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Abstract. Connected technologies have engendered a paradigm shift in mobility systems
by enabling digital platforms to coordinate large sets of vehicles in real time. Recent research
has investigated how a small number of connected vehicles may be coordinated to reduce
total system cost. However, platforms may coordinate vehicles to optimize a fleet-wide ob-
jective which is neither user nor system optimal. We study the behavior of optimized fleets
in mixed traffic and find that, at small penetrations, fleets may worsen system cost relative
to user equilibrium, and provide a concrete example of this paradox. Past a critical penetra-
tion level, however, optimized fleets reduce system cost in the network, up to achieving sys-
tem optimal traffic flow, without need for an external subsidy. We introduce two novel
notions of fleet-optimal mixed equilibria: critical fleet size for user equilibrium (CFS-UE)
and critical fleet size for system optimum (CFS-SO). We demonstrate on the Sioux Falls and
Pittsburgh networks that 33% and 83% of vehicles, respectively, must participate in the fleet
to achieve system optimum. In Pittsburgh, we find that, although fleets permeate the net-
work, they accumulate on highways and major arterials; the majority of origin-destination
pairs are either occupied exclusively by users or by the fleet. Critical fleet size offers regula-
tors greater insight into where fleet and system interests align, transportation planners a
novel metric to evaluate road improvements, and fleet coordinators a better understanding
of their efforts to optimize their fleet.
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1. Introduction

The central claim of this paper is that groups of vehicles
coordinated to achieve a group-level objective have sig-
nificant and diverging impacts on total travel cost on
the road network. On the one hand, vehicle coordina-
tion may increase total travel cost on the network. On
the other hand, if deployed on certain origin-destination
pairs in sufficient volume, a fleet can reduce system cost
on the network, up to achieving the system optimal
(SO) network flow. In this work, we consider the static
network effect of a single fleet that routes its vehicles in
a fleet optimal (FO) manner to minimize the total fleet
travel cost in mixed traffic with individual vehicles who
seek to minimize their own travel cost.

Technological advances have allowed mobility and
information service providers to influence traveler deci-
sion making in real time and on an unprecedented scale.
Ride-sourcing vehicles, connected and autonomous
vehicles, vehicles using real-time navigation devices,
and vehicles using carpool matching services are all
examples of what we call ad hoc fleets currently operat-
ing on road networks. We refer to the platforms who

coordinate ad hoc fleets interchangeably as “service
providers” or “fleet coordinators.”

It is often in the interest of the service to coordinate
the vehicles in their fleet to advance a service-level goal
that may not always align with the goal of an individual
user. In this work, we examine the goal of minimizing
average fleet travel cost or, equivalently, travel time.
This is perhaps the simplest fleet-level goal lying in the
intersection of plausible and interesting fleet behavioral
principles; it is by no means the only one.

Ride-sourcing platforms like Uber and Lyft coordi-
nate drivers in a variety of ways to benefit the platform.
Matching riders and drivers on the Uber platform, for
example, is optimized in batches over a local fleet (Uber
Technologies 2022). With the same information, an indi-
vidual driver could likely find a better match than the
one they were assigned precisely because the matching
was done to minimize a fleet level metric rather than
equalize a driver level metric. Minimizing travel time in
particular is an important existing goal of strategy at
Uber. For a fixed demand and fixed driver pool, quicker
service means increased capacity and higher level of
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service, which in turn can demonstrate the value of the
platform to new riders and drivers. In another example,
Uber uses “pickup spots” to reduce congestion among
Uber vehicles in small areas of high demand. Many air-
ports, for example, have dedicated entire wings of near-
terminal parking structures to coordinate ride-hailing
pickups. This is fundamentally a fleet (and likely sys-
tem) optimal rather than user optimal solution: For each
individual rider-driver pair, terminal curb-side pickup
would offer travel-time savings, but measured across
the fleet, organized parking lot pickups offer less total
time wasted.

Real-time navigation systems with substantial user
pools like Google Maps also have the means and moti-
vation to induce FO behavior. Conventional reasoning
among network equilibrium theorists is these systems
will lead to a user equilibrium (UE) by providing trave-
lers with accurate day-to-day traffic information to find
their least cost route. However, the goal of Google Maps
is to generate revenue. It will only help users find least
cost paths insofar as it drives ad revenue: by keeping
users on the platform. In this light, UE behavior is but
one of many possible results of Google Maps use; FO is
another possibility with compelling rationale. Google
Maps currently balances several factors in selecting
routes including travel time, future predicted traffic,
emissions (i.e., “green routes”; Alcantara 2021), road
quality, directness, and safety, among others (Lau 2020).
The fact that Google Maps is predicting traffic while
simultaneously directing a subset of it means that it has,
intentionally or not, answered the question: How will
our traffic predictions take into account the directions
provided? If the predictions do not take into account the
directions at all, then the predictions will be inaccurate
when a large volume of travelers use the service. If they
do, then the two should be mutually consistent: the traf-
fic predictions used to generate the directions remain
accurate when the traffic volume of users following
those directions is fully incorporated into traffic predic-
tion. There are many models that achieve mutual consis-
tency, and FO is a particularly compelling one. Under
FO, because the fleet rather than the individual cost is
minimized, the directions are not always fair: some
users end up on better routes than others, but its users
are, on average, better off than they otherwise would
have been. For travelers who travel many origin-
destination pairs over their lifetime on the platform, this
on-average benefit is what matters. However, Google
Maps has a great deal of flexibility in how it presents
routes to users so that it may not be obvious to a user, nor
may they care, and is in fact very difficult to validate, that
their route is not best. Green routes are used by many on
the platform even though they are explicitly labeled as
being slower than alternative routes. FO in this setting
offers a competitive advantage to real-time navigation
providers with large user pools: In the same way that

large firms negotiate lower unit prices, these services can
extract lower unit travel costs via coordination. For users
then, Google Maps may be able to offer them lower travel
costs on average than individuals and competitors
with smaller market share, thereby keeping users on
its platform.

In short, fleet coordinators may, and in many cases
already do, influence the behavior of their fleets to
improve a metric computed over the fleet for the benefit
of the service. In this work, we take this metric to be the
total travel cost of the fleet and present the system-level
implications of its use. Travelers who minimize travel
time when driving alone may opt to give up their ability
to choose their own route in return for some benefit. In
the case of ride-sourcing, this benefit is the ability to use
one’s time more productively. In the case of real-time
navigation, the benefit is the ability to follow directions
instead of keeping track of directions in one’s head. In
both cases, the service offers a benefit that makes the
traveler more flexible in terms of the travel time of the
routes they are willing to accept. From the perspective
of the platform, this flexibility is an opportunity to pro-
vide acceptable routes that further a business goal. We
find travel time minimization in this context to be a par-
simonious choice. In minimizing total fleet travel time,
the platform uses its market power to squeeze to extract
smaller average travel costs, possibly at the expense of
other road users. The average travel time minimization
is a clear benefit to the fleet coordinator but is also an
attractive proposition to many road users who might
not benefit on every origin-destination (OD) pair but
on average come out ahead. For users of ride-hailing
services and real-time navigation devices who in gen-
eral will traverse many different OD pairs on the net-
work, this on-average travel time benefit, in addition to
the nontravel time benefits previously discussed, present
a compelling case for the adoption of the particular ser-
vice. This is especially notable in light of the subscription
model ride-hailing companies like Uber are pursuing,
whereby users may opt in to a monthly fee to gain access
to platform benefits. Regardless, platforms who coordi-
nate FO behavior across their fleet can pass total travel
time savings onto their users via incentive schemes. The
design and evaluation of such schemes are out-of-scope
for this work but are investigated in detail in upcoming
research. This paper illustrates and highlights the impor-
tance of considering fleet’s goals in system-level planning
and operation, and the methodology and solutions can
be extended to incorporate other system-level metrics in
future work.

If ad hoc fleets are to remain a fixture on road net-
works, how should transportation planners understand
and anticipate their use of transportation infrastructure?
For example, in analogy to oligopoly models in econom-
ics, if a service provider wished to leverage its market
power to extract a better deal on travel cost from the
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network via route choice coordination of its fleet, what
would happen to network efficiency? Furthermore, are
there network designs that align the interests of the fleet
and society at large? By that same token, fleet coordina-
tors also have an interest in understanding the network
impacts of coordinating their fleet: what discount on
travel cost does their market power allow them to
extract? Perhaps there is an opportunity for service pro-
viders to align their goals with traffic managers or pass
congestion-relief incentives to riders and drivers. Both
the identification of such opportunities and the mea-
surement of their benefits rely on a framework for
understanding how vehicles with fleet-level goals and
those with individual goals interact on a network.

The remainder of this paper is organized as follows.
Section 2 examines the line of inquiry in which this
work participates while also placing our work in the
context of other perspectives on the relationship bet-
ween ad hoc fleets and total system cost. Section 3 intro-
duces the notation and fundamental concepts used
throughout this paper. Section 4 presents an example of
the “fleet optimality paradox,” in which the presence of
a fleet increases total system travel time relative to UE. It
is followed by examination of conditions under which
fleets do improve total system travel time. In Section 5,
we introduce two important mixed equilibria: the smal-
lest fleet to induce SO, termed the critical fleet size for
SO (CFS-S0), and the largest fleet to induce UE, termed
the critical fleet size for UE (CFS-UE). CFS-SO and CFS-
UE are examined analytically in a parallel network.
Solution methodologies are then developed to solve
both CFS-SO and CFS-UE in general networks. Section 6
presents the critical fleet size solution on two networks
and provides an analysis of the results. Section 7 dis-
cusses our findings, outlines potential areas of future
research, and discusses the relevance of CFS-SO and
CFS-UE as a practical tool for transportation planners,
traffic managers, and fleet coordinators to understand
and tune the impact of fleets on road networks.

2. Background and Related Work

In this work, we examine a mix of individual users and
fleets on the network through the lens of static network
equilibrium. The application of equilibrium theory to
transportation networks is attributed to Wardrop (1952)
who advocates for its use as a principled heuristic to
estimate the impact of a road network improvement on
the future distribution of traffic flow. If travelers are
“user-optimal” decision makers (they choose the quick-
est route), we must contend with the fact that travel time
both affects and is affected by traveler route choices. The
framework proposed by Wardrop, and widely used by
transportation planners to this day (Boyles, Lownes, and
Unnikrishnan 2021), acknowledges and reconciles this
circular dependency by finding the route choices and

travel costs that are mutually consistent: an equilibrium.
This is preferable, Wardrop argues, to the “arbitrary
assumptions” one would otherwise have to use.

It is important to note that the use of “optimal” and
“optimized” in the traffic network equilibrium litera-
ture is different from the way the terms are used in
operations research. In network equilibrium, road users
are infinitesimal units of flow each with a fixed origin
and destination on the network. The only decision the
road users make is which route they should use to travel
from their origin to destination. In Wardrop’s UE, road
users select the route with minimal travel cost; they are
said to be “user optimal” in the sense that minimizing
their travel cost is solely beneficial to the user. When a
network of user optimal road users achieve an equilib-
rium, it is referred to as a UE. In this paper we use the
term “individual user” or “UE user” to refer to user
optimal road users. We also study two other route
choice principles: SO and FO. So-called SO users choose
routes to minimize the total travel cost over all road
users, and FO users choose routes to minimize the total
travel cost of their own fleet. When a network of system
optimal users reach an equilibrium, it is known as the
SO flow. For an in-depth introduction to UE and SO,
see Sheffi (1985) or Boyles, Lownes, and Unnikrishnan
(2021).

In our setting, we are interested in the equilibrium
achieved when individual users share the network with
an optimized fleet. The formulation of network equilib-
rium for multiple classes of vehicles each with their own
behavior (a multiclass or mixed equilibrium) was intro-
duced by Dafermos (1972). Mixed equilibrium has his-
torically been applied in cases where the vehicles within
each class are still user optimal but use different notions
of travel cost. It is not until Harker (1988) that coordina-
tion is introduced to the mixed equilibrium setting. Har-
ker (1988) computes a mixed equilibrium on networks
with both individuals and “Cournot-Nash” players who
behave identically to our fleets and are routed to mini-
mize a collective rather than individual travel cost. Har-
ker (1988) specifically identifies “privatized urban mass
transit” in addition to freight transportation as relevant
domains for the application of this mixed equilibrium.
Yang, Zhang, and Meng (2007) extend this analysis to
examine a network with UE users, fleets, and SO users.
Although Yang, Zhang, and Meng (2007) primarily serve
to introduce the formulation and solution algorithm for
this particular kind of mixed equilibrium, it contains an
important empirical observation that sparked a continu-
ing line of inquiry: When individuals control enough of
the demand, neither SO nor fleet users may change the
total system cost, and conversely, if there are few enough
individuals on the network, a combination of fleets and
SO users can achieve SO flow. To summarize our work
as a single question, we ask the following: Under what
conditions, if any, will a network achieve SO traffic flow
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with a mixed equilibrium of fleet and individual users
alone, without the aid of SO users?

There has recently been renewed interest in the line of
literature established by Harker (1988) and Yang, Zhang,
and Meng (2007), due largely to the advent of ad hoc
fleets. Indeed, to realize the Cournot-Nash player of Har-
ker (1988), the fleet must be able to coordinate itself to
minimize collective cost. By comparison, there is exten-
sive literature on ways to induce SO behavior by manipu-
lating the individual notion of cost via infrastructure
(e.g., ramp metering; Sheffi 1985). In our setting, coordi-
nation comes not from the physical infrastructure but
from the digital infrastructure used by the service pro-
vider. In parallel work, Sharon et al. (2018) and Chen et al.
(2020) identify a minimum-control ratio (MCR) that they
define as the smallest volume of SO users capable of
inducing SO flow on a network shared with UE users. In
both cases, the fleet is centrally routed to minimize total
system cost, corresponding to the second half of the
observation of Yang, Zhang, and Meng (2007): that SO
flow can be achieved even if not all users are SO users.
Although the system as a whole is better off, the SO users
themselves are relatively, if not absolutely, worse off pre-
cisely because they prioritized the travel cost of others
over that of their own. We examine this idea more pre-
cisely in Section 4.3. This may not be realistic for private
service providers who have no inherent altruistic motiva-
tion. In contrast, our work focuses on the interaction
between fleets (Cournot-Nash players) and individual
users, both of which are self-interested.

A second line of inquiry addresses the regulations
required to realize the benefits of a centrally routed fleet.
Zhang and Nie (2018) view the fleet as a direct govern-
ment intervention and balance the benefits of a fleet of
SO users against their deployment cost. In this view, the
fleet is a “mobile actuator” (Wang et al. 2020) and
becomes a traffic management tool. Another perspec-
tive is offered by Mansourianfar et al. (2021) and Delle
Site (2021), who view the fleet as a third party that must
be compensated or tolled to align their interests with
that of the system’s. Last, Mehr and Horowitz (2019)
investigate the impact of platooning autonomous vehi-
cles (AVs) on network equilibrium via their impact on
road capacity. Similar to our work, they find that a
mixed equilibrium of platooning AVs and individual
users may increase total delay in the network.

Perhaps most closely related to our work, Cominetti,
Correa, and Stier-Moses (2009) investigate the impact of a
set of the Cournot-Nash players of Harker (1988) on the
network but do not consider a mix of fleet and indivi-
duals. Our work explicitly considers both fleets and indi-
vidual travelers coexisting on the network. We focus not
only on when fleet optimal behavior breaks classical UE
and increases system-level travel cost but also when it
enables SO network flow, producing insights, and policy
implications via application to real-world networks.

Separately, there has been substantial research into
the congestion effects of the most prevalent example of
ad hoc fleets on the road today: ride-sourcing fleets. The
studies fall broadly into two categories: statistical analy-
sis of ride-sourcing data and simulation-based studies.
Among the reasons why ride-sourcing could affect
congestion, Erhardt et al. (2019) identifies shared rides,
integration with mass transit, and lower rates of car own-
ership as potentially beneficial and deadhead cruising,
impeding traffic flow during pickups and dropoffs, and
modal shift away from less congesting modes as poten-
tially harmful. Several empirical studies, including Erhardt
et al. (2019), have indicated that ride-sourcing increases
congestion. Ward et al. (2019) and Hall, Palsson, and Price
(2018) have further investigated effects of ride-sourcing
fleets on public transit ridership, car ownership, and vehi-
cle miles traveled. In contrast, simulation studies have
offered ways in which ride-sourcing fleets could possibly
be leveraged to reduce congestion. Fagnant and Kockel-
man (2014) simulate a fleet of shared autonomous vehicles
(SAVs) to conclude that such a system would require sub-
stantially fewer vehicles on the road.

Our work contributes to the understanding of ride-
sourcing congestion effects but differs substantially
from prior work. In none of the prior work reviewed
here could the identified congestion effects be plausibly
tied to route choice. For example, the empty vehicle
miles that arise as a side effect of ride-sourcing services
have nothing to do with whether route choice is coordi-
nated or not. Our work instead offers a complementary
view of the effect of ad hoc fleets by isolating the effect
that coordinated route choice might have on network
congestion. Our work does not confirm nor refute prior
work in the area; rather, it aims to expand our under-
standing of how coordinated fleets may impact network
congestion. In prior work, it is the scale of the fleets that
makes the congestion an issue: None of the congestion
effects are unique to ride-sourcing services. In the same
way, we ask that, when these fleets become large enough
to coordinate their market power to extract lower average
travel costs, will they contribute to or ease congestion?

This paper aims to fill in some key details of the con-
ceptual diagram in Figure 1 and extends the literature in
the following ways:

1. We demonstrate that there exist networks on
which mixed equilibrium with fleets will increase sys-
tem cost over UE. This is marked on the conceptual dia-
gram as “congestion upper bound?.” We leave open
the question of whether there exists an upper bound,
but if there is one it must be, at least for some networks,
strictly greater than UE.

2. We show that when there is a single fleet, there
must exist a fleet demand pattern for which the resul-
tant mixed equilibrium is SO; in this work, we are con-
cerned with the smallest fleet to induce SO (“CFS-SO”
in Figure 1). We also show that there must exist a fleet
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Figure 1. (Color online) Conceptual Diagram of System Cost
at Mixed Equilibrium with One Fleet as Fleet Penetration, as a
Percent of Total Demand, Increases

Conceptual network congestion as fleet penetration increases
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Notes. In this paper, we show fleets can worsen system cost relative
to UE and that UE and SO may be achieved at certain penetration
levels. Between these critical levels, however, it is unclear how total
system cost behaves. Because demand is generally high-dimensional,
this diagram does not directly map to general networks on which
oftentimes CFS-UE is larger than CFS-SO.

demand pattern for which the resultant mixed equilib-
rium is UE; we are interested here in the largest fleet to
induce UE (“CFS-UE” in Figure 1).

3. We formulate novel mathematical programs to
find CFS-SO and CFS-UE. Exact and heuristic algo-
rithms are developed to efficiently solve those pro-
grams in large-scale transportation networks.

4. We solve for CFS-SO and CFS-UE on two real-
world networks, finding that not all vehicles need to
participate in an optimized fleet for the system to attain
its minimum system cost. Moreover, we show that
such a fleet would need no external subsidy to benefit
from optimizing itself.

5. We demonstrate the practical relevance of critical
fleet size to regulators, transportation planners, and
fleet coordinators.

3. Preliminaries

In this section, we define our notion of network equilib-
rium that we term “mixed equilibrium with fleets” and
show that this mixed equilibrium has UE and SO as spe-
cial cases.

We consider a road network represented as a graph G
with nodes N and edges (or links) A. On this network,
there is a volume of travelers, each seeking to travel
from one node to another. We refer to the set of all such
ordered node pairs as the set of OD pairs, W C N x N.
The travel demand is segmented into flow classes: the
individual user flow class, denoted (typically as a super-
script) by u, and k > 1 fleet flow classes, denoted ¢; for
i= ., k. Although in this paper we will consider only

one fleet, we define mixed equilibrium with multiple
fleets here for completeness. The set of all fleet flow clas-
ses is written F. The travel demand for each flow class
is represented as a vector of OD travel volume: q* € RI!"!
for the user flow class and q € R"Y! for each fleet flow
class ¢; € F. For each flow class and OD pair, travel is
represented by the assighment of travel demand across
the paths connecting the OD pair. The set of all paths on
the network is denoted by P. This assignment may be

represented using a trip path incidence matrix, M €

{0, 1}"MP1 where the element at (w, p) is one if and only
if path p starts and ends at the origin and destination,
respectively, of the pair w. A user path assignment f* €
R is feasible if Mf* = q". Similarly for each fleet ¢; € F,
the fleet path flow £ € Rl is feasible if Mf = q%. The
relation between path flow and link flow is represented
using a link path incidence matrix, D € {01} Where
the element at (g, p) is one if an only if link 4 lies on path p.
A user link assignment x* € Rl is feasible if there exists
a feasible user path flow " such that Df* = x*. Similarly
for each fleet ¢; € F, the fleet link flow x¢ € R is feasible
if there exists a feasible fleet path flow £ € Rl such that
Df% = x%. Feasibility is always with respect to an OD
demand vector.

Travelers incur a nonnegative travel cost on each link
traversed represented as a link-separable monotone
nondecreasing and differentiable function of aggregate
link flow t : ]lel - R'f'.

We assume that individual users each wish to mini-
mize the cost of their own travel, corresponding to War-
drop’s first principle (Wardrop 1952). Each fleet, as the
Cournot-Nash players in Harker (1988), is assumed to
minimize the average travel cost over the fleet. We may
now define mixed equilibrium with fleets.

Definition 1 (Mixed Equilibrium with Fleets). Let Q"
denote the set of q“-feasible user link flows and Q€
for each ¢; € F the set of q“-feasible link flows for fleet
¢;. The tuple of feasible link flows (x**,x*,...,x%") is a

mixed equilibrium if the following holds:
#x),x* —x")y>0 Vx"eQ", (1)
f(x,x), x5 —x*)y >0 Vx“eQY VgeF, (2

where x* =x"" + X" represents the aggregate link
flow at the mixed equilibrium and t(x,x%) = t(x) +
x“t'(x) represents the marginal cost of fleet travel
(referred to as fleet marginal cost), and t'(x) is the
element-wise derivative of the link cost function.

It can easily be seen via the Beckmann transforma-
tion (Beckmann, McGuire, and Winsten 1956, Sheffi
1985) that an equilibrium of the fleet marginal cost in
(2) is equivalent to a minimization over the total fleet
cost, x“t(x). It is also useful to point out that the differ-
ence between our fleet users and the system optimal
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users in Yang, Zhang, and Meng (2007), Zhang and
Nie (2018), Chen et al. (2020), and Sharon et al. (2018)
is that the system optimal users seek to equalize the
system marginal cost, expressed as t(x)+xt'(x), or in
our notation, t(x,x).

From Definition 1 we immediately see that SO and
UE are special cases of mixed equilibrium with fleets.
In particular, if all fleet demand is zero, then mixed
equilibrium is UE, and if one fleet accounts for all of
the demand, then mixed equilibrium is SO.

We are interested in demonstrating that on some
networks when neither individual users nor the fleet
control all the demand, SO can be achieved in the
aggregate flow. It is straightforward to imagine how a
fleet might reduce congestion on the network: The fleet
minimizes the total cost for a subset of the flow so one
would hope that this effort also reduces travel cost for
nonfleet users. We can generate an intuition for why
we should expect a mix of selfish behaviors to ever
induce SO by considering Yang, Zhang, and Meng
(2007) in a simpler setting: adding SO users to aggre-
gate UE on the Braess network. The Braess network
(Sheffi 1985), shown in Figure 2, contains three paths:
upper, lower, and shortcut. At UE, two units of flow
use each path, at SO, and three units will take each of
the upper and lower paths, with no flow on the short-
cut. If we were to replace some UE demand with SO
users, they would simply replace UE flow on the
upper and lower paths; all remaining flow would still
use the shortcut path. Therefore, despite the fact that
the SO users are choosing routes to benefit the system
(not themselves), they still choose paths they would
have chosen as users. At small SO penetration, these
two notions of cost are aligned: The least marginal
cost paths are also least cost paths.

Now suppose we are at aggregate SO, and we
replace some SO flow with a fleet. The total marginal
cost and fleet marginal cost differ by the product of
the user flow and the link cost derivatives. If this

Figure 2. Braess Network, Annotated with Link Cost
Functions

% X

Notes. Six units of demand wish to travel from node a to node d. The
three paths on this network are “upper” (a— b—d), “lower”
(a — ¢ —d) and “shortcut” (@ = b — ¢ — d).

difference is uniform enough across paths at aggre-
gate SO, then the two notions of cost may be aligned:
Least fleet marginal cost paths are also least total mar-
ginal cost paths. We would then expect a fleet to make
the same route choices that they would have made as
SO flow, and therefore, the aggregate network state
will not change when SO flow is replaced with fleet
flow. If we can do the same with UE users, finding
paths where cost and marginal cost align and replace
SO users with UE users, and then UE users would
similarly make the same decisions SO users would. In
effect, we have partitioned the network at SO into
paths for which cost and marginal cost are aligned
and paths for which fleet marginal cost and marginal
cost are aligned so that the combination of FO and UE
behaviors in aggregate achieves SO on the network.

4. Fleet Optimality Paradox

In this section, we first analyze total system cost at mixed
equilibrium in general. We then demonstrate a concrete
example of an optimized fleet which, at mixed equilib-
rium, increases total system cost relative to UE. We refer
to this phenomenon as the fleet optimality paradox.

4.1. Total Delay Under Mixed Equilibrium
with Fleets

On the one hand, total delay at mixed equilibrium with
fleets has a trivial but tight lower bound of the total delay
at SO. Only under certain conditions, however, is the
total travel time at UE an upper bound of mixed equilib-
rium with fleets. We give a sufficient condition in (3), the
proof of which is provided in Online Appendix A:

> xati(X)(y, = %) 2 DD XS X)(YS — X5, (3)

acA acA ieF

where, X, =x! + 3, xS and y, =y" + >, 7yS are the
link flows at mixed and user equilibrium, respectively.
This condition is not of practical use because it depends
on the link flows at UE and mixed equilibrium: One
could simply compare the total system costs. It does,
however, yield some helpful theoretical insight.

The left-hand side of (3) is a first-order estimate of the
change in total cost when the aggregate link flow shifts
from mixed equilibrium to UE; the right-hand side is the
first-order estimate of the change in total fleet cost when
the network shifts fleet link flow from mixed equilibrium
to UE. The coefficients, x,t/(x,) and x$'#/(x,), measure the
impact of a given change in flow. Roughly speaking, (3)
is fulfilled if links with high total impact that receive
additional aggregate flow are also those with high fleet
impact and receive additional fleet flow. When UE be-
havior shifts fleet flow onto high fleet impact links that
are not also high total impact links, then the right-hand
side can exceed the left, possibly by enough so that the
total system cost at mixed equilibrium exceeds that at
UE. This idea will be exploited in the following example.
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4.2. Example of the Fleet Optimality Paradox

In this section, we will examine the network in Figure 3
as a concrete example of the fleet optimality paradox.
Intuitively, the paradox arises when the fleet chooses a
path with high system marginal cost but low fleet mar-
ginal cost. In the example network, this is caused by an
imbalance of fleet flow between two alternative paths.
The fleet only wishes to avoid interfering with other
vehicles in the fleet and therefore does not consider the
effect of its route choice on the individual users. As a
result, the path with fewer fleet vehicles has low fleet
marginal cost, although its many users induce a large
system marginal cost, causing the total system cost to
increase over UE.

Consider the network in Figure 3. The OD pairs are
a—b,c—d, and, e — f. The only real route choice in
this network exists for users travelling from a to b. The
other OD pairs have only one route available to them
The links leaving a4 and entering b have zero cost to sim-
plify the arithmetic, but this choice neither fundamen-
tally changes the problem nor the paradox.

We define the link costs f for cd and ef as follows:

tea(xea) =1+ xeq + 50, 4)
tef(xef) =10 xs +0. 5)

We consider the mixed equilibria resulting from the two
OD demand scenarios shown in Table 1. The left-hand
column under each OD pair in Table 1 present the OD
demand for first scenario (UE); the right-hand columns
(in gray) show the OD demand for the mixed equilib-
rium that produces the paradox, the fleet optimal sce-
nario (FO). Total volume of vehicles between each OD
pair, the aggregate demand, remains unchanged.

We summarize the UE and FO equilbria in Table 2.

At the UE link flow, given in the left half of Table 2,
the link cost of ef is minimal: All demand from a to b
selects the route through link ef. At the FO link flow,
given in the right half of Table 2, the users and fleet trav-
eling from a to b prefer different paths. The individual
users still prefer the path through ef as it remains least
cost. The fleet, however, prefers the path through cd
because it is least fleet marginal cost. By selecting the least
fleet marginal cost path, the fleet reduces its total cost

Figure 3. Fleet Optimality Paradox: An Illustrative Toy

Network

Table 1. Fleet, User, and, Aggregate Demand for the Fleet
Optimality Paradox

c—d e—f a—b
Fleet 0 1 0 2.75 0 0.05
User 13 12 2.75 0 1 0.95
Aggregate 13 2.75 1

relative to its total cost under UE as shown in Table 3
(bottom row, in bold); however, the total system cost
increases from UE to FO (Table 2 bottom row, in bold).
The fleet operator makes routing choices to minimize
the travel delay impact only on members of its own
fleet, regardless of the impact on other travelers. In this
case, the fleet has so few vehicles on link cd that the fleet
marginal cost of the path through cd is lower than the
fleet marginal cost of the path through ef, where the
fleet already has vehicles.

To see why this occurred, we note that not only is the
path through ef user optimal, it is also system optimal,
which means that the SO link flow and UE link flow are
the same for the given aggregate travel demand on this
network. What is then also true of this example is that
the fleet is better off then it would have been at SO; this
is related to a more general phenomenon we call the sys-
tem optimal paradox discussed further in Section 4.3.

4.3. System Optimality Paradox

The fact that the fleet may actually reduce its total travel
cost relative to SO in the fleet optimality paradox results
from a property of SO traffic assignment that we call the
system optimality paradox. For a network with nonunit
price of anarchy, the following is true of SO traffic flow:

1. There is always volume that is relatively worse off
compared with available paths, and

2. There is possibly volume that is absolutely worse off
compared with the travel cost of the same OD pair at
UE.

In short, when SO path flow is partitioned, the guar-
antees that SO provides for the network as a whole may
not apply to each partition individually.

The first point follows directly from the UE principle
that requires that all used paths between each OD pair
have equal and minimal travel cost. Any traffic assign-
ment that is not UE must therefore have at least one OD
pair for which some volume occupies a path that is not
least cost: This volume is worse off relative to some other
available path.

The second point occurs only on some networks. On
the Braess paradox network, for example, the cost of
every used path at SO is strictly less than the cost of
every used path at UE. Thus, although some users at SO
are relatively worse off (there is a lesser cost path avail-
able), they are all better off than they would have been
under UE. However, we can easily construct a network
where this is not the case. A concrete example is given in
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Table 2. Demonstration of the Fleet Optimality Paradox

UE FO
Aggregate (users) Aggregate User Fleet
Flow Cost Total cost Flow Cost Total cost Flow Total cost Flow Total cost
c—d 13.00 63.0 819.000 13.05 63.05 822.8025 12.00 756.60 1.05 66.2025
e—f 3.75 37.5 140.625 3.70 37.00 136.9000 0.95 35.15 2.75 101.7500
Total 16.75 959.625 16.75 959.7025 12.95 791.75 3.80 167.9525

Note. Bold indicates the outcome highlights.

Online Appendix B, but the essential intuition is that
when UE is different from SO on a parallel network one
path gains volume (and therefore travel cost) from the
other in moving from UE to SO. In this setting, not only
are some users not using the least cost path (they are rel-
atively worse off), they are also experiencing higher
absolute travel costs than they would have under UE
(they are absolutely worse off). This solution is SO
because the users that are better off (both relatively and
absolutely) accrue total travel cost savings that exceed
the increased travel cost of the worse off travelers so
that on average the system is better off.

4.4. Concluding Remarks

Taken together, this section shows that, at extreme pene-
tration levels of 0% and 100%, mixed equilibrium with
fleets achieves a total system cost equal to the total sys-
tem cost at UE and SO respectively. However, as pene-
tration levels increase from 0% to 100%, total system
cost will not necessarily monotonically decrease and
may in fact become larger than the total system cost
under UE. This has strong policy implications: Under cer-
tain demand and roadway network conditions, increas-
ing fleet penetration (e.g., individuals shift to use a
mobility service that is centrally planned by a private
entity) may increase congestion. Only if the fleet penetra-
tion is adequately high would its presence be guaranteed
to reduce network congestion, up to achieving SO. Trans-
portation network companies, such as Uber/Lyft, who
decide to optimize their fleet may paradoxically lead to
more congestion in some areas in their initial develop-
ment stage (when the penetration is low), even if they
would have replaced some private driving trips and OD
demand remains the same.

Table 3. Demonstration That Fleet Decreases its Total Cost
at FO

UE FO
Fleet
OD pair demand OD cost Total cost OD cost Total cost
c—d 1.00 63.0 63.000 63.05 63.0500
e—f 2.75 37.5 103.125 37.00 101.7500
a—b 0.05 37.5 1.875 63.05 3.1525
Total 3.80 168.000 167.9525

Note. Bold indicates the outcome highlights.

5. Critical Fleet Size

In this section, we will examine how, in certain networks,
SO can be achieved through mixed equilibrium where
not all vehicles are fleet vehicles. The smallest fleet size
for which mixed equilibrium achieves aggregate SO traf-
fic assignment is expressed as a fraction of total demand
and termed the critical fleet size for system optimum
(CFS-SO). There is a complementary notion, termed the
critical fleet size for user equilibrium (CFS-UE), which
measures the largest fleet size for which mixed equilib-
rium achieves aggregate UE traffic assignment.

CFS-SO is bounded by zero and one; a value of one
indicates that all vehicles must be in the fleet for mixed
equilibrium to result in SO, and a value of zero indi-
cates that no fleet vehicles are required. A network has
a CFS-SO of zero if and only if its UE and SO assign-
ments are the same; in other words, the network has a
price of anarchy (Roughgarden 2005) of one. Similarly,
CFS-UE is bounded by zero and one; a value of zero
indicates that the presence of any fleet vehicles on the
network “breaks” UE (induces a mixed equilibrium
whose aggregate link flow is different from UE). A
CFS-UE of one indicates that all vehicles may partici-
pate in the fleet without changing UE. A CFS-UE of
one implies that UE and SO assignments are identical
on this network, and as a result, CFS-UE is one if and
only if CFS-SO is zero. Outside of this case, the relation-
ship between CFS-50 and CFS-UE on a network is not
at all clear and is left for future research.

CFS-UE is different from the notion of the smallest fleet
for which mixed equilibrium is different from UE. As a
somewhat counter-intuitive result with respect to the
simplified one-dimensional Figure 1, CFS-UE can be
larger than CFS-SO. In representing demand as a uni-
dimensional quantity, Figure 1 is in a sense overly simplis-
tic: When demand is higher dimensional, CFS-UE can
occupy an entirely different set of OD pairs than CFS-SO
and simply have larger magnitude. In one dimension, this
is only possible when, as we discuss in the next paragraph,
the price of anarchy on the network is one. The smallest
fleet to “break” UE may also be of interest but is strictly a
different question than the one CFS-UE seeks to answer.

The example network in Figure 3 on which we dem-
onstrated the fleet optimality paradox also provides
instructive examples of CFS-SO and CFS-UE. We noted
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that the UE and SO traffic assignments are the same on
the example network. As a result, CFS-SO is zero
because users alone achieve SO, and CFS-UE is one
because when all the volume on the network is an opti-
mized fleet, the network is at SO, which is also UE. The
paradox presented in Section 4 is thus also an example
of the following three phenomena:

1. CFS-UE can be greater than CFS-SO,

2. Fleet OD demand that is element-wise greater
than the fleet OD demand at CFS-SO is not necessarily
SO, and,

3. Fleet OD demand that is element-wise less than
the fleet OD demand at CFS-UE is not necessarily UE.

What CFS-SO and CFS-UE do imply, however, is that
at mixed equilibrium with fleets,

1. SO cannot be achieved with a fleet smaller than
CFS-SO, and

2. UE cannot be achieved with a fleet larger than
CFS-UE.

5.1. Critical Fleet Size on a Parallel Network

In this section, we will analyze CFS-SO and CFS-UE on
a parallel network. We derive analytical results that
hold for all separable, monotonic increasing link perfor-
mance functions on a parallel network. Although we
should not expect these results to generalize, the parallel
network is useful in developing an intuition for critical
fleet size and for mixed equilibrium more generally. In
particular, we are interested in whether critical fleet size
results in paths, OD pairs, or entire networks that are
exclusively fleet vehicles or individual users. In what
follows, consider a parallel network with one OD pair
connected by 7 parallel links.

5.1.1. Mixed Equilibrium Preserving UE Flow. Let x"¢ €
R’} denote the UE link flow on the network. We wish to
find the mixed equilibrium with the largest fleet share
such that UE link flow is preserved in aggregate. Proof
of Propositions 1-4 can be found in Online Appendix C.

Proposition 1. Let (x¢,x") denote a mixed equilibrium on
a parallel network whose aggregate link flow is the UE link
flow (i.e., x¢ +x" = x"¢). If fleet demand is strictly positive
then fleet flow on a link is positive if and only if aggregate
link flow is positive. That is,

X¢>0=x5>0 VaeA. (6)
Proposition 2. Given a fleet demand q° € R, such that

0 < g° < q we can find the mixed equilibrium on the parallel
network analytically:

—x q‘

=1 4, 7)
ZaeA,, %
(-

X; = t/ 4 (8)

9
provided that the following holds:
F <mint, +x"t, )
acA

where A denotes the set of all links where aggregate flow is
strictly positive, t, is the link cost on link a € A evaluated at
mixed equilibrium, t, is the derivative of the link cost on link
a € A evaluated at mixed equilibrium, t is the minimum fleet
marginal link cost at mixed equilibrium, and t* is the mini-
mum link cost at mixed equilibrium.

Proposition 3. The largest fleet demand that preserves UE
is given by,

F—r
2 g =2 =d (10)
acA, a acA,
wheret satisfies
F=mint, +X°t,. (11)

5.1.2. Mixed Equilibrium Preserving SO Flow. We now
wish to find the smallest fleet demand such that SO is
preserved at mixed equilibrium.

Proposition 4. The minimum fleet demand required to
induce SO flow on a parallel network with aggregate
demand q is either

1. Zero if the UE flow is the same as the SO flow; or

2. q if UE flow is different from SO flow (CFS-SO = 1).

In short, Proposition 4 ensures that for any parallel
network, CFS-SO is either zero or one.

5.1.3. Extending to a General Network. Although the
parallel network provides a useful demonstration of fleet
optimal mixed equilibrium, Proposition 4 ensures that it
will not be an interesting one. In general networks, any
value of CFS-SO is possible. Perhaps the simplest, albeit
unsatisfying, way to demonstrate this fact is to consider a
network composed of two parallel networks one of
which is entirely fleet and the other, entirely individual
users. Any value of critical fleet size can be achieved by
varying the demand on the two subnetworks.
Nevertheless, the parallel network does provide us
some valuable intuition for CFS on general networks.
Key to the proof of Proposition 4 is the realization that if
the set of least cost and least marginal cost paths are not
the same, the fleet will need to fill those paths that are
least marginal cost but not least cost. However, to main-
tain fleet optimal assignment, the fleet marginal cost
must be equalized over all paths in use by the fleet,
which in turn requires each path to be filled by the fleet.
In a general network, because many path flows may
induce the same aggregate link flow, it is not necessarily
the case that user flow removed from a path must be
replaced by fleet flow on that specific path; rather, the fleet
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may occupy a completely different set of (fleet-optimal)
paths that still induces the same aggregate link flow. It
is for this reason that we should not expect general net-
works, even at the OD level, to only have the two extre-
mal values of critical fleet size.

In total, it is possible, but difficult to imagine, that OD
pairs may not be exclusively user or exclusively fleet at
critical fleet size. Precise conditions under which paths,
OD pairs, or entire networks are exclusively user or fleet
are left for subsequent work. In this paper, we will
attempt to shed light on the question of exclusivity
empirically on real world networks in Section 6.

5.2. Critical Fleet Size Formulation and

Solution Algorithm
In this section, we formulate critical fleet size as a mathe-
matical program with equilibrium constraints (MPEC)
and develop efficient ways to solve it in practice.

5.2.1. Problem Formulation. The fleet vehicles we are
examining wish to minimize the fleet travel time: z(x¢,
x") =3 xSt (x! +x5). Given fleet OD demand q° and
the link flow of the individual users x*, the fleet path
(link) flows may be computed as the solution to the fol-
lowing mathematical program (Sheffi 1985):

FO(x", q°) = arg rr}%n z(x,x") (12a)
sty fi=q, VweW, (12b)
pePy,
f; >0 VpeP,weW, (120)
> £D,=x¢ VacA. (12d)
peP

The program is parameterized by the user link flow and
the fleet demand, which are considered constant within
in this program.

We now consider the critical fleet size problem that
imposes the external constraint that aggregate link flow
at mixed equilibrium must match a given aggregate link
flow. For CFS-SO, that aggregate link flow, denoted x*°,
is link flow at SO. CFS-SO is expressed as the solution to
the mathematical program with equilibrium constraints
(MPEC) given by Program (13), and CFS-UE is expressed
as the solution to the MPEC given by Program (14), with
x"¢ as the UE link flow.

min > _ qf, (13a)
weW

st. Y fi=q) YoeW (13b)
pePy,
£20 VpeP (130)
> 0., =xy VacA (13d)
peP*
x¢ = DFO(x", q°) (13e)

x¢+x" =x%° (13f)
q°+q"=q (13g)
¢ 14

n}uaxz;vqw (14a)

sty fi=q} VoeW (14b)
pePy,

£1>0VpeP (14c)

> £10,, =x) Vac A (14d)
peP*

x¢ = DFO(x", q%) (14e)

X 4 X" = xUe (14f)

qQ°+q"=q (14g)

Because the aggregate link flow is fixed under UE or SO
and the link performance function depends only on the
aggregate link flow, the travel cost (and marginal travel
cost) for each link is a constant with respect to both the
user and fleet link flows. As a result, the set of least cost
paths between each OD pair, P*, is fixed and known a
priori. Constraints (13d) and (14d) therefore are suffi-
cient to describe the UE condition in their respective pro-
grams completely: Individual users may only use least
cost paths.

5.2.2. Heuristic Solution Algorithm via Sensitivity Analy-
sis. Typically, MPECs are solved via a huersitic solu-
tion methodology known as sensitivity analysis (Tobin
and Friesz 1988). However, for this specific MPEC, sen-
sitivity analysis is not the best choice. In this section, we
outline how one would apply sensitivity analysis before
identifying its limitations in this setting. A detailed
treatment of our sensitivity analysis approach is given
in Online Appendix D.

Sensitivity analysis is typically applied to an MPEC for
which the objective depends on the network at equilib-
rium and the network equilibrium, in turn, is affected by
the decision variables. Sensitivity analysis provides the
gradient of the equilibrium link flow with respect to the
decision variables and is used to compute the descent
(ascent) direction. In Programs (13) and (14), the objective
is an input of the equilibrium operator rather than its out-
put. To apply sensitivity analysis, we solve the programs
in their augmented Lagrangian forms (Hestenes 1969),
treating the equilibrium constraint as a penalty term. The
algorithm, given by Algorithms 2 and 3, alternates be-
tween descent steps on the augmented lagrangian via
sensitivity analysis and sequential linear programming
(Wright, Nocedal, and Wright 1999) known as the primal
update, and ascent steps for the penalty weights, known
as the dual updates.

The main theoretical deficit of solving CFS as an MPEC
via sensitivity analysis is that the MPEC itself is noncon-
vex, and, as such, the solution algorithm is guaranteed
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only to return a local optimal solution. The main practical
limitation is that this particular application of sensitivity
analysis requires many more equilibrium computations
than a typical application: once every iteration within
each primal update that itself is simply one descent step.
This can take significant amounts of time. Taken to-
gether, on neither practical nor theoretical grounds
does solving CFS via sensitivity analysis offer benefits
over our methodology.

5.2.3. Exact Solution Algorithm via Mixed Integer Pro-
gramming. As an alternative to sensitivity analysis, we
can leverage the structure of the problem to develop an
exact solution methodology. Conceptually our approach
reverses the order that sensitivity analysis imposes on the
solution algorithm: Instead of searching the space of
mixed equilibria for those that happen to meet an aggre-
gate link flow constraint, we search the space of feasible
user-fleet link (path) flow partitions that satisfy the condi-
tions of mixed equilibrium. This approach takes advan-
tage of the problem structure to not only guarantee a
global optimum solution but provide upper and lower
bounds on the optimal value. In comparison with the
previous sensitivity analysis approach, this approach
avoids computing mixed equilibria entirely and instead
forms mathematical programs to descend directly in the
space of feasible equilibria. In particular, the constraint
that aggregate link flow for CFS-SO is fixed to be the
aggregate SO link flow and the aggregate link flow for
CFS-UE is fixed to be aggregate UE link flow implies two
important facts:

1. The set of paths the fleet could possibly use is
known, finite, and substantially smaller than set set of
all (simple) paths, and,

2. The fleet marginal link (path) cost is linear in fleet
link (path) flow.

First for fact 2, when we consider the aggregate link
flow fixed, the fleet marginal link cost is a linear function
of fleet link flow: t,(x¢) =t, + x¢ - t/. If we consider the
fleet marginal path cost as a vector and denote by
diag(t') the |A| X |A| diagonal matrix with the elements t/
on the diagonal, then we may write the vector of fleet
marginal path costs as a linear function of fleet flow f*:
&(f°) = ¢ + D" diag(t')Df*, or equivalently as a function
of user flow f*, &(f*) = ¢ — D' diag(t')Df", where ¢ and
¢ represent the path cost and marginal path cost at the
given aggregate link flow.

From a computational perspective, the form of fleet
marginal cost that depends on the user path flow is
attractive because the user path flow vector will gener-
ally be sparse. By the equilibrium principle, we know
that individual users may only take least cost paths, so
we need only specify user path flows for paths that are
least cost at SO, a path set that, in practice, we expect to
be known before solving CFS and substantially smaller
than the set of all simple paths.

Next is fact 1. Because aggregate link flow is fixed, it
is also true that the set of least marginal cost paths P, the
set of usable paths for SO users, is fixed. When aggre-
gate flow is SO any path flow vector that satisfies both
the demand conservation constraint and produces the
SO link flow must only use paths in P. As a result, at
CFS-SO, the fleet may use only paths in P. For CFS-UE
where the aggregate link flow at mixed equilibrium is
the aggregate UE link flow, a similar argument applies:
The fleet may only use least cost paths at UE: P*.

Combining these two facts, we can rewrite the CFS-
SO and CFS-UE MPECs as a mixed integer program
(MIP) in Programs (15) and (16).

oo 1,c 225 150
st &)= A, VreP,VweW (15b)
&) <Ap+m-(1—z) VreP, Ywe W

(15c¢)

f<my-z, VreP, YVweW (15d)

D'f" + Df° = x*° (15e)

M f* + M = @*° (15f)

zr€{0,1} Vke P, Ywe W (15g)

Here, m; and m, are large constants, P and P are the set
of least marginal cost and least cost paths at SO, respec-
tively, D and D" are the link path incidence matrices
restricted to paths in P and I, respectively, and M and
M’ are the OD path incidence matrices restricted to paths
in P and P*, respectively. The binary variable z; encodes
whether the path k is use by the fleet (one) or not (zero).
The first two constraints ensure that the fleet flow is fleet
optimal: The fleet marginal cost on all used paths is equal
and minimal. MPECs may always be written and solved
as mixed integer programs; this is not often done in prac-
tice because the number of integer variables scales with
the number of paths in the network, and the cost function
is typically nonlinear. In our problem, the cost function is
linear, and the number of integer variables is substan-
tially smaller than the number of paths.

The CFS-UE MIP is constructed analogously, notably
as a maximization and using the set of least cost paths at
UE where the CFS-SO program uses least marginal cost
paths at SO.

f“zo?fl%,mz }; f” (162)
st. &)= A, VreP,YweW (16b)
(") < Ap+m-(1—2z) VreP, YweW

(16¢)

fi<my-z, Vre P,, Vvwe W (16d)

D*(f* + £°) = x*° (16e)

M (£ + £) = % (16f)

zr €1{0,1} Vke P,, Vwe W (169)
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Mathematical programs for CFS-SO and CFS-UE with
multiple fleets are discussed in Online Appendix G.

5.3. Bounds of Critical Fleet Size

Although the MIP formulations of CFS-5O and CFS-UE
offer substantial computational efficiencies relative to
MIP formulations of general MPECs, they can still pre-
sent challenges on large networks. For such cases, we
present linear program relaxations of the CFS-SO and
CFS-UE MIPs. The LP relaxation of the CFS-SO MIP is
given by Program (17) and the LP relaxation of the CFS-
UE MIP is given by Program (18).

ol 25 a7
st. &(fY=A, VreP, YweW (17b)
&(f*)> A, VreP, Ywe W (17¢)

D'f" + Df¢ = x*° (17d)

Mf" + Mf° = q (17e)

C

P 25 180
st. &) =M, VreP, YweW (18b)
()= A, VreP, Ywe W (18¢)

D (f* + ) = x}° (18d)

M (f* +£9) = q (18e)

Formulating the critical fleet size in this way allows us
to relate it directly to the minimum control ratio (MCR)
introduced by Chen et al. (2020) and Sharon et al. (2018).
In particular, because fleet vehicles must use a subset of
the SO paths, CFS-SO is bounded below by the MCR,
the proof of which is given in Online Appendix E.

Proposition 5 (Bounding Critical Fleet Size via Linear
Programs). The heuristic linear programs for CFS-SO and
CFS-UE provide the following bounds:

1. Linear Program (17) provides an upper bound of CFS-
SO.

2. Linear Program (18) provides a lower bound of CFS-
UE.

The proof is given in Online Appendix F.

It is worth noting that the solution returned by the lin-
ear program will typically have paths that are unused by
the fleet but remain least fleet marginal cost, known in
the literature as a degenerate equilibrium. Degeneracy
occurs in the LP because the set of paths over which fleet
marginal cost must be equal and minimal is fixed. Allow-
ing the fleet to abandon unused paths, thereby releasing
them from the constraint that their fleet marginal cost is
minimal, could allow for a smaller fleet. As a result, it
may be possible to refine a bound returned by the LP by
iteratively removing unused paths and resolving the LP.
Our preliminary work into such a procedure suggests

that only modest gains can be achieved without a careful
heuristic to select the paths to abandon each iteration.
Broadly, the path abandonment procedure can be viewed
as a member of the family of MIP heuristics. It is a very
simple heuristic that always preserves feasibility by rec-
ognizing the structure of the problem but does not form
an overall scheme that will find the global optimum. In
contrast, MIP methods and heuristics available via
state-of-the-art solvers do not recognize the structure of
the problem but will progress toward the global opti-
mum. A better option which we leave for future work
would be to leverage path abandonment within the MIP
solver.

5.4. Issue of an Unknown Path Set

In both the MIP formulation and their LP relaxations, it is
assumed that we have access to the full path set, in addi-
tion to the least cost and least marginal cost path sets at
UE or SO. The latter two sets are not difficult to obtain
(see Online Appendix H). However, the full set of simple
paths may not be feasible to enumerate. With only a sub-
set of the paths, we cannot guarantee that the fleet is
using paths that are minimal fleet marginal cost. To cir-
cumvent this difficulty, a column-generating approach is
presented in Algorithm 1. Each iteration, the program is
solved with an approximate path set P, and least fleet
marginal paths are computed at the candidate solution. If
the least fleet marginal cost paths are not in the set of
known paths, the solution assigned fleet flow to paths
that are not in the fleet-usable path set. These paths are
then added to the known path set, and the updated linear
program is resolved. On resolving the linear program,
the fleet marginal cost of these paths are constrained to
be no smaller than A, which is the least fleet marginal
cost over all paths connecting the OD pair.

Algorithm 1 (Critical Fleet Size Solution Algorithm with
Column Generation)
1: procedure CriTiICALFLEETSIZE(G, q)
2. x%° « SystemOptimalLinkFlow(g, q)
3: P*, P « LeastCostPaths(gG,x%°), LeastMarginal
CostPaths (G, x°)
4: D epyb
5. while true do
6: f,£,A « Solve Program (15), (14), (17), or
(18) using P as the path set P
7: Py « LeastFleetMarginalPaths(g, x, x°)
8  if P NP #0then
> A new path was discovered.

> Initialize the known path set

9: P — PPN P)
10: else
11: return f", ¢
12: end if

13: end while
14: end procedure
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5.5. Issue of Approximate SO Flow

Real-world networks present two practical challenges to
Algorithm 1, using either the MIP or LP version. First, the
programs scale linearly in the number of paths and OD
pairs. Even moderately sized real-world networks will
produce mixed integer programs too large for state-of-
the-art solvers to solve in a reasonable amount of time.
The MIP may simply be run with a fixed computational
budget, or their LP relaxations may be used instead.

A second problem facing real-world networks has to
do with the accuracy of the SO link flow. In both the
heuristic LPs and the MIPs, if we were to fix the user
path flow to zero, the program should recover an SO
path flow as the fleet path flow variable. However,
when we have access only to an approximation of the
SO link flow, this guarantee no longer holds. In fact, the
opposite is true: Because the approximate link flow is
not exactly SO, there must be flow on paths that are not
least marginal cost. As a result, when directly imple-
mented with an approximate SO link flow, Programs
(17) and (15) may be infeasible.

To overcome this second challenge, we use a modi-
fied version of Program (17) given by Program (19). In
this modified program, the set of least marginal cost
paths (and least cost paths for individual users) is con-
structed as the set of e-least (marginal) cost paths: A
path is least (marginal) cost if it is less than or equal to
(1 + €) times the least marginal cost path for its OD pair.
Correspondingly, instead of treating the link flow recov-
ery as a constraint, it is treated as a penalty term in the
objective weighted by 5 > 0. Larger penalty weight repre-
sent preference for accurately approximating the target
aggregate link flow. This same modification is applied to
CFS-SO LP and MIP, CFS-UE LP, and MIP and to the
MCR.

. fc+ D*fu_*_]"jfc_ -s0 19
f“zggrzlo,)\;; il Il (19a)

st &) <A (1+€) VreP,VweW (19b)
&(f") > Ay VreP, Vwe W (19¢c)

M*f* + Mf = q*° (19d)
Generally speaking, the more accurate the SO solution,
the larger the penalty weight f and the smaller the path
cost tolerance € should be. Intuitively, a high-quality SO
solution should produce a link flow that is close to the
true SO link flow and path costs that are close to the true
path costs. Our mixed equilibrium then should not be
allowed to stray too far from the aggregate link flow,
and the usable paths should be near least (marginal)
cost. However, exactly which value is best and how
they relate to common convergence criteria are not
immediately clear. To best compare our results to exist-
ing work, we set our hyperparameters as the most strin-
gent values (lowest €, highest f) to closely reproduce the
Sioux Falls minimum control ratio as reported in Chen

et al. (2020). This heuristic resulted in =10 and
€ =5e —4. For the Pittsburgh network, f=0.1 and
€ = le — §; theleast € and largest f to bring its MCR close
to range reported for similar network in Chen et al.
(2020). The choice of hyperparameters also affects the
solving time of the programs. Smaller values of € result
in smaller usable path sets reducing the number of vari-
ables and significantly reducing solve time.

Here too, network size presents some difficulty. From
the perspective of Program (19), a high-quality SO
approximation will assign a large fraction of flow to paths
that are close to least marginal cost. Common equilibrium
convergence criteria, such as relative gap or average
excess cost (Boyles, Lownes, and Unnikrishnan 2021), do
not capture this notion, making it difficult to know a pri-
ori whether an approximation is good enough or how to
set § and € to compensate. This fact is not unique to our
problem setting and is a challenge to any analysis that
takes an equilibrium traffic assignment as input.

Taken together, these modifications allow us to use
approximate SO (UE) link flow to compute an upper
(lower) bound on CFS-SO (CFS-UE).

6. Experiments

Our experiments were performed on three networks.
The Braess network (Sheffi 1985), shown in Figure 2,
served to validate our methodology and code. The
Sioux Falls network (Stabler, Bar-Gera, and Sall 2021)
with 76 links and 528 OD pairs serves as a simple small
example and as a point of comparison with previous
work. The Pittsburgh network with 5,449 links and 4,881
OD pairs serves as a real-world example network. The
Pittsburgh network contains the core urban areas of Pitts-
burgh, PA, extracted from the Southwestern Pennsylva-
nia Commission’s (SPC) road network (www.spcregion.
org).

EI;n our experiments, we use the CVXPY modeling lan-
guage (Diamond and Boyd 2016, Agrawal et al. 2018)
with GUROBI v9.5.0 as the backend solver. All ex-
periments were performed on an Ubuntu 20.04 Linux
machine with 16 GB RAM and an Intel i7-7700HQ pro-
cessor. We report the critical fleet size results in Table 4
and devote the remainder of the section to our findings
on these networks. The MIPs for CFS-SO and CFS-UE
on the Sioux Falls network were run for 24 and 2 hours
respectively; we also report the relative gap of the solu-
tion reported by the solver.

From Chen et al. (2020), we know that the minimum
control ratio for the Braess network is one, so we know
that the CFS-SO must also be one, a finding reproduced
by our methodology. CFS-UE, on the other hand, is
achieved by a fleet that uses two of the three paths exclu-
sively, leaving the remaining path for the users. Because
the CFS-UE LP, unlike the MIP, cannot abandon paths,
it provides a very loose bound.


http://www.spcregion.org
http://www.spcregion.org
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Table 4. Comparison of Critical Fleet Size on Experiment Networks

CFS-SO CFS-UE
Network MCR LP MIP (Relative gap) Lp MIP (Relative gap)
Braess 100% 100% 100% (0%) 0.34% 66.67% (0%)
Sioux Falls 14.12% 36.53% 33.03% (25.28%) 46.12% 78.85% (15.48%)

Pittsburgh 30.69% 83.04% —

— 56.92% — _

6.1. Link Flow Patterns at CFS-SO

The two immediate observations are that CFS-SO is
highly variable across the two networks and is substan-
tially higher than the MCR. In the Pittsburgh network,
at most 83% of vehicles must be in the fleet to achieve
SO traffic flow compared with 33% in the Sioux Falls
network. However, that the presence of a self-interested
fleet can give rise to SO flow on real-world networks
without controlling all the vehicles at all is remarkable
in and of itself.

Geographically, CFS-SO on both Sioux Falls and Pitts-
burgh produces fleet presence across the network. We
show the user and fleet link flows at CFS-SO for Sioux
Falls in Figure 4 and for Pittsburgh in Figure 5. At least
part of the reason for this is that fleet presence on one
OD pair influences the fleet marginal cost on many
others, particularly in dense networks such as these

where paths for different OD pairs are highly inter-
twined. As a result, fleet presence in one area of the net-
work tends to induce fleet presence on at least some of
the OD pairs that share links with it, leading to a cascad-
ing effect over the entire network. This effect may be
contrasted with the minimum control ratio that treats
OD pairs in isolation resulting in areas of the network
with no fleet presence whatsoever.

Nevertheless, fleet vehicles in Pittsburgh appear to
accumulate along major highways and arterial road-
ways, suggesting that larger, more important roadways
have an out-sized role to play in reducing total system
travel cost with fleets. Fleets are most clearly present on
the major highways leading into and out of downtown
Pittsburgh, near the center of Figure 5 and at the conflu-
ence of the three rivers. In contrast, user flow appears
clustered in several relatively isolated geographic regions

Figure 4. (Color online) Fleet and User Link Flows at the CFS-SO Mixed Equilibrium on the Sioux Falls Network
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Notes. Color and width indicate the amount of flow of each class on each link. Arrows show the direction of link flow, and annotations denote

the percentage of flow belong to each class.
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Figure 5. (Color online) Fleet and User Link Flows at the CFS-SO Mixed Equilibrium on the Pittsburgh Network
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Note. Color and width indicate the amount of flow of each class on each link.

throughout the network, but notably along the periphery
and within Pittsburgh’s densely populated East End, just
east of Downtown.

6.2. Fleet OD Demand Patterns at CFS-SO
Although fleets permeate the links of the network, they
concentrate on paths and OD pairs on the network. On
both the Sioux Falls and Pittsburgh networks, the mixed
equilibrium at CFS-SO divides most OD pairs between
being exclusively fleet and exclusively user. In analyz-
ing the parallel network in Section 5.1, we noted that it
is intuitive to imagine how CFS-SO would result in user
or fleet exclusive OD pairs and less so to imagine an OD
pairs with a mix of individual users and fleets. Indeed,
in both the Sioux Falls and Pittsburgh networks, about
95% and 85% of OD pairs, respectively, are either exclu-
sively user or exclusively fleet, as shown in Figure 6.

The requirement that fleet marginal cost be equalized
across the paths used by the fleet between each OD pair

and, specifically, that this equalizing requires fleet flow
is a key driver of the gap between MCR and CFS-SO. In
the MCR setting, the fleet cost is simply the system mar-
ginal cost, which, along with link cost, is a constant. As a
result, fleet flow can be assigned to those least marginal
cost paths independently. By contrast, in the CFS set-
ting, changes to fleet flow on one path must be balanced
by fleet flow to equalize fleet marginal cost across used
paths on each OD pair.

If OD pairs tend to be exclusive to either individual
users or fleets, then transportation planners or fleet co-
ordinators may focus their attention on a subset of OD
pairs accounting for an outsized proportion of the fleet.
Figure 7 shows that for both the Sioux Falls and Pitts-
burgh networks, a minority of the OD pairs account for a
majority of the fleet. In Sioux Falls, just 10% of the OD
pairs house half of the fleet; for Pittsburgh, it takes 20% of
OD pairs. Remarkably, another 15% of OD pairs in Pitts-
burgh do not require any fleet presence whatsoever.

Figure 6. (Color online) CFS-SO and MCR Both Result in User- and Fleet-Exclusive OD Pairs
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Figure 7. (Color online) Cumulative Fraction of Fleet Flow over OD Pairs

Origin-destination fleet cumulative distribution
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Notes. Fleet flow is concentrated with respect to OD pairs: In Sioux Falls, nearly 70% of the fleet comes from just 20% of OD pairs. In the Pitts-
burgh network, roughly half of the fleet operates on the only 20% of OD pairs.

6.3. Characteristics of Paths and OD Pairs with
Fleet Flow at CFS-SO

In both the Pittsburgh and Sioux Falls networks, OD
pairs with larger minimum marginal path cost generally
have greater shares of fleet flow as shown in Figure 8.
This conforms with the intuition that the fleet focuses on
trips where congestion (and thus marginal cost) is great-
est to achieve SO. Despite this apparent trend, it is still
difficult to distinguish between fleet-exclusive OD pairs
from user-exclusive ones a priori or characterize what
drives the fleet penetration at the OD level. Simple crite-
ria, such as those based on demand, OD pair distance or
(marginal) travel cost at SO, and number of paths fail to
produce a useful understanding of the fleet penetration

Figure 8. (Color online) Proportion of Fleet-Exclusive (Full),
User-Exclusive (Empty), and Mixed OD Pairs by the Mini-
mum Marginal Cost over Paths for Each OD Pair at CFS-50
(MIP) in the Sioux Falls Network
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on OD pairs. For example, despite the strong trend in
Figure 8, marginal cost has little to no predictive power:
Among OD pairs with the largest marginal cost, only
60% have fleet flow on them. Instead, we derive a met-
ric, the path independence factor, from the optimality
conditions of the CFS-SO LP that is capable of classify-
ing fleet-exclusive paths with greater precision than
simple criteria.

The path independence factor measures how sensi-
tive fleet flow on a path could be to flow on other paths:
how independent the cost of a path is from the flow on
other paths. Fleet flow on a path that is highly inter-
twined with many other paths or has a large travel cost
derivative has a greater capacity to increase fleet mar-
ginal cost than a path that is not. Following this intui-
tion, we can compute path independence as the sum of
the link cost derivatives on path r weighted by number
of fleet usable paths that do not include the link:

PathIndependenceFactor(r) = Z Z Ogpt;, (1 — O4r)
peP\(r) a€A

= 3 EBl-N(PY),

a€links(r)
(20)

where N, (P) is the number of paths in P containing link a
and t) refers to the derivative of the link cost function of
link a evaluated at the aggregate link flow. This term is
derived from the part of the fleet marginal cost at SO flow
that depends on fleet flow. A related form appears in the
first-order optimality conditions for Program (17) (see
Online Appendix I). The path independence factor is non-
negative. It is zero for paths where every link is on every
path in P. Paths with larger path independence have
fewer high-cost interactions with paths in P. Empirically,
paths with larger values of path independence tend to
have more fleet flow on them, as shown in Figure 9. Paths
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Figure 9. (Color online) Paths with a Higher Independence Factor (Defined by (20)) Have More Fleet, Up to a Point
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Notes. The paths with the highest independence factor will tend to be unused completely. Here, “empty” means at most 5% flow on the path is
composed of fleet vehicles, “full” means at least 95% flow on the path is fleet flow, and “mixed” is the remaining paths.

that are completely unused tend to have the highest path
independence factor; this is largely due to paths that have
few interactions with fleet usable paths because they
themselves are not fleet usable.

It is important to note that one may compute the path
independence without having solved for CFS-SO; one
only needs the set of least marginal cost paths at SO. As
a first pass of testing the possibility that path indepen-
dence might be used as a proxy for CFS-SO, we trained
an explainable boosting machine (EBM) (Lou et al. 2013,
Nori et al. 2019) on the Sioux Falls path flows to predict
whether the flow on a path that is usable by the fleet
(i.e., it is least marginal cost) will be exclusively fleet or
not at CFS-SO. Using just the path independence factor
and whether the path may also be used by individual
users (i.e., it is also least cost), the EBM was able to
achieve an area under the receiver operating character-
istic curve (ROC AUC) of 75%. In other words, the
model will rank a random fleet exclusive path higher
than a random nonfleet exclusive path 75% of the time.
As Figure 9 demonstrates, path independence is on
wildly different scales on different networks so we can-
not not expect any such model to generalize directly.
Rather the model serves as a measure of the extent to
which path independence is able to characterize this
particular CFS-SO solution. The question of whether
path independence can be generalized as a heuristic is
left for future work.

6.4. Sensitivity of CFS-SO and CFS-UE to
Aggregate Demand

For the Sioux Falls network, not only does the linear

program offer a comparable value of CFS-SO, the

solution itself tracks closely with the solution returned
by the CFS-SO MIP. This is most evident in Figures 6
and 7, where the curves generated by the MIP tracks
closely enough with the curves generated by the LP so
that none of our conclusions would be altered by taking
one solution instead of the other. To examine the quality
of the linear program upper bound in a more general
sense, we solve MCR, CFS-SO (exact and upper bound),
and CFS-UE (exact and lower bound) on varied demand
levels on the Sioux Falls network. Each MIP was termi-
nated at an absolute gap of 1% of the total travel
demand or at a time limit of two hours, whichever came
first. We compute an approximate lower bound for
CFS-SO, based on the best objective lower bound pro-
vided by the solver and on the assumption that the criti-
cal fleet size is an equal percentage of the objective at the
incumbent solution and at the best lower bound. Explic-
itly, the bound is computed using Equation (21), where
CFS is the critical fleet size at the best integer solution
returned by the solver. The results of the demand sensi-
tivity analysis are summarized in Figure 10.

CFS Lower Bound

Objective Best Bound (21)

= CFS: Objective Best Integer Solution

CFS-SO and MCR show similar trends with respect to
the demand multiplier, although CFS is more sensitive
to changes in demand level. Both CFS-SO and MCR are
small for very low demand levels, increasing with
demand before decreasing at higher demand levels. In
the very-low demand regime, we expect CFS to be small
or zero because we expect the network to be almost
completely uncongested so that UE and SO are close.
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Figure 10. (Color online) CFS-UE, CFS-UE Lower Bound, CFS-SO Upper Bound, CFS-SO MIP Solution with Approximate
Lower Bound, and MCR as a Function of the Demand Multiplier That Scales Demand Volume on Each OD Pair
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Encouragingly, past a certain point, both MCR and CFS-
SO decrease, meaning that at high demands a smaller
fraction of the total demand is needed for the system to
benefit. Interestingly a similar pattern emerges for CFS-
UE: past a certain demand level (roughly 80% of base
demand) CFS-UE increases in demand level, implying
that the network can handle high levels of optimized fleet
demand without impacting UE traffic patterns at all.

In the Sioux Falls network, the linear program pro-
vides an upper bound within 6% of the CFS-SO found
by the mixed integer program for 14 of the 20 demand
levels. For large demand levels, between 1.0x and 1.9x
the base demand, the linear program provides a reason-
able bound at a small fraction of the computational cost.
It is in the low demand regime (0.2x-0.9x) where the
upper bound performs particularly poorly, overestimat-
ing the CFS-SO found by the mixed integer program by
up to 24%. However, the low demand regime is pre-
cisely where the linear program’s computational advan-
tages are least useful. For each demand level less than or
equal to 50%, the MIP was solved to a relative gap of at
most 8% within two hours. In these cases, the upper
bound is loose because the MIP was able to find high
quality solutions. In contrast, no demand level above
50% was solved to a relative gap smaller than 22%
within the two-hour time limit. The LP lower bound for
CFS-UE, however, is reasonably tight only for very low
and very high demand regimes and at worst underesti-
mates CFS-UE by around 45%. The solutions returned
by the CFS-UE MIP within the two-hour time limit,
however, are of comparatively better quality than the
solutions returned by the CFS-SO MIP within the same
time limit. Over the demand levels we test, the CFS-UE
solutions have an average relative gap of 3.6% com-
pared with 24.5% for the CFS-SO solutions. Overall,
this indicates that the CFS-UE MIP is somehow less

challenging for the solver than the CFS-SO MIP. One
possible reason for this is the substantially smaller path
set used in the CFS-UE MIP compared with the CFS-50O
MIP.

In general, is it difficult to justify the tightness of the
LP bounds for either CFS-UE or CFS-SO. From Figure
10, it is clear that on the Sioux Falls network, the LP gen-
erally provides a tighter bound for CFS-SO than it does
CFS-UE. It is not immediately clear why. Part of the rea-
son may have to do with the fact that, as we have
observed, the CFS-UE MIP is apparently easier to solve
than the CFS-SO MIP, resulting in CFS-UE MIP solu-
tions that are further from the LP bound than the CFS-
SO MIP solutions. Another difficulty is that the LP
equalizes the fleet marginal cost over a potentially much
larger set of paths than the set the true CFS-SO fleet
would use. It is not clear how to estimate a priori how
much this affects the amount of fleet flow required. An
option for practitioners who need both a bound and a
measure of tightness is to run the MIP for a fixed com-
putational budget.

7. Discussion

In both Pittsburgh and Sioux Falls networks, a nontri-
vial mixture of self-interested behavior induces SO traf-
fic flow. Should CFS-SO be achieved, travelers would be
on average are better off with the presence of the fleet
than they would have been if they had all routed them-
selves independently. In contrast, the MCR, which also
achieves SO traffic flow, may not make fleets better off.
This important distinction highlights the advantage of
explicitly modeling fleet behavior in traffic analysis and
demonstrates the necessity of doing so. In this sense, of
the many ways to partition SO as a mixed equilibrium,
CFS-SO offers a particularly compelling case for its real-
ism: no external subsidy is required.
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Are fleets better off? Collectively, at both CFS-SO and
MCR, individual users have lower average travel cost
than the fleet simply because individual users use only
least cost paths. One interesting effect of CFS-SO relative
to MCR is that, although both achieve aggregate SO,
they do so by partitioning demand between the fleet
and individuals in very different ways as demonstrated
by Table 5. First, the average travel cost, computed as
the flow-weighted average path travel cost, is much
higher for the fleet than for the user both at MCR and
CFS-SO. This is partly because individual users are only
using least cost paths, but it is also because, demon-
strated in Figure 8, that fleets accumulate on OD pairs
with large marginal cost. When the link cost function is
monotonic increasing and convex, we should generally
expect a positive correlation between cost and marginal
cost (t(x) > t(y) = t'(x) > t'(y)). As a result, because fleet
volume skews toward high marginal cost OD pairs, and
will not necessarily use least cost paths, the average fleet
cost is much higher than the average user cost.

Second, the average travel cost of both the fleet and
the individual users decreases from MCR to CFS-SO,
although the aggregate average cost is the same. This
counter-intuitive result is possible only because the fleet
and users have completely different OD demand bet-
ween MCR and CFS-SO. In shifting from MCR to CFS-
SO, the fleet needs to acquire flow on lower cost paths; it
achieves this by taking paths from users that are lower
cost than the average fleet path cost, but higher cost
than the average user path cost, resulting in a reduction
in both averages.

Third, the travel cost discount that the fleet receives
relative to UE is greater at CFS-SO than at MCR. More-
over, at MCR on the Sioux Falls network, the fleet travel
time increases relative to UE. We can compare the fleet
and individual average travel cost under CFS-SO and
MCR with the average travel cost of a set of vehicles
with the same OD demand under aggregate UE using a
measure we term the “coordination discount”:

(c,f)
(Age, ME)

where f is the path flow of interest (i.e., the fleet, user, or
aggregate path flow) under the solution concept of
interest (i.e., MCR, CFS-SO, or aggregate SO), ¢ is the

CoordinationDiscount(f) = 1, (22)

path cost at f, and Ay, is the OD cost under aggregate
UE. When f is an aggregate SO path flow, the coordina-
tion discount is termed the SO discount and is related to
the price of anarchy as 1/PoA — 1. Positive values of the
coordination discount indicate that the flow in question
is worse off under its current routing than they would
have been at aggregate UE; negative values indicate that
the flow in question is better off using its current rout-
ing. In Table 5, we can see that at MCR in Sioux Falls the
fleet total cost increases 3.44% relative to UE even though
the system total cost decreases by 3.82%. This is an exam-
ple of the system optimality paradox discussed in Sec-
tion 4.3. In contrast, a fleet at CFS-SO, reduces its total
cost by 4.32% relative to UE. In Pittsburgh, the fleet is
only slightly better off under MCR than under UE but
could increase their savings to nearly match the system
SO discount by optimizing their fleet.

7.1. CFS-SO as Optimization-by-Proxy
Viewed a different way, our results demonstrate that
SO traffic flow is attainable by optimizing over a subset
of vehicles rather than over all vehicles. In optimizing
the entire network, the traffic manager should know, at
the very least, the total system travel time, a measure-
ment over all vehicular flow in the network. In practice,
this measurement is simply not feasible to take. What a
nontrivial critical fleet size indicates is that the measure-
ment need only be taken and the optimization need
only be performed on a subset of the vehicles. If this sub-
set of vehicles is easy to measure (e.g., they are all using
the same navigation software or information platform),
then all that is additionally necessary are travel time
estimates on the links of the network, which are sub-
stantially easier to measure than untracked vehicles.
However, how large could we reasonably expect
such a fleet to be? According to a 2015 study, more than
90% of smartphone users use their smartphones for
directions (Anderson 2016), and roughly 73% of Ameri-
cans in 2020 owned smartphones (O'Dea 2020). Finally,
84% of those who use smartphones for directions use a
Google-owned navigation app (Ceci 2021). By a simple
back-of-the-envelope calculation, nearly 66% of drivers
use some form of smartphone navigation app, and 55%
of drivers use a Google-owned navigation app. By con-
trast, it is estimated that ride-sourcing vehicles make up

Table 5. Coordination Discount and Average Cost by Flow Class, Solution Concept, and Network

Coordination discount (%) Average cost

Network Solution concept SO discount (%) Fleet User Fleet User

Sioux Falls CFS-SO (LP) —3.82 —4.32 —3.30 27.64 15.52
MCR +3.44 —5.81 32.64 17.86

Pittsburgh CFS-SO (LP) -1.19 -1.19 -1.28 110,188.88 47,590.55
MCR —0.21 —2.34 135,722.77 83,179.67

Note. Bold indicates the outcome highlights.
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at most 14% of vehicle miles traveled among the largest
urban areas in the United States (Balding et al. 2019).
Although still less than the CFS-SO on the Pittsburgh
network, an optimized fleet of Google Maps users is
large enough to achieve SO on many networks, Sioux
Falls included, if distributed in the right way.

It’s worth noting that CFS-SO finds the smallest total
fleet size capable of achieving SO with no constraints on
its OD demand. Specifically in drawing an analogy to
Google Maps, it may be of interest to find CFS-SO that
balances the total fleet size with how reasonable the
resulting OD fleet demand pattern appears, for exam-
ple, how uniformly it is distributed across OD pairs. We
leave this as an area for future work.

In general, however, the scale of the empirical CFS-
SO results would seem to preclude the most obvious
source of an optimized fleet; in the case of Sioux Falls
for example, it is unlikely that a UPS or FedEx fleet
would account for more than a third of traffic volume,
but connectivity enables the coordination of vehicles
on a much larger scale. FedEx can optimize because it
either owns vehicles and uses CDL (commercial dri-
ver’s license) drivers or contracts with freight operators.
Both avenues are capital intensive and accordingly limit
the size of the fleet. In contrast, Uber and Lyft have far
lower driver acquisition costs because they do not own
the vehicle nor employ the driver (who needs only a
standard driver’s license) directly. In effect, CFS-SO,
and in many networks MCR as well, could only be
achieved via the scale of vehicle coordination enabled
by app-based services.

Finally, CFS-SO and CFS-UE capture two very differ-
ent realities for fleet operators. When fleets on the net-
work induce the same traffic flow as UE would, we are
right to ask whether the fleet should bother optimizing
itself at all. If mixed equilibrium is the same as UE, then
the fleet has not gained anything by optimizing. In fact,
if there is a cost to coordinating behavior, then the ser-
vice is strictly worse off in coordinating the fleet. In con-
trast, when mixed equilibrium is SO, the potential
benefits of optimization are clear. In fact, in both the
Sioux Falls and Pittsburgh networks, the fleet vehicles
are strictly better off optimizing themselves while at the
same time driving the system to its optimal traffic flow.
In contrast, they are worse off under the MCR.

7.2. Applications of CFS-SO and CFS-UE
There are four principal applications we see for critical
fleet size analysis; it offers

1. Regulators a new way to inform congestion man-
agement policy,

2. Transportation planners an important metric to
evaluate road network improvements,

3. Service providers, such as ride-sourcing companies,
navigation services, and car manufacturers increasingly in-
terested in mobility more broadly, a better understanding

of the network effects of their fleet coordination, specifi-
cally in identifying areas of the network where their efforts
could align with system level goals, and

4. The public a tool to understand how individual
users might benefit from increased fleet presence on
their roadways.

In the search for regulatory strategies for ad hoc fleets,
including ride-sourcing services, CFS-SO may provide
insights into corridors where fleets would be particularly
helpful in reducing system-level congestion. Conversely,
CFS-UE may provide useful insights into corridors where
ad hoc fleets would not be expected to meaningfully
change travel time or cost. Critical fleet size analysis can
therefore inform more targeted congestion management
schemes by recognizing where the interests of traffic
managers and fleet coordinators align, where they do not
align, and where fleets will not be expected to alter traffic
patterns.

CFS-SO is also an important metric in evaluating a set
of alternative road network improvements. A road net-
work improvement that reduces CFS-SO could be lever-
aged by a fleet to improve system cost, potentially to SO
levels. All else equal, a road improvement that reduces
CFS-SO more will pay dividends in the future as it
makes it easier for a coordinated fleet to reach the
threshold required to bring the system to optimality,
without any external subsidy or intervention on the part
of the transportation planner.

Services that can coordinate their fleets should ask
themselves whether and how to optimize their fleet as it
is often in their interest to guide the fleet toward a
service-level objective. CFS-SO offers service providers
a window into how well their service may align with
network level objectives. In the case of green routes in
Google Maps, this is an existential question. By com-
plement, CFS-UE offers service providers insight into
where optimizing their fleet may not be worth it at all.

8. Conclusions and Future Work

As technological advances in transportation continue
to permeate our road networks, it becomes easier for
services to coordinate vehicle behavior toward a service-
level objective. In this work, we study if and how self-
interested services that optimize their fleet can reduce
system cost on a road network. We demonstrate that
self-interested fleets are capable of both paradoxically
increasing system cost over UE and reducing system
cost up to achieving SO network flow. We provide a
mathematical program with equilibrium constraints to
solve for the smallest fleet that would induce SO and the
largest fleet that would induce UE in mixed traffic with
UE users. We present efficient solution methodologies
and apply them to the Sioux Falls and Pittsburgh net-
works finding that 33% and at most 83% of vehicles,
respectively, must join the fleet for the network to reach
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SO. Moreover, these vehicles are better off than they
would have been had they either routed themselves
independently or participated in a MCR-like scheme,
meaning that neither subsidies nor tolls would be re-
quired to compensate the fleet. At CFS-SO on the Pitts-
burgh network, fleet vehicles are most present along
highways and major arterials, whereas individual users
tend to accumulate on shorter trips outside of the central
business district. The “path impact” metric, derived
from the KKT conditions of the CFS linear program, is
found to drive the concentration of fleet vehicles on
paths. In other words, we have found two examples
of networks on which a nontrivial mixture of self-
interested behavior can induce minimum system cost on
the network, without the need for external subsidy. Criti-
cal fleet size offers regulators a new way to inform con-
gestion management policy, transportation planners a
new metric to evaluate network improvements, and fleet
operators/coordinators a better understanding of bene-
fits of their fleet optimization efforts at the level of both
their own platform and the entire network.

A key avenue of future work concerns the conditions
under which a fleet will reduce system cost on a net-
work. Although the condition given by Equation (3)
yields some theoretical insight, it is not of practical use.
A Dbetter practical condition would depend only on the
network itself and, potentially, the UE or SO link flow.
Whether such a condition exists and if it is easier to com-
pute than mixed equilibrium is an area for future work.
Additionally, the example of the fleet optimality para-
dox is contrived. Whether the paradox can be demon-
strated in real world networks remains to be seen. If the
paradox can be found in real world networks, these
examples may inform better conditions or heuristics to
characterize networks that may suffer from the presence
of fleets.

The use of critical fleet size in transportation planning
exposes an interesting avenue of future work in charac-
terizing the kinds of improvements that tend to reduce
critical fleet size in real-world networks. Such work
would expand our understanding of what drives critical
fleet size and, more broadly, what drives system cost
reduction when optimized fleets are present on the net-
work. It may be of interest for public agencies to regu-
late a fleet coordinator toward a deployment pattern
inline with CFS-SO. One would expect the fleet-optimal
operation, in conjunction with incentives, may lead to
SO flow, or considerably mitigate congestion.

As formulated, CFS enforces no constraints on the
OD fleet demand. This is intentional, as in this work, we
are focused on finding strictly the smallest optimized
fleet capable of inducing SO. There are larger fleets that
would also achieve SO, but as our analysis shows, add-
ing fleet to the CFS-50 demand pattern may break SO.
In practice then, a CFS OD demand pattern that adheres
to some prior notion of fleet demand might be more

useful. Adding a penalty term to the CFS mathematical
programs would be one way to achieve this and we
leave such studies for future work. For example, it may
be more reasonable to find a critical fleet size that bal-
ances total fleet size with close to uniform OD demand.
One could achieve this by constructing a measure of
nonuniformity as the penalty term in the objective, that
is by replacing the objective in Program 17 with, for
example,

min Zf;+y

. (23)
20,20, “—
pepP

1
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Other regularization is of course possible. A penalty
term of the form ||q° — ql|, for example, would encour-
age the demand pattern at CFS-SO to match some prior
demand pattern.

In this paper, CFS is solved with the presence of only
a single fleet. In reality, there could exist many such
fleets. CFS-SO with multiple fleets finds the smallest
total number of fleet vehicles such that the mixed equi-
librium is SO. In Online Appendix G, our mathematical
programs are expanded with additional constraints to
ensure that each fleet meets FO criteria and that aggre-
gate demand and link flows are conserved. Experiments
on real networks and whether CFS increases or decreases
when multiple fleets are present is left for future work.
We hypothesize, however, that because multiple fleets
will compete with each other, CFS-50 will be minimized
when only one fleet is on the network. Refuting or prov-
ing this hypothesis is also left for future work.

In commenting on congestion, critical fleet size consid-
ers route-choice behavior alone. Our framework elides
many congestion-influencing behaviors that have been
attributed to ad hoc fleets in the literature. A complete
treatment of the congestion effects of such fleets should
not only account for the route choices but also the beha-
viors associated with that particular service. Of course,
not every service provider wishes to optimize total fleet
travel cost, which this particular formulation of critical
fleet size assumes. An important area of future research
is then to adapt the methods in this work to other fleet-
level objectives a service may have, such as total emis-
sions in the case of Google Maps’ green routes.

The relationship between the two notions of critical
fleet size on networks with a nonunitary price of anar-
chy is not clear. Characterizing the relationship either
empirically through further experiments on real-world
networks or theoretically would expand our under-
standing of both critical fleet size as a quantity of interest
and how networks in general should be expected to
respond to the presence of optimized fleets.

We study CFS in the context of static equilibrium.
This was a deliberate choice as we leveraged the sim-
plicity of the static setting to isolate fleet behavior as the
sole reason for the increase in total system cost in the FO
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paradox and as the sole reason that a mixture of fleets
and individuals could achieve SO. CFES is also an inter-
esting quantity in the dynamic setting and is an area of
future work we are eager to explore.

Finally, solving critical fleet size, or its bound, in large
networks is computationally challenging. Not only does
the problem require a high-quality SO link flow solu-
tion, but the number of variables and constraints grows
quickly with network size. There is no immediately
obvious way of reducing the problem complexity, but a
more clever row and column generating scheme and
tighter integration with solver software may work well
in practice to solve the smallest possible critical fleet size
program. Finding ways to improve the computational
efficiency of critical fleet size algorithms will make it a
more easily applicable algorithm.
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