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Abstract— Robots often have to perform manipulation tasks
in close proximity to people (Fig 1). As such, it is desirable to use
a robot arm that has limited joint torques so as to not injure
the nearby person. Unfortunately, these limited torques then
limit the payload capability of the arm. By using contact with
the environment, robots can expand their reachable workspace
that, otherwise, would be inaccessible due to exceeding actu-
ator torque limits. We adapt our recently developed INSAT
algorithm [1] to tackle the problem of torque-limited whole
arm manipulation planning through contact. INSAT requires
no prior over contact mode sequence and no initial template
or seed for trajectory optimization. INSAT achieves this by
interleaving graph search to explore the manipulator joint
configuration space with incremental trajectory optimizations
seeded by neighborhood solutions to find a dynamically feasible
trajectory through contact. We demonstrate our results on a
variety of manipulators and scenarios in simulation. We also
experimentally show our planner exploiting robot-environment
contact for the pick and place of a payload using a Kinova
Gen3 robot. In comparison to the same trajectory running
in free space, we experimentally show that the utilization of
bracing contacts reduces the overall torque required to execute
the trajectory.

I. Introduction

Collaborative robots can reduce the physiological burden
of physically demanding tasks for human operators

working in confined spaces. These robots can assist humans
by manipulating heavy payloads deep inside a confined
space. For such tasks, these long-reach robots need large
torque actuators and massive links to support its own weight
along with the payload to operate in configurations near
its maximum reach. However, such operational requirements
compromise the safety of collaboration with the human
worker at close proximity. As a result, we are faced with
a manipulation planning problem where the planner should
minimize the manipulator joint torques and accelerations
while respecting task manipulation requirements and avoid-
ing obstacles.

To overcome the conflicting requirements of safe collab-
oration and operation in deep confined spaces, it has been
shown that the robot can brace against the environment to
reduce the overall effort required to manipulate heavy objects
[2]. The physical constraints imposed by the environment
can be transformed into opportunities that can be exploited
to enable efficient manipulation that expends low energy,
increases accuracy [3], [4], and reduces compliance [5].

In this work, we present a motion planning algorithm
for manipulation that automatically discovers and exploits
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Fig. 1: An example of a hyperredundant robot manipulator lifting
a heavy tool in a confined space by leveraging contact with the
environment to assist a human worker.

bracing locations along the entire trajectory to achieve a
desired task such as transporting an overweight payload. Con-
sequently, our torque-limited manipulation planning algo-
rithm can opportunistically make/break/sustain contact with
the environment to reach deep inside a confined space with
insufficient actuator torques or carry a heavy payload beyond
the manipulator’s capability.

The summary of our contributions is as follows:
• A novel adaptation of INSAT: INterleaved Search And

Trajectory optimization [1] for the application of torque-
limited manipulation planning through contact. By inter-
leaving discrete graph-search with continuous trajectory
optimization, our algorithm is able to plan through
contact over long horizons for high-dimensional com-
plex manipulation problems in confined non-convex
environments.

• A dynamically feasible trajectory through contact can
be non-smooth with impacts and discontinuities. We
introduce a new virtual contact frictional force model
to enable planning for complex, contact-rich motions
without relying on a pre-specified contact schedule
using a gradient-based optimizer.

• To the best of our knowledge, manipulation planning
that actively reasons about effort reduction by utilizing
additional support from contact has not been proposed
and demonstrated on a real robot arm until now, which
forms the most important contribution of this work.

The key idea behind our framework is (a) to identify a low-
dimensional manifold, (b) perform a search over a grid-based
graph that discretizes this manifold, and (c) while searching
the graph, utilize contact-implicit trajectory optimization to
compute the cost of partial solutions found by the search.
As a result, the search over the lower-dimensional graph
decides what trajectory optimizations to run and with what
seeds, while the cost of the solution from the trajectory
optimization drives the search in the lower-dimensional graph
until a dynamically feasible trajectory from start to goal is
found.

This paper is structured as follows: we discuss prior work
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in Sec. II, formalize the problem statement in III and intro-
duce the tunable virtual contact models for contact-implicit
trajectory optimization in IV. We then describe our proposed
method in Sec. V. Finally, we show the experimental results
in Sec. VI, and conclude in Sec. VII.

II. Prior Work

Although the idea of bracing against the environment for
manipulation was proposed as early as the 1980s [6], not
much attention has been paid since then. Sensing and control
for bracing with probabilistic contact estimation [7] and mul-
tiple simultaneous contacts with the environment [8] were
introduced in the 2000s. The methods proposed in [9] and [2]
from the late 2010s were the first to consider manipulation
planning through bracing against the environment. However,
[2] is primarily a control algorithm to drive the robot to the
right contact point and posture and not a planner that reasons
about bracing to achieve a desired long-term task. Whereas
the idea presented in [9] is limited in that it (i) ignores
the contact dynamics (ii) only considers static environmental
bracing and (iii) is demonstrated only on a simple planar
elastomer manipulator with a single 2D obstacle.

In contrast, our planner generates trajectories with dy-
namic bracing (contact sliding); is evaluated in a much
more challenging environment; and is demonstrated on a
real robot. Planning to brace and navigating through the
environment by bracing can be construed as constrained
manipulation planning over a sub-manifold which has been
addressed by [10] and its variants. But these are quasi-static
methods that do not factor in the dynamics of contact and
manipulator system essential to understand and leverage the
effects of bracing.

Planning through contact with unspecified mode sequence
is an active challenge in robot locomotion and manipulation
[11]. The aim of the general formulation, called Contact
Implicit Trajectory Optimization (CITO), is to jointly find
trajectories for state, control input, and contact forces. Most
of the successful previous works propose different com-
binations of trajectory optimization-based approaches [12],
including direct shooting [13] and direct transcription [14],
[15]. For incorporating contact, they use either comple-
mentarity conditions with implicit time-stepping [14], [15]
or soft constraints implemented as a penalty term [16],
[17] in the cost function [18], [19]. However, standalone
optimization-based approaches are brittle when it comes to
global reasoning over long horizon and depends heavily on
the quality of initial guesses.

On the other hand, the contact mode sequence is inherently
discrete and the optimizer faces a fundamentally discrete
choice at each time, which is difficult to optimize whether
modeled using continuous constraints or integer variables. To
that end, recent approaches use graph search-based methods
[20], [21], [22] or rapidly-exploring random trees [23] to
plan contact switches and generate a seed for the subsequent
trajectory optimization. However, these local methods are
greedy and do not offer a fall-back in case the trajectory
optimization does not succeed using the discrete contact
sequence. In contrast, INSAT offers a principled way to
globally reason over the discrete and continuous parts of the
problem.

III. Problem Statement

In this work, we denote the robot manipulator as R, and
XR ⊆ R# as the configuration space (C-space) for a #

degree-of-freedom (DoF) manipulator. Let Xobs ⊂ XR be the
C-space obstacle, Xfree

= XR \ Xobs be the free space and
X( ⊂ Xobs denote the surface of the obstacle with which
the robot can make and break contact. The planning state is
comprised of joint angles and joint velocities x = [q, q̇] ∈
X ⊆ R2# . The manipulator is controlled by bounded joint
torque inputs u ∈ R# . Given (a) a start state x( , (b) a goal
state x� , (c) the planning space X with the obstacles Xobs

and the obstacle contact surface X( , the task is to find a
control trajectory u(C); C ∈ [0, )] according to Eq. 1.

For torque-limited planning, the manipulator’s maximum
velocity and torque constraints must be satisfied while plan-
ning. The energy-optimal motion planning for torque limited
manipulation can be cast as the following optimization:

find u(C)

s.t. x(C) = f(x( , u(C)),

x()) = x�

x(C) ∈ (X \ Xobs) ∪ X(

| ¤x(C) | ≤ ¤xlim, | ¥x(C) | ≤ ¥xlim, |u(C) | ≤ ulim

(1)

where f denotes the manipulator dynamics with contact that
captures the interaction of R with the environment (Eq. 2).
Note that x(C) can lie on X( and hence encodes the sequence
of making and breaking contact with environment.

IV. Manipulator and Contact Model Dynamics

We model the dynamics of R and its interaction with
the environment as a rigid-multi-body system using Euler-
Lagrange mechanics with generalized coordinates q as:

M(q) ¥q + C(q, ¤q) ¤q + G(q) = 3 + J
 (q)T
 (2)

where M, C, G are mass, Coriolis and gravity matrices, 3
is the generalized input, J
 (q) is the contact Jacobian that
maps ¤q to the Cartesian velocities at the external contact
point, and 
 is the contact forces.

In this work, we use MuJoCo [24] to simulate the ma-
nipulator dynamics with contact at high-fidelity. Contact
introduces impacts and discontinuities in the system dy-
namics as the contact forces (i.e. 
 from MuJoCo) vanish
completely when not in contact and explode at the instant
of making contact. A dynamically feasible control trajec-
tory for our application might be non-smooth as the robot
has to make/break/sustain contact with the environment.
To optimize for such a trajectory using a gradient-based
solver, we introduce two tunable smooth contact models. A
smooth contact model is differentiable even at the collision
event of the contact and enables faster trajectory optimiza-
tion convergence. These models provide virtual forces that
can be exploited in trajectory optimization to overcome
the vanishing/exploding gradients of contact dynamics and
enable automatic discovery of contact locations and smooth
breaking of static friction. The vector of generalized joint
inputs 3 can be decomposed as follows:

3 = u − J� (q)
T

�(q, ¤q) (3)

where u is the joint torque input, �(q, ¤q) ∈ R#Γ and J� (q)
are respectively the generalized virtual contact forces from
the tunable smooth contact models (Eq. 4, 5, 6) in the contact
frame and the corresponding Jacobian matrix and #Γ is
number of contact pairs. �(q, ¤q) acts on the environment
in addition to the forces due to the contact mechanics from
MuJoCo (i.e. 
).
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