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AbstractÐ Continuum robots suffer large deflections due to
internal and external forces. Accurate modeling of their passive
compliance is necessary for accurate environmental interac-
tion, especially in scenarios where direct force sensing is not
practical. This paper focuses on deriving analytic formulations
for the compliance of continuum robots that can be modeled
as Kirchhoff rods. Compared to prior works, the approach
presented herein is not subject to the constant-curvature as-
sumptions to derive the configuration space compliance, and
we do not rely on computationally-expensive finite difference
approximations to obtain the task space compliance. Using
modal approximations over curvature space and Lie group
integration, we obtain closed-form expressions for the task and
configuration space compliance matrices of continuum robots,
thereby bridging the gap between constant-curvature analytic
formulations of configuration space compliance and variable
curvature task space compliance. We first present an analytic
expression for the compliance of a single Kirchhoff rod. We then
extend this formulation for computing both the task space and
configuration space compliance of a tendon-actuated continuum
robot. We then use our formulation to study the tradeoffs
between computation cost and modeling accuracy as well as the
loss in accuracy from neglecting the Jacobian derivative term in
the compliance model. Finally, we experimentally validate the
model on a tendon-actuated continuum segment, demonstrating
the model’s ability to predict passive deflections with error
below 11.5% percent of total arc length.

I. INTRODUCTION

In this paper, we consider how to compute the passive

compliance matrix of continuum and soft robots modeled

as Kirchhoff rods (i.e. Cosserat rods with negligible shear

strains and extension). The local compliance matrix provides

a local prediction of the robot’s passive deflections as a result

of small changes in external loads, so it is useful for design

and planning to ensure accurate physical interaction with

the environment. The compliance matrix also needs to be

computed for online passive stiffness modulation [1±3] and

active stiffness/compliant motion control [4±6].

Many prior works presented mechanics models to predict

the overall deflection of a continuum or soft robot for a given

set of actuation and external loads [7±9]. However, relatively

few studied the local compliance, i.e. the small change in

shape due to small changes in the applied forces [6], [10±

12]. These prior works on local compliance have defined the
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compliance matrix in two different ways: configuration space

or task space compliance, depending on the application need.

The configuration space compliance relates external

wrenches projected into the robot’s configuration space to the

ensuing changes in the configuration variables. This notion of

compliance was used in [6] for compliant motion control, in

[13], [14] for force regulation without dedicated end-effector

force sensing, and in [15] for force-controlled shape scanning

of organs. Configuration space compliance can be computed

analytically, but prior work has only presented it under the

assumption of a constant-curvature shape.

The task space compliance is the more conventional notion

of compliance that provides the twist that a robot experiences

as a result of a small change in an applied external wrench.

While using finite differences to compute this compliance

is possible, this approach is computationally expensive and

does not provide analytic expressions of the compliance.

Another method, applied to a concentric tube robot in

[11], integrates an additional set of differential equations

together with the standard Cosserat rod equations. This can

be combined with finite difference steps to compute the

compliance matrix of a parallel continuum robot[12]. In the

mechanics literature, variational formulations were also used

to derive stiffness matrices for geometrically exact mechanics

models [16], [17], but these methods have not been translated

into a robotics context. Finally, [10] presented the task-space

compliance of a continuum segment with discrete actuators

applying moment loads along the segment’s body. This work

used modal basis functions to describe the backbone bending

angle, resulting in an analytic expression for the task-space

compliance, but it was limited to planar deflections.

The contribution of this paper is a compliance matrix

formulation that bridges the gap between constant-curvature

configuration space compliance and geometrically-exact task

space compliance. We present analytic expressions for both

configuration and task space compliance. The analytic nature

of the formulation enables sensitivity analysis of individual

model parameters on the resulting configuration. As an ex-

ample, we show how the term associated with the derivatives

of the task space Jacobian and the external loading has a

significant effect on the accuracy of the compliance model.

We also show how our approach enables a tradeoff to be

made between model accuracy and computation cost, which

is more difficult to achieve using prior geometrically exact

mechanics models.

In Section II, we present the kinematic equations describ-

ing the variable curvature kinematic shape of the robot. In

Section III, we then show how to derive the task space
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compliance of a single Kirchhoff rod from the modal shape

kinematics and local rod stiffness. We then extend this to

the task space and configuration space compliance of a

tendon-actuated continuum segment in Section IV. Finally,

in Section V, we present a simulation case study of a

single Kirchhoff rod and an experimental validation of the

compliance matrix on a tendon-actuated continuum segment.

II. LIE GROUP KINEMATICS PRELIMINARIES

In this section, we summarize the kinematic expressions

that underpin our proposed compliance matrix formulation in

this paper. The Lie group kinematics was presented in [18] as

part of a formulation for continuum robot shape estimation

from intrinsic string encoder measurements. Prior works

have used modal shape functions to model hyper-redundant

[19] and continuum/soft robots [20±25], but the kinematic

expressions presented herein are most similar to those used in

[26], [27] for continuum robot mechanics, where the modal

shape functions approximate the local backbone curvature.

A. Central Backbone Kinematics

Referring to Fig. 1, we define the arc length distance along

the central backbone as s ∈ [0, L], where L is the total length

of the central backbone. We assume the central backbone

is inextensible and that the central backbone has a high

slenderness ratio consistent with the assumption of negligible

shear strains, i.e. a Kirchhoff rod. The central backbone can

therefore be described by the curvature distribution along

the backbone in three directions, u(s) = [ux, uy, uz]
T ∈ IR3.

At a given arc length s, we assign a local body frame

T(s) ∈ SE(3) with its z-axis tangent to the central backbone

curve:

T(s) =

ï

0Rt(s)
0p(s)

0 1

ò

∈ SE(3), s ∈ [0, L] (1)

where 0Rt(s) and 0p(s) are the orientation1 of the local

body frame in the base frame {0} and the position of

the origin of frame {T} in frame {0}. As the body frame

traverses the central backbone curve, it undergoes a twist

η(s) = [u(s)T, eT
3
]T ∈ IR6, where e3 = [0, 0, 1]T denotes

the local tangent unit vector. Furthermore, it satisfies the

following differential equation [28]:

T′(s) = T(s)η̂(s), η̂(s) =

ï

û(s) e3
0 0

ò

∈ se(3) (2)

where (·)
′

denotes the derivative with respect to s and the

hat operator ( ·̂ ) forms the standard matrix representations of

so(3) and se(3) from the vector forms u and η, respectively.

We now make a choice to express the curvature distri-

bution u(s) as a weighted sum of polynomial functions.

We denote the polynomial functions as ϕx(s), ϕy(s), and

1We use the notation b
Ra to denote the orientation of frame {A} with

respect to frame {B}. Also, frame {A} has its origin denoted by a.

Fig. 1: Kinematic parameters used in our modal-shape com-

pliance matrix model.

ϕz(s) and the weights as cx, cy , and cz , for the x, y, and

z directions, respectively. The curvature u(s) is therefore:

u(s) =



ϕT

x cx

ϕT

y cy

ϕT

z cz


 =



ϕT

x 0 0

0 ϕT

y 0

0 0 ϕT

z





cx
cy
cz


 = Φ(s)c (3)

where the columns of Φ(s) ∈ IR3×m form a modal shape

basis, and c ∈ IRm is a vector of constant modal coefficients.

We choose the Chebyshev polynomials of the first kind for

the modal functions since their roots are also the Chebyshev

nodes, resulting in optimal approximation. They can be

computed recursively:

T0 = 1, T1(x) = x

Tn(x) = 2xTn−1(x)− Tn−2(x), n = 2, 3, ...
(4)

where we shift the domain x ∈ [−1, 1] to s ∈ [0, L] via the

transformation x(s) = (2s−L)/L. The benefit of this modal

shape approach to modeling the kinematics of continuum

robots is that variable curvature shapes with any desired

choice of fidelity can be modeled by a suitable choice of

the modal shape basis order. We will show below how this

approach bridges the gap between prior constant-curvature

configuration-space compliance and Kirchhoff rod task-space

compliance models.

For a given configuration c, the body frame T(s) is found

by integrating (2). As reviewed in [29], a variety of Lie

group integration methods could be used for this, including

an approach based on the Magnus expansion that we use

here, following our result in [30]. After integrating (2), the

spatial curve is given via a product of matrix exponentials:

T(s) = T(0)
k∏

i=0

eΨi , Ψi ∈ se(3) (5)

where the particular form of Ψi depends on the choice of

integration method [29], [30].

B. Tendon Routing Kinematics

To model the kinematics of the tendon paths, we follow

the approach used in [31]. Assuming p tendons, the tendon

path is expressed in the moving frame T(s) and is given by:

tri(s) = [rxi
(s), ryi

(s), 0]T, i = 1, 2, . . . , p (6)
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The position of a point along the tendon path is given in the

world frame by:

0wi(s) =
0p(s) + 0Rt(s)

tri(s) (7)

Noting that vector norms are invariant under rotations, the

length of the ith tendon is therefore given by:

ℓi =

∫ sai

0

∥tw′

i(s)∥ ds, i = 1, 2, . . . , p (8)

where sai
is the central backbone arc length at which

the tendon is anchored to the spacer disk/end disk, and
tw′

i(s) =
0R

T

t
0w′

i(s) is found by taking the derivative of

(7) with respect to s and substituting (3), 0p′(s) = 0Rt(s)e3,

and 0R′

t(s) =
0Rt(s)û(s):

tw′

i(s) = e3 −
tr̂i(s)Φ(s)c+ tr′i(s), i = 1, 2, . . . p (9)

C. Instantaneous Kinematics Jacobians

Using the equations above, we also define two instanta-

neous kinematics Jacobians that will be used to formulate the

configuration space and task space compliance matrices. Not-

ing that the vector of modal coefficients c uniquely defines

the configuration of the robot, we define the configuration

space Jacobian as the Jacobian relating small changes in the

tendon lengths to small changes in the modal coefficients:

dℓ = Jℓcdc, Jℓc ∈ IRp×m (10)

Jℓc is found by taking derivatives of (8). We also define

the body Jacobian relating small changes in the modal

coefficients to body frame changes at arc length s:

ξ(s) = Jξc(s)dc, ξ ∈ se(3) (11)

Jξc(s) is found via the derivative of the exponential mapping

together with (5).

III. COMPLIANCE MATRIX OF A KIRCHHOFF ROD

We now build on the kinematic equations above to formu-

late the compliance matrix of a Kirchhoff rod. We follow a

similar set of steps as the derivation of the stiffness matrix

for a parallel robot in [1] and the statics [32] and stiffness

of multi-backbone robots [6]. We begin by defining a small

perturbation (i.e. a twist) in the end effector pose T(L),
denoted as δxh, which we find by computing the body twist

and then transforming into the hybrid frame that is coincident

with the body frame T(L) but aligned with the world frame:

δxh = hSb

(
T−1(L)δT(L)

)∨
∈ IR6

hSb =

ï

wRb 03x3

03x3
wRb

ò

∈ IR6×6
(12)

where wRb ∈ SO(3) is the rotation matrix of the body frame

expressed in the world frame and the ªvee" operator (∨)
extracts a vector x from its corresponding skew-symmetric

cross-product matrix x∧ ∈ se(3). We then define the task-

space compliance matrix of a single rod as:

δxh = Cxrod
δwh, Cxrod

∈ IR6×6 (13)

where δwh = [δmT

h , δf
T

h ]T ∈ IR6 is a small change in the

applied wrench written in the hybrid frame2 and with the

moment followed by the force.

We assume here the rod is massless, and that shear

strains and extension are negligible. We denote Kbt =
diag(EIx, EIy, JG) ∈ IR3×3 as the diagonal bending/torsion

stiffness matrix of the rod’s cross section. The bending

energy in the rod is given by

E =

∫ L

0

1

2
u(s)TKbtu(s) ds =

1

2
cT

Ç∫ L

0

ΦTKbtΦ ds

å

︸ ︷︷ ︸
Φk

c

(14)

where we have substituted the modal shape basis curvature

from (3). Note that the matrix Φk can be computed offline

if the modal shape functions are chosen a priori.

For the work done by the applied wrench as it produces a

small displacement δx, there is a corresponding small change

in bending energy δE:

wT

h δxh = δE (15)

Recalling the body Jacobian from (11), we denote the

relationship between δxh and δc as:

δxh = hSbJξcδc = J̃ξcδc (16)

and substitute this into (15):

wT

h J̃ξcδc =

Å

∂E

∂c

ãT

δc (17)

By the principle of virtual work, to be in static equilibrium

we require the virtual displacements associated with δc to

vanish, resulting in:

J̃T

ξcwh =
∂E

∂c
(18)

Denoting ci as the ith element of c and taking small

perturbations about the equilibrium configuration:

δ
Ä

J̃T

ξc

ä

wh + J̃T

ξcδwh = δ

Å

∂E

∂c

ã

(19)

By substituting δ
Ä

J̃T

ξc

ä

=

n∑

i=1

[
∂J̃T

ξc

∂ci

]
δci and δ

(
∂E
∂c

)
=

î

∂2E
∂c2

ó

δc and solving for δc we obtain:

δc =

(
∂2E

∂c2
−

[
∂J̃T

ξc

∂c1
wh . . .

∂J̃T

ξc

∂cn
wh

])−1

J̃T

ξcδwh (20)

Recalling (13) and substituting (20) into δxh = J̃ξcδc results

in the analytic expression for the compliance matrix:

Cxrod
= J̃ξc

(
∂2E

∂c2
−

[
∂J̃T

ξc

∂c1
wh . . .

∂J̃T

ξc

∂cn
wh

])−1

J̃T

ξc

(21)

2The hybrid frame has its origin coincident with the origin of the local
frame {T} and its axes parallel to the base frame {0}.
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The above result matches with the congruence transformation

of stiffness as discussed in [33] for serial robots. The energy

Hessian ∂2E
∂c2 , which can be computed offline, is found by

differentiating (14) twice:

∂E

∂c
=

1

2

Ä

Φk +ΦT

k

ä

c ⇒
∂2E

∂c2
=

1

2

Ä

Φk +ΦT

k

ä

(22)

IV. COMPLIANCE MATRICES OF A TENDON-ACTUATED

CONTINUUM SEGMENT

We now extend the example above for a single rod to

the case of a tendon-actuated continuum segment. We first

derive a statics model similar to the constant curvature model

in [34] but for a variable curvature segment. We then use this

statics model to arrive at the task-space compliance matrix,

in an analytic form as a result of our Lie group modal

shape formulation. Finally, we present the variable curvature

configuration-space compliance matrix.

A. Task-space compliance

For a given external wrench wh on the tip of the seg-

ment and a perturbation δxh in the end pose, we have a

corresponding change in the forces applied to the actuation

tendons τ and a corresponding change in the bending energy

stored in the segment, where the bending energy is given by

(14). Following the principle of virtual work, we have:

wT

h δxh + τTδℓ− δE = 0 (23)

where δℓ is a change in the tendon length. Referring to (11)

and (10), we substitute (16) and δE = ∂E
∂c

T

δc to arrive at

the statics of the segment about a given configuration:

JT

ℓcτ =
∂E

∂c
− J̃T

ξcwh (24)

We then take small perturbations of this statics expression:

Cτδc+ JT

ℓcδτ =
∂2E

∂c2
δc−Cwh

δc− J̃T

ξcδwh (25)

where Cτ and Cwh
are defined as:

Cτ =

ï

∂JT

ℓc

∂c1
τ , . . . ,

∂JT

ℓc

∂cn
τ

ò

∈ IRn×n (26)

Cwh
=

[
∂J̃T

ξc

∂c1
wh, . . . ,

∂J̃T

ξc

∂cn
wh

]
∈ IRn×n (27)

The matrix Cτ is the contribution to the compliance matrix

of the forces on the tendons at the current configuration, and

Cwh
is the contribution due to the external wrench. In cases

where Cτ ̸= 0, it can be readily affected by using actuation

redundancy (internal preload) and Cwh
depends only on the

external load. In a robot without actuation redundancy, τ

is determined by wh through the statics equation. Therefore

Cτ and Cwh
are not completely independent. In a robot with

actuation redundancy, these two matrices are independent.

By defining the joint-level stiffness Kℓ as a diagonal stiff-

ness matrix containing the stiffness of individual actuation

lines, i.e., Kℓ(i, i) =
δτi
δℓi

, we can use δτ = Kℓδℓ and

δℓ = Jℓcδc in (25), combine like terms, and solve for δc:

δc =

Å

∂2E

∂c2
−Cτ −Cwh

− JT

ℓcKℓJℓc

ã−1

J̃T

ξcδwh (28)

We then substitute this expression into δxh = J̃ξcδc to arrive

at the compliance matrix:

Cx =
δxh

δwh

= J̃ξc

Å

∂2E

∂c2
−Cτ −Cwh

− JT

ℓcKℓJℓc

ã−1

J̃T

ξc

(29)

As a result of our analytic kinematic expressions, (29)

bears resemblance to the results of prior works on stiffness

modulation of rigid-link parallel robots, where one defines an

active stiffness term dependent on the joint-level forces and

the derivative of the Jacobian and a passive stiffness term de-

pendent on joint-level stiffness [35±37]. Compared to a rigid-

link parallel robot stiffness matrix model, additional terms for

tendon-actuated continuum robots include the Hessian of the

bending energy and a term with the joint forces multiplied

by the derivatives of the configuration-space Jacobian.

B. Configuration-space compliance

We now present the configuration space compliance ma-

trix for a tendon-actuated continuum segment with variable

curvature deflections. Our formulation can be seen as an ex-

tension of the compliance matrix in [6] to the case of variable

curvature continuum robots. The resulting expression does

not require computation of the task space Jacobian and its

derivatives, and is therefore less computationally expensive.

Furthermore, it does not require knowledge of the external

wrench as required by the task-space compliance, so we

believe it can be used for compliant motion control as done in

[6], but for cases where large external loads produce variable

curvature deflections.

Referring to (24), we first define the external wrench

projected into the configuration space, denoted as wc:

wc = J̃T

ξcwh =
∂E

∂c
− JT

ℓcτ (30)

Taking small perturbations of (30) results in

δwc =
∂2E

∂c2
δc−Cτδc− JT

ℓcδτ (31)

where Cτ was given in (25). We now substitute δτ =
KℓJℓcδc, combine like terms, and solve for δc:

δc =

Å

∂2E

∂c2
−Cτ − JT

ℓcKℓJℓc

ã−1

δwc (32)

Computing the change in the configuration for a small change

in the projected wrench, i.e. δc = Ccδwc, results in the

following configuration-space compliance matrix:

Cc =

Å

∂2E

∂c2
−Cτ − JT

ℓcKℓJℓc

ã−1

, Cc ∈ IRn×n (33)

Note that (33) does not require that the task-space Jacobian

and its derivatives be computed. It also does not require

knowledge of the external wrench. It does, however, in
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the general case require knowledge of the actuation tendon

forces. These forces can come either directly from force

sensors placed in series with the actuation tendons [6],

[12] or from estimates obtained via the commanded motor

current. In special cases where Jℓc is constant, e.g. segments

with constant pitch tendon routing and negligible torsional

deflections as in Section V, Cτ is zero and the actuation

tendon forces do not need to be measured.

C. Determining the configuration modal coefficients

Both the configuration-space and task-space compliance

matrices require the modal coefficients c to define the

segment’s configuration. There are two ways to obtain c.

The first is using the shape sensing approach presented in

[18]. This approach requires integration of shape-sensing

hardware, but the benefit is that it does not require a

potentially computationally expensive mechanics model.

The second way to obtain c is with a mechanics model like

the ones presented in [9], [30]. After solving the mechanics

model, c can be obtained by converting the collocation values

into modal coefficients, as shown in [30]. Using a mechanics

model to obtain c does not require shape-sensing, but does

require an estimate of the external wrench applied to the

segment, which may be known a-priori in some cases or can

be measured using a load cell attached to the end effector.

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we present a simulation-based analysis

of the Kirchhoff rod compliance matrix model, as well as

an experimental validation and analysis of the compliance

matrix for a tendon-actuated continuum segment.

A. Kirchhoff rod model validation and analysis in simulation

We first compare the deflections predicted by our compli-

ance matrix in (21) to the deflections predicted by a Kirch-

hoff rod model, solved following the method in [30] which

combined orthogonal collocation and Lie group integration.

We considered a 2 mm diameter Nitinol rod with a length of

200 mm and combinations of ±1 N tip forces and ±0.5 Nm

tip wrenches, generating a set of 2187 variable curvature

rod shapes. For each shape, we applied small steps of

0.1 N and 0.05 Nm to increment the applied force/moment (6

deflections for each shape) and recomputed the Kirchhoff rod

model. We then used (21) to predict the deflection for each

wrench increment. For (21), we used the same Chebyshev

series for the x, y, and z directions, but varied the order

of the Chebyshev series from n = 0 to n = 10, i.e. when

n = 0, Φ had three columns, and when n = 10, Φ had

33 columns. We used 10 integration steps when computing

T(L) regardless of n. We then computed the tip translational

deflection error:

ep = ∥∆pgt −∆pm∥ ∈ IR (34)

where ∆pgt ∈ IR3 is the deflection predicted by the Kirch-

hoff rod model and ∆pm ∈ IR3 is the deflection from (21).

The solvers were run using MATLAB 2021a on an Intel i7-

11700 CPU.

Fig. 2: (a) The absolute deflection error in tip deflection,

with error bars showing the minimum and maximum error,

predicted by our compliance matrix expression and (b) the

computation time for different numbers of modal coeffi-

cients, showing a trade-off between speed and accuracy.

TABLE I: Tip Deflection Error versus Polynomial Order

Position error (mm) Rotation error (deg)

Avg. Max. Avg. Max. Speed (Hz)

n = 0 0.8 13.7 0.2 6.3 94.6

n = 2 1.3e-2 0.6 2.2e-3 0.10 19.3

n = 4 6.7e-5 6.3e-3 2.0e-5 1.2e-3 8.3

n = 6 1.5e-5 3.8e-4 1.3e-5 4.4e-4 4.5

The mean/max absolute deflection error results are shown

in Table I and Fig. 2. We see that as n is increased, the

analytic expression rapidly converges to the simulated Kirch-

hoff rod deflection. We also observe that computation time

increases with n, showing a tradeoff between the compliance

matrix accuracy and computation cost.

The primary source of computational cost is in computing

the derivatives of Jξc. For n = 10, estimating these deriva-

tives accounts for approximately 95% of the computation

time. We are currently using finite differences to estimate

these derivatives, but we believe it is possible to derive

these derivatives analytically and reduce computation cost.

Methods from [29] to reduce the number of Lie brackets

needed to calculate Jξc could also reduce computation cost.

A benefit of our formulation, in contrast to other ap-

proaches to computing the compliance matrix, is that it

allows a trade-off between computation cost and accuracy

to be made depending on the application need. A high-

order model (large n) could be used when computing the

statics model to accurately predict the spatial shape of the

continuum robot, and a lower-order model (small n) could be

used to compute the compliance matrix for online compliant

motion control or predicting local deflections.

To reduce computation cost, one may ask whether it is
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Fig. 4: Boxplot comparing deflection error to the norm of

the force applied to the end disk. The central red line is the

median, and the box covers the 25th and 75th percentiles.

Small dots represent the experimental data.

estimate of the deflection behavior, it is expected that larger

deflections result in larger error in the predicted deflection.

Figure 4 shows predicted deflection error for different norms

of applied force. We observe that, as expected, predicted de-

flection error tends to increase as the applied force increases.

VI. CONCLUSIONS

In this paper, we presented a method for computing the

compliance matrix of continuum and soft robots utilizing

a modal shape basis Lie group formulation. Compared to

prior work, our approach does not rely on a constant-

curvature assumption and leads to analytic expressions for

both configuration space and task space compliance. We

presented the compliance of a single Kirchhoff rod, and

we highlighted through a simulation study the tradeoff be-

tween computational cost and modeling accuracy as well as

the importance of including the Jacobian derivatives when

computing compliance. We also presented the compliance

for a tendon-actuated continuum segment, and performed

an experimental validation of the task-space compliance,

showing predicted deflection errors below 11.5% of arc

length. Future work includes applying this formulation to

passive stiffness modulation and compliant motion control

of variable curvature continuum and soft robots.
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