝑗 to denote 𝛿𝑟𝑠,𝑘𝑎 and 𝛿𝑟
′𝑠′ ,𝑘′
𝑎 . Thus, the Hessian matrix 𝐇 of 𝐹𝐶(𝐝) is given by:

𝐇 =

⎡

⎢

⎢

⎢

⎢

⎣

ℎ11 ℎ12 ⋯ ℎ1𝑛
ℎ21 ℎ22 ⋯ ℎ2𝑛
⋯ ⋯ ⋯ ⋯
ℎ𝑛1 ℎ𝑛2 ⋯ ℎ𝑛𝑛

⎤

⎥

⎥

⎥

⎥

⎦

(19)

here ℎ𝑖𝑗 = 𝜇𝑡
∑

𝑎
(

2𝑡′𝑎(𝑥𝑎) + 𝑥𝑅𝑎 𝑡
′′
𝑎 (𝑥𝑎)

)

𝛿𝑎,𝑖𝛿𝑎,𝑗 .
As 𝐇 is symmetric, 𝐇 is positive semi-definite if 𝐯𝑇𝐇𝐯 ≥ 0,∀𝐯 ∈ R𝑛. 𝐯𝑇𝐇𝐯 is given by:

𝐯𝑇𝐇𝐯 = 𝑣1
𝑛
∑

𝑖
ℎ𝑖1𝑣𝑖 + 𝑣2

𝑛
∑

𝑖
ℎ𝑖2𝑣𝑖 +⋯ + 𝑣𝑛

𝑛
∑

𝑖
ℎ𝑖𝑛𝑣𝑖

=
𝑛
∑

𝑖

𝑛
∑

𝑗≠𝑖
𝑣2𝑖 ℎ𝑖𝑖 + 2𝑣𝑖𝑣𝑗ℎ𝑖𝑗 + 𝑥2𝑗ℎ𝑗𝑗

= 𝜇𝑡
𝑛
∑

𝑖

𝑛
∑

𝑗≠𝑖

∑

𝑎

(

2𝑡′𝑎(𝑥𝑎) + 𝑥𝑅𝑎 𝑡
′′
𝑎 (𝑥𝑎)

)

(

𝑣2𝑖 𝛿
2
𝑎,𝑖 + 2𝑣𝑖𝑣𝑗𝛿𝑎,𝑖𝛿𝑎,𝑗 + 𝑣2𝑗 𝛿

2
𝑎,𝑗

)

= 𝜇𝑡
𝑛
∑

𝑖

𝑛
∑

𝑗≠𝑖

∑

𝑎

(

2𝑡′𝑎(𝑥𝑎) + 𝑥𝑅𝑎 𝑡
′′
𝑎 (𝑥𝑎)

) (

𝑣𝑖𝛿𝑎,𝑖 + 𝑣𝑗𝛿𝑎,𝑗
)2

y Assumption 1, 2𝑡′𝑎(𝑥𝑎) + 𝑥𝑅𝑎 𝑡
′′
𝑎 (𝑥𝑎) > 0, thus 𝐯𝑇𝐇𝐯 ≥ 0,∀𝐯 ∈ R𝑛. □

roposition 3. Under Assumptions 1 and 2, given fixed compensations 𝐝, the vector 𝐟∗ is the network equilibrium if and only if the following
I holds:

⟨𝐜(𝐟∗), 𝐟 − 𝐟∗⟩ ≥ 0,∀𝐟 satisfies constraint (3) (20)

here

𝐜 = (𝐜𝑇𝐷, 𝐜
𝑇
𝑅(𝐝))

𝑇 (21)

𝐟 = (𝐟𝑇𝐷 , 𝐟
𝑇
𝑅 )

𝑇 (22)

roof.With Assumption 1 and fixed compensations 𝐝, 𝐹𝐶(𝐝) is convex with respect to 𝐟𝑅 based on Proposition 2. Thus, the objective
unctions of the optimization problems (4) and (16) both are convex. Given the feasible spaces of problems (4) and (16) are convex
and closed, solving problems (4) and (16) are equivalent to solving two corresponding VI problems. Besides, the feasible sets of 𝐟𝐷
and 𝐟𝑅 are disjoint, the two VI problems can be combined into a single VI problem (20). □

Then, ME-FOSC with fixed compensations can be obtained by solving the VI problem (20) using a path-based MSA algorithm
similar to Algorithm 1. The solution algorithm for ME-FOSC with fixed compensations is summarized in Algorithm 2.

Algorithm 2: Path-based MSA for ME-FOSC with fixed compensations
Initialization: Iteration 𝑖 = 0, given fix compensations 𝐝, initialize path sets, path flows (𝐟0𝐷, 𝐟

0
𝑅), gap tolerances 𝜖𝐷 and 𝜖𝑅,

maximum iteration 𝐼
do

1. Given path flows (𝐟 𝑖𝐷, 𝐟
𝑖
𝑅) and compensations 𝐝, update path costs

2. Find optimal paths 𝑘𝑟𝑠∗𝐷 and 𝑘𝑟𝑠∗𝑅 . Generate auxiliary path flow patterns 𝐠𝐷(𝐟 𝑖𝐷, 𝐟
𝑖
𝑅) and 𝐠𝑅(𝐟 𝑖𝐷, 𝐟

𝑖
𝑅) by assigning all

demands onto 𝑘𝑟𝑠∗𝐷 and 𝑘𝑟𝑠∗𝑅
3. 𝐟 𝑖+1𝐷 = 𝑖

𝑖+1 𝐟
𝑖
𝐷 + 1

𝑖+1𝐠𝐷(𝐟
𝑖
𝐷, 𝐟

𝑖
𝑅), 𝐟

𝑖+1
𝑅 = 𝑖

𝑖+1 𝐟
𝑖
𝑅 + 1

𝑖+1𝐠𝑅(𝐟
𝑖
𝐷, 𝐟

𝑖
𝑅), and 𝑖 = 𝑖 + 1

while (GAP𝐷 > 𝜖𝐷 or GAP𝑅 > 𝜖𝑅) and 𝑖 ≤ 𝐼
Output 𝐟∗(𝐝) = (𝐟 𝑖𝐷, 𝐟

𝑖
𝑅)

Note Algorithm 2 is the same as Algorithm 1, except that the optimal paths for ride-hailing vehicles are paths with minimum
path cost 𝑐𝑟𝑠,𝑘(𝐝) defined in Eq. (17).
9
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Fig. 1. The framework of ORHP.

Finally, the entire process and algorithm for solving ME-FOSC is summarized in Algorithm 3.

Algorithm 3: A heuristic solution algorithm for ME-FOSC
Initialization: Iteration 𝑣 = 0, given demands 𝐪𝐷 and 𝐪𝑅, initialize path sets, compensations 𝐝0, path flows 𝐟0, the tolerance
𝜖, maximum iteration 𝑉
do

1. Fix compensations 𝐝𝑣, solve the mixed equilibrium 𝐟∗(𝐝𝑣) using Algorithm 2, and 𝐟𝑣+1 = 𝐟∗(𝐝𝑣)
2. Fix path flows 𝐟𝑣+1, and calculate auxiliary compensations 𝐝(𝐟𝑣+1) using Eq. (11)
3. 𝐝𝑣+1 = 𝑣

𝑣+1𝐝
𝑣 + 1

𝑣+1𝐝(𝐟
𝑣+1), and 𝑣 = 𝑣 + 1

while ‖𝐟𝑣𝑅 ⊙ (𝐝𝑣 − 𝐝𝑣−1)‖2𝐹 > 𝜖 and 𝑣 ≤ 𝑉
Output 𝐟𝑣 and 𝐝𝑣

4. The optimal ride-hailing pricing scheme (ORHP)

Section 3 shows three types of fleet behaviors: (1) UE fleet behavior, (2) FO fleet behavior, and (3) FOSC fleet behavior. We
ould reasonably expect TNCs to choose a routing strategy close to FOSC among the three since FOSC balances both service quality
nd service cost. Depending on the travel demand and ride-hailing vehicles’ penetration, FOSC may coincide with UE or FO without
ompensations. FOSC, in general, may or may not lead to the desired system performance for the general public. Next, we discuss,
rom the public agencies’ stand point, how to set up regulations, e.g. subsidies and policies, to incentivize TNCs pushing the network
erformance towards SO. In other words, we would anticipate the public agencies to intervene ME-FOSC in such a way to benefit
oth TNC and the public.
We introduce the optimal ride-hailing pricing scheme (ORHP), where the public agency first set up the value of a subsidy on

ach link provided to TNCs (but not directly to riders). This means that for any rider served by a TNC, TNC will be subsidized for a
ount that is the sum of link-based subsidies across all links along the rider’s path. This subsidy scheme would affect ride-hailing
ehicles’ routing behaviors. For public agencies, the goal is to improve network performance. Fig. 1 depicts how ORHP works among
public agencies, TNCs, riders and ride-hailing vehicles. Analogous to a surcharge to use airport curb spaces for TNCs, a monetary
subsidy to TNCs can be issued for specific links, if a ride-hailing vehicle uses any of those links, most likely deviating routes. This is
equivalent, in theory, to issuing a monetary surcharge (or other forms of a premium fee) to a ride-hailing vehicle on specific links.
In the case of surcharge, this vehicle is willing to take the most ‘‘expensive’’ but efficient routes passing through those links. Note
that this is fundamentally different from link-based congestion pricing, because riders have options to personally drive or choose
from multiple routes from ride-hailing services priced differently, namely voluntary participation.

In the simplistic network equilibrium theory, subsidy and surcharge can be equivalent, as both are economic instruments to
equalize generalized travel costs among travelers. However, we acknowledge their fundamental distinction when it comes to real-
world implementation. In this study, we only use subsidy, instead of surcharge, because subsidy is more likely to attract TNCs to
participate in this program.

We assume TNCs centrally provide routing options for ride-hailing vehicles, and the riders are willing to choose one of the
assigned routes based on three considerations: (1) With FOSC, riders taking deviating routes will receive compensations set by
TNCs; (2) TNCs can make the deviating routes even more appealing with higher compensations, if they receive subsidies from
public agencies that encourage routing going through links with high subsidies; and (3) Not every rider has to deviate. TNCs can
provide each rider with different route options, including the ‘‘shortest’’ route without compensations and deviated routes with
10
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compensations, and it is likely there are a sufficient number of riders deviating for some compensations when the compensations
are attractive.

Practically, ORHP would be hard to game. TNCs receive subsidies from public agencies. They need to provide vehicle traces as
n evidence, along with measurements on desired total travel time/delay (or time/delay reductions), in order to receive subsidies
rom links. Routing riders only to receive subsidies would not make sense, as TNCs’ service is a lot more costly then the subsidy and
iders would not appreciate any unnecessary deviation without the right compensations. Riders cannot game the system as well,
ecause the compensation they receive is merely a very small fraction of their fare.

.1. Bi-level formulation

The goal is for public agency to optimally distribute vehicles among all links/paths to minimize the total generalized system
ost, including the system travel time cost and the subsidy cost. ORHP can be regarded as a Stackelberg game. The public agency is
he leader who sets subsidies for ride-hailing services. Driving vehicles and ride-hailing vehicles are the followers. The ride-hailing
ubsidies affect the route choices of ride-hailing vehicles (on top of their desired FOSC behavior), which further affects the route
hoices of personal driving vehicles. By analyzing how all vehicles respond to ride-hailing subsidies, the public agency is able to set
nd leverage those ride-hailing subsidies to minimize the generalized system cost.
In particular, we design that a public agency would provide a subsidy of 𝜏𝑎 to TNC platform for any rider passing through the

link 𝑎 once. Note that this subsidy must be provided as part of the service fare, presumably substantially less than the original total
fare for each rider. With the ORHP in place, a TNC platform would route their ride-hailing vehicles by incorporating the added
benefits into FOSC. The ride-hailing routing problem (12) is modified as,

min
𝐟𝑅∈𝛺𝑅

𝐹𝐶(𝝉) =
∑

𝑎∈𝐴
𝑥𝑅𝑎 (𝜇𝑡𝑡𝑎(𝑥𝑎) − 𝜏𝑎) +

∑

𝑟

∑

𝑠

∑

𝑘
𝑓 𝑟𝑠,𝑘
𝑅 𝑑𝑟𝑠,𝑘 (23a)

s.t. Eqs (3) and (11) (23b)

here 𝜏𝑎 is the subsidy of link 𝑎 provided by the public agency for each ride-hailing trip using link 𝑎, provided with driving flow
𝐟𝐷. Then, the ORHP is given by the following bi-level formulation.

min
𝝉

𝑧 =
∑

𝑎
𝑥𝑎𝑡𝑎(𝑥𝑎) + 𝛾

∑

𝑎
𝑥𝑅𝑎 𝜏𝑎 (24a)

s.t. 𝜏𝑎 ≥ 0,∀𝑎 ∈ 𝐴 (24b)

Eqs. (3) (24c)

𝐟 (𝝉) is a solution of problems (4) and (23) given 𝝉 (24d)

where 𝛾 is a parameter for trade-off between system travel time and subsidy cost, and 𝝉 is the vectorized 𝜏𝑎. 𝛾 is a flexible parameter
to be set by the public agency. When 𝛾 is large, the goal is to use a small set of total subsidies in exchange for a small system
improvement comparing to FOSC. However, setting 𝛾 to small implying an aggressive strategy: a best system performance close to
SO is aimed, possibly at the price of high subsidies for the public agency.

Note 𝝉 is given and fixed when solving for 𝐟 (𝝉). Thus, 𝐟 (𝝉) can still be solved using Algorithm 3 by replacing 𝑐𝑟𝑠,𝑘𝑅 (𝐝) with 𝑐𝑟𝑠,𝑘𝑅 (𝐝, 𝝉)
which is given by,

𝑐𝑟𝑠,𝑘𝑅 (𝐝, 𝝉) =
∑

𝑎

(

𝜇𝑡(𝑡𝑎(𝑥𝑎) + 𝑥𝑅𝑎 𝑡
′
𝑎(𝑥𝑎)) − 𝜏𝑎

)

𝛿𝑟𝑠,𝑘𝑎 + 𝑑𝑟𝑠,𝑘 (25)

To summarize, ORHP involves one leader player, that is, the public agency, and two follower players, TNC and the personal
driving vehicles. The public agency aims to minimize the social cost of the whole network by setting up a link-based subsidy,
formulated in the set of Eqs. (24). TNC aims to maximize its profit by strategically routing its fleet to minimize the entire fleet cost,
formulated in Eq. (23). Personal driving vehicles follow the UE routing principle according to Eq. (4).

This paper considers two types of scenarios, including (1) system travel time minimization; and (2) generalized system cost
minimization. In the system travel time minimization scenario, the public agency aims to minimize system travel time regardless
the subsidy cost (i.e. 𝛾 = 0 in Eq. (24a)). This scenario gives an lower bound for the system travel time with ORHP, namely what
is the best system performance ORHP can achieve, provided with the current TNC penetration. For the generalized system cost
minimization scenario, the public agency makes a trade-off between a substantial benefit in system travel time and a reasonable
subsidy cost (i.e. 𝛾 > 0 in Eq. (24a)).

4.2. Solution algorithm for ORHP

The ORHP problem (24) is non-convex because the equilibrium constraint (24d) is nonlinear. It is difficult to guarantee a global
optimum or obtain a closed-form solution. Therefore, we developed a heuristic solution algorithm based on sensitivity analysis with
respect to flow and link-based subsidy, in which ∇𝝉𝑧 is calculated to update 𝝉 is iteratively.

To calculate ∇𝝉𝑧, we firstly calculate ∇𝝉𝐱 by extending the sensitivity analysis method in Yang and Huang (2005) to the multi-
𝑇 , 𝐱𝑇 )𝑇 . Sensitivity analysis of equilibrium evaluates the change in flow patterns with
11

class traffic assignment problems, where 𝐱 = (𝐱𝐷 𝑅
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a small perturbation in decision variables (i.e., subsidies). We conduct such sensitivity analysis on a small perturbation of subsidies
𝝉, with a given set of compensations 𝐝, as part of the iterative solving process.

Let 𝛥 =
(

𝛥𝐷 0
0 𝛥𝑅

)

and 𝛬 =
(

𝛬𝐷 0
0 𝛬𝑅

)

be the link/path and O–D/path incidence matrices. Note that only links with positive

flows and equilibrated paths (i.e., paths with minimum costs) are considered in the incidence matrices. Now, 𝐟 and 𝐱 denote an
equilibrium solution, and we have:

(

𝛥
𝛬

)

𝐟 =
(

𝐱
𝐪

)

(26)

Then, we only consider a maximum set of linearly independent paths in (𝛥𝑇 , 𝛬𝑇 )𝑇 , and the reduced vectors and matrices are
represented by ⋅̃. By the equilibrium condition and O–D demand conservation,

𝐜̃(𝐟 , 𝝉) − 𝛬̃𝑇 𝝅 = 0 (27)

𝛬̃𝐟 − 𝐪 = 0 (28)

where 𝝅 is the vector of the minimum path costs for two classes vehicles of all the O–D pairs. Take the derivative of above equations
respect with to 𝝉,

(

∇𝐟 𝐜̃(𝐟 , 𝝉) −𝛬̃𝑇

𝛬̃ 0

)(

∇𝝉 𝐟
∇𝝉𝝅

)

=
(

−∇𝝉 𝐜̃(𝐟 , 𝝉)
0

)

(29)

where ∇𝐟 𝐜̃(𝐟 , 𝝉) and ∇𝝉 𝐜̃(𝐟 , 𝝉) are calculated given 𝐝 is fixed.

∇𝐟 𝐜̃(𝐟 , 𝝉) =
(

𝛥𝑇
𝐷diag(⋯ 𝑡′𝑎(𝑥𝑎)⋯)𝛥𝐷 𝛥𝑇

𝐷diag(⋯ 𝑡′𝑎(𝑥𝑎)⋯)𝛥𝑅
𝛥𝑇
𝑅diag

(

⋯𝜇𝑡(𝑡′𝑎(𝑥𝑎) + 𝑥𝑅𝑎 𝑡
′′
𝑎 (𝑥𝑎))⋯

)

𝛥𝐷 𝛥𝑇
𝑅diag

(

⋯𝜇𝑡(2𝑡′𝑎(𝑥𝑎) + 𝑥𝑅𝑎 𝑡
′′
𝑎 (𝑥𝑎))⋯

)

𝛥𝑅

)

(30)

∇𝝉 𝐜̃(𝐟 , 𝝉) =
(

𝑍
−𝛥𝑇

𝑅

)

(31)

here 𝑍 denotes a zero matrix whose shape is same as 𝛥𝑇
𝐷. Let the inverse of the Jacobian 𝐉 in Eq. (29) be

𝐉−1 =
(

∇𝐟 𝐜̃(𝐟 , 𝝉) −𝛬̃𝑇

𝛬̃ 0

)−1

=
(

𝐵11 𝐵12
𝐵21 𝐵22

)

(32)

hen, from Eq. (29), we have

∇𝝉𝐱 = 𝛥∇𝝉 𝐟 = −𝛥𝐵11∇𝝉 𝐜̃(𝐟 , 𝝉) (33)

inally, we obtain the gradient of 𝑧 with regard to 𝝉,

∇𝝉𝑧 =
( 𝜕𝑧
𝜕𝐱

𝜕𝐱
𝜕𝝉

+ 𝜕𝑧
𝜕𝝉

)𝑇
(34)

where
𝜕𝑧
𝜕𝐱

=
(

⋯ 𝑡𝑎(𝑥𝑎) + 𝑥𝑎𝑡
′
𝑎(𝑥𝑎)⋯ ,⋯ , 𝑡𝑎(𝑥𝑎) + 𝑥𝑎𝑡

′
𝑎(𝑥𝑎) + 𝛾𝜏𝑎 ⋯

)

(35)
𝜕𝐱
𝜕𝝉

= ∇𝑇
𝝉 𝐱 (36)

𝜕𝑧
𝜕𝝉

=
(

⋯ 𝛾𝑥𝑅𝑎 ⋯
)

(37)

After calculation of the gradients, the set of subsidies 𝝉 is updated using the AdaGrad method, which is one of the most widely-used
stochastic gradient descent method and often improves convergence speed by updating parameters with adaptive step sizes (Duchi
et al., 2011). The proposed heuristic algorithm to solve the ORHP problem (24) is summarized in Algorithm 4.

Algorithm 4: Sensitivity analysis-based heuristic algorithm for ORHP
Initialization: Iteration 𝑛 = 0, given demands 𝐪𝐷 and 𝐪𝑅, initialize subsidies 𝝉0, a tolerance 𝜖, a maximum number of
iterations 𝑁
do

1. Given subsidies 𝝉𝑛, solve for FOSC equilibrium path flows 𝐟𝑛 using Algorithm 3
2. Given 𝐟𝑛, calculate gradient ∇𝝉𝑧 based on the sensitivity analysis
3. Update 𝝉𝑛 using AdaGrad
4. 𝑛 = 𝑛 + 1

while 𝑛 ≤ 𝑁 and ‖𝐱𝑅 ⊙ (𝝉𝑛 − 𝝉𝑛−1)‖2 > 𝜖
Output 𝝉𝑛 and 𝐟𝑛

For a single-class static traffic assignment problem, Yang and Huang (2005) prove the Jacobian 𝐉 is guaranteed to be invertible
with the assumption that the link travel time function is positive, first-order differentiable and strictly monotone increasing with
12
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regard to link flows. For a multi-class traffic assignment, this no longer holds, namely the Jacobian 𝐉 is no longer necessarily

invertible under the same assumption. If 𝐉 is not invertible, the system of linear Eqs. (29) has no or infinite solutions for
(

∇𝝉 𝐟
∇𝝉𝝅

)

. If

he system of linear equations in Eq. (29) is feasible, we can still obtain one feasible gradient using Moore–Penrose pseudo-inverse
f 𝐉.
Nevertheless, we propose the following assumption to guarantee that the Jacobian 𝐉 is invertible, which is mathematically more

ompelling while ensuring link travel time functions that capture traffic flow basics.

ssumption 3. Link travel time function 𝑡𝑎(𝑥𝑎) is a strictly monotone increasing and piece-wise linear function, ∀𝑎 ∈ 𝐴.

Note a piece-wise linear function can approximate any linear or nonlinear functions to any accuracy by adding intervals (Imamoto
nd Tang, 2008). Thus, Assumption 3 can be satisfied by approximating the empirical link travel time function with a piece-wise
inear function. With Assumption 3, we propose the following proposition.

roposition 4. Given Assumption 3 and the columns in (𝛥𝑇 , 𝛬̃𝑇 )𝑇 are linearly independent, the Jacobian, 𝐉 in Eq. (29) is invertible.

roof. To prove this theorem, it suffices to prove all the columns of 𝐉 are linearly independent. Suppose the columns of 𝐉 are linear
ependent, so we can find a nonzero vector 𝝀 = (𝝀𝑇1 ,𝝀

𝑇
2 )

𝑇 such that 𝐉𝝀 = 0, where the length of 𝝀𝑇1 equals to the number of paths
n 𝛬̃, and the length of 𝝀𝑇2 equals to the number of OD pairs in 𝛬̃. Then, we have

∇𝐟 𝐜̃(𝐟 , 𝝉)𝝀1 − 𝛬̃𝑇 𝝀2 = 0 (38)

𝛬̃𝝀1 = 0 (39)

ultiply Eq. (38) by 𝝀𝑇1 , and we have

𝝀𝑇1 ∇𝐟 𝐜̃(𝐟 , 𝝉)𝝀1 − 𝝀𝑇1 𝛬̃
𝑇 𝝀2 = 0 (40)

ubstitute Eq. (39) into above equation, and we obtain

𝝀𝑇1 ∇𝐟 𝐜̃(𝐟 , 𝝉)𝝀1 = 0 (41)

nder Assumption 3, within each interval, the first derivative and the second derivative of 𝑡𝑎(𝑥𝑎) are the slope and 0 respectively.
hen differentiating 𝑡𝑎(𝑥𝑎) at endpoints of intervals, it is reasonable to replace the sub-gradients with either slope of two sides.
hus, ∇𝐟 𝐜̃(𝐟 , 𝝉) is given by

∇𝐟 𝐜̃(𝐟 , 𝝉) =
(

𝛥𝑇
𝐷diag(⋯ 𝑡′𝑎 ⋯)𝛥𝐷 𝛥𝑇

𝐷diag(⋯ 𝑡′𝑎 ⋯)𝛥𝑅
𝛥𝑇
𝑅diag

(

⋯𝜇𝑡𝑡′𝑎 ⋯
)

𝛥𝐷 𝛥𝑇
𝑅diag

(

⋯ 2𝜇𝑡𝑡′𝑎 ⋯
)

𝛥𝑅

)

(42)

ne can multiply the driving path cost function in Eq. (7) by the constant 𝜇𝑡, which makes no difference with the behaviors of
riving vehicles as driving demands are fixed. Then, ∇𝐟 𝐜̃(𝐟 , 𝝉) becomes

∇𝐟 𝐜̃(𝐟 , 𝝉) =
(

𝛥𝑇
𝐷diag(⋯𝜇𝑡𝑡′𝑎 ⋯)𝛥𝐷 𝛥𝑇

𝐷diag(⋯𝜇𝑡𝑡′𝑎 ⋯)𝛥𝑅
𝛥𝑇
𝑅diag

(

⋯𝜇𝑡𝑡′𝑎 ⋯
)

𝛥𝐷 𝛥𝑇
𝑅diag

(

⋯ 2𝜇𝑡𝑡′𝑎 ⋯
)

𝛥𝑅

)

(43)

hen, Eq. (41) implies 𝛥𝝀1 = 0, which, combined with Eq. (39), implies (𝛥𝑇 , 𝛬̃𝑇 )𝑇 𝝀1 = 0. Since the columns in (𝛥𝑇 , 𝛬̃𝑇 )𝑇 are linearly
ndependent, 𝝀1 = 0. Substituting 𝝀1 = 0 into Eq. (38) implies 𝛬̃𝑇 𝝀2 = 0. The rows of 𝛬̃ are linearly independent, so 𝝀2 = 0. Therefore,
= 0, which contradicts with the fact that 𝝀 is a nonzero vector. □

. Numerical examples

In this section, we conduct numerical experiments of two networks including Sioux Falls network and Pittsburgh network
hown in Fig. 2. Sioux Falls network is obtained from the GitHub repository ‘‘Transportation Networks for Research’’ https:
/github.com/bstabler/TransportationNetworks. It has 24 nodes, 76 links and 58 OD pairs. Pittsburgh network is obtained from
he planning model from Southwestern Pennsylvania Commission, which includes the proximity of downtown area of Pittsburgh. It
as 247 nodes, 573 links and 247 OD pairs.
As Proposition 4 shows, the Jacobian of sensitivity analysis is guaranteed to be invertible when the link travel time function is
piece-wise linear function that monotonically increases w.r.t. link flows. For simplicity, we use the following linear cost function
or Sioux Falls network for rigorous tests of the theory.

𝑡𝑎 = 𝑡𝑎,0

(

1 + 𝛽𝑎

(

𝑥𝑎
𝑠𝑎

))

(44)

where 𝑡𝑎,0 and 𝑠𝑎 are the free flow travel time and the capacity of link 𝑎, and 𝛽𝑎 is the parameter of the linear cost function of link
𝑎.

In Pittsburgh network, we consider a more practical link travel time function, namely the BPR functions.

𝑡𝑎 = 𝑡𝑎,0

(

1 + 0.15
(

𝑥𝑎
)4

)

(45)
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https://github.com/bstabler/TransportationNetworks


Transportation Research Part C 155 (2023) 104284Z. Ke and S. Qian
Fig. 2. Networks for numerical experiments.

Besides ride-hailing trips providing services to riders, idle and pickup flows generated by ride-haling vehicles also contribute to
network congestion. We assume idle drivers are more likely to cruise around areas with high ride-hailing demands. Therefore, idle
flows are generated proportional to the ride-hailing service trips. One can set the OD locations of the idle flows and the volume of
the idle flows to reflect various searching strategies. In this study, the full list of OD locations of the idle flows is set to be same as
the ride-hailing service trips, and the volume of idle flows is proportional to the ride-hailing trips for simplicity. The pickup flows
are regarded as flows from the current location to the pickup location (i.e., the origin of the ride-hailing flows). The trip matching
strategies are assumed to be constant and exogenous. Then, for each ride-hailing flow, we generate a pickup flow whose volume
is proportional to the ride-hailing service trips. The destination of the pickup flow is the origin of the ride-hailing flow, while the
origin of the pickup flow is sampled randomly from other nodes.

When solving the mixed equilibrium, we assume the idle flows and pickup flows, for their respective O–D pairs, follow the UE
principle to choose respective routes. For idle cruising flows, we divide the whole cruising tours into several small trips that can be
modeled by UE route choices. For the pickup flows, we expect that the TNCs aim to minimize the passenger waiting time, so the
pickup vehicles are assigned with shortest paths (i.e., follow the UE). Those idle and pick up flow do not carry passengers, and thus
are not impacted by fleet optimal routing or ORHP.

Ride-hailing services may induce more travel demands or may substitutes private vehicle trips in some cases. Though the effect
may vary by locations, in this study, we assume the total travel demands are constant among various ride-hailing penetration rates,
since the primary consideration of our study is to understand the effectiveness of fleet-optimum behavior and our proposed new
management scheme ORHP.

5.1. Impacts of ride-hailing vehicles on Sioux Falls network

To study the impacts of ride-hailing vehicles, we first analyze the mixed equilibrium state of the network without any
interventions from the public agency. The driving vehicles always adapt to the UE routing behavior after day-to-day experience,
while ride-hailing vehicles adopt UE or FO fleet behavior. To benchmark, we also include an ideal case where all ride-hailing vehicles
follow SO fleet behavior.

Empirical studies indicate ride-hailing services are more prevalent in the downtown area (Marquet, 2020), so we compare a
scenario with a homogeneous penetration rate and a scenario with a heterogeneous penetration rate. The homogeneous penetration
rate means the ride-hailing demand ratio increases uniformly across all OD pairs, while the heterogeneous penetration rate means
the penetration rates among OD pairs vary. In this case, we assume the penetration rate of the OD pairs that start or end in the
downtown area is twice as high as the penetration rate of the other OD pairs in the heterogeneous penetration rate scenario.

5.1.1. Network congestion
We first show the impacts of ride-hailing vehicles on system total travel time with different ride-hailing fleet behaviors and

ride-hailing demand ratios. Conceivably, Fig. 3 shows that, for every penetration rate, ME-SO leads to the minimum system total
travel time given the premise of all driving vehicles choosing the SO paths that benefit the system the most. If ride-hailing vehicles
14
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Fig. 3. System total travel time of Sioux Falls network with respect to demand ratios.

Fig. 4. Fleet travel time reduction from UE to ME-FO or ME-FOSC of Sioux Falls network with different demand ratios.

ollow FO or FOSC fleet behavior, the system total travel time is smaller than that under UE (i.e. when all the vehicles adopt
he UE travel behavior), and the reduction of total travel time is more pronounced as ride-hailing vehicles penetrate the demand
ore. Generally, ME-FO leads to lower system total travel time than ME-FOSC, implying the system benefits of having a significant
ortion of vehicles being TNC fleet would be discounted if TNC considers equity and service quality among all its riders. For each
leet behavior, the total travel time generally increases as the penetration rate increases because, besides the ride-hailing trips that
ervice riders, the ride-hailing vehicles generate idle flows and pickup flows that also contribute to network congestion to some
egree. Note these findings are consistent with the homogeneous penetration rate scenario and the heterogeneous penetration rate
cenario.

.1.2. Fleet travel time of ride-hailing vehicles
Fleet total travel time of all ride-haling vehicles largely determines the operating costs and quality of TNCs, and thus we examine

he this performance metric for TNCs. Theoretically, among UE, FO and FOSC fleet behaviors, the UE fleet behavior leads to the
aximum fleet travel time because there is no cooperation among ride-hailing vehicles, while the fleet travel time is minimized
hen a FO fleet behavior is adopted. Fig. 4 shows, in both penetration scenarios, the fleet travel time of FO fleet behavior and

FOSC fleet behavior when compared with the UE fleet behavior. Similar to FO behavior, FOSC behavior also significantly reduces
the fleet total travel time because the ride-hailing vehicles behave cooperatively. In addition, the reduction of fleet total travel time
15
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Fig. 5. Travel time variability in Sioux Falls network with respect to demand ratios (for better visualization, only vehicles with loaded unfairness larger than 1
re included).

ith FO behavior or FOSC behavior become more pronounced as the total number of ride-hailing vehicles grows. Note that a lower
leet travel time implies a lower average ride-hailing travel time, which is also desirable for ride-hailing passengers.
Comparing the results with the homogeneous penetration rate and the heterogeneous penetration rate, TNC can save more fleet

ravel time in the heterogeneous penetration rate scenario. This finding indicates OD pairs have heterogeneous impacts on fleet
ravel time reduction. Thus, TNC may further reduce fleet travel time by strategically allocating fleet vehicles to certain O–D pairs
hat attain more benefits than others.

.1.3. Fairness: Travel time variability among ride-hailing passengers
In addition to the average ride-hailing travel time, the travel time variability among ride-hailing passengers within the same

D pair also affects the mobility service quality, as well as fairness among riders. To measure the travel time variability among
ide-hailing vehicles, we use ‘‘loaded unfairness’’ defined by Jahn et al. (2005). Loaded unfairness for a vehicle is the ratio of its
experienced travel time to the experienced travel time of the fastest vehicle for the same OD pair. Fig. 5 plots the loaded unfairness
of ride-hailing vehicles with FO fleet behavior or with FOSC fleet behavior. With FO fleet behavior, when TNC considers solely the
total fleet time, the loaded unfairness seems quite large, and it expands as the ride-hailing fleet size grows. On the contrary, FOSC
behavior, if adopted by TNC, leads to a much smaller loaded unfairness value than the FO behavior, and the loaded unfairness is
well upper bounded even if TNC accounts for all vehicles in the network. Besides, with FOSC fleet behavior, ride-hailing vehicles
with loaded unfairness greater than 1 will receive compensation for their deviation. Note the compensation amount is relatively
low compared to the total fare for most ride-hailing trips. The portion of compensation included in the ride-haling fare is calculated
as (loaded unfairness − 1) ∗ 100%. Even with the ride-hailing penetration rate of 100%, the compensation makes up less than 20%
of the ride-hailing fare for all trips, and less than 10% for 75% of all trips. Therefore, FOSC leads to a less variable travel time and
overall higher service quality among all ride-hailing riders than FO. Overall, the loaded unfairness in the heterogeneous penetration
rate scenario is higher than in the homogeneous penetration rate scenario. This finding indicates TNC deviates riders more to attain
the minimum fleet travel time in the heterogeneous penetration rate.

5.2. ORHP on the Sioux Falls network

The proposed ORHP is tested on Sioux Falls network with the ride-hailing demand ratio at 50%. As for the penetration rate, we
assume a homogeneous penetration rate for ORHP to avoid being lengthy. The system travel time minimization and the generalized
system cost minimization are implemented.

5.2.1. System travel time minimization
The convergence of system total travel time and the subsidy cost is shown in Fig. 6. The system total travel time converges

quickly, and the ultimate value is very close to the optimal system state in which all ride-hailing vehicles follow SO fleet behavior.
This implies that with a substantial subsidy from the public agency, the TNC service can be regulated effectively towards the most
desired system optimum state.

Fig. 7 shows how ORHP affect the link volume-to-capacity (V/C) ratios by imposing subsidies on links. When no subsidy is
applied (i.e. ME-FOSC), links 17–19 and 10–16 are the most congested as indicated by Fig. 7(a). ORHP sets the highest subsidies
16
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Fig. 6. System total travel time and subsidy cost of Sioux Falls network with ORHP in the system travel time minimization scenario (𝛾 = 0).

on links 10–9, 9–8, and 8–16, which are not congested and geographically close to those most congested links (see Fig. 7(b)). As a
result, V/C ratios of the most congested links are substantially reduced, and V/C ratios of the those less congested links climb (see
Fig. 7(c)). Overall, ORHP improves the network efficiency by leveraging link-based subsidies to balance the flow between congested
and no-so-congested links. Comparing ORHP to the ME-SO (see Figs. 7(c) and 7(d)), the V/C ratio changes by ORHP are quite similar
to the V/C ratio changes by ME-SO, which indicates ORHP can attain almost optimal network performance on Sioux Falls network,
and the proposed Algorithm 4 is able to solve ORHP efficiently.

Due to the non-convexity of the ORHP, the solution may lead to multiple local optima, we examine solutions of the ORHP with
different starting points. At the initialization, for each link, a subsidy is generated through random sampling from [0, 4], which
provides ORHP an initial solution to iterate. Fig. 8 plots the results of ORHP with different initial values of subsidies. Most of these
converged solutions are similar. All three converged solutions are consistent in the result that links 10–9, 9–8, and 8–16 are the most
subsidized links. Though differences can be observed on several links (e.g., 11–4), they can be attributed to the slow convergence
sourcing from the low V/C ratios and a very small impact on the total travel time. Reasonably, we can conclude that even with
totally different initial values, ORHP in this test network converges to a small neighborhood of a local optimum and possibly a
global optimum. Practically, the observed differences with different initial values seem insignificant.

5.2.2. Generalized system cost minimization
When minimizing the generalized system cost, the parameter 𝛾 quantifies the trade-off between the system travel time cost and

the subsidy cost. We investigate how the value of 𝛾 leads to a desired subsidy in exchange for a guaranteed system performance
improvement.

The generalized cost consists of the system travel time and the subsidy cost multiplied by 𝛾. As Fig. 9(a) shows, the generalized
cost drops and converges quickly with various values of 𝛾. A less 𝛾 implies an increased investment from the public agency, and
leads to an improved system performance. Fig. 10 plots the Pareto frontier for the system travel time and the subsidy cost. If the
public agency plans to reduce the system travel time to a greater degree, more substantial subsidy cost is needed. As the reduction
of system travel time is pushed towards the maximum point (𝛾 = 0), the marginal efficiency of subsidies drops. A most cost-effective
subsidy, in this case, falls between $38,701 to $136,584 when 𝛾 is between 0.1–0.4, and the resultant total travel time reduction is
from 16,813 h to 30,299 h.

The subsidy values on all links with selected values of 𝛾 are compared in Fig. 11. Generally, the spatial patterns of the subsidy
look fairly consistent with respect to the values of 𝛾. With a greater 𝛾, the values of the subsidies are smaller, and the number of
those subsidized links is less too. The overall subsidy is proportional among all links.

The path-level subsidies (i.e., subsidies for ride-hailing trips) under different values of 𝛾 are plotted in Fig. 12. As 𝛾 grows, the
average path subsidy for each OD pair decreases substantially and the path-level subsidy can be limited to be under $5 with 𝛾 ≥ 0.4.
In this case, the number of subsidized OD pairs is also small. With 𝛾 ≥ 0.4, for every ride-hailing trip, the ratio of the path subsidy
to the ride-hailing fare is lower than 0.3, and for over 80% of ride-hailing trips, the ratio is below 0.1. These findings suggest that
if the budget of the public agency is limited, relatively small subsidies imposed on a small fraction of links or OD pairs may suffice
17
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Fig. 7. V/C ratios and subsidies for all links in the Sioux Falls network, when minimizing solely the system travel time (𝛾 = 0).

5.3. Pittsburgh network

In this subsection, we analyze the impacts of the ride-hailing vehicles and the proposed ORHP on a larger network (i.e. the
Pittsburgh network in Fig. 2(b)). The penetration rate is assumed to be homogeneous among OD pairs for simplicity.

5.3.1. Impacts of ride-hailing vehicles on Pittsburgh network
The equilibrium states of Pittsburgh network with the ride-hailing vehicles following different fleet behaviors are compared in

Fig. 13. As shown in Fig. 13(a), when the ratio of ride-hailing vehicles is greater than or equal to 0.8, the system travel time of
ME-FO is identical to ME-SO. This implies that 80% penetration (uniformly applied to all O–D pairs in this example) of TNC fleet
following the fleet optimum in the Pittsburgh network is able to attain the SO network state for everyone, as if every vehicle intends
to route for SO. Among ME-FO, ME-FOSC and ME-SO, the system travel time of ME-FOSC is the greatest consistently under various
values of penetration rates, implying TNC would have to trade some marginal system efficiency for rider fairness (ultimately the
18
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Fig. 8. Results of the ORHP with different initial subsidies on the Sioux Falls network. (The initial subsidies are generated randomly with certain random seed.).

Fig. 9. Costs in Sioux Falls network under ORHP, when minimizing total generalized cost (𝛾 > 0).

Fig. 10. Pareto frontier for system travel time and subsidy cost on Sioux Falls network.

overall service quality). For each fleet behavior, the total travel time increases as the penetration rate increases because of extra
idle and pickup flows generated by ride-hailing fleet. FOSC fleet behavior is able to reduce the fleet travel time to the extent very
close to the FO fleet behavior, indicated in Fig. 13(b). On the other hand, FO fleet behavior would have relatively higher loaded
unfairness among ride-hailing vehicles, which can be effectively constrained when TNC adopts the FOSC fleet behavior. Generally,
these results are consistent with the results from the Sioux Falls network.
19
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Fig. 11. Link-based subsidy in Sioux Falls network when minimizing the total generalized cost (𝛾 > 0).

.3.2. ORHP on the Pittsburgh network
The performances of ORHP on the Pittsburgh network are shown in Fig. 14. When minimizing solely the system travel time

i.e. 𝛾 = 0), though the total travel time does not reach the system optimal value, the total travel time declines quickly along those
terations (indicated by Fig. 14(a)). As shown in Fig. 14(b), the generalized cost decreases and converges quickly under various
alues of 𝛾. The Pareto frontier for system travel time and subsidy cost on Pittsburgh network is plotted in Fig. 14(c), which depicts
trade-off between subsidy cost and system performance improvement, similar to that of the Sioux Falls network. In the Pittsburgh
etwork, it seems a most cost-effective subsidy would be around $1000 when 𝛾 is around 0.3. It can reduce over 50% of the
aximum travel time savings from UE to SO with only a small amount of subsidy.
To investigate how ORHP affects the vehicle routing behavior, V/C ratios and subsidies for all links in the Pittsburgh network

re shown in Fig. 15. The ORHP sets subsidies to those under-congested links that are adjacent to those over-congested links (shown
n Figs. 15(a) and 15(b)). The V/C ratio changes from ME-FOSC to ORHP show a pattern similar to those from ME-FOSC to ME-SO.
herefore, we conclude that the proposed ORHP can effectively improve the efficiency of the Pittsburgh network by allocating
ehicles between over-congested links and under-congested links, all through TNC vehicles only. Figs. 16 and 17 also indicate the
20

ystem efficiency can be improved by imposing pretty small subsidies onto a small portion of links and OD pairs.
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Fig. 12. Path-level subsidies on Sioux Falls network.

Fig. 13. Impacts of ride-hailing vehicles on Pittsburgh network.

Fig. 14. Performances of ORHP on the Pittsburgh network.
21
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Fig. 15. Spatial distribution of V/C ratios/ratio changes and subsidies of Pittsburgh network in the system travel time minimization scenario (𝛾 = 0).

Compared with the Sioux Fall network, the Pittsburgh network has more alternative paths whose travel time is slightly larger
than the shortest path. As a result, a small amount of subsidies are able to induce ride-hailing vehicles to choose alternative paths.
This implies that the subsidy can effectively encourage ride-hailing vehicle deviating when the network has a number of alternative
paths with close travel time/costs.

6. Conclusion and future research

This paper studies the impacts of a fleet of vehicles on network performance and proposes a novel strategy for public agencies
to price/regulate those fleet vehicles, in exchange for system improvement. In particularly, we use TNCs as an example of fleet
vehicles, but the concept works for any fleet as long as it has sufficient market penetrations. First, impacts of TNCs vehicle routing
are estimated by which fleet behavior is modeled. Different fleet behaviors, include UE, fleet optimum (FO) and SO, are compared.
A fleet-optimal behavior with service constraint (FOSC) is proposed for TNCs to ensure fairness among riders and service quality.
With this FOSC fleet behavior, TNC assign routes to riders to minimize fleet cost. To maintain service quality and long-term profits,
TNC pay compensations (oftentimes a small fraction of fares) to riders who are willing to deviate to some degree. We also propose
a heuristic algorithm to solve the mixed equilibrium of UE and FOSC.

We propose a novel Optimal Ride-hailing Pricing (ORHP) scheme for public agencies as an efficient manner to intervene ride-
hailing online platforms. The essential idea of ORHP is to regulate and subsidize TNCs, in exchange for guaranteed network
performance improvement. In ORHP, public agencies set the value of a subsidy for each link for any TNC rider using this link. The
subsidies are provided to TNCs, not directly to riders. TNC receives subsidies, and determines the best way to provide compensations
for each rider who deviates from his/her ‘‘shortest’’ route. TNC’s ultimate goal is to reduce their total cost, including total fleet vehicle
travel time and total compensations, subtracted by the total subsidy received from public agencies. We argue that such a system
can be hard to game by TNCs or riders. The ORHP is likely less controversial than other pricing schemes, since it calls for voluntary
22
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Fig. 16. Link-based subsidy in Pittsburgh network when minimizing the total generalized cost (𝛾 > 0).

Fig. 17. Path-level subsidies on Pittsburgh network.
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participation of travelers, provided with multiple route options. Because it is built into the TNCs’ fare system, it is cost effective
to implement and may eliminate scamming behavior that may occur in other credit schemes. The ORHP benefits both the public
agencies for effectively reducing system cost and TNC for being more profitable.

ORHP is formulated as a bi-level optimization problem. The upper level decides optimal link-based subsidies for ride-hailing
ehicles, and the lower level solves the mixed equilibrium of fleet vehicles and driving vehicles given link-based subsidies. A solution
lgorithm for ORHP is proposed based on sensitivity analysis for multi-class vehicles.
Findings from numerical examples of Sioux Falls network and Pittsburgh network are encouraging:

• If ride-hailing vehicles follow FO or FOSC fleet behavior, the total travel time is lower than UE but higher than ME-SO. The
savings of total travel time from UE to ME-FO or ME-FOSC are more pronounced when the penetration of the ride-hailing
vehicles is higher.

• Compared with FO, FOSC leads to higher total travel time and total fleet travel time. However, FOSC ensures fairness among
ride-hailing riders. Compared with UE fleet behavior, FOSC can effectively reduce fleet travel time through cooperative routing.

• ORHP reduces the total travel time by balancing traffic on both over-congested links and under-congested links. With ORHP,
under-congested links close to over-congested links are set subsidies, such that traffic on the over-congested links would take
those under-congested links alternatively. Consequently, links with high V/C ratios in ME-FOSC have lower V/C ratios under
ORHP, whereas some links with low V/C ratios in ME-FOSC have higher V/C ratios under ORHP.

• With small subsidies implemented onto a small portion of links, ORHP suffices to efficiently reduce the system travel time.
This implies that ORHP can effectively incentivize TNCs to improve total system performance at a small cost.

• The proposed solution algorithm based on sensitivity analysis for ORHP is efficient. On Sioux Falls network, the system travel
time almost reaches the optimal value in the system travel time minimization scenario (i.e. 𝛾 = 0), and the generalized cost
converges quickly in the generalized cost minimization scenario (i.e. 𝛾 > 0). On Pittsburgh network, the cost still declines and
converges quickly.

This paper is only a start to explore how fleet vehicles with significant market power can be leveraged to improve transportation
ystem. In order to encapsulate the main effect of traffic routing by pricing ride-hailing vehicles, we simplified the demand model
o assume exogenous trips induced by ride-hailing vehicles’ idling and pickup flow. It is evident that those idling and pickup flow
ould also be dependent on the pricing that would in turn alter travelers’ demand and drivers’ choices. We fully acknowledge
his simplification is a limitation of the current work. What is potentially promising is that, if those idling and pickup flow are
roportional to service trips, the novel ORHP can effectively improve the system performance with the presence of a small fraction
f ride-hailing vehicles. In practice, some regulations or pricing strategies can be imposed to limit those ride-hailing deadweight
oss trips. In addition, our findings indicate that under arbitrary mixture of exogenous demand of private and ride-hailing vehicles,
RHP can effectively improve system performance with a small amount of subsidy paid to TNC platforms, which leads to a win–win
trategy for all players: TNC, non-TNC private drivers and TNC riders. This finding is based on the simplification of the ride-hailing
rip and demand model, but it is reasonably expected that the effect would remain, with some variations, even if the deadweight
oss trips are present to some extent. For future study, we suggest taking into consideration passengers’ modal choices between
rivate driving and ride-hailing, and TNC choices in matching and pickup strategies (Ban et al., 2019). Modeling such endogenous
ide-hailing trips and pickup strategies can further improve model realism and potentially provide a more practical direction to
nhance the ORHP framework.
In particular, the fleet dispatch policies in Xu et al. (2021) can be considered. Another immediate extension would be to consider

eterogeneous values of time (VOT) of passengers in future research, as riders may value compensations differently depending on
heir departure time, origins and destinations. TNC can estimate passenger VOTs with historical trip data. A better estimate of VOTs
ould help a more accurate setting of subsidies and VOT-varying compensations. In addition, additional networks with various
emand scenarios would be tested for ORHP.
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Fig. 18. Convergence results of Algorithms 1, 2, and 3 for Sioux Falls network with 𝛾 = 0.5.

Fig. 19. Convergence results of Algorithms 1, 2, and 3 for Pittsburgh network with 𝛾 = 0.5.

Appendix

In the appendix, we provide the convergence results of Algorithms 1, 2, and 3 with the homogeneous penetration rate and 𝛾 = 5.
Note the convergence results with other values of 𝛾 are almost identical with 𝛾 = 0.5 (See Figs. 18 and 19).
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