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Abstract. Connected technologies have engendered a paradigm shift in mobility systems 
by enabling digital platforms to coordinate large sets of vehicles in real time. Recent research 
has investigated how a small number of connected vehicles may be coordinated to reduce 
total system cost. However, platforms may coordinate vehicles to optimize a fleet-wide ob
jective which is neither user nor system optimal. We study the behavior of optimized fleets 
in mixed traffic and find that, at small penetrations, fleets may worsen system cost relative 
to user equilibrium, and provide a concrete example of this paradox. Past a critical penetra
tion level, however, optimized fleets reduce system cost in the network, up to achieving sys
tem optimal traffic flow, without need for an external subsidy. We introduce two novel 
notions of fleet-optimal mixed equilibria: critical fleet size for user equilibrium (CFS-UE) 
and critical fleet size for system optimum (CFS-SO). We demonstrate on the Sioux Falls and 
Pittsburgh networks that 33% and 83% of vehicles, respectively, must participate in the fleet 
to achieve system optimum. In Pittsburgh, we find that, although fleets permeate the net
work, they accumulate on highways and major arterials; the majority of origin-destination 
pairs are either occupied exclusively by users or by the fleet. Critical fleet size offers regula
tors greater insight into where fleet and system interests align, transportation planners a 
novel metric to evaluate road improvements, and fleet coordinators a better understanding 
of their efforts to optimize their fleet.

Funding: This work was supported by the U.S. Department of Transportation [Mobility21] and the 
National Science Foundation [CMMI-1931827]. 

Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2022.1189. 
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1. Introduction
The central claim of this paper is that groups of vehicles 
coordinated to achieve a group-level objective have sig
nificant and diverging impacts on total travel cost on 
the road network. On the one hand, vehicle coordina
tion may increase total travel cost on the network. On 
the other hand, if deployed on certain origin-destination 
pairs in sufficient volume, a fleet can reduce system cost 
on the network, up to achieving the system optimal 
(SO) network flow. In this work, we consider the static 
network effect of a single fleet that routes its vehicles in 
a fleet optimal (FO) manner to minimize the total fleet 
travel cost in mixed traffic with individual vehicles who 
seek to minimize their own travel cost.

Technological advances have allowed mobility and 
information service providers to influence traveler deci
sion making in real time and on an unprecedented scale. 
Ride-sourcing vehicles, connected and autonomous 
vehicles, vehicles using real-time navigation devices, 
and vehicles using carpool matching services are all 
examples of what we call ad hoc fleets currently operat
ing on road networks. We refer to the platforms who 

coordinate ad hoc fleets interchangeably as “service 
providers” or “fleet coordinators.”

It is often in the interest of the service to coordinate 
the vehicles in their fleet to advance a service-level goal 
that may not always align with the goal of an individual 
user. In this work, we examine the goal of minimizing 
average fleet travel cost or, equivalently, travel time. 
This is perhaps the simplest fleet-level goal lying in the 
intersection of plausible and interesting fleet behavioral 
principles; it is by no means the only one.

Ride-sourcing platforms like Uber and Lyft coordi
nate drivers in a variety of ways to benefit the platform. 
Matching riders and drivers on the Uber platform, for 
example, is optimized in batches over a local fleet (Uber 
Technologies 2022). With the same information, an indi
vidual driver could likely find a better match than the 
one they were assigned precisely because the matching 
was done to minimize a fleet level metric rather than 
equalize a driver level metric. Minimizing travel time in 
particular is an important existing goal of strategy at 
Uber. For a fixed demand and fixed driver pool, quicker 
service means increased capacity and higher level of 
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service, which in turn can demonstrate the value of the 
platform to new riders and drivers. In another example, 
Uber uses “pickup spots” to reduce congestion among 
Uber vehicles in small areas of high demand. Many air
ports, for example, have dedicated entire wings of near- 
terminal parking structures to coordinate ride-hailing 
pickups. This is fundamentally a fleet (and likely sys
tem) optimal rather than user optimal solution: For each 
individual rider-driver pair, terminal curb-side pickup 
would offer travel-time savings, but measured across 
the fleet, organized parking lot pickups offer less total 
time wasted.

Real-time navigation systems with substantial user 
pools like Google Maps also have the means and moti
vation to induce FO behavior. Conventional reasoning 
among network equilibrium theorists is these systems 
will lead to a user equilibrium (UE) by providing trave
lers with accurate day-to-day traffic information to find 
their least cost route. However, the goal of Google Maps 
is to generate revenue. It will only help users find least 
cost paths insofar as it drives ad revenue: by keeping 
users on the platform. In this light, UE behavior is but 
one of many possible results of Google Maps use; FO is 
another possibility with compelling rationale. Google 
Maps currently balances several factors in selecting 
routes including travel time, future predicted traffic, 
emissions (i.e., “green routes”; Alcántara 2021), road 
quality, directness, and safety, among others (Lau 2020). 
The fact that Google Maps is predicting traffic while 
simultaneously directing a subset of it means that it has, 
intentionally or not, answered the question: How will 
our traffic predictions take into account the directions 
provided? If the predictions do not take into account the 
directions at all, then the predictions will be inaccurate 
when a large volume of travelers use the service. If they 
do, then the two should be mutually consistent: the traf
fic predictions used to generate the directions remain 
accurate when the traffic volume of users following 
those directions is fully incorporated into traffic predic
tion. There are many models that achieve mutual consis
tency, and FO is a particularly compelling one. Under 
FO, because the fleet rather than the individual cost is 
minimized, the directions are not always fair: some 
users end up on better routes than others, but its users 
are, on average, better off than they otherwise would 
have been. For travelers who travel many origin- 
destination pairs over their lifetime on the platform, this 
on-average benefit is what matters. However, Google 
Maps has a great deal of flexibility in how it presents 
routes to users so that it may not be obvious to a user, nor 
may they care, and is in fact very difficult to validate, that 
their route is not best. Green routes are used by many on 
the platform even though they are explicitly labeled as 
being slower than alternative routes. FO in this setting 
offers a competitive advantage to real-time navigation 
providers with large user pools: In the same way that 

large firms negotiate lower unit prices, these services can 
extract lower unit travel costs via coordination. For users 
then, Google Maps may be able to offer them lower travel 
costs on average than individuals and competitors 
with smaller market share, thereby keeping users on 
its platform.

In short, fleet coordinators may, and in many cases 
already do, influence the behavior of their fleets to 
improve a metric computed over the fleet for the benefit 
of the service. In this work, we take this metric to be the 
total travel cost of the fleet and present the system-level 
implications of its use. Travelers who minimize travel 
time when driving alone may opt to give up their ability 
to choose their own route in return for some benefit. In 
the case of ride-sourcing, this benefit is the ability to use 
one’s time more productively. In the case of real-time 
navigation, the benefit is the ability to follow directions 
instead of keeping track of directions in one’s head. In 
both cases, the service offers a benefit that makes the 
traveler more flexible in terms of the travel time of the 
routes they are willing to accept. From the perspective 
of the platform, this flexibility is an opportunity to pro
vide acceptable routes that further a business goal. We 
find travel time minimization in this context to be a par
simonious choice. In minimizing total fleet travel time, 
the platform uses its market power to squeeze to extract 
smaller average travel costs, possibly at the expense of 
other road users. The average travel time minimization 
is a clear benefit to the fleet coordinator but is also an 
attractive proposition to many road users who might 
not benefit on every origin-destination (OD) pair but 
on average come out ahead. For users of ride-hailing 
services and real-time navigation devices who in gen
eral will traverse many different OD pairs on the net
work, this on-average travel time benefit, in addition to 
the nontravel time benefits previously discussed, present 
a compelling case for the adoption of the particular ser
vice. This is especially notable in light of the subscription 
model ride-hailing companies like Uber are pursuing, 
whereby users may opt in to a monthly fee to gain access 
to platform benefits. Regardless, platforms who coordi
nate FO behavior across their fleet can pass total travel 
time savings onto their users via incentive schemes. The 
design and evaluation of such schemes are out-of-scope 
for this work but are investigated in detail in upcoming 
research. This paper illustrates and highlights the impor
tance of considering fleet’s goals in system-level planning 
and operation, and the methodology and solutions can 
be extended to incorporate other system-level metrics in 
future work.

If ad hoc fleets are to remain a fixture on road net
works, how should transportation planners understand 
and anticipate their use of transportation infrastructure? 
For example, in analogy to oligopoly models in econom
ics, if a service provider wished to leverage its market 
power to extract a better deal on travel cost from the 
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network via route choice coordination of its fleet, what 
would happen to network efficiency? Furthermore, are 
there network designs that align the interests of the fleet 
and society at large? By that same token, fleet coordina
tors also have an interest in understanding the network 
impacts of coordinating their fleet: what discount on 
travel cost does their market power allow them to 
extract? Perhaps there is an opportunity for service pro
viders to align their goals with traffic managers or pass 
congestion-relief incentives to riders and drivers. Both 
the identification of such opportunities and the mea
surement of their benefits rely on a framework for 
understanding how vehicles with fleet-level goals and 
those with individual goals interact on a network.

The remainder of this paper is organized as follows. 
Section 2 examines the line of inquiry in which this 
work participates while also placing our work in the 
context of other perspectives on the relationship bet
ween ad hoc fleets and total system cost. Section 3 intro
duces the notation and fundamental concepts used 
throughout this paper. Section 4 presents an example of 
the “fleet optimality paradox,” in which the presence of 
a fleet increases total system travel time relative to UE. It 
is followed by examination of conditions under which 
fleets do improve total system travel time. In Section 5, 
we introduce two important mixed equilibria: the smal
lest fleet to induce SO, termed the critical fleet size for 
SO (CFS-SO), and the largest fleet to induce UE, termed 
the critical fleet size for UE (CFS-UE). CFS-SO and CFS- 
UE are examined analytically in a parallel network. 
Solution methodologies are then developed to solve 
both CFS-SO and CFS-UE in general networks. Section 6
presents the critical fleet size solution on two networks 
and provides an analysis of the results. Section 7 dis
cusses our findings, outlines potential areas of future 
research, and discusses the relevance of CFS-SO and 
CFS-UE as a practical tool for transportation planners, 
traffic managers, and fleet coordinators to understand 
and tune the impact of fleets on road networks.

2. Background and Related Work
In this work, we examine a mix of individual users and 
fleets on the network through the lens of static network 
equilibrium. The application of equilibrium theory to 
transportation networks is attributed to Wardrop (1952) 
who advocates for its use as a principled heuristic to 
estimate the impact of a road network improvement on 
the future distribution of traffic flow. If travelers are 
“user-optimal” decision makers (they choose the quick
est route), we must contend with the fact that travel time 
both affects and is affected by traveler route choices. The 
framework proposed by Wardrop, and widely used by 
transportation planners to this day (Boyles, Lownes, and 
Unnikrishnan 2021), acknowledges and reconciles this 
circular dependency by finding the route choices and 

travel costs that are mutually consistent: an equilibrium. 
This is preferable, Wardrop argues, to the “arbitrary 
assumptions” one would otherwise have to use.

It is important to note that the use of “optimal” and 
“optimized” in the traffic network equilibrium litera
ture is different from the way the terms are used in 
operations research. In network equilibrium, road users 
are infinitesimal units of flow each with a fixed origin 
and destination on the network. The only decision the 
road users make is which route they should use to travel 
from their origin to destination. In Wardrop’s UE, road 
users select the route with minimal travel cost; they are 
said to be “user optimal” in the sense that minimizing 
their travel cost is solely beneficial to the user. When a 
network of user optimal road users achieve an equilib
rium, it is referred to as a UE. In this paper we use the 
term “individual user” or “UE user” to refer to user 
optimal road users. We also study two other route 
choice principles: SO and FO. So-called SO users choose 
routes to minimize the total travel cost over all road 
users, and FO users choose routes to minimize the total 
travel cost of their own fleet. When a network of system 
optimal users reach an equilibrium, it is known as the 
SO flow. For an in-depth introduction to UE and SO, 
see Sheffi (1985) or Boyles, Lownes, and Unnikrishnan 
(2021).

In our setting, we are interested in the equilibrium 
achieved when individual users share the network with 
an optimized fleet. The formulation of network equilib
rium for multiple classes of vehicles each with their own 
behavior (a multiclass or mixed equilibrium) was intro
duced by Dafermos (1972). Mixed equilibrium has his
torically been applied in cases where the vehicles within 
each class are still user optimal but use different notions 
of travel cost. It is not until Harker (1988) that coordina
tion is introduced to the mixed equilibrium setting. Har
ker (1988) computes a mixed equilibrium on networks 
with both individuals and “Cournot-Nash” players who 
behave identically to our fleets and are routed to mini
mize a collective rather than individual travel cost. Har
ker (1988) specifically identifies “privatized urban mass 
transit” in addition to freight transportation as relevant 
domains for the application of this mixed equilibrium. 
Yang, Zhang, and Meng (2007) extend this analysis to 
examine a network with UE users, fleets, and SO users. 
Although Yang, Zhang, and Meng (2007) primarily serve 
to introduce the formulation and solution algorithm for 
this particular kind of mixed equilibrium, it contains an 
important empirical observation that sparked a continu
ing line of inquiry: When individuals control enough of 
the demand, neither SO nor fleet users may change the 
total system cost, and conversely, if there are few enough 
individuals on the network, a combination of fleets and 
SO users can achieve SO flow. To summarize our work 
as a single question, we ask the following: Under what 
conditions, if any, will a network achieve SO traffic flow 
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with a mixed equilibrium of fleet and individual users 
alone, without the aid of SO users?

There has recently been renewed interest in the line of 
literature established by Harker (1988) and Yang, Zhang, 
and Meng (2007), due largely to the advent of ad hoc 
fleets. Indeed, to realize the Cournot-Nash player of Har
ker (1988), the fleet must be able to coordinate itself to 
minimize collective cost. By comparison, there is exten
sive literature on ways to induce SO behavior by manipu
lating the individual notion of cost via infrastructure 
(e.g., ramp metering; Sheffi 1985). In our setting, coordi
nation comes not from the physical infrastructure but 
from the digital infrastructure used by the service pro
vider. In parallel work, Sharon et al. (2018) and Chen et al. 
(2020) identify a minimum-control ratio (MCR) that they 
define as the smallest volume of SO users capable of 
inducing SO flow on a network shared with UE users. In 
both cases, the fleet is centrally routed to minimize total 
system cost, corresponding to the second half of the 
observation of Yang, Zhang, and Meng (2007): that SO 
flow can be achieved even if not all users are SO users. 
Although the system as a whole is better off, the SO users 
themselves are relatively, if not absolutely, worse off pre
cisely because they prioritized the travel cost of others 
over that of their own. We examine this idea more pre
cisely in Section 4.3. This may not be realistic for private 
service providers who have no inherent altruistic motiva
tion. In contrast, our work focuses on the interaction 
between fleets (Cournot-Nash players) and individual 
users, both of which are self-interested.

A second line of inquiry addresses the regulations 
required to realize the benefits of a centrally routed fleet. 
Zhang and Nie (2018) view the fleet as a direct govern
ment intervention and balance the benefits of a fleet of 
SO users against their deployment cost. In this view, the 
fleet is a “mobile actuator” (Wang et al. 2020) and 
becomes a traffic management tool. Another perspec
tive is offered by Mansourianfar et al. (2021) and Delle 
Site (2021), who view the fleet as a third party that must 
be compensated or tolled to align their interests with 
that of the system’s. Last, Mehr and Horowitz (2019) 
investigate the impact of platooning autonomous vehi
cles (AVs) on network equilibrium via their impact on 
road capacity. Similar to our work, they find that a 
mixed equilibrium of platooning AVs and individual 
users may increase total delay in the network.

Perhaps most closely related to our work, Cominetti, 
Correa, and Stier-Moses (2009) investigate the impact of a 
set of the Cournot-Nash players of Harker (1988) on the 
network but do not consider a mix of fleet and indivi
duals. Our work explicitly considers both fleets and indi
vidual travelers coexisting on the network. We focus not 
only on when fleet optimal behavior breaks classical UE 
and increases system-level travel cost but also when it 
enables SO network flow, producing insights, and policy 
implications via application to real-world networks.

Separately, there has been substantial research into 
the congestion effects of the most prevalent example of 
ad hoc fleets on the road today: ride-sourcing fleets. The 
studies fall broadly into two categories: statistical analy
sis of ride-sourcing data and simulation-based studies. 
Among the reasons why ride-sourcing could affect 
congestion, Erhardt et al. (2019) identifies shared rides, 
integration with mass transit, and lower rates of car own
ership as potentially beneficial and deadhead cruising, 
impeding traffic flow during pickups and dropoffs, and 
modal shift away from less congesting modes as poten
tially harmful. Several empirical studies, including Erhardt 
et al. (2019), have indicated that ride-sourcing increases 
congestion. Ward et al. (2019) and Hall, Palsson, and Price 
(2018) have further investigated effects of ride-sourcing 
fleets on public transit ridership, car ownership, and vehi
cle miles traveled. In contrast, simulation studies have 
offered ways in which ride-sourcing fleets could possibly 
be leveraged to reduce congestion. Fagnant and Kockel
man (2014) simulate a fleet of shared autonomous vehicles 
(SAVs) to conclude that such a system would require sub
stantially fewer vehicles on the road.

Our work contributes to the understanding of ride- 
sourcing congestion effects but differs substantially 
from prior work. In none of the prior work reviewed 
here could the identified congestion effects be plausibly 
tied to route choice. For example, the empty vehicle 
miles that arise as a side effect of ride-sourcing services 
have nothing to do with whether route choice is coordi
nated or not. Our work instead offers a complementary 
view of the effect of ad hoc fleets by isolating the effect 
that coordinated route choice might have on network 
congestion. Our work does not confirm nor refute prior 
work in the area; rather, it aims to expand our under
standing of how coordinated fleets may impact network 
congestion. In prior work, it is the scale of the fleets that 
makes the congestion an issue: None of the congestion 
effects are unique to ride-sourcing services. In the same 
way, we ask that, when these fleets become large enough 
to coordinate their market power to extract lower average 
travel costs, will they contribute to or ease congestion?

This paper aims to fill in some key details of the con
ceptual diagram in Figure 1 and extends the literature in 
the following ways: 

1. We demonstrate that there exist networks on 
which mixed equilibrium with fleets will increase sys
tem cost over UE. This is marked on the conceptual dia
gram as “congestion upper bound?.” We leave open 
the question of whether there exists an upper bound, 
but if there is one it must be, at least for some networks, 
strictly greater than UE.

2. We show that when there is a single fleet, there 
must exist a fleet demand pattern for which the resul
tant mixed equilibrium is SO; in this work, we are con
cerned with the smallest fleet to induce SO (“CFS-SO” 
in Figure 1). We also show that there must exist a fleet 
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demand pattern for which the resultant mixed equilib
rium is UE; we are interested here in the largest fleet to 
induce UE (“CFS-UE” in Figure 1).

3. We formulate novel mathematical programs to 
find CFS-SO and CFS-UE. Exact and heuristic algo
rithms are developed to efficiently solve those pro
grams in large-scale transportation networks.

4. We solve for CFS-SO and CFS-UE on two real- 
world networks, finding that not all vehicles need to 
participate in an optimized fleet for the system to attain 
its minimum system cost. Moreover, we show that 
such a fleet would need no external subsidy to benefit 
from optimizing itself.

5. We demonstrate the practical relevance of critical 
fleet size to regulators, transportation planners, and 
fleet coordinators.

3. Preliminaries
In this section, we define our notion of network equilib
rium that we term “mixed equilibrium with fleets” and 
show that this mixed equilibrium has UE and SO as spe
cial cases.

We consider a road network represented as a graph G 

with nodes N and edges (or links) A. On this network, 
there is a volume of travelers, each seeking to travel 
from one node to another. We refer to the set of all such 
ordered node pairs as the set of OD pairs, W ⊆ N × N. 
The travel demand is segmented into flow classes: the 
individual user flow class, denoted (typically as a super
script) by u, and k ≥ 1 fleet flow classes, denoted ci for 
i � 1, : : : , k. Although in this paper we will consider only 

one fleet, we define mixed equilibrium with multiple 
fleets here for completeness. The set of all fleet flow clas
ses is written F . The travel demand for each flow class 
is represented as a vector of OD travel volume: qu ∈ R|W|

+

for the user flow class and qci ∈ R|W|
+ for each fleet flow 

class ci ∈ F . For each flow class and OD pair, travel is 
represented by the assignment of travel demand across 
the paths connecting the OD pair. The set of all paths on 
the network is denoted by P. This assignment may be 
represented using a trip path incidence matrix, M ∈

{0, 1}
|W|×|P|, where the element at (w, p) is one if and only 

if path p starts and ends at the origin and destination, 
respectively, of the pair w. A user path assignment fu

∈

R|P|
+ is feasible if Mfu � qu. Similarly for each fleet ci ∈ F , 

the fleet path flow fci ∈ R|P|
+ is feasible if Mfci � qci . The 

relation between path flow and link flow is represented 
using a link path incidence matrix, D ∈ {0,1}

|A|×|P|, where 
the element at (a, p) is one if an only if link a lies on path p. 
A user link assignment xu ∈ R|A|

+ is feasible if there exists 
a feasible user path flow fu such that Dfu � xu. Similarly 
for each fleet ci ∈ F , the fleet link flow xci ∈ R|A|

+ is feasible 
if there exists a feasible fleet path flow fci ∈ R|P|

+ such that 
Dfci � xci . Feasibility is always with respect to an OD 
demand vector.

Travelers incur a nonnegative travel cost on each link 
traversed represented as a link-separable monotone 
nondecreasing and differentiable function of aggregate 
link flow t : R|A|

+ → R|A|
+ .

We assume that individual users each wish to mini
mize the cost of their own travel, corresponding to War
drop’s first principle (Wardrop 1952). Each fleet, as the 
Cournot-Nash players in Harker (1988), is assumed to 
minimize the average travel cost over the fleet. We may 
now define mixed equilibrium with fleets.

Definition 1 (Mixed Equilibrium with Fleets). Let Ωu 

denote the set of qu-feasible user link flows and Ωci 

for each ci ∈ F the set of qci -feasible link flows for fleet 
ci. The tuple of feasible link flows (xu∗, xc1∗, : : : , xck∗) is a 
mixed equilibrium if the following holds:

〈t(x∗), xu � xu∗〉 ≥ 0 ∀xu ∈ Ωu, (1) 
〈t̃(x∗, xci∗), xci � xci∗〉 ≥ 0 ∀xci ∈ Ωci ∀ci ∈ F , (2) 

where x∗ � xu∗ +
P

ci∈F xci∗ represents the aggregate link 
flow at the mixed equilibrium and t̃(x, xci ) � t(x) +

xci t′(x) represents the marginal cost of fleet travel 
(referred to as fleet marginal cost), and t′(x) is the 
element-wise derivative of the link cost function.

It can easily be seen via the Beckmann transforma
tion (Beckmann, McGuire, and Winsten 1956, Sheffi 
1985) that an equilibrium of the fleet marginal cost in 
(2) is equivalent to a minimization over the total fleet 
cost, xci t(x). It is also useful to point out that the differ
ence between our fleet users and the system optimal 

Figure 1. (Color online) Conceptual Diagram of System Cost 
at Mixed Equilibrium with One Fleet as Fleet Penetration, as a 
Percent of Total Demand, Increases 

Notes. In this paper, we show fleets can worsen system cost relative 
to UE and that UE and SO may be achieved at certain penetration 
levels. Between these critical levels, however, it is unclear how total 
system cost behaves. Because demand is generally high-dimensional, 
this diagram does not directly map to general networks on which 
oftentimes CFS-UE is larger than CFS-SO.

Battifarano and Qian: Impact of Optimized Fleets in Networks 
Transportation Science, Articles in Advance, pp. 1–22, © 2023 INFORMS 5 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[9

6.
88

.2
36

.1
45

] o
n 

18
 F

eb
ru

ar
y 

20
23

, a
t 1

5:
36

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



users in Yang, Zhang, and Meng (2007), Zhang and 
Nie (2018), Chen et al. (2020), and Sharon et al. (2018) 
is that the system optimal users seek to equalize the 
system marginal cost, expressed as t(x) + xt′(x), or in 
our notation, t̃(x, x).

From Definition 1 we immediately see that SO and 
UE are special cases of mixed equilibrium with fleets. 
In particular, if all fleet demand is zero, then mixed 
equilibrium is UE, and if one fleet accounts for all of 
the demand, then mixed equilibrium is SO.

We are interested in demonstrating that on some 
networks when neither individual users nor the fleet 
control all the demand, SO can be achieved in the 
aggregate flow. It is straightforward to imagine how a 
fleet might reduce congestion on the network: The fleet 
minimizes the total cost for a subset of the flow so one 
would hope that this effort also reduces travel cost for 
nonfleet users. We can generate an intuition for why 
we should expect a mix of selfish behaviors to ever 
induce SO by considering Yang, Zhang, and Meng 
(2007) in a simpler setting: adding SO users to aggre
gate UE on the Braess network. The Braess network 
(Sheffi 1985), shown in Figure 2, contains three paths: 
upper, lower, and shortcut. At UE, two units of flow 
use each path, at SO, and three units will take each of 
the upper and lower paths, with no flow on the short
cut. If we were to replace some UE demand with SO 
users, they would simply replace UE flow on the 
upper and lower paths; all remaining flow would still 
use the shortcut path. Therefore, despite the fact that 
the SO users are choosing routes to benefit the system 
(not themselves), they still choose paths they would 
have chosen as users. At small SO penetration, these 
two notions of cost are aligned: The least marginal 
cost paths are also least cost paths.

Now suppose we are at aggregate SO, and we 
replace some SO flow with a fleet. The total marginal 
cost and fleet marginal cost differ by the product of 
the user flow and the link cost derivatives. If this 

difference is uniform enough across paths at aggre
gate SO, then the two notions of cost may be aligned: 
Least fleet marginal cost paths are also least total mar
ginal cost paths. We would then expect a fleet to make 
the same route choices that they would have made as 
SO flow, and therefore, the aggregate network state 
will not change when SO flow is replaced with fleet 
flow. If we can do the same with UE users, finding 
paths where cost and marginal cost align and replace 
SO users with UE users, and then UE users would 
similarly make the same decisions SO users would. In 
effect, we have partitioned the network at SO into 
paths for which cost and marginal cost are aligned 
and paths for which fleet marginal cost and marginal 
cost are aligned so that the combination of FO and UE 
behaviors in aggregate achieves SO on the network.

4. Fleet Optimality Paradox
In this section, we first analyze total system cost at mixed 
equilibrium in general. We then demonstrate a concrete 
example of an optimized fleet which, at mixed equilib
rium, increases total system cost relative to UE. We refer 
to this phenomenon as the fleet optimality paradox.

4.1. Total Delay Under Mixed Equilibrium 
with Fleets

On the one hand, total delay at mixed equilibrium with 
fleets has a trivial but tight lower bound of the total delay 
at SO. Only under certain conditions, however, is the 
total travel time at UE an upper bound of mixed equilib
rium with fleets. We give a sufficient condition in (3), the 
proof of which is provided in Online Appendix A:

X

a∈A
xat′

a(xa)(ya � xa) ≥
X

a∈A

X

i∈F

xci
a t′

a(xa)(yci
a � xci

a ), (3) 

where, xa � xu
a +

P
i∈F xci

a and ya � yu
a +

P
i∈F yci

a are the 
link flows at mixed and user equilibrium, respectively. 
This condition is not of practical use because it depends 
on the link flows at UE and mixed equilibrium: One 
could simply compare the total system costs. It does, 
however, yield some helpful theoretical insight.

The left-hand side of (3) is a first-order estimate of the 
change in total cost when the aggregate link flow shifts 
from mixed equilibrium to UE; the right-hand side is the 
first-order estimate of the change in total fleet cost when 
the network shifts fleet link flow from mixed equilibrium 
to UE. The coefficients, xat′

a(xa) and xci
a t′

a(xa), measure the 
impact of a given change in flow. Roughly speaking, (3) 
is fulfilled if links with high total impact that receive 
additional aggregate flow are also those with high fleet 
impact and receive additional fleet flow. When UE be
havior shifts fleet flow onto high fleet impact links that 
are not also high total impact links, then the right-hand 
side can exceed the left, possibly by enough so that the 
total system cost at mixed equilibrium exceeds that at 
UE. This idea will be exploited in the following example.

Figure 2. Braess Network, Annotated with Link Cost 
Functions 

Notes. Six units of demand wish to travel from node a to node d. The 
three paths on this network are “upper” (a → b → d), “lower” 
(a → c → d) and “shortcut” (a → b → c → d).
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4.2. Example of the Fleet Optimality Paradox
In this section, we will examine the network in Figure 3
as a concrete example of the fleet optimality paradox. 
Intuitively, the paradox arises when the fleet chooses a 
path with high system marginal cost but low fleet mar
ginal cost. In the example network, this is caused by an 
imbalance of fleet flow between two alternative paths. 
The fleet only wishes to avoid interfering with other 
vehicles in the fleet and therefore does not consider the 
effect of its route choice on the individual users. As a 
result, the path with fewer fleet vehicles has low fleet 
marginal cost, although its many users induce a large 
system marginal cost, causing the total system cost to 
increase over UE.

Consider the network in Figure 3. The OD pairs are 
a → b, c → d, and, e → f . The only real route choice in 
this network exists for users travelling from a to b. The 
other OD pairs have only one route available to them 
The links leaving a and entering b have zero cost to sim
plify the arithmetic, but this choice neither fundamen
tally changes the problem nor the paradox.

We define the link costs t for cd and ef as follows:
tcd(xcd) � 1 · xcd + 50, (4) 
tef (xef ) � 10 · xef + 0: (5) 

We consider the mixed equilibria resulting from the two 
OD demand scenarios shown in Table 1. The left-hand 
column under each OD pair in Table 1 present the OD 
demand for first scenario (UE); the right-hand columns 
(in gray) show the OD demand for the mixed equilib
rium that produces the paradox, the fleet optimal sce
nario (FO). Total volume of vehicles between each OD 
pair, the aggregate demand, remains unchanged.

We summarize the UE and FO equilbria in Table 2.
At the UE link flow, given in the left half of Table 2, 

the link cost of ef is minimal: All demand from a to b 
selects the route through link ef. At the FO link flow, 
given in the right half of Table 2, the users and fleet trav
eling from a to b prefer different paths. The individual 
users still prefer the path through ef as it remains least 
cost. The fleet, however, prefers the path through cd 
because it is least fleet marginal cost. By selecting the least 
fleet marginal cost path, the fleet reduces its total cost 

relative to its total cost under UE as shown in Table 3
(bottom row, in bold); however, the total system cost 
increases from UE to FO (Table 2 bottom row, in bold). 
The fleet operator makes routing choices to minimize 
the travel delay impact only on members of its own 
fleet, regardless of the impact on other travelers. In this 
case, the fleet has so few vehicles on link cd that the fleet 
marginal cost of the path through cd is lower than the 
fleet marginal cost of the path through ef, where the 
fleet already has vehicles.

To see why this occurred, we note that not only is the 
path through ef user optimal, it is also system optimal, 
which means that the SO link flow and UE link flow are 
the same for the given aggregate travel demand on this 
network. What is then also true of this example is that 
the fleet is better off then it would have been at SO; this 
is related to a more general phenomenon we call the sys
tem optimal paradox discussed further in Section 4.3.

4.3. System Optimality Paradox
The fact that the fleet may actually reduce its total travel 
cost relative to SO in the fleet optimality paradox results 
from a property of SO traffic assignment that we call the 
system optimality paradox. For a network with nonunit 
price of anarchy, the following is true of SO traffic flow: 

1. There is always volume that is relatively worse off 
compared with available paths, and

2. There is possibly volume that is absolutely worse off 
compared with the travel cost of the same OD pair at 
UE.

In short, when SO path flow is partitioned, the guar
antees that SO provides for the network as a whole may 
not apply to each partition individually.

The first point follows directly from the UE principle 
that requires that all used paths between each OD pair 
have equal and minimal travel cost. Any traffic assign
ment that is not UE must therefore have at least one OD 
pair for which some volume occupies a path that is not 
least cost: This volume is worse off relative to some other 
available path.

The second point occurs only on some networks. On 
the Braess paradox network, for example, the cost of 
every used path at SO is strictly less than the cost of 
every used path at UE. Thus, although some users at SO 
are relatively worse off (there is a lesser cost path avail
able), they are all better off than they would have been 
under UE. However, we can easily construct a network 
where this is not the case. A concrete example is given in 

Figure 3. Fleet Optimality Paradox: An Illustrative Toy 
Network 

Table 1. Fleet, User, and, Aggregate Demand for the Fleet 
Optimality Paradox

c → d e → f a → b

Fleet 0 1 0 2.75 0 0.05
User 13 12 2.75 0 1 0.95
Aggregate 13 2.75 1
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Online Appendix B, but the essential intuition is that 
when UE is different from SO on a parallel network one 
path gains volume (and therefore travel cost) from the 
other in moving from UE to SO. In this setting, not only 
are some users not using the least cost path (they are rel
atively worse off), they are also experiencing higher 
absolute travel costs than they would have under UE 
(they are absolutely worse off). This solution is SO 
because the users that are better off (both relatively and 
absolutely) accrue total travel cost savings that exceed 
the increased travel cost of the worse off travelers so 
that on average the system is better off.

4.4. Concluding Remarks
Taken together, this section shows that, at extreme pene
tration levels of 0% and 100%, mixed equilibrium with 
fleets achieves a total system cost equal to the total sys
tem cost at UE and SO respectively. However, as pene
tration levels increase from 0% to 100%, total system 
cost will not necessarily monotonically decrease and 
may in fact become larger than the total system cost 
under UE. This has strong policy implications: Under cer
tain demand and roadway network conditions, increas
ing fleet penetration (e.g., individuals shift to use a 
mobility service that is centrally planned by a private 
entity) may increase congestion. Only if the fleet penetra
tion is adequately high would its presence be guaranteed 
to reduce network congestion, up to achieving SO. Trans
portation network companies, such as Uber/Lyft, who 
decide to optimize their fleet may paradoxically lead to 
more congestion in some areas in their initial develop
ment stage (when the penetration is low), even if they 
would have replaced some private driving trips and OD 
demand remains the same.

5. Critical Fleet Size
In this section, we will examine how, in certain networks, 
SO can be achieved through mixed equilibrium where 
not all vehicles are fleet vehicles. The smallest fleet size 
for which mixed equilibrium achieves aggregate SO traf
fic assignment is expressed as a fraction of total demand 
and termed the critical fleet size for system optimum 
(CFS-SO). There is a complementary notion, termed the 
critical fleet size for user equilibrium (CFS-UE), which 
measures the largest fleet size for which mixed equilib
rium achieves aggregate UE traffic assignment.

CFS-SO is bounded by zero and one; a value of one 
indicates that all vehicles must be in the fleet for mixed 
equilibrium to result in SO, and a value of zero indi
cates that no fleet vehicles are required. A network has 
a CFS-SO of zero if and only if its UE and SO assign
ments are the same; in other words, the network has a 
price of anarchy (Roughgarden 2005) of one. Similarly, 
CFS-UE is bounded by zero and one; a value of zero 
indicates that the presence of any fleet vehicles on the 
network “breaks” UE (induces a mixed equilibrium 
whose aggregate link flow is different from UE). A 
CFS-UE of one indicates that all vehicles may partici
pate in the fleet without changing UE. A CFS-UE of 
one implies that UE and SO assignments are identical 
on this network, and as a result, CFS-UE is one if and 
only if CFS-SO is zero. Outside of this case, the relation
ship between CFS-SO and CFS-UE on a network is not 
at all clear and is left for future research.

CFS-UE is different from the notion of the smallest fleet 
for which mixed equilibrium is different from UE. As a 
somewhat counter-intuitive result with respect to the 
simplified one-dimensional Figure 1, CFS-UE can be 
larger than CFS-SO. In representing demand as a uni- 
dimensional quantity, Figure 1 is in a sense overly simplis
tic: When demand is higher dimensional, CFS-UE can 
occupy an entirely different set of OD pairs than CFS-SO 
and simply have larger magnitude. In one dimension, this 
is only possible when, as we discuss in the next paragraph, 
the price of anarchy on the network is one. The smallest 
fleet to “break” UE may also be of interest but is strictly a 
different question than the one CFS-UE seeks to answer.

The example network in Figure 3 on which we dem
onstrated the fleet optimality paradox also provides 
instructive examples of CFS-SO and CFS-UE. We noted 

Table 2. Demonstration of the Fleet Optimality Paradox

UE FO

Aggregate (users) Aggregate User Fleet

Flow Cost Total cost Flow Cost Total cost Flow Total cost Flow Total cost

c → d 13.00 63.0 819.000 13.05 63.05 822.8025 12.00 756.60 1.05 66.2025
e → f 3.75 37.5 140.625 3.70 37.00 136.9000 0.95 35.15 2.75 101.7500
Total 16.75 959.625 16.75 959.7025 12.95 791.75 3.80 167.9525

Note. Bold indicates the outcome highlights.

Table 3. Demonstration That Fleet Decreases its Total Cost 
at FO

Fleet 
demand

UE FO

OD pair OD cost Total cost OD cost Total cost

c → d 1.00 63.0 63.000 63.05 63.0500
e → f 2.75 37.5 103.125 37.00 101.7500
a → b 0.05 37.5 1.875 63.05 3.1525
Total 3.80 168.000 167.9525

Note. Bold indicates the outcome highlights.
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that the UE and SO traffic assignments are the same on 
the example network. As a result, CFS-SO is zero 
because users alone achieve SO, and CFS-UE is one 
because when all the volume on the network is an opti
mized fleet, the network is at SO, which is also UE. The 
paradox presented in Section 4 is thus also an example 
of the following three phenomena: 

1. CFS-UE can be greater than CFS-SO,
2. Fleet OD demand that is element-wise greater 

than the fleet OD demand at CFS-SO is not necessarily 
SO, and,

3. Fleet OD demand that is element-wise less than 
the fleet OD demand at CFS-UE is not necessarily UE.

What CFS-SO and CFS-UE do imply, however, is that 
at mixed equilibrium with fleets, 

1. SO cannot be achieved with a fleet smaller than 
CFS-SO, and

2. UE cannot be achieved with a fleet larger than 
CFS-UE.

5.1. Critical Fleet Size on a Parallel Network
In this section, we will analyze CFS-SO and CFS-UE on 
a parallel network. We derive analytical results that 
hold for all separable, monotonic increasing link perfor
mance functions on a parallel network. Although we 
should not expect these results to generalize, the parallel 
network is useful in developing an intuition for critical 
fleet size and for mixed equilibrium more generally. In 
particular, we are interested in whether critical fleet size 
results in paths, OD pairs, or entire networks that are 
exclusively fleet vehicles or individual users. In what 
follows, consider a parallel network with one OD pair 
connected by n parallel links.

5.1.1. Mixed Equilibrium Preserving UE Flow. Let x̄ue ∈

Rn
+ denote the UE link flow on the network. We wish to 

find the mixed equilibrium with the largest fleet share 
such that UE link flow is preserved in aggregate. Proof 
of Propositions 1–4 can be found in Online Appendix C.

Proposition 1. Let (xc, xu) denote a mixed equilibrium on 
a parallel network whose aggregate link flow is the UE link 
flow (i.e., xc + xu � x̄ue). If fleet demand is strictly positive 
then fleet flow on a link is positive if and only if aggregate 
link flow is positive. That is,

x̄ue
a > 0�xc

a > 0 ∀a ∈ A: (6) 

Proposition 2. Given a fleet demand qc ∈ R+ such that 
0 < qc ≤ q we can find the mixed equilibrium on the parallel 
network analytically:

t̃∗
�

qc
P

a∈A+

1
t′
a

+ t∗, (7) 

xc
a �

t̃∗
� t∗

t′
a

, (8) 

provided that the following holds:

t̃∗
≤ min

a∈A
ta + x̄ue

a t′
a, (9) 

where A+ denotes the set of all links where aggregate flow is 
strictly positive, ta is the link cost on link a ∈ A evaluated at 
mixed equilibrium, t′

a is the derivative of the link cost on link 
a ∈ A evaluated at mixed equilibrium, t̃∗ is the minimum fleet 
marginal link cost at mixed equilibrium, and t∗ is the mini
mum link cost at mixed equilibrium.

Proposition 3. The largest fleet demand that preserves UE 
is given by,

X

a∈A+

t̃∗
� t∗

t′
a

�
X

a∈A+

xc
a � qc, (10) 

where ̃t∗ satisfies

t̃∗
� min

a∈A
ta + x̄ue

a t′
a: (11) 

5.1.2. Mixed Equilibrium Preserving SO Flow. We now 
wish to find the smallest fleet demand such that SO is 
preserved at mixed equilibrium.

Proposition 4. The minimum fleet demand required to 
induce SO flow on a parallel network with aggregate 
demand q is either 

1. Zero if the UE flow is the same as the SO flow; or
2. q if UE flow is different from SO flow (CFS-SO � 1).

In short, Proposition 4 ensures that for any parallel 
network, CFS-SO is either zero or one.

5.1.3. Extending to a General Network. Although the 
parallel network provides a useful demonstration of fleet 
optimal mixed equilibrium, Proposition 4 ensures that it 
will not be an interesting one. In general networks, any 
value of CFS-SO is possible. Perhaps the simplest, albeit 
unsatisfying, way to demonstrate this fact is to consider a 
network composed of two parallel networks one of 
which is entirely fleet and the other, entirely individual 
users. Any value of critical fleet size can be achieved by 
varying the demand on the two subnetworks.

Nevertheless, the parallel network does provide us 
some valuable intuition for CFS on general networks. 
Key to the proof of Proposition 4 is the realization that if 
the set of least cost and least marginal cost paths are not 
the same, the fleet will need to fill those paths that are 
least marginal cost but not least cost. However, to main
tain fleet optimal assignment, the fleet marginal cost 
must be equalized over all paths in use by the fleet, 
which in turn requires each path to be filled by the fleet. 
In a general network, because many path flows may 
induce the same aggregate link flow, it is not necessarily 
the case that user flow removed from a path must be 
replaced by fleet flow on that specific path; rather, the fleet 
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may occupy a completely different set of (fleet-optimal) 
paths that still induces the same aggregate link flow. It 
is for this reason that we should not expect general net
works, even at the OD level, to only have the two extre
mal values of critical fleet size.

In total, it is possible, but difficult to imagine, that OD 
pairs may not be exclusively user or exclusively fleet at 
critical fleet size. Precise conditions under which paths, 
OD pairs, or entire networks are exclusively user or fleet 
are left for subsequent work. In this paper, we will 
attempt to shed light on the question of exclusivity 
empirically on real world networks in Section 6.

5.2. Critical Fleet Size Formulation and 
Solution Algorithm

In this section, we formulate critical fleet size as a mathe
matical program with equilibrium constraints (MPEC) 
and develop efficient ways to solve it in practice.

5.2.1. Problem Formulation. The fleet vehicles we are 
examining wish to minimize the fleet travel time: z(xc, 
xu) �

P
axc

ata(xu
a + xc

a). Given fleet OD demand qc and 
the link flow of the individual users xu, the fleet path 
(link) flows may be computed as the solution to the fol
lowing mathematical program (Sheffi 1985):

FO(xu, qc) � arg min
fc

z(xc, xu) (12a) 

s:t:
X

p∈Pw

fc
p � qc

w ∀w ∈ W, (12b) 

fc
p ≥ 0 ∀p ∈ Pw, w ∈ W, (12c) 

X

p∈P
fc

pDa,p � xc
a ∀a ∈ A: (12d) 

The program is parameterized by the user link flow and 
the fleet demand, which are considered constant within 
in this program.

We now consider the critical fleet size problem that 
imposes the external constraint that aggregate link flow 
at mixed equilibrium must match a given aggregate link 
flow. For CFS-SO, that aggregate link flow, denoted x̄so, 
is link flow at SO. CFS-SO is expressed as the solution to 
the mathematical program with equilibrium constraints 
(MPEC) given by Program (13), and CFS-UE is expressed 
as the solution to the MPEC given by Program (14), with 
x̄ue as the UE link flow.

min
fu

X

w∈W
qc

w (13a) 

s:t:
X

p∈P∗
w

fu
p � qu

w ∀w ∈ W (13b) 

fu
p ≥ 0 ∀p ∈ P (13c) 

X

p∈P∗

fu
p δa,p � xu

a ∀a ∈ A (13d) 

xc � DFO(xu, qc) (13e) 

xc + xu � x̄so (13f) 
qc + qu � q̄ (13g) 

max
fu

X

w∈W
qc

w (14a) 

s:t:
X

p∈P∗
w

fu
p � qu

w ∀w ∈ W (14b) 

fu
p ≥ 0 ∀p ∈ P (14c) 

X

p∈P∗

fu
pδa,p � xu

a ∀a ∈ A (14d) 

xc � DFO(xu, qc) (14e) 
xc + xu � x̄ue (14f) 
qc + qu � q̄ (14g) 

Because the aggregate link flow is fixed under UE or SO 
and the link performance function depends only on the 
aggregate link flow, the travel cost (and marginal travel 
cost) for each link is a constant with respect to both the 
user and fleet link flows. As a result, the set of least cost 
paths between each OD pair, P∗, is fixed and known a 
priori. Constraints (13d) and (14d) therefore are suffi
cient to describe the UE condition in their respective pro
grams completely: Individual users may only use least 
cost paths.

5.2.2. Heuristic Solution Algorithm via Sensitivity Analy
sis. Typically, MPECs are solved via a huersitic solu
tion methodology known as sensitivity analysis (Tobin 
and Friesz 1988). However, for this specific MPEC, sen
sitivity analysis is not the best choice. In this section, we 
outline how one would apply sensitivity analysis before 
identifying its limitations in this setting. A detailed 
treatment of our sensitivity analysis approach is given 
in Online Appendix D.

Sensitivity analysis is typically applied to an MPEC for 
which the objective depends on the network at equilib
rium and the network equilibrium, in turn, is affected by 
the decision variables. Sensitivity analysis provides the 
gradient of the equilibrium link flow with respect to the 
decision variables and is used to compute the descent 
(ascent) direction. In Programs (13) and (14), the objective 
is an input of the equilibrium operator rather than its out
put. To apply sensitivity analysis, we solve the programs 
in their augmented Lagrangian forms (Hestenes 1969), 
treating the equilibrium constraint as a penalty term. The 
algorithm, given by Algorithms 2 and 3, alternates be
tween descent steps on the augmented lagrangian via 
sensitivity analysis and sequential linear programming 
(Wright, Nocedal, and Wright 1999) known as the primal 
update, and ascent steps for the penalty weights, known 
as the dual updates.

The main theoretical deficit of solving CFS as an MPEC 
via sensitivity analysis is that the MPEC itself is noncon
vex, and, as such, the solution algorithm is guaranteed 

Battifarano and Qian: Impact of Optimized Fleets in Networks 
10 Transportation Science, Articles in Advance, pp. 1–22, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[9

6.
88

.2
36

.1
45

] o
n 

18
 F

eb
ru

ar
y 

20
23

, a
t 1

5:
36

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



only to return a local optimal solution. The main practical 
limitation is that this particular application of sensitivity 
analysis requires many more equilibrium computations 
than a typical application: once every iteration within 
each primal update that itself is simply one descent step. 
This can take significant amounts of time. Taken to
gether, on neither practical nor theoretical grounds 
does solving CFS via sensitivity analysis offer benefits 
over our methodology.

5.2.3. Exact Solution Algorithm via Mixed Integer Pro
gramming. As an alternative to sensitivity analysis, we 
can leverage the structure of the problem to develop an 
exact solution methodology. Conceptually our approach 
reverses the order that sensitivity analysis imposes on the 
solution algorithm: Instead of searching the space of 
mixed equilibria for those that happen to meet an aggre
gate link flow constraint, we search the space of feasible 
user-fleet link (path) flow partitions that satisfy the condi
tions of mixed equilibrium. This approach takes advan
tage of the problem structure to not only guarantee a 
global optimum solution but provide upper and lower 
bounds on the optimal value. In comparison with the 
previous sensitivity analysis approach, this approach 
avoids computing mixed equilibria entirely and instead 
forms mathematical programs to descend directly in the 
space of feasible equilibria. In particular, the constraint 
that aggregate link flow for CFS-SO is fixed to be the 
aggregate SO link flow and the aggregate link flow for 
CFS-UE is fixed to be aggregate UE link flow implies two 
important facts: 

1. The set of paths the fleet could possibly use is 
known, finite, and substantially smaller than set set of 
all (simple) paths, and,

2. The fleet marginal link (path) cost is linear in fleet 
link (path) flow.

First for fact 2, when we consider the aggregate link 
flow fixed, the fleet marginal link cost is a linear function 
of fleet link flow: t̃a(xc

a) � ta + xc
a · t′

a. If we consider the 
fleet marginal path cost as a vector and denote by 
diag(t′) the |A| × |A| diagonal matrix with the elements t′

a 
on the diagonal, then we may write the vector of fleet 
marginal path costs as a linear function of fleet flow fc: 
c̃(fc) � c + DTdiag(t′)Dfc, or equivalently as a function 
of user flow fu, c̃(fu) � ċ � DTdiag(t′)Dfu, where c and 
ċ represent the path cost and marginal path cost at the 
given aggregate link flow.

From a computational perspective, the form of fleet 
marginal cost that depends on the user path flow is 
attractive because the user path flow vector will gener
ally be sparse. By the equilibrium principle, we know 
that individual users may only take least cost paths, so 
we need only specify user path flows for paths that are 
least cost at SO, a path set that, in practice, we expect to 
be known before solving CFS and substantially smaller 
than the set of all simple paths.

Next is fact 1. Because aggregate link flow is fixed, it 
is also true that the set of least marginal cost paths P̃, the 
set of usable paths for SO users, is fixed. When aggre
gate flow is SO any path flow vector that satisfies both 
the demand conservation constraint and produces the 
SO link flow must only use paths in P̃. As a result, at 
CFS-SO, the fleet may use only paths in P̃. For CFS-UE 
where the aggregate link flow at mixed equilibrium is 
the aggregate UE link flow, a similar argument applies: 
The fleet may only use least cost paths at UE: P∗.

Combining these two facts, we can rewrite the CFS- 
SO and CFS-UE MPECs as a mixed integer program 
(MIP) in Programs (15) and (16).

min
fu≥0, fc≥0,λ, z

X

p∈P̃

fc
p (15a) 

s:t: c̃r(fu
) ≥ λw ∀r ∈ Pw ∀w ∈ W (15b) 

c̃r(fu) ≤ λw + m1 · (1 � zr) ∀r ∈ P̃w ∀w ∈ W
(15c) 

fc
r ≤ m2 · zr ∀r ∈ P̃w ∀w ∈ W (15d) 

D∗fu + D̃fc � x̄so (15e) 
M∗fu + M̃fc � q̄so (15f) 
zk ∈ {0, 1} ∀k ∈ P̃w ∀w ∈ W (15g) 

Here, m1 and m2 are large constants, P̃ and P∗ are the set 
of least marginal cost and least cost paths at SO, respec
tively, D̃ and D∗ are the link path incidence matrices 
restricted to paths in P̃ and P∗, respectively, and M̃ and 
M∗ are the OD path incidence matrices restricted to paths 
in P̃ and P∗, respectively. The binary variable zk encodes 
whether the path k is use by the fleet (one) or not (zero). 
The first two constraints ensure that the fleet flow is fleet 
optimal: The fleet marginal cost on all used paths is equal 
and minimal. MPECs may always be written and solved 
as mixed integer programs; this is not often done in prac
tice because the number of integer variables scales with 
the number of paths in the network, and the cost function 
is typically nonlinear. In our problem, the cost function is 
linear, and the number of integer variables is substan
tially smaller than the number of paths.

The CFS-UE MIP is constructed analogously, notably 
as a maximization and using the set of least cost paths at 
UE where the CFS-SO program uses least marginal cost 
paths at SO.

max
fu≥0, fc≥0,λ, z

X

p∈P∗

fc
p (16a) 

s:t: c̃r(fu) ≥ λw ∀r ∈ Pw ∀w ∈ W (16b) 
c̃r(fu) ≤ λw + m1 · (1 � zr) ∀r ∈ P∗

w ∀w ∈ W
(16c) 

fc
r ≤ m2 · zr ∀r ∈ P∗

w ∀w ∈ W (16d) 
D∗(fu

+ fc
) � x̄so (16e) 

M∗(fu + fc) � q̄so (16f) 
zk ∈ {0, 1} ∀k ∈ P∗

w ∀w ∈ W (16g) 
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Mathematical programs for CFS-SO and CFS-UE with 
multiple fleets are discussed in Online Appendix G.

5.3. Bounds of Critical Fleet Size
Although the MIP formulations of CFS-SO and CFS-UE 
offer substantial computational efficiencies relative to 
MIP formulations of general MPECs, they can still pre
sent challenges on large networks. For such cases, we 
present linear program relaxations of the CFS-SO and 
CFS-UE MIPs. The LP relaxation of the CFS-SO MIP is 
given by Program (17) and the LP relaxation of the CFS- 
UE MIP is given by Program (18).

min
fu≥0, fc≥0,λ

X

p∈P̃

fc
p (17a) 

s:t: c̃r(fu) � λw ∀r ∈ P̃w ∀w ∈ W (17b) 
c̃r(fu) ≥ λw ∀r ∈ Pw ∀w ∈ W (17c) 
D∗fu + D̃fc � x̄so (17d) 
M∗fu + M̃fc � q̄ (17e) 

max
fu≥0, fc≥0,λ

X

p∈P̃

fc
p (18a) 

s:t: c̃r(fu) � λw ∀r ∈ P∗
w ∀w ∈ W (18b) 

c̃r(fu) ≥ λw ∀r ∈ Pw ∀w ∈ W (18c) 
D∗(fu + fc) � x̄ue (18d) 
M∗(fu + fc) � q̄ (18e) 

Formulating the critical fleet size in this way allows us 
to relate it directly to the minimum control ratio (MCR) 
introduced by Chen et al. (2020) and Sharon et al. (2018). 
In particular, because fleet vehicles must use a subset of 
the SO paths, CFS-SO is bounded below by the MCR, 
the proof of which is given in Online Appendix E.

Proposition 5 (Bounding Critical Fleet Size via Linear 
Programs). The heuristic linear programs for CFS-SO and 
CFS-UE provide the following bounds: 

1. Linear Program (17) provides an upper bound of CFS- 
SO.

2. Linear Program (18) provides a lower bound of CFS- 
UE.

The proof is given in Online Appendix F.
It is worth noting that the solution returned by the lin

ear program will typically have paths that are unused by 
the fleet but remain least fleet marginal cost, known in 
the literature as a degenerate equilibrium. Degeneracy 
occurs in the LP because the set of paths over which fleet 
marginal cost must be equal and minimal is fixed. Allow
ing the fleet to abandon unused paths, thereby releasing 
them from the constraint that their fleet marginal cost is 
minimal, could allow for a smaller fleet. As a result, it 
may be possible to refine a bound returned by the LP by 
iteratively removing unused paths and resolving the LP. 
Our preliminary work into such a procedure suggests 

that only modest gains can be achieved without a careful 
heuristic to select the paths to abandon each iteration. 
Broadly, the path abandonment procedure can be viewed 
as a member of the family of MIP heuristics. It is a very 
simple heuristic that always preserves feasibility by rec
ognizing the structure of the problem but does not form 
an overall scheme that will find the global optimum. In 
contrast, MIP methods and heuristics available via 
state-of-the-art solvers do not recognize the structure of 
the problem but will progress toward the global opti
mum. A better option which we leave for future work 
would be to leverage path abandonment within the MIP 
solver.

5.4. Issue of an Unknown Path Set
In both the MIP formulation and their LP relaxations, it is 
assumed that we have access to the full path set, in addi
tion to the least cost and least marginal cost path sets at 
UE or SO. The latter two sets are not difficult to obtain 
(see Online Appendix H). However, the full set of simple 
paths may not be feasible to enumerate. With only a sub
set of the paths, we cannot guarantee that the fleet is 
using paths that are minimal fleet marginal cost. To cir
cumvent this difficulty, a column-generating approach is 
presented in Algorithm 1. Each iteration, the program is 
solved with an approximate path set P̂, and least fleet 
marginal paths are computed at the candidate solution. If 
the least fleet marginal cost paths are not in the set of 
known paths, the solution assigned fleet flow to paths 
that are not in the fleet-usable path set. These paths are 
then added to the known path set, and the updated linear 
program is resolved. On resolving the linear program, 
the fleet marginal cost of these paths are constrained to 
be no smaller than λw, which is the least fleet marginal 
cost over all paths connecting the OD pair.

Algorithm 1 (Critical Fleet Size Solution Algorithm with 
Column Generation) 

1: procedure CRITICALFLEETSIZE(G, q̄)
2: x̄so ← SystemOptimalLinkFlow(G, q̄)

3: P∗, P̃ ← LeastCostPaths(G, x̄so), LeastMarginal 
CostPaths (G, x̄so)

4: P̂ ← P∗
S

P̃ . Initialize the known path set
5: while true do
6: fu, fc,λ← Solve Program (15), (14), (17), or 

(18) using P̂ as the path set P
7: Pk ← LeastFleetMarginalPaths(G, x̄, xc)

8: if Pk ∩ P̃ ≠ ∅ then 
. A new path was discovered.

9: P̂ ← P̂
S

(Pk ∩ P̃)

10: else
11: return fu, fc

12: end if
13: end while
14: end procedure

Battifarano and Qian: Impact of Optimized Fleets in Networks 
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5.5. Issue of Approximate SO Flow
Real-world networks present two practical challenges to 
Algorithm 1, using either the MIP or LP version. First, the 
programs scale linearly in the number of paths and OD 
pairs. Even moderately sized real-world networks will 
produce mixed integer programs too large for state-of- 
the-art solvers to solve in a reasonable amount of time. 
The MIP may simply be run with a fixed computational 
budget, or their LP relaxations may be used instead.

A second problem facing real-world networks has to 
do with the accuracy of the SO link flow. In both the 
heuristic LPs and the MIPs, if we were to fix the user 
path flow to zero, the program should recover an SO 
path flow as the fleet path flow variable. However, 
when we have access only to an approximation of the 
SO link flow, this guarantee no longer holds. In fact, the 
opposite is true: Because the approximate link flow is 
not exactly SO, there must be flow on paths that are not 
least marginal cost. As a result, when directly imple
mented with an approximate SO link flow, Programs 
(17) and (15) may be infeasible.

To overcome this second challenge, we use a modi
fied version of Program (17) given by Program (19). In 
this modified program, the set of least marginal cost 
paths (and least cost paths for individual users) is con
structed as the set of ɛ-least (marginal) cost paths: A 
path is least (marginal) cost if it is less than or equal to 
(1 + ɛ) times the least marginal cost path for its OD pair. 
Correspondingly, instead of treating the link flow recov
ery as a constraint, it is treated as a penalty term in the 
objective weighted by β > 0. Larger penalty weight repre
sent preference for accurately approximating the target 
aggregate link flow. This same modification is applied to 
CFS-SO LP and MIP, CFS-UE LP, and MIP and to the 
MCR.

min
fu≥0, fc≥0,λ

X

p∈P∗

fc
p + β‖D∗fu + D̃fc � x̄so‖2 (19a) 

s:t: c̃r(fu) ≤ λw(1 + ɛ) ∀r ∈ P̃w ∀w ∈ W (19b) 
c̃r(fu

) ≥ λw ∀r ∈ Pw ∀w ∈ W (19c) 
M∗fu

+ M̃fc
� q̄so (19d) 

Generally speaking, the more accurate the SO solution, 
the larger the penalty weight β and the smaller the path 
cost tolerance ɛ should be. Intuitively, a high-quality SO 
solution should produce a link flow that is close to the 
true SO link flow and path costs that are close to the true 
path costs. Our mixed equilibrium then should not be 
allowed to stray too far from the aggregate link flow, 
and the usable paths should be near least (marginal) 
cost. However, exactly which value is best and how 
they relate to common convergence criteria are not 
immediately clear. To best compare our results to exist
ing work, we set our hyperparameters as the most strin
gent values (lowest ɛ, highest β) to closely reproduce the 
Sioux Falls minimum control ratio as reported in Chen 

et al. (2020). This heuristic resulted in β� 10 and 
ɛ � 5e � 4. For the Pittsburgh network, β � 0:1 and 
ɛ � 1e � 8; the least ɛ and largest β to bring its MCR close 
to range reported for similar network in Chen et al. 
(2020). The choice of hyperparameters also affects the 
solving time of the programs. Smaller values of ɛ result 
in smaller usable path sets reducing the number of vari
ables and significantly reducing solve time.

Here too, network size presents some difficulty. From 
the perspective of Program (19), a high-quality SO 
approximation will assign a large fraction of flow to paths 
that are close to least marginal cost. Common equilibrium 
convergence criteria, such as relative gap or average 
excess cost (Boyles, Lownes, and Unnikrishnan 2021), do 
not capture this notion, making it difficult to know a pri
ori whether an approximation is good enough or how to 
set β and ɛ to compensate. This fact is not unique to our 
problem setting and is a challenge to any analysis that 
takes an equilibrium traffic assignment as input.

Taken together, these modifications allow us to use 
approximate SO (UE) link flow to compute an upper 
(lower) bound on CFS-SO (CFS-UE).

6. Experiments
Our experiments were performed on three networks. 
The Braess network (Sheffi 1985), shown in Figure 2, 
served to validate our methodology and code. The 
Sioux Falls network (Stabler, Bar-Gera, and Sall 2021) 
with 76 links and 528 OD pairs serves as a simple small 
example and as a point of comparison with previous 
work. The Pittsburgh network with 5,449 links and 4,881 
OD pairs serves as a real-world example network. The 
Pittsburgh network contains the core urban areas of Pitts
burgh, PA, extracted from the Southwestern Pennsylva
nia Commission’s (SPC) road network (www.spcregion. 
org).

In our experiments, we use the CVXPY modeling lan
guage (Diamond and Boyd 2016, Agrawal et al. 2018) 
with GUROBI v9.5.0 as the backend solver. All ex
periments were performed on an Ubuntu 20.04 Linux 
machine with 16 GB RAM and an Intel i7-7700HQ pro
cessor. We report the critical fleet size results in Table 4
and devote the remainder of the section to our findings 
on these networks. The MIPs for CFS-SO and CFS-UE 
on the Sioux Falls network were run for 24 and 2 hours 
respectively; we also report the relative gap of the solu
tion reported by the solver.

From Chen et al. (2020), we know that the minimum 
control ratio for the Braess network is one, so we know 
that the CFS-SO must also be one, a finding reproduced 
by our methodology. CFS-UE, on the other hand, is 
achieved by a fleet that uses two of the three paths exclu
sively, leaving the remaining path for the users. Because 
the CFS-UE LP, unlike the MIP, cannot abandon paths, 
it provides a very loose bound.
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6.1. Link Flow Patterns at CFS-SO
The two immediate observations are that CFS-SO is 
highly variable across the two networks and is substan
tially higher than the MCR. In the Pittsburgh network, 
at most 83% of vehicles must be in the fleet to achieve 
SO traffic flow compared with 33% in the Sioux Falls 
network. However, that the presence of a self-interested 
fleet can give rise to SO flow on real-world networks 
without controlling all the vehicles at all is remarkable 
in and of itself.

Geographically, CFS-SO on both Sioux Falls and Pitts
burgh produces fleet presence across the network. We 
show the user and fleet link flows at CFS-SO for Sioux 
Falls in Figure 4 and for Pittsburgh in Figure 5. At least 
part of the reason for this is that fleet presence on one 
OD pair influences the fleet marginal cost on many 
others, particularly in dense networks such as these 

where paths for different OD pairs are highly inter
twined. As a result, fleet presence in one area of the net
work tends to induce fleet presence on at least some of 
the OD pairs that share links with it, leading to a cascad
ing effect over the entire network. This effect may be 
contrasted with the minimum control ratio that treats 
OD pairs in isolation resulting in areas of the network 
with no fleet presence whatsoever.

Nevertheless, fleet vehicles in Pittsburgh appear to 
accumulate along major highways and arterial road
ways, suggesting that larger, more important roadways 
have an out-sized role to play in reducing total system 
travel cost with fleets. Fleets are most clearly present on 
the major highways leading into and out of downtown 
Pittsburgh, near the center of Figure 5 and at the conflu
ence of the three rivers. In contrast, user flow appears 
clustered in several relatively isolated geographic regions 

Table 4. Comparison of Critical Fleet Size on Experiment Networks

Network MCR

CFS-SO CFS-UE

LP MIP (Relative gap) LP MIP (Relative gap)

Braess 100% 100% 100% (0%) 0.34% 66.67% (0%)
Sioux Falls 14.12% 36.53% 33.03% (25.28%) 46.12% 78.85% (15.48%)
Pittsburgh 30.69% 83.04% — — 56.92% — —

Figure 4. (Color online) Fleet and User Link Flows at the CFS-SO Mixed Equilibrium on the Sioux Falls Network 

Notes. Color and width indicate the amount of flow of each class on each link. Arrows show the direction of link flow, and annotations denote 
the percentage of flow belong to each class.
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throughout the network, but notably along the periphery 
and within Pittsburgh’s densely populated East End, just 
east of Downtown.

6.2. Fleet OD Demand Patterns at CFS-SO
Although fleets permeate the links of the network, they 
concentrate on paths and OD pairs on the network. On 
both the Sioux Falls and Pittsburgh networks, the mixed 
equilibrium at CFS-SO divides most OD pairs between 
being exclusively fleet and exclusively user. In analyz
ing the parallel network in Section 5.1, we noted that it 
is intuitive to imagine how CFS-SO would result in user 
or fleet exclusive OD pairs and less so to imagine an OD 
pairs with a mix of individual users and fleets. Indeed, 
in both the Sioux Falls and Pittsburgh networks, about 
95% and 85% of OD pairs, respectively, are either exclu
sively user or exclusively fleet, as shown in Figure 6.

The requirement that fleet marginal cost be equalized 
across the paths used by the fleet between each OD pair 

and, specifically, that this equalizing requires fleet flow 
is a key driver of the gap between MCR and CFS-SO. In 
the MCR setting, the fleet cost is simply the system mar
ginal cost, which, along with link cost, is a constant. As a 
result, fleet flow can be assigned to those least marginal 
cost paths independently. By contrast, in the CFS set
ting, changes to fleet flow on one path must be balanced 
by fleet flow to equalize fleet marginal cost across used 
paths on each OD pair.

If OD pairs tend to be exclusive to either individual 
users or fleets, then transportation planners or fleet co
ordinators may focus their attention on a subset of OD 
pairs accounting for an outsized proportion of the fleet. 
Figure 7 shows that for both the Sioux Falls and Pitts
burgh networks, a minority of the OD pairs account for a 
majority of the fleet. In Sioux Falls, just 10% of the OD 
pairs house half of the fleet; for Pittsburgh, it takes 20% of 
OD pairs. Remarkably, another 15% of OD pairs in Pitts
burgh do not require any fleet presence whatsoever.

Figure 5. (Color online) Fleet and User Link Flows at the CFS-SO Mixed Equilibrium on the Pittsburgh Network 

Note. Color and width indicate the amount of flow of each class on each link.

Figure 6. (Color online) CFS-SO and MCR Both Result in User- and Fleet-Exclusive OD Pairs 

Note. The empirical cumulative distribution of the fraction of demand assigned to the fleet is shown for each solution concept and network.
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6.3. Characteristics of Paths and OD Pairs with 
Fleet Flow at CFS-SO

In both the Pittsburgh and Sioux Falls networks, OD 
pairs with larger minimum marginal path cost generally 
have greater shares of fleet flow as shown in Figure 8. 
This conforms with the intuition that the fleet focuses on 
trips where congestion (and thus marginal cost) is great
est to achieve SO. Despite this apparent trend, it is still 
difficult to distinguish between fleet-exclusive OD pairs 
from user-exclusive ones a priori or characterize what 
drives the fleet penetration at the OD level. Simple crite
ria, such as those based on demand, OD pair distance or 
(marginal) travel cost at SO, and number of paths fail to 
produce a useful understanding of the fleet penetration 

on OD pairs. For example, despite the strong trend in 
Figure 8, marginal cost has little to no predictive power: 
Among OD pairs with the largest marginal cost, only 
60% have fleet flow on them. Instead, we derive a met
ric, the path independence factor, from the optimality 
conditions of the CFS-SO LP that is capable of classify
ing fleet-exclusive paths with greater precision than 
simple criteria.

The path independence factor measures how sensi
tive fleet flow on a path could be to flow on other paths: 
how independent the cost of a path is from the flow on 
other paths. Fleet flow on a path that is highly inter
twined with many other paths or has a large travel cost 
derivative has a greater capacity to increase fleet mar
ginal cost than a path that is not. Following this intui
tion, we can compute path independence as the sum of 
the link cost derivatives on path r weighted by number 
of fleet usable paths that do not include the link:

PathIndependenceFactor(r) �
X

p∈P̃\{r}

X

a∈A
δapt′

a(1 � δar)

�
X

a∈links(r)

t′
a(|P̃| � Na(P̃)),

(20) 

where Na(P̃) is the number of paths in P̃ containing link a 
and t′

a refers to the derivative of the link cost function of 
link a evaluated at the aggregate link flow. This term is 
derived from the part of the fleet marginal cost at SO flow 
that depends on fleet flow. A related form appears in the 
first-order optimality conditions for Program (17) (see 
Online Appendix I). The path independence factor is non
negative. It is zero for paths where every link is on every 
path in P̃. Paths with larger path independence have 
fewer high-cost interactions with paths in P̃. Empirically, 
paths with larger values of path independence tend to 
have more fleet flow on them, as shown in Figure 9. Paths 

Figure 7. (Color online) Cumulative Fraction of Fleet Flow over OD Pairs 

Notes. Fleet flow is concentrated with respect to OD pairs: In Sioux Falls, nearly 70% of the fleet comes from just 20% of OD pairs. In the Pitts
burgh network, roughly half of the fleet operates on the only 20% of OD pairs.

Figure 8. (Color online) Proportion of Fleet-Exclusive (Full), 
User-Exclusive (Empty), and Mixed OD Pairs by the Mini
mum Marginal Cost over Paths for Each OD Pair at CFS-SO 
(MIP) in the Sioux Falls Network 
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that are completely unused tend to have the highest path 
independence factor; this is largely due to paths that have 
few interactions with fleet usable paths because they 
themselves are not fleet usable.

It is important to note that one may compute the path 
independence without having solved for CFS-SO; one 
only needs the set of least marginal cost paths at SO. As 
a first pass of testing the possibility that path indepen
dence might be used as a proxy for CFS-SO, we trained 
an explainable boosting machine (EBM) (Lou et al. 2013, 
Nori et al. 2019) on the Sioux Falls path flows to predict 
whether the flow on a path that is usable by the fleet 
(i.e., it is least marginal cost) will be exclusively fleet or 
not at CFS-SO. Using just the path independence factor 
and whether the path may also be used by individual 
users (i.e., it is also least cost), the EBM was able to 
achieve an area under the receiver operating character
istic curve (ROC AUC) of 75%. In other words, the 
model will rank a random fleet exclusive path higher 
than a random nonfleet exclusive path 75% of the time. 
As Figure 9 demonstrates, path independence is on 
wildly different scales on different networks so we can
not not expect any such model to generalize directly. 
Rather the model serves as a measure of the extent to 
which path independence is able to characterize this 
particular CFS-SO solution. The question of whether 
path independence can be generalized as a heuristic is 
left for future work.

6.4. Sensitivity of CFS-SO and CFS-UE to 
Aggregate Demand

For the Sioux Falls network, not only does the linear 
program offer a comparable value of CFS-SO, the 

solution itself tracks closely with the solution returned 
by the CFS-SO MIP. This is most evident in Figures 6
and 7, where the curves generated by the MIP tracks 
closely enough with the curves generated by the LP so 
that none of our conclusions would be altered by taking 
one solution instead of the other. To examine the quality 
of the linear program upper bound in a more general 
sense, we solve MCR, CFS-SO (exact and upper bound), 
and CFS-UE (exact and lower bound) on varied demand 
levels on the Sioux Falls network. Each MIP was termi
nated at an absolute gap of 1% of the total travel 
demand or at a time limit of two hours, whichever came 
first. We compute an approximate lower bound for 
CFS-SO, based on the best objective lower bound pro
vided by the solver and on the assumption that the criti
cal fleet size is an equal percentage of the objective at the 
incumbent solution and at the best lower bound. Explic
itly, the bound is computed using Equation (21), where 
CFS is the critical fleet size at the best integer solution 
returned by the solver. The results of the demand sensi
tivity analysis are summarized in Figure 10.

CFS Lower Bound

� CFS ·
Objective Best Bound

Objective Best Integer Solution
(21) 

CFS-SO and MCR show similar trends with respect to 
the demand multiplier, although CFS is more sensitive 
to changes in demand level. Both CFS-SO and MCR are 
small for very low demand levels, increasing with 
demand before decreasing at higher demand levels. In 
the very-low demand regime, we expect CFS to be small 
or zero because we expect the network to be almost 
completely uncongested so that UE and SO are close. 

Figure 9. (Color online) Paths with a Higher Independence Factor (Defined by (20)) Have More Fleet, Up to a Point 

Notes. The paths with the highest independence factor will tend to be unused completely. Here, “empty” means at most 5% flow on the path is 
composed of fleet vehicles, “full” means at least 95% flow on the path is fleet flow, and “mixed” is the remaining paths.

Battifarano and Qian: Impact of Optimized Fleets in Networks 
Transportation Science, Articles in Advance, pp. 1–22, © 2023 INFORMS 17 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[9

6.
88

.2
36

.1
45

] o
n 

18
 F

eb
ru

ar
y 

20
23

, a
t 1

5:
36

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Encouragingly, past a certain point, both MCR and CFS- 
SO decrease, meaning that at high demands a smaller 
fraction of the total demand is needed for the system to 
benefit. Interestingly a similar pattern emerges for CFS- 
UE: past a certain demand level (roughly 80% of base 
demand) CFS-UE increases in demand level, implying 
that the network can handle high levels of optimized fleet 
demand without impacting UE traffic patterns at all.

In the Sioux Falls network, the linear program pro
vides an upper bound within 6% of the CFS-SO found 
by the mixed integer program for 14 of the 20 demand 
levels. For large demand levels, between 1.0× and 1.9×

the base demand, the linear program provides a reason
able bound at a small fraction of the computational cost. 
It is in the low demand regime (0.2×–0.9×) where the 
upper bound performs particularly poorly, overestimat
ing the CFS-SO found by the mixed integer program by 
up to 24%. However, the low demand regime is pre
cisely where the linear program’s computational advan
tages are least useful. For each demand level less than or 
equal to 50%, the MIP was solved to a relative gap of at 
most 8% within two hours. In these cases, the upper 
bound is loose because the MIP was able to find high 
quality solutions. In contrast, no demand level above 
50% was solved to a relative gap smaller than 22% 
within the two-hour time limit. The LP lower bound for 
CFS-UE, however, is reasonably tight only for very low 
and very high demand regimes and at worst underesti
mates CFS-UE by around 45%. The solutions returned 
by the CFS-UE MIP within the two-hour time limit, 
however, are of comparatively better quality than the 
solutions returned by the CFS-SO MIP within the same 
time limit. Over the demand levels we test, the CFS-UE 
solutions have an average relative gap of 3.6% com
pared with 24.5% for the CFS-SO solutions. Overall, 
this indicates that the CFS-UE MIP is somehow less 

challenging for the solver than the CFS-SO MIP. One 
possible reason for this is the substantially smaller path 
set used in the CFS-UE MIP compared with the CFS-SO 
MIP.

In general, is it difficult to justify the tightness of the 
LP bounds for either CFS-UE or CFS-SO. From Figure 
10, it is clear that on the Sioux Falls network, the LP gen
erally provides a tighter bound for CFS-SO than it does 
CFS-UE. It is not immediately clear why. Part of the rea
son may have to do with the fact that, as we have 
observed, the CFS-UE MIP is apparently easier to solve 
than the CFS-SO MIP, resulting in CFS-UE MIP solu
tions that are further from the LP bound than the CFS- 
SO MIP solutions. Another difficulty is that the LP 
equalizes the fleet marginal cost over a potentially much 
larger set of paths than the set the true CFS-SO fleet 
would use. It is not clear how to estimate a priori how 
much this affects the amount of fleet flow required. An 
option for practitioners who need both a bound and a 
measure of tightness is to run the MIP for a fixed com
putational budget.

7. Discussion
In both Pittsburgh and Sioux Falls networks, a nontri
vial mixture of self-interested behavior induces SO traf
fic flow. Should CFS-SO be achieved, travelers would be 
on average are better off with the presence of the fleet 
than they would have been if they had all routed them
selves independently. In contrast, the MCR, which also 
achieves SO traffic flow, may not make fleets better off. 
This important distinction highlights the advantage of 
explicitly modeling fleet behavior in traffic analysis and 
demonstrates the necessity of doing so. In this sense, of 
the many ways to partition SO as a mixed equilibrium, 
CFS-SO offers a particularly compelling case for its real
ism: no external subsidy is required.

Figure 10. (Color online) CFS-UE, CFS-UE Lower Bound, CFS-SO Upper Bound, CFS-SO MIP Solution with Approximate 
Lower Bound, and MCR as a Function of the Demand Multiplier That Scales Demand Volume on Each OD Pair 
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Are fleets better off? Collectively, at both CFS-SO and 
MCR, individual users have lower average travel cost 
than the fleet simply because individual users use only 
least cost paths. One interesting effect of CFS-SO relative 
to MCR is that, although both achieve aggregate SO, 
they do so by partitioning demand between the fleet 
and individuals in very different ways as demonstrated 
by Table 5. First, the average travel cost, computed as 
the flow-weighted average path travel cost, is much 
higher for the fleet than for the user both at MCR and 
CFS-SO. This is partly because individual users are only 
using least cost paths, but it is also because, demon
strated in Figure 8, that fleets accumulate on OD pairs 
with large marginal cost. When the link cost function is 
monotonic increasing and convex, we should generally 
expect a positive correlation between cost and marginal 
cost (t(x) > t(y) ⇒ t′(x) > t′(y)). As a result, because fleet 
volume skews toward high marginal cost OD pairs, and 
will not necessarily use least cost paths, the average fleet 
cost is much higher than the average user cost.

Second, the average travel cost of both the fleet and 
the individual users decreases from MCR to CFS-SO, 
although the aggregate average cost is the same. This 
counter-intuitive result is possible only because the fleet 
and users have completely different OD demand bet
ween MCR and CFS-SO. In shifting from MCR to CFS- 
SO, the fleet needs to acquire flow on lower cost paths; it 
achieves this by taking paths from users that are lower 
cost than the average fleet path cost, but higher cost 
than the average user path cost, resulting in a reduction 
in both averages.

Third, the travel cost discount that the fleet receives 
relative to UE is greater at CFS-SO than at MCR. More
over, at MCR on the Sioux Falls network, the fleet travel 
time increases relative to UE. We can compare the fleet 
and individual average travel cost under CFS-SO and 
MCR with the average travel cost of a set of vehicles 
with the same OD demand under aggregate UE using a 
measure we term the “coordination discount”:

CoordinationDiscount(f) �
〈c, f〉

〈λue, Mf〉
� 1, (22) 

where f is the path flow of interest (i.e., the fleet, user, or 
aggregate path flow) under the solution concept of 
interest (i.e., MCR, CFS-SO, or aggregate SO), c is the 

path cost at f, and λue is the OD cost under aggregate 
UE. When f is an aggregate SO path flow, the coordina
tion discount is termed the SO discount and is related to 
the price of anarchy as 1=PoA � 1. Positive values of the 
coordination discount indicate that the flow in question 
is worse off under its current routing than they would 
have been at aggregate UE; negative values indicate that 
the flow in question is better off using its current rout
ing. In Table 5, we can see that at MCR in Sioux Falls the 
fleet total cost increases 3.44% relative to UE even though 
the system total cost decreases by 3.82%. This is an exam
ple of the system optimality paradox discussed in Sec
tion 4.3. In contrast, a fleet at CFS-SO, reduces its total 
cost by 4.32% relative to UE. In Pittsburgh, the fleet is 
only slightly better off under MCR than under UE but 
could increase their savings to nearly match the system 
SO discount by optimizing their fleet.

7.1. CFS-SO as Optimization-by-Proxy
Viewed a different way, our results demonstrate that 
SO traffic flow is attainable by optimizing over a subset 
of vehicles rather than over all vehicles. In optimizing 
the entire network, the traffic manager should know, at 
the very least, the total system travel time, a measure
ment over all vehicular flow in the network. In practice, 
this measurement is simply not feasible to take. What a 
nontrivial critical fleet size indicates is that the measure
ment need only be taken and the optimization need 
only be performed on a subset of the vehicles. If this sub
set of vehicles is easy to measure (e.g., they are all using 
the same navigation software or information platform), 
then all that is additionally necessary are travel time 
estimates on the links of the network, which are sub
stantially easier to measure than untracked vehicles.

However, how large could we reasonably expect 
such a fleet to be? According to a 2015 study, more than 
90% of smartphone users use their smartphones for 
directions (Anderson 2016), and roughly 73% of Ameri
cans in 2020 owned smartphones (O’Dea 2020). Finally, 
84% of those who use smartphones for directions use a 
Google-owned navigation app (Ceci 2021). By a simple 
back-of-the-envelope calculation, nearly 66% of drivers 
use some form of smartphone navigation app, and 55% 
of drivers use a Google-owned navigation app. By con
trast, it is estimated that ride-sourcing vehicles make up 

Table 5. Coordination Discount and Average Cost by Flow Class, Solution Concept, and Network

Network Solution concept SO discount (%)

Coordination discount (%) Average cost

Fleet User Fleet User

Sioux Falls CFS-SO (LP) �3.82 �4.32 �3.30 27.64 15.52
MCR 13.44 �5.81 32.64 17.86

Pittsburgh CFS-SO (LP) �1.19 �1.19 �1.28 110,188.88 47,590.55
MCR �0.21 �2.34 135,722.77 83,179.67

Note. Bold indicates the outcome highlights.
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at most 14% of vehicle miles traveled among the largest 
urban areas in the United States (Balding et al. 2019). 
Although still less than the CFS-SO on the Pittsburgh 
network, an optimized fleet of Google Maps users is 
large enough to achieve SO on many networks, Sioux 
Falls included, if distributed in the right way.

It’s worth noting that CFS-SO finds the smallest total 
fleet size capable of achieving SO with no constraints on 
its OD demand. Specifically in drawing an analogy to 
Google Maps, it may be of interest to find CFS-SO that 
balances the total fleet size with how reasonable the 
resulting OD fleet demand pattern appears, for exam
ple, how uniformly it is distributed across OD pairs. We 
leave this as an area for future work.

In general, however, the scale of the empirical CFS- 
SO results would seem to preclude the most obvious 
source of an optimized fleet; in the case of Sioux Falls 
for example, it is unlikely that a UPS or FedEx fleet 
would account for more than a third of traffic volume, 
but connectivity enables the coordination of vehicles 
on a much larger scale. FedEx can optimize because it 
either owns vehicles and uses CDL (commercial dri
ver’s license) drivers or contracts with freight operators. 
Both avenues are capital intensive and accordingly limit 
the size of the fleet. In contrast, Uber and Lyft have far 
lower driver acquisition costs because they do not own 
the vehicle nor employ the driver (who needs only a 
standard driver’s license) directly. In effect, CFS-SO, 
and in many networks MCR as well, could only be 
achieved via the scale of vehicle coordination enabled 
by app-based services.

Finally, CFS-SO and CFS-UE capture two very differ
ent realities for fleet operators. When fleets on the net
work induce the same traffic flow as UE would, we are 
right to ask whether the fleet should bother optimizing 
itself at all. If mixed equilibrium is the same as UE, then 
the fleet has not gained anything by optimizing. In fact, 
if there is a cost to coordinating behavior, then the ser
vice is strictly worse off in coordinating the fleet. In con
trast, when mixed equilibrium is SO, the potential 
benefits of optimization are clear. In fact, in both the 
Sioux Falls and Pittsburgh networks, the fleet vehicles 
are strictly better off optimizing themselves while at the 
same time driving the system to its optimal traffic flow. 
In contrast, they are worse off under the MCR.

7.2. Applications of CFS-SO and CFS-UE
There are four principal applications we see for critical 
fleet size analysis; it offers 

1. Regulators a new way to inform congestion man
agement policy,

2. Transportation planners an important metric to 
evaluate road network improvements,

3. Service providers, such as ride-sourcing companies, 
navigation services, and car manufacturers increasingly in
terested in mobility more broadly, a better understanding 

of the network effects of their fleet coordination, specifi
cally in identifying areas of the network where their efforts 
could align with system level goals, and

4. The public a tool to understand how individual 
users might benefit from increased fleet presence on 
their roadways.

In the search for regulatory strategies for ad hoc fleets, 
including ride-sourcing services, CFS-SO may provide 
insights into corridors where fleets would be particularly 
helpful in reducing system-level congestion. Conversely, 
CFS-UE may provide useful insights into corridors where 
ad hoc fleets would not be expected to meaningfully 
change travel time or cost. Critical fleet size analysis can 
therefore inform more targeted congestion management 
schemes by recognizing where the interests of traffic 
managers and fleet coordinators align, where they do not 
align, and where fleets will not be expected to alter traffic 
patterns.

CFS-SO is also an important metric in evaluating a set 
of alternative road network improvements. A road net
work improvement that reduces CFS-SO could be lever
aged by a fleet to improve system cost, potentially to SO 
levels. All else equal, a road improvement that reduces 
CFS-SO more will pay dividends in the future as it 
makes it easier for a coordinated fleet to reach the 
threshold required to bring the system to optimality, 
without any external subsidy or intervention on the part 
of the transportation planner.

Services that can coordinate their fleets should ask 
themselves whether and how to optimize their fleet as it 
is often in their interest to guide the fleet toward a 
service-level objective. CFS-SO offers service providers 
a window into how well their service may align with 
network level objectives. In the case of green routes in 
Google Maps, this is an existential question. By com
plement, CFS-UE offers service providers insight into 
where optimizing their fleet may not be worth it at all.

8. Conclusions and Future Work
As technological advances in transportation continue 
to permeate our road networks, it becomes easier for 
services to coordinate vehicle behavior toward a service- 
level objective. In this work, we study if and how self- 
interested services that optimize their fleet can reduce 
system cost on a road network. We demonstrate that 
self-interested fleets are capable of both paradoxically 
increasing system cost over UE and reducing system 
cost up to achieving SO network flow. We provide a 
mathematical program with equilibrium constraints to 
solve for the smallest fleet that would induce SO and the 
largest fleet that would induce UE in mixed traffic with 
UE users. We present efficient solution methodologies 
and apply them to the Sioux Falls and Pittsburgh net
works finding that 33% and at most 83% of vehicles, 
respectively, must join the fleet for the network to reach 
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SO. Moreover, these vehicles are better off than they 
would have been had they either routed themselves 
independently or participated in a MCR-like scheme, 
meaning that neither subsidies nor tolls would be re
quired to compensate the fleet. At CFS-SO on the Pitts
burgh network, fleet vehicles are most present along 
highways and major arterials, whereas individual users 
tend to accumulate on shorter trips outside of the central 
business district. The “path impact” metric, derived 
from the KKT conditions of the CFS linear program, is 
found to drive the concentration of fleet vehicles on 
paths. In other words, we have found two examples 
of networks on which a nontrivial mixture of self- 
interested behavior can induce minimum system cost on 
the network, without the need for external subsidy. Criti
cal fleet size offers regulators a new way to inform con
gestion management policy, transportation planners a 
new metric to evaluate network improvements, and fleet 
operators/coordinators a better understanding of bene
fits of their fleet optimization efforts at the level of both 
their own platform and the entire network.

A key avenue of future work concerns the conditions 
under which a fleet will reduce system cost on a net
work. Although the condition given by Equation (3) 
yields some theoretical insight, it is not of practical use. 
A better practical condition would depend only on the 
network itself and, potentially, the UE or SO link flow. 
Whether such a condition exists and if it is easier to com
pute than mixed equilibrium is an area for future work. 
Additionally, the example of the fleet optimality para
dox is contrived. Whether the paradox can be demon
strated in real world networks remains to be seen. If the 
paradox can be found in real world networks, these 
examples may inform better conditions or heuristics to 
characterize networks that may suffer from the presence 
of fleets.

The use of critical fleet size in transportation planning 
exposes an interesting avenue of future work in charac
terizing the kinds of improvements that tend to reduce 
critical fleet size in real-world networks. Such work 
would expand our understanding of what drives critical 
fleet size and, more broadly, what drives system cost 
reduction when optimized fleets are present on the net
work. It may be of interest for public agencies to regu
late a fleet coordinator toward a deployment pattern 
inline with CFS-SO. One would expect the fleet-optimal 
operation, in conjunction with incentives, may lead to 
SO flow, or considerably mitigate congestion.

As formulated, CFS enforces no constraints on the 
OD fleet demand. This is intentional, as in this work, we 
are focused on finding strictly the smallest optimized 
fleet capable of inducing SO. There are larger fleets that 
would also achieve SO, but as our analysis shows, add
ing fleet to the CFS-SO demand pattern may break SO. 
In practice then, a CFS OD demand pattern that adheres 
to some prior notion of fleet demand might be more 

useful. Adding a penalty term to the CFS mathematical 
programs would be one way to achieve this and we 
leave such studies for future work. For example, it may 
be more reasonable to find a critical fleet size that bal
ances total fleet size with close to uniform OD demand. 
One could achieve this by constructing a measure of 
nonuniformity as the penalty term in the objective, that 
is by replacing the objective in Program 17 with, for 
example,

min
fu≥0, fc≥0,λ

X

p∈P̃

fc
p + γ

�
�
�
�
�

�
�
�
�
�
qc �

1
|W|

X

w∈W
qc

w

�
�
�
�
�

�
�
�
�
�
: (23) 

Other regularization is of course possible. A penalty 
term of the form ‖qc � q̂‖, for example, would encour
age the demand pattern at CFS-SO to match some prior 
demand pattern.

In this paper, CFS is solved with the presence of only 
a single fleet. In reality, there could exist many such 
fleets. CFS-SO with multiple fleets finds the smallest 
total number of fleet vehicles such that the mixed equi
librium is SO. In Online Appendix G, our mathematical 
programs are expanded with additional constraints to 
ensure that each fleet meets FO criteria and that aggre
gate demand and link flows are conserved. Experiments 
on real networks and whether CFS increases or decreases 
when multiple fleets are present is left for future work. 
We hypothesize, however, that because multiple fleets 
will compete with each other, CFS-SO will be minimized 
when only one fleet is on the network. Refuting or prov
ing this hypothesis is also left for future work.

In commenting on congestion, critical fleet size consid
ers route-choice behavior alone. Our framework elides 
many congestion-influencing behaviors that have been 
attributed to ad hoc fleets in the literature. A complete 
treatment of the congestion effects of such fleets should 
not only account for the route choices but also the beha
viors associated with that particular service. Of course, 
not every service provider wishes to optimize total fleet 
travel cost, which this particular formulation of critical 
fleet size assumes. An important area of future research 
is then to adapt the methods in this work to other fleet- 
level objectives a service may have, such as total emis
sions in the case of Google Maps’ green routes.

The relationship between the two notions of critical 
fleet size on networks with a nonunitary price of anar
chy is not clear. Characterizing the relationship either 
empirically through further experiments on real-world 
networks or theoretically would expand our under
standing of both critical fleet size as a quantity of interest 
and how networks in general should be expected to 
respond to the presence of optimized fleets.

We study CFS in the context of static equilibrium. 
This was a deliberate choice as we leveraged the sim
plicity of the static setting to isolate fleet behavior as the 
sole reason for the increase in total system cost in the FO 
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paradox and as the sole reason that a mixture of fleets 
and individuals could achieve SO. CFS is also an inter
esting quantity in the dynamic setting and is an area of 
future work we are eager to explore.

Finally, solving critical fleet size, or its bound, in large 
networks is computationally challenging. Not only does 
the problem require a high-quality SO link flow solu
tion, but the number of variables and constraints grows 
quickly with network size. There is no immediately 
obvious way of reducing the problem complexity, but a 
more clever row and column generating scheme and 
tighter integration with solver software may work well 
in practice to solve the smallest possible critical fleet size 
program. Finding ways to improve the computational 
efficiency of critical fleet size algorithms will make it a 
more easily applicable algorithm.
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