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Lie Group Formulation and Sensitivity Analysis for

Shape Sensing of Variable Curvature Continuum

Robots With General String Encoder Routing
Andrew L. Orekhov , Elan Z. Ahronovich , and Nabil Simaan , Fellow, IEEE

Abstract—This article considers a combination of actuation ten-
dons and measurement strings to achieve accurate shape sens-
ing and direct kinematics of continuum robots. Assuming gen-
eral string routing, a methodical Lie group formulation for the
shape sensing of these robots is presented. The shape kinematics
is expressed using arc-length-dependent curvature distributions
parameterized by modal functions, and the Magnus expansion for
Lie group integration is used to express the shape as a product of
exponentials. The tendon and string length kinematic constraints
are solved for the modal coefficients and the configuration space
and body Jacobian are derived. The noise amplification index for
the shape reconstruction problem is defined and used for optimizing
the string/tendon routing paths, and a planar simulation study
shows the minimal number of strings/tendons needed for accurate
shape reconstruction. A torsionally stiff continuum segment is
used for experimental evaluation, demonstrating mean (maximal)
end-effector absolute position error of less than 2% (5%) of total
length. Finally, a simulation study of a torsionally compliant seg-
ment demonstrates the approach for general deflections and string
routings. We believe that the methods of this article can benefit the
design process, sensing, and control of continuum and soft robots.

Index Terms—Continuum robots, human–robot collaboration,
Lie group methods, shape sensing, soft robots.

I. INTRODUCTION

C
ONTINUUM robots achieve infinitely varied shapes gov-

erned by their elastic equilibrium conformations rather

than being solely determined by the values of their active joints,

as shown in Fig. 1. As a result, the direct kinematics of these

robots is corrupted with a large level of uncertainty due to

structural deflections. Since active joint values alone are not
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Fig. 1. Continuum segment subject to passive deflections (a) starting in a
straight configuration, (b) starting with a bent configuration. This article ad-
dresses the problem of sensing the deflected shape using string encoders.

sufficient for achieving accurate direct kinematics, an additional

sensing source is needed. This need motivated efforts on shape

sensing for continuum and soft robots, which focused on using

extrinsic and/or intrinsic sensing.

Extrinsic sensing relies on use of external metrology (e.g.,

magnetic trackers [1] and computer vision [2], [3], [4], [5]).

Intrinsic sensing relies on sensors that augment joint-level data

to produce shape estimates. The use of polyvinylidene difluoride

(PVDF) bimorph sensors for shape sensing of soft actuators un-

der planar bending was explored in [6] along with considerations

for the number of sensors and their spacing to avoid Runge’s

phenomenon when fitting a modal function series to estimate the

shape. Others focused heavily on the use of fiber Bragg grating

(FBG) sensors for shape sensing [7], [8], [9]. A mechanics

model combined with moment sensing was presented in [10]

to estimate the shape of whiskers and in [11] for McKibben

muscle actuated continuum robots, and a mechanics model was

combined with passive cable displacement in [12] for shape

sensing. Finally, string potentiometers were explored in [11],

[13], [14] for shape sensing of continuum robots under planar

or constant curvature shapes. Despite previous works, there are

two key technological and theoretical gaps that motivate this

work. First, there is a need for a low cost solution to the problem

of shape sensing. While use of FBG sensor arrays is possible,

it is not an economical solution and seems to be at odds with

the low cost of soft and continuum robots. Therefore, this article

is focused on presenting a modeling and design optimization

framework for low-cost solutions to shape sensing of continuum

robots using intrinsic sensing. This solution assumes that the

continuum/soft robot is equipped with actively actuated tendons

(henceforth referred to simply as tendons) and a set of passive
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measurement strings (henceforth referred to simply as strings).

These strings can be in the form of string potentiometers (akin

to spring-loaded lanyards) or string encoders. The combined set

of length measurements of these tendons and strings is used to

estimate the shape of these robots. The second gap stems for the

lack of a theoretical study focused on the effect of string routing

on the shape sensing problem and design guidelines for string

routing optimization to minimize the sensitivity of the shape

sensing problem to measurement noise. To address this gap, we

present a Lie group mathematical formulation that enables us to

answer the following core questions.

1) What is the impact of string routing on the kinematic

sensitivity of the shape sensing to sensory noise?

2) How many sensors are needed per a continuum segment?

And, if one has a fixed number of sensors, where should

they be placed to minimize the shape error or to minimize

the end effector error?

While addressing these questions, we present a Lie group for-

mulation for the string routing. We use a modal representation for

the curvature distribution along the robot length and derive the

general string routing kinematics relating variations in bending

shape to string length. While one may obtain the string routing

kinematics as in [15] for calibration of continuum robots, we

believe that the use of the Lie group formulation presented here

leads to an elegant formulation of the body Jacobian. Finally, we

adapt the noise amplification index presented by [16] within the

context of robot calibration to guide the design of string routing.

Although accurate mechanics models have been presented

in prior work on continuum robots, in this work we are inter-

ested in a formulation that could be used for online control,

so we intentionally pursue a kinematics-based method, using

lower-order polynomials that lead to either closed-form expres-

sions or relatively cheap to compute optimization problems.

Our kinematic deflection sensing approach does not require

knowledge of applied loads from actuation, string encoders, or

the environment, and it provides insight at the initial design stage

for choosing string routings.

While our sensing approach does not rely on a mechanics

model, our use of modal representation of curvature is related

to continuum mechanics models for flexible [17] and contin-

uum robots [18], [19]. Lie-group based kinematic integration

formulations using the Magnus expansion have been used in

other works for solving more general Cosserat rod mechanics

models [18], [20] and a Lie-group finite-element formulation of

beam dynamics was presented in [21]. Modal representations

have also been used in prior works to parameterize the shape

of hyperredundant robots [22] and continuum/soft robots [23],

with some works using modal functions to parameterize curva-

ture/strain [19], [24] as we do here.

This article is focused on shape sensing of larger scale hyper-

redundant and continuum/soft robots, e.g., [25], [26], [27], but

we believe the approach presented herein could also be applied

to smaller continuum robots used in minimally-invasive surgery,

e.g., [28], [29]. This could potentially be achieved by mounting

the string encoder housings remotely away from the robot body,

as is already done with actuation units in surgical continuum

robots.

Fig. 2. Variables used in our kinematic model to describe variable curvature
deflections and general string routing.

The contributions of this article lies in addressing the two

key gaps identified above for single-segment continuum robots.

In doing so, we present: 1) a Lie group kinematics formulation

for shape sensing with general string routing and modal shape

deflections; 2) an approach for optimizing string routing to

improve the shape sensing kinematic conditioning with recom-

mendations for designing string routings; and 3) an experimental

validation and a simulation study of the proposed approaches on

a torsionally stiff continuum robot and a torsionally compliant

soft robot, respectively.

II. LIE GROUP KINEMATIC FORMULATION

This section presents the kinematic formulation and modal

representation for parameterizing the variable curvature back-

bone shape and deriving the resulting pose of local frames along

the continuum segment. This parametrization will be used for

describing general string routing and the associated kinematic

Jacobians for shape sensing.

A. Central Backbone Kinematics

Referring to Fig. 2, we assume a robot with a total arc lengthL
and define the arc length coordinate s as shown. We also assume

that the robot’s central backbone has a high slenderness ratio

consistent with the assumption of negligible shear strains. With

this assumption, the shape of the backbone can be described by

its curvature distribution along its arc length s in three directions,

u(s) = [ux, uy, uz]
T ∈ R3. For a given location, s, a local frame

T(s) is assigned with its z-axis tangent and pointing in the

direction of arc length growth and its two other axes in the

backbone’s local cross section:

T(s) =

[
0Rt(s)

0p(s)

0 1

]
∈ SE(3), s ∈ [0, L] (1)

where 0Rt(s) and 0p(s) are expressed in the world frame

{0}.1 As the backbone changes its local curvature, this local

frame undergoes a twist η(s) defined with the angular velocity

preceding the linear velocity. The set of local frames associated

with local curvaturesu(s) has a corresponding twist distribution

1The notation ay designates vector y described in frame {A} and aRb is the
orientation of frame {B} with respect to frame {A}
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η(s). Describing the twist η(s) in its local frame T(s), we can

write η(s) = [u(s)T, eT3 ]
T ∈ R6 where e3 = [0, 0, 1]T denotes

the local tangent unit vector. As the frame T(s) undergoes the

body twist η, it satisfies the following differential equation [30]:

T′(s) = T(s)η̂(s), η̂(s) =

[
û(s) e3

0 0

]
∈ se(3)

û(s) =

⎡
⎢⎣

0 −uz(s) uy(s)

uz(s) 0 −ux(s)

−uy(s) ux(s) 0

⎤
⎥⎦ ∈ so(3) (2)

where (·)′ denotes the derivative with respect to s and the hat

operator ( ·̂ ) forms the standard matrix representations of so(3)
and se(3) from their vector forms u and η, respectively. We

also define the adjoint representation of se(3), which will be

used below for computing Jacobians

ad (η(s)) =

[
û(s) 0

ê3 û(s)

]
. (3)

In the following analysis, we choose to represent the curvature

distribution u(s) as a weighted sum of polynomial functions

(similar to [18]). We denote the polynomial functions as φx(s),
φy(s), and φz(s) and the weights as cx, cy , and cz , for the x,

y, and z directions, respectively. The curvature distribution then

takes the following form:

u(s) =

⎡
⎢⎣
φT

x cx

φT
y cy

φT
z cz

⎤
⎥⎦ =

⎡
⎢⎣
φT

x 0 0

0 φT
y 0

0 0 φT
z

⎤
⎥⎦

⎡
⎢⎣
cx

cy

cz

⎤
⎥⎦

= Φ(s)c, Φ(s) ∈ R3×m, c ∈ Rm (4)

where the columns of Φ(s) form a modal shape basis, and c is

a vector of constant modal coefficients.

The modal description of the curvature distribution offers a

description of a variety of variable curvature deflections using

a finite set of modal coefficients. This also provides simplified

kinematic expressions for computing the workspace, solving for

the shape using the string encoder measurements, and designing

the string encoder routing to improve the numerical conditioning

of the shape sensing problem.

For a given configuration c, the frames T(s) are found by

integrating (2). A number of Lie group integration methods could

be used for this, as reviewed in [31], but here we use an approach

based on the Magnus expansion because both fourth and sixth

order expansions can be computed efficiently and because of

the Magnus expansion’s large convergence bound [31]. After

integration with a Magnus expansion method (or another Lie

group integration method), the spatial curve is given as a product

of matrix exponentials [20]

T(s) = T(0)

k∏

i=0

eΨi , Ψi ∈ se(3). (5)

Details on computing Ψi can be found in [20] and [31].

We will show below that because we use a modal shape basis,

Lie group integration is not needed to solve the shape sensing

Fig. 3. First five shifted Chebyshev polynomials.

problem (i.e., determining the modal coefficients), however,

once the configuration c is determined, (2) must be integrated to

compute the robot’s forward kinematics and Jacobian, as shown

in Section II-F. In this article, we compute (5) with small step

sizes (100 points along the backbone) at a rate of ∼ 45 Hz in an

unoptimized MATLAB implementation. Larger steps can be used

in practice for faster computation times [20], but we use a fine

discretization here to avoid introducing additional integration

error into this study.

B. Modal Shape Basis With Chebyshev Polynomials

Although any set of modal shape functions could be used

to form Φ, (e.g., Euler curves [32], [33], monomials [15],

Legendre polynomials [17], or trigonometric functions), in this

article we use Chebyshev polynomials of the first kind since

each polynomial is bounded by ±1, which provides improved

scaling of the modal coefficients and simplifies computation

of the admissible workspace, as described in Section III. The

Chebyshev polynomials can be expressed recursively as [34]

T0 = 1, T1(x) = x

Tn(x) = 2xTn−1(x)− Tn−2(x), n = 2, 3, . . . (6)

where Tn(x), x ∈ [−1, 1] is the nth degree Chebyshev poly-

nomial. Since the arc length coordinate is given by s ∈ [0, L]
and Tn(x) is defined for x ∈ [−1, 1], the following coordinate

transformation is used:

x(s) =
2 s− L

L
. (7)

We then evaluate Tn(x(s)) via (6). For the rest of this article, we

refer to the polynomials as simplyTn(s)with the transformation

(7) implied. The first five Chebyshev polynomials, shifted to

s ∈ [0, L], are shown in Fig. 3. As an example, to represent a y
direction curvature with a second-order Chebyshev series, the

modal shape basis and modal coefficients would be given by

uy(s) = φy(s)cy

φT
y (s) =

[
T0 T1(s) T2(s)

]T
, cy ∈ R3 (8)

where the first three Chebyshev polynomials, shifted to s ∈
[0, L] are given by

T0 = 1, T1(s) =
2 s− L

L
, T2(s) =

8 s2

L2
−

8 s

L
+ 1 (9)

Fig. 4 illustrates shapes generated by these first three Chebyshev

polynomials for a planar continuum segment. Of note is that

shapes in the T0 and T1 directions of the modal shape basis
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Fig. 4. Deflections generated on a rod with L = 300 mm and second order
Chebyshev series modal shape basis on the y direction curvature, as given by
(8). Deflections were generated by taking π

2L
steps in each of the three modal

coefficient directions.

correspond to experimentally observed deflection shapes in

tendon-actuated and multibackbone robots. Shapes along the

T0 direction correspond to constant curvature deflections exhib-

ited in continuum segments with actuation wires equidistantly

distributed about the central backbone. Shapes along the T1

direction correspond to constant-orientation deflections due to

external forces applied to the end disk of a tendon-actuated

continuum segment, as shown in Fig. 1.

The shape sensing methods presented below would apply to

other choices for Φ as well. For example, a modal shape basis

with coupling between the modal coefficients could be used,

e.g., [18]. If we choose Φ as the identity matrix, c corresponds

directly to constant curvatures in the x, y, and z directions (see

Fig. 4), so the results here also apply to robots modeled with the

commonly used constant-curvature assumption [35].

C. General String Routing Kinematics

In [36], a Cosserat-rod based mechanics model was presented

for tendon-actuated robots with general tendon routing. In the

kinematics model presented here, we use a similar method for

describing the string routing. Assuming p strings, the string path,

as shown in Fig. 2, is expressed in the moving frame T(s) and

given by

tri(s) = [rxi
(s), ryi

(s), 0]T, i = 1, 2, . . . , p. (10)

Our kinematic formulation permits any differentiable function

for r(s), but in Sections IV and V we consider constant pitch-

radius paths and helical paths. The position of a point along the

string/wire rope path in the world frame is given as the vectorial

sum of the point p(s) along the central backbone and the radial

vector r(s), defined in the moving frame

0wi(s) =
0p(s) + 0Rt(s)

tri(s). (11)

Noting that vector norms are invariant under rotations, the length

of the ith string is given by:

�i =

∫ sai

0

‖tw′
i(s)‖ ds, i = 1, 2, . . . , p (12)

where sai
designates arc length along the central backbone at

which the string is anchored to the spacer disk/end disk. Taking

the derivative of (11) with respect to s, substituting (4), and then

using tw′
i(s) =

0R
T
t
0w′

i(s) results in

tw′
i(s) = e3 −

tr̂i(s)Φ(s)c+ tr′i(s), i = 1, 2, . . . p. (13)

Deriving the above result also requires (2), which states that
0p′(s) = 0Rt(s)e3 and 0R′

t(s) =
0Rt(s)û(s).

Recalling that tri(s) is in a moving frame having a body

angular velocity û(s), we can visualize (13) as the velocity of a

point traversing the string path as the arc length s is increased at

a unit speed. This point speed is given as the sum of the induced

velocity due to the rotation of the moving frame and the velocity

of that point relative to the moving frame due to traversal along

the central backbone and the rate of change of the string’s radial

placement tr′i(s). Since (13) is a function only of the modal

basis, the string routing function, and the modal coefficients, we

can numerically integrate (12) with any quadrature rule (e.g., the

trapezoid rule) and avoid the cost of integrating the Lie group

differential equation in (2).

The string routings tri, i = 1 . . . p can be chosen by the de-

signer, but must each satisfy a geometric constraint that the string

path in world frame must not have a cusp at any configuration of

the continuum segment. To ensure physically realizable string

paths, the local tangent to the actuation string must point in the

same direction as the local tangent of the central backbone. It is

possible for the angular rate of changes ux and uy to be large

enough to cause tw′
i to point in the opposite direction of e3,

which causes the string path to change directions. To avoid this

scenario, we require that tw′
i always point in the same direction

as e3. Using (13), we obtain the following set of p constraint

equations for each string:

(
tw′

i

)T
e3 = ryi

(s)ux(s)− rxi
(s)uy(s) + 1 > 0. (14)

This can be rewritten as constraints on ux and uy

ux(s) ≤
rxi

(s)uy(s) + 1

ryi
(s)

, uy(s) ≤
ryi

(s)ux(s) + 1

rxi
(s)

.
(15)

In the coming sections, the string routings will be incorporated

into a model that captures their effect on increasing the robust-

ness to noise in string length measurements to changes in the

estimated shape of the continuum segment.

D. Solving for the Modal Coefficients

To solve for the shape of the robot, we concatenate (12) for

each string together with the string length measurements �∗

�(c)− �∗ = 0, � ∈ Rp, �∗ ∈ Rp (16)

and solve this system of equations for the modal coefficients

c. We then integrate T′(s) once to find the backbone pose at

any desired arc length. In some cases, for particular choices of
tri and Φ, unique closed-form solutions to (16) can be found

by explicit integration of (12). This occurs below for the planar

case and for the case of robots with high torsional stiffness.

In general however, the system of equations in (16) can be

nonlinear in c and may have multiple solutions, so it must be

solved by an iterative numerical method, e.g., Gauss-Newton.

A necessary condition for using the Gauss-Newton algorithm is

p ≥ m where p is the number of strings and m is the number
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of columns in Φ. The Jacobian needed for each iteration of the

Gauss-Newton method is provided in the next section.

E. Configuration Space Jacobian

Since the modal vector c uniquely defines the shape of the

continuum segment for a given modal basis Φ, we use c as the

configuration space variable. We also define the configuration-

space Jacobian as the Jacobian relating small changes in the

string lengths to small changes in the modal coefficients

d� = J�cdc, J�c ∈ R
p×m. (17)

Following [19], the ith row of J�c can be derived as

d�i
dc

=

∫ sai

0

(
tri ×

(tw′
i)

‖tw′
i‖

)T

Φ ds (18)

where we have dropped the dependence on s in the integrand

terms for brevity and tw′
i was given in (13). As with the integral

in (12), (18) can be computed with any quadrature rule.

F. Body Jacobian

Next, we define the body Jacobian as the Jacobian relating the

twists of the moving frame T(s) expressed in T(s) (also called

body twists) to small changes in the modal coefficients:

ξ(s) = Jξc(s)dc, ξ ∈ se(3) (19)

where ξ(s) = [ω(s)T,v(s)T]T is the instantaneous twist of

T(s) produced by dc, expressed in the body frame T(s) and

with angular velocity followed by linear velocity. The ith column

of Jξc(s), denoted by J
[i]
ξc(s) is the twist produced by a small

change in the ith element of c, denoted by ci

J
[i]
ξc(s) =

(
T−1(s)

∂

∂ci
(T(s))

)∨

∈ se(3) (20)

where (·)∨ denotes the inverse operation of ( ·̂ ).
Referring back to (5), we require the terms ∂

∂ci
(eΨj ) to be

able to compute ∂
∂ci

(T(s)). These derivatives are given by

∂

∂ci
eΨj = eΨj dexp

(
∂Ψj

∂ci

)
(21)

where the dexp operator is defined in [37] as

dexp

(
∂Ψj

∂ci

)
=

(
∞∑

k=0

(−1)k

(k + 1)!
adk (Ψj)

)(
∂Ψj

∂ci

)
. (22)

Closed-form expressions for dexp for the case of se(3) are also

available in [38]. The value of
∂Ψj

∂ci
can be derived symbolically

and will vary depending on the order of the Magnus expansion

used. Alternatively, it can be estimated via finite difference

approximation.

The kinematic expressions defined above provide the equa-

tions needed for solving the shape sensing problem and com-

puting the forward/inverse kinematics for a particular continuum

robot design and string routing function definition. In Section IV,

we provide experimental validations of this modeling and shape

sensing approach.

III. STRING ROUTING OPTIMIZATION

A benefit of our proposed kinematic formulation is that in

addition to capturing variable curvature deflections, it provides a

designer flexibility in the design of the string routing by allowing

nonstraight string routings. In some cases, there may be practical

mechanical integration considerations that would benefit from

nonstraight routing, e.g., routing strings around proprioceptive

sensing electronics embedded in the continuum structure [39] or

routing strings in a tapered path for a segment with a decreasing

diameter from base to tip [40]. In this section, we provide

considerations for choosing the string routing paths to reduce

the propagation of string measurement error to pose error while

avoiding illconditioned Jacobians.

For a general purpose manipulator, the external loading mag-

nitude and location may not be known a priori. For this reason,

here we propose a Jacobian-based method to optimize the string

routing path tri(s) without assuming any particular loading

conditions. We do this by designing tri(s) to improve the

numerical conditioning of both the task space and configuration

space Jacobians to reduce the upper bound on error propagation

from the string length measurements to errors in the spatial curve

T(s). We validate the approach in simulations and experiments

in Sections IV, and V.

We first define the noise amplification index, a design measure

used in robot calibration [16]. For an expression Ax = b the

noise amplification is given by

ℵ (A) =
σ2

min (A)

σmax (A)
(23)

where σmin(A) and σmax(A) are the minimum and maximum

singular values of A, respectively. As shown in [16], the noise

amplification index provides a bound on how errors in b prop-

agate to errors in x:

‖δx‖ ≤
1

ℵ (A)
‖δb‖. (24)

Within the context of shape sensing, (17) is the mapping

relating noise in string length measurement d� to a change in

modal coefficients dc. Also, (19) provides the mapping relating

twist and changes in dc. We solve (17) for dc and substitute into

(19), then solve the equation for d� to produce

d� = J�ξξ(s), J�ξ =
(
JξcJ

+
�c

)+
(25)

where (+) denotes the pseudoinverse. Using (24) and (25) has

the following noise amplification bound:

||δξ(s)|| ≤
1

ℵ (J�ξ)
||δd�||. (26)

Since the pose T(s) is an integral of the twist, minimizing

the effect of string encoder measurement noise on the estimates

of the segment shape requires minimizing ||δξ(s)||, which in

turn requires maximizing ℵ(J�ξ). Since ℵ(J�ξ) contains lin-

ear/angular velocity units, we multiply the first three rows

corresponding to angular velocity by a characteristic length c�
[41]. For our experimental and simulation results, we chose c�
to be the segment’s kinematic radius so that angular velocities

are scaled to represent linear velocities at the edge of the disk.
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We must also consider the numerical conditioning of the

configuration space JacobianJ�c, since it is used when iteratively

solving (16). Since maximizing ℵ(J�ξ) does not guarantee a

well-conditionedJ�c, we seek to also preventℵ(J�c) = 0, which

would indicate a singular J�c. We define this design problem as

a constrained optimization problem

max
k

ℵg (J�ξ) s.t. ℵ (J�c) ≥ ε (27)

whereℵg is the global noise amplification index defined below,k

are a set of string path design parameters, and ε is a lower-bound

on the noise amplification index. We will provide two examples

of defining k to ensure the string paths are physically realizable

in the simulation and experimental studies below. For these two

examples, k are restricted to a set of integers such that (27) can

be solved by a brute-force search.

We define ℵg(A) as the global noise amplification index,

which is the average of ℵ(A) over an admissible configuration

workspace Ca denoting all admissible configurations c. This

global performance measure can be numerically approximated

by sampling Ca along j sample points c1 . . . cj and computing

ℵ(A) at each sampled configuration

ℵg(A) �

∫
Ca

ℵ(A) dCa∫
Ca

dCa
≈

1

j

j∑

i=1

ℵ(Ai). (28)

We define the admissible workspace Ca as the set of all shapes

that a segment can achieve

Ca = {c | f(c) ≤ 0} (29)

where f(c) is a vector of constraints on the robot’s configuration.

To compute the admissible workspace, we take samples in

the configuration space c and discard samples that violate the

constraints f(c). The constraints f(c) need to be defined on a

case-by-case basis, but in this article we define three constraints

that are relevant to the robots considered in our simulation

studies and experimental results.

The first set of constraints we consider are maximal strain lim-

its on the continuum structure εmax = [εmax,x, εmax,y, εmax,z]
T.

Assuming a backbone diameter db and a beam model following

linear elasticity, the local curvature limits are given by

max
s

(uj(c, s))−
εmax,j

(db/2)
≤ 0, j ∈ {x, y, z} (30)

where maxs denotes the maximum over s ∈ [0, L] for a config-

uration c.

The second set of constraints we consider are the maximum

curvatures to prevent the intermediate disks from colliding.

Considering a subsegment of the robot between two intermediate

disks with length Ls, and assuming the subsegment is under

constant curvature as shown in Fig. 5, we have

tan

(
θs
2

)
=

hd

2 (ρ∗ − rd)
(31)

where θs is the angle between the intermediate disks, hd is the

height of each intermediate disk, rd is the radius of each disk, and

ρ∗ is the radius of curvature when the disks collide. Substituting

Fig. 5. Kinematic variables for a subsegment in a constant curvature config-
uration with disk collision.

Fig. 6. Variables of the kinematic model used in the planar case study.

θs =
Ls

ρ∗ into (31), we have the following:

2 (ρ∗ − rd) tan

(
Ls

2ρ∗

)
= hd (32)

where we solve numerically for ρ∗. To prevent disk collision,

we then require that the curvatures in the x and y direction are

low enough to avoid this collision condition

max
s

(
‖ux/y(s)‖

)
≤

1

ρ∗
(33)

where ux/y(s) = [ux(s), uy(s)]
T and maxs again denotes the

maximum over s ∈ [0, L].
The third set of constraints we include are given by (15), which

ensure that the string paths are physically realizable. Using

these three sets of constraints [as specified by (15), (30), and

(33)], we determine the admissible workspace by searching for

configurations that do not violate the constraints, and compute

ℵg for these admissible configurations. This allows us to explore

how to design the string routing paths to maximize ℵg , which

we do below for several simulation and experimental examples.

IV. PLANAR CASE STUDY

In this section, we present a simulation case study for a

segment subject only to planar deflections. We show that for

planar deflections and string routings with constant pitch radius,

the configuration space Jacobian J�c is constant for any choice

of the modal basis Φ(s). We then explore choices of string

anchor points and pitch radii that improve the noise amplifica-

tion indices ℵg(J�ξ) and ℵ(J�c). Consider a planar continuum

segment that is restricted to deflect in the x− z plane, i.e.,

ux = uz = 0, as shown in Fig. 6. We choose to represent the
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Fig. 7. Tip position error between our kinematic model and a simulated Nitinol
rod rapidly converges as the number of strings p is increased. Individual data
points are shown for p = 1, and a subset of the 100 simulated variable curvature
rod shapes is shown in the inset.

curvature distribution using a second-order Chebyshev series as

given in (8), and we assume three strings are routed within the

segment and anchored at arc lengths sa1
, sa2

, and sa3
. We also

assume the strings are routed in a path with a constant pitch

radius, i.e., tri(s) = [rxi
, 0, 0]T, where rxi

∈ IR is a constant

scalar. Noting that tr′i(s) = [0, 0, 0]T, (13) simplifies to

tw′
i(s) =

[
0, 0,

(
1− rxi

φT
y (s)cy

)]T
. (34)

Applying the requirement from (14) that (tw′
i)

Te3 > 0, for this

planar case, (12) simplifies to

�i = sai
− rxi

∫ sai

0

φT
y (s)cy ds. (35)

We will now consider how many strings are needed to ac-

curately predict the tip pose T(L) of this planar segment. We

assume here that the number of columns in the modal shape

basis is equal to the number of strings, i.e., p = m and J�c is

square. This means each additional sensing string enables an

additional higher-order term to be added to the shape basis to

further reduce the tip pose error. Prior works that used shape

functions for modeling continuum robots have shown that low-

order shape functions can be sufficient for capturing variable

curvature deflections [18], [32], [42]. We will also demonstrate

this here for this simulation study and experimentally in Sections

IV and V.

We used a Cosserat rod mechanics model from [20], which

neglected shear strains and extension, to simulate a Nitinol rod

with a lengthL = 300mm and a diameter of 4 mm (similar to the

central backbone Nitinol rod used in the robot in Section IV). To

generate a variety of variable curvature rod shapes, we subjected

the rod to planar forces in the world frame’s x direction and

moments in the world frame’s y direction, with the world frame

assigned as shown in Fig. 6. A subset of these variable curvature

shapes is shown in Fig. 7. The shape of the rod was obtained

as a solution to a boundary value problem using the shooting

method for each applied wrench. The maximum applied force

and moment were fe = [±60, 0, 0]N andme = [0,±6, 0]T Nm,

with 10 wrenches selected between these maximum values, for

a total of 100 applied wrenches and rod shapes that were solved

for. For each set of 100 shapes and number of strings considered,

we determined the string routing radii and anchor points by

solving the following constrained optimization problem:

max
rxi

,sai

ℵ (J�c) s.t. 0 ≤ sai
≤ L i = 2, 3, . . . , p (36)

where we have assumed that rx1
= 0.25 and sa1

= L to repre-

sent an actuation tendon anchored at the end disk. We solved (36)

using the interior point solver provided by MATLAB’s fmincon()

with an initial guess of evenly spaced radii and anchor points.

For each additional string, we used the Cosserat rod model to

determine the string lengths, then used these simulated string

lengths to predict the shape and tip pose T(L) by solving (16).

We report the error between the tip pose predicted by the

mechanics model and the solution given by solving (16) as a

percent of the segment length

ep =
‖ps − pp‖

L
× 100 (37)

where ps and pp are the tip positions given by the mechanics

model and predicted via (16), respectively. The position errors

across the 100 shapes and for different numbers of strings are

shown in Fig. 7. We do not report rotation errors because, as

shown in [43], one string anchored to the end disk is sufficient

to provide the tip angle of a planar segment and the rotation

errors were therefore within numerical precision across all of

the simulations.

Fig. 7 shows rapid convergence of the tip position error as

the number of strings is increased. The average tip position

errors across the 100 simulated shapes was 15%, 0.47%, 0.059%,

and 0.0052% of the segment length for one, two, three, and

four strings, respectively. We proceed with this case study by

choosing p = 3.

Concatenating the string lengths for i = [1, 2, 3] results in

� =

⎡
⎢⎣
sa1

sa2

sa3

⎤
⎥⎦−

⎡
⎢⎣
rx1

0 0

0 rx2
0

0 0 rx3

⎤
⎥⎦

⎡
⎢⎢⎣

∫ sa1

0 φT
y (s) ds∫ sa2

0 φT
y (s) ds∫ sa3

0 φT
y (s) ds

⎤
⎥⎥⎦

︸ ︷︷ ︸
J�c

cy (38)

where we have denoted the Jacobian J�c with an underbrace.

For the planar case, J�c is independent of the configuration c

(i.e., it is constant throughout the workspace).

Solving for the modal coefficients cy requires inverting J�c.

This Jacobian is the product of a diagonal matrix whose elements

are the pitch radii of each string and a Vandermonde-like matrix

of polynomial functions determined by the choice of modal

basis. Here, we seek to design the string routing paths to improve

the numerical conditioning of J�c. For a given choice of the

modal basis φy , the design parameters for each string are 1) the

pitch radii rxi
; and 2) the anchor points sai

.

There are several string routing design insights that can be

observed directly from (38). First, rxi
must not be zero to

avoid rank deficiency. Second, increasing the pitch radius rxi

reduces the sensitivity of cy to changes in �, so increasing rxi

(while keeping the ratios of the pitch radii close to one) will

increase ℵ(J�c). Third, if any two string anchor points sai
are

equal, J�c will lose rank, so the strings should be anchored at

unique sai
along the segment. Noting that actuation tendons
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Fig. 8. Values of a) ℵ(J�c) and b) ℵ(J�ξ) for different choices of string anchor points (
sa1

L
and

sa2

L
) shown for two sample string radii (

rx1

L
and

rx2

L
) in the

planar robot shown in Fig. 5. The location of the two peaks on each plot are marked with an asterisk (∗), and a triangle (
) denotes the peak values for the other
designs included in Tables I and II. The contours for the peaks denoted with triangles are not shown for clarity, but they follow a similar pattern to the ones shown.

TABLE I
PLANAR CASE: LOCAL MAXIMA OF ℵ(J�c) COMPARED TO EQUIDISTANT

SPACING OF STRING PLACEMENT

endowed with motor encoder sensing provide the same shape

information as a passive string encoder, this means that although

actuation tendons are commonly anchored at the end disk to

expand the segment’s workspace [35], any additional actuation

tendon anchored to the end disk provides no additional shape

information (in the planar case). In Section IV, we provide

conditions under which strings or tendons anchored at the end

disk do provide additional shape information for out-of-plane

deflections.

We will now consider how to choose sai
to maximize ℵ(J�c)

(the noise amplification index of the configuration space Jaco-

bian) for our planar example. To represent an actuation tendon

that is anchored at the end disk, we choose sa3
= L. We choose

rx3
= 0.25L to correspond to the typical length-diameter ratio

of most continuum robots. We now investigate how to optimally

choose the radii and anchor points of the two remaining strings.

Fig. 8(a) and Table I show ℵ(J�c) for different choices of

string radius and anchor point, from which we make several

observations. First, we note that each plot in Fig. 8(a) contains

two peaks, and thatℵ(J�c) = 0when sa1
= sa2

and when sai
=

0 or sai
= L. Second, we observe that increasing the pitch radius

of both string increases ℵ(J�c) while not substantially changing

the peak location. Third, we note that increasing a single string’s

pitch radius increases ℵ(J�c) while allowing the location of the

peak to be adjusted.

Of note is the fact that the intuitive design choice of evenly

spacing out the anchor points along s = [0, L] does not result in

the best kinematic conditioning for J�c. Table I shows the values

of the noise amplification index for each of the peaks in Fig. 8

as well as for designs where the string anchor points are evenly

TABLE II
PLANAR CASE: LOCAL MAXIMA OF ℵg(J�ξ) COMPARED TO EQUIDISTANT

SPACING OF STRING PLACEMENT

spaced, i.e., sa1
= sa2

. Table I also shows the improvement in

the noise amplification index over the evenly spaced designs,

calculated as

β =
[(

ℵ (J�c)− ℵ
(
J̃�c

))/
ℵ
(
J̃�c

)]
× 100 (39)

where J̃�c denotes the Jacobians for designs having evenly

spaced wire anchor points at sa1
= L/3, sa2

= 2L/3, sa3
= L.

As shown in Table I, placing the anchor points at one of the peaks

instead of using evenly spaced anchor points resulted in 46% or

greater improvement in ℵ(J�c) for all the cases considered.

We now consider improving the numerical conditioning of

the full kinematic mapping (joint to task space) ℵg(J�ξ(L)).
We computed ℵg(J�ξ(L)) for this robot using 67 configurations

sampled in the admissible workspace, which we defined as

any configuration that did not exceed 5% strain for a 4 mm

central backbone. Fig. 8(b) shows the noise amplification for

different string radii and anchor points. We observe that the

design parameters that optimize ℵg(J�ξ(L)) are not the same

parameters that optimize ℵ(J�c) in Fig. 8(a), and in fact there is

a conflict between these two design objectives, since the peaks

in Fig. 8(b) correspond to valleys in Fig. 8(a). Since the design

objective is usually to minimize the pose error at a particular

location, designing for maximizing ℵg(J�ξ(L)) is sufficient as

long as the string routing solution avoids singularity of J�c.We

also observe again that the intuitive design of using evenly

spaced anchor points does not result in an optimally conditioned

kinematic mapping. Table II shows the values of ℵ(J�ξ(L)) for

the peaks shown in Fig. 8(b) as well as the percent improvement

in ℵ(J�ξ(L)) as compared to a design using evenly spaced

anchor points, i.e., sa2
= L

3 and sa3
= 2L

3 . The peak values
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of ℵg(J�ξ(L)) were increased by 76% or greater for all cases

considered.

In this planar example, we have shown that increasing the

number strings reduces the pose estimation error, provided string

path design considerations, and showed that the intuitive choice

of evenly spaced anchor points does not lead to optimal values

for the noise amplification. The optimal placement of string

anchor points depends to some degree on the family of deflected

shapes that a given robot experiences under target design op-

erating conditions (loading and reach). We have simulated the

same case using a monomial basis as opposed to a Chebyshev

polynomial basis and noted that the peaks in Fig. 8 experience

negligible changes. Nevertheless, the designer should carry out

a simulation as in Fig. 8 to achieve a qualitative understanding of

the optimal location of wire anchor points, and then, determine

these points while respecting practical design considerations.

Building on these simulation results, we will now demonstrate

our modeling and shape sensing approach on two other contin-

uum robot embodiments that are subject to more realistic spatial

deflections.

V. ROBOTS WITH HIGH TORSIONAL STIFFNESS AND

CONSTANT PITCH STRING PATHS

We now consider robots that are subject to spatial deflections

but have sufficiently high torsional stiffness that renders the

torsional deflections negligible. We consider this category of

robots because a number of continuum robots with high torsional

stiffness have been presented in prior work [44], [45], [46], [47],

and we will present here a new modular collaborative continuum

robot in this category and use it to experimentally validate

the model we present. This model is also directly applicable

to hyperredundant robots with torsionally stiff universal joint

backbones, e.g., [25], [48]. This category of robots is also of

interest because, as we will show, if the string paths are restricted

to constant pitch radius paths, the configuration space Jacobian

is constant and the modal coefficients are linear with respect

to the string lengths, which simplifies the solution of the shape

sensing problem.

First, we will present the kinematic formulation for this cat-

egory of robots and provide considerations for designing the

string paths. In particular, we show that two strings anchored to

the same disk add distinct information only if their polar coor-

dinates are distinct by angle difference other than 0◦ and 180◦

(i.e., they are not collinear in the radial direction of the disk). We

then present the results of the string routing optimization for our

collaborative continuum segment and experimentally validate

the sensing approach, showing that the end disk position can

be sensed with position errors below 5% of arc length using

information from four passive string encoders and two actuators.

A. Kinematic Model for Torsionally Stiff Continuum Robots

Under the assumption of negligible torsional deflections, i.e.,

uz(s) = 0 the shape basis (4) takes the form

u(s) =

⎡
⎢⎣
φT

x 0

0 φT
y

0 0

⎤
⎥⎦
[
cx

cy

]
= Φ(s)c. (40)

We restrict our consideration here to constant pitch-radius string

routings given by:

tri(s) =
[
rxi

ryi
0
]T

, rxi
∈ R, ryi

∈ R. (41)

Noting that tr′i(s) = [0, 0, 0]T, the string path derivative (13)

simplifies to

tw′
i(s) =

[
0, 0,

(
ryi

φT
x cx − rxi

φT
y cy + 1

)]T
. (42)

Applying the requirement from (14) that (tw′
i)

Te3 > 0 and

using (12) results in the string length as

�i = sai
+

(∫ sai

0

[
ryi

φT
x , −rxi

φT
y

]
ds

)
c (43)

where c =
[
cTx , c

T
y

]T
. Concatenating for each string i ∈

[1, . . . , p] gives

� =

⎡
⎢⎢⎣

sa1

...

sap

⎤
⎥⎥⎦+

⎡
⎢⎢⎢⎣

∫ sa1

0

[
ry1

φT
x , −rx1

φT
y

]
ds

...
∫ sap

0

[
ryp

φT
x , −rxp

φT
y

]
ds

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
J�c

c. (44)

As in the planar case, we observe that J�c is independent of the

configuration c.

We now consider how to choose the anchor points and string

paths to avoid singularities in J�c. Consider the scenario where

two anchor points are equal, sai
= saj

, i �= j. To prevent sin-

gularities, we must avoid a scenario where two rows of J�c

become dependent, e.g., one row is a scalar multiple of another.

Considering a cross section of the segment at s = sai
= saj

, this

will occur if the string radii [rxi
, ryi

] and [rxj
, ryj

] lie on a line

passing through the origin of the body frame T(sai
) = T(saj

).
Furthermore, anchoring more than two strings will also cause

J�c to become rank-deficient. This is apparent since two radially

noncollinear strings define the plane of the disk. Therefore, for

an inextensible, torsionally stiff continuum segment, no more

than two parallel-routed strings should be anchored to the same

intermediate disk (to prevent rank-deficiency in J�c).

B. Experimental Validation on a Collaborative Continuum

Robot Module

We now validate our kinematic model on a continuum seg-

ment, shown in Fig. 9 and in the multimedia extension, that is a

portion of a robotic arm currently under development for collab-

orative manufacturing in confined spaces. Additional discussion

on the motivations for development of this device can be found

in [39] and [49].

The flexible structure of the segment consists of aluminum

intermediate disks with torsionally stiff metal bellows attached

to the disks with an acrylic adhesive. Each bellow has a tor-

sional stiffness of approximately 63 Nm/◦, making the bellows

approximately 1950 times stiffer in torsion than in bending. For

the target application, the segments are expected to experience

static torsional loads of up to 64 Nm, resulting in approximately

1◦ of torsional deflection per bellow. Since these maximum

deflections are small relative to the bending deflections, we
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Fig. 9. Modular continuum segment consists of torsionally stiff metal bellows
1© with a � 4 mm Nitinol rod 2© passing through their centers. The segment

is actuated with a capstan mounted on a linear ball spline 3© that is actuated
by a brushed DC motor/geartrain 4©. Idler pulleys 5© provide a 2:1 reduction
in the actuation tendon force. Each continuum segment contains four string
encoders, which consist of a wire rope 6©, a constant-torque return spring 7©,
and a magnetic encoder 8© with an I 2 C interface 9©.

Fig. 10. Path of the actuation tendons (numbered 5–12) and string encoders
(numbered 1–4) are shown in (a) a 3-D view, and (b) a simplified side view.
Shown in (c) is the top view of an intermediate disk with the locations where
each string/tendon passes.

neglect the torsional deflections in our kinematic model below.

These bellow subassemblies are bolted together, and a �4-mm

solid Nitinol rod is passed through the center of the structure to

prevent contraction of the segment. The length of the segment,

measured from the top of the actuation unit to the bottom of the

end disk, is 300.65 mm.

The segment is actuated by a pair of actuation tendons that

pass through bronze bushings in the intermediate disks and are

made from � 2.38-mm steel wire rope. The actuation tendons

are actuated in a differential manner (as shown in Fig. 10) by a

capstan mounted on a linear ball spline, and this ball spline

is actuated by a gearmotor with a 111:1 gear ratio (maxon

DCX22 L/GPX22HP) through a single spur gear stage with a

gear ratio of 1.851. In the distal endplate assembly of the seg-

ment, idler pulleys route the tendons back towards the base of the

segment, and the tendons are anchored to a manual pretensioning

mechanism within the actuation unit. These idler pulleys provide

a 2:1 reduction in the tendon force, which reduces the required

sizing of the mechanical components in the actuation unit.

Each intermediate disk is also equipped with 8 time-of-flight

proximity sensors and 8 contact sensors which enable mapping

of the environment, human–robot physical interaction, and brac-

ing against the environment along the entire body of the segment.

The potential for whole-body contact with this segment is one

motivation for the study of sensitivity analysis along different

arc-lengths that we carry out below. Additional details on these

sensing disks can be found in [39] and [50].

Four custom-built string encoders are mounted in the distal

portion of the segment, as shown in Fig. 9. The encoders have

a �0.33-mm diameter wire rope wrapped around a �12-mm

capstan and a constant-torque return spring (Vulcan Spring

SV3D48) that results in a constant preload of 3.3 N on each

string. This preload was sufficient to overcome friction and

keep the string taught. Although the preload had a negligible

effect on the robot shape, we note that our kinematic approach

captures any deflections that occur due to the string preload. A

printed circuit board (PCB) with a magnetic encoder (Renishaw

AM4096 12 b incremental) measures the angle of the capstan.

The PCB also has connectors for the encoder’s I 2 C interface. All

of these components are housed in a 3-D printed PLA housing.

The magnetic encoder angle is read via I 2 C by a Teensy 4.1

microcontroller at a rate of ∼150 Hz. The Teensy then provides

the angle via UDP using a Wiznet WIZ850IO ethernet board to

a robot operating system (ROS) node that publishes the string

extensions on a ROS topic.

The segment motors are controlled with a control box con-

taining six motor drivers (maxon ESCON 50/5), encoder reading

cards (Sensoray 526), and a PC/104 CPU (Diamond Systems

Aries) running Ubuntu/Linux with the PREEMPT-RT real-time

patch. A higher-level ROS controller computes a fifth-order

quintic polynomial trajectory and sends desired velocities to

the motor control box via UDP. A real-time PI controller then

commands desired motor currents based on the desired posi-

ton/velocity profile.

The radius of the capstan on each string encoder was cal-

ibrated by extending the string in 0.2-mm increments using

a 3-DoF Cartesian robot. The linear stages of the Cartesian

robot are Parker 404XR ballscrew linear stages actuated with

brushed dc motors (Maxon RE35) and equipped with 1000

counts-per-turn encoders. The motion control accuracy of the

linear stages was evaluated at ±15 µm. The Cartesian robot was

used to extend/release the string over nc = 1201 positions given

by dr = [0, 0.2, 0.4, . . . , 120, 119.8, 119.6, . . . , 0]T mm. Using

the wrapping capstan model while neglecting the helix angle,

we obtain the measurement model dr = θere, where θe ∈ R
nc

is the vector of magnetic encoder angles and re is radius of the

encoder capstan. We then solve for the value of re that minimizes

the least-squares error between the predicted string extension

based on string encoder angle and the distance traveled by the

Cartesian robot by evaluating re = θ+
e dr. We calibrated all four

of the string encoders and found that the average extension

measurement error was below 0.1 mm (0.08% of the total stroke)

and the maximum extension measurement error across all four

string encoders was 0.27 mm (0.23% of total stroke). Due to

space considerations for integrating sensing electronics in the

intermediate disks [39], the strings are restricted to be routed
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in constant pitch radius paths. The strings paths are therefore

given by (41), where the values for rxi
and ryi

are determined

from the geometry in Fig. 10(c). Since the string encoders are

mounted in the distal endplate (instead of in the robot’s base),

the string lengths �i, i ∈ [1, 2, 3, 4] are found via (12), except

integration is performed from sai
to L rather than from 0 to sai

,

resulting in an expression similar to (43).
We also use the actuation tendon lengths �i, i ∈ [5, . . . , 12]

as additional input to the problem of shape estimation. The

routing path definitions for the actuation tendons require special

consideration because of the idler pulleys in the end plate that

reduce the tendon force by rerouting the tendons to the base

of the robot. We separate the actuation tendon paths into eight

different curves between the base plate and the end plate, as

partially shown in Fig. 10(a) as blue curves. We then require

the difference in the tendon path lengths on each side of the

actuation capstan be equal to the change in length due to the

actuation capstan rotation

∆�θ1 = ∆(�5 + �6) = −∆(�9 + �10)

∆�θ2 = −∆(�7 + �8) = ∆ (�11 + �12) (45)

where �5 . . . �12 refer to the actuated tendon lengths correspond-

ing with the numbered bushings shown in Fig. 10(c), and �θ1
and �θ2 are the change in tendon length due to rotation of the

capstan for joints 1 and 2, respectively. The values of �θ1 and

�θ2 are determined from the motor angles while accounting for

the helical wrapping pattern on the capstan

�θi =
θi
2π

√
(2πrc)

2 + γ2, i ∈ [1, 2] (46)

where θ1 and θ2 are the angles of the first and second actuation

capstans, respectively, rc is the radius of the capstan, and γ is the

lead of the helical groove on the capstan. The actuation tendon

lengths �i, i ∈ [5 . . . 12] are found via (43).

Information from the two motor encoders and the four string

encoders allows for a modal basis with six columns (p = 6).

Neglecting torsional deflections, the curvature distribution is

given by (40) with the following shape functions:

φx(s) = φy(s) =
[
T0, T1(s), T2(s)

]T
. (47)

The string encoder length equations for i ∈ [1, 2, 3, 4] are con-

catenated together with (45) to give the string lengths in a similar

form as in (44), but accounting for the string encoder routing as

described above while adding the tendon lengths

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1

�2

�3

�4

�θ1
�θ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

L− sa1

L− sa2

L− sa3

L− sa4

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ J�cc, J�c ∈ R
6×6, c ∈ R6.

(48)

Given a set of string measurements, we then solve (48) for the

modal coefficients cwith a single matrix inversion. Our MATLAB

2019b implementation computes c at a rate of ∼ 125 kHz. As

Fig. 11. Noise amplification indices at the end disk and the third disk for
all physically realizable string routing designs of the collaborative continuum
robot. A large range of noise amplification indices are possible, but the noise
amplification indices for the design optimal for end disk pose estimation is not
significantly different than for the design optimal for Disk 3 pose estimation.

with the planar example above, the configuration space Jacobian

J�c is constant when assuming zero torsional deflections, so J�c

and J−1
�c can be computed once and stored.

Based on the analysis in Section IV-A of singularities in J�c,

the two actuation tendon equations in (45) do not introduce

singularities into J�c, because the tendon pairs that are collinear

with the central backbone point are in the same equations in

(45). However, any additional string anchored at the end disk

(or equivalently at the base disk for the strings mounted in the

endplate) would not provide additional shape information. The

radius of the passive sensing strings is fixed, so in designing the

string paths for this segment, we can only change the string an-

chor points. The anchor points are also restricted to the discrete

points along the central backbone where the five intermediate

disks lie. We therefore have five possible choices for sai
for each

of the four strings.

To design the string routings, we run a brute-force search

across all possible combinations of sai
(625 possible designs)

to find the combination with the largest ℵg(J�ξ(s)). We chose

the characteristic length to be 0.0652, the kinematic radius of

the actuation tendons. The global noise amplification index ℵg

was computed for a set of 320 configurations in the segment’s

admissible workspace, and the noise amplification index for the

end disk, denoted as ℵg(J�ξ(L)), and the noise amplification

index for the third disk, denoted as ℵg(J�ξ(s3)), where s3 is the

arc length at which the third disk is located, were computed at

each configuration.

Out of the 625 string routing designs considered,

225 resulted in a singular J�ξ(L) and (J�ξ(s3)).
Fig. 11 shows the noise amplification indices for 400 of

the string routing designs in our brute-force search that did

not result in singularities. Some designs resulted in the noise

amplification being particularly close to zero. For example, one

poorly conditioned routing design was a design with anchor

points at disk 2, disk 4, disk 3, and disk 5, for strings 1–4,

respectively, with the disk numbers given in Fig. 10. This

design places one string on each disk except disk 1. Although

this choice might seem reasonable to a designer at first glance,

its noise amplification index is ℵg(J�ξ(L)) = 8.3e-3, which is

two orders of magnitude smaller than for the optimal design.

This highlights the importance of carrying out the sensitivity
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TABLE III
NOISE AMPLIFICATION INDICES FOR OPTIMIZED STRING ROUTING DESIGNS ON

COLLABORATIVE CONTINUUM MODULE

analysis we present herein when choosing a string routing

design to avoid these illconditioned string routings.

From the designs in Fig. 11, we found that the anchor points

that maximize ℵg(J�ξ(L)) were disk 4, disk 4, disk 2, and disk

2, for strings 1–4, respectively. Below, we will refer to this

string routing design as the end disk routing. For maximizing

ℵg(J�ξ(s3)), the optimal anchor points were disk 1, disk 1, disk

3, and disk 3, for strings 1–4, respectively. Below, we will refer

to this string routing design as the third disk routing.

The noise amplification indices for these two optimized de-

signs are given in Table III. Although the brute-force search

optimization increased ℵg(J�ξ(L)) for the end disk routing

by 25% compared to the middle disk routing, and the value

of ℵg(J�ξ(L)) for the middle disk routing was increased by

14% compared to the end disk routing, we will show in our

experimental results below that these changes in ℵg(J�ξ(L)) are

not large enough to have a significant effect on the pose error

either at the end disk or at the third disk. Either of these string

routing designs could be chosen for this robot without having a

significant effect on the pose error.

We experimentally validated the shape sensing approach

on the physical continuum robot. We routed the string en-

coders according to the two routing designs given by our op-

timization procedure, and for each string routing design, we

measured the shape of the segment across a large variety of

variable curvature shapes, a subset of which are shown in

Fig. 13. The segment was mounted on a revolute joint driven by

an off-the-shelf actuator (Dynamixel PH54-200-S500-R), and

the angle of the revolute joint was commanded to 0, 45◦, and

90◦. For each of these three angles, we commanded the segment

to move from the initial home configuration to four different

configurations:θ = [0◦, 500◦],θ = [0◦,−500◦],θ = [500◦, 0◦],
and θ = [−500◦, 0◦], where θ = [θ1, θ2]

T contains the angles

of the actuation capstans. The motion profile to reach these four

poses was generated using a fifth-order polynomial trajectory

planner, with a time of 45 s to move to the desired configuration

from the initial home configuration. During these motions, we

continuously captured the string lengths using the rosbag ROS

package. We captured ground-truth pose of the third intermedi-

ate disk and the end disk using a stereo vision optical tracker

(ClaroNav H3-60) and optical markers mounted on the robot.

The data collection rate is limited by the optical tracker’s ∼ 8.5
Hz sample rate. This experiment was carried out with the end

disk routing, and then repeated for the third disk routing.

Using the string length measurements acquired with the string

encoders, we solved for the modal coefficients using the full

shape sensing model given by (48). To compare against a sce-

nario where the robot did not have shape sensing encoders, we

Fig. 12. Frequency histogram of pose error when the string routing is op-
timized to minimize the effect of measurement noise for either the end disk
pose (end disk routing) or the pose of the third disk (third disk routing).
(a) The end-disk position error histograms for both routings showing that the
error distribution forT(L) is shifted leftward compared to the third disk routing.
(b) The third-disk position error histograms for both routings showing that the
error distribution forT(s3) is shifted leftward compared to the end disk routing.

Fig. 13. Subset of the variable curvature spatial configurations used to validate
our shape sensing approach for a torsionally stiff continuum segment with
straight string routing. The third and end disk poses were captured using optical
trackers with and without weights attached to the end disk.

also reconstructed the shape using only the actuation variables

θ. For this case, we used a modal basis with two columns where

φx = φy = 1. This is identical to the commonly used constant-

curvature model [35]. We report the constant-curvature model

results using the data set collected with the third disk routing,

but note that the errors were similar for this constant-curvature

model using the end disk routing.

The mean and maximum errors of our shape sensing model

(with the two different routing designs) as well as the constant

curvature model are given in Table IV. The position error is given

by pe(s) = ‖pmodel(s)− pmeas(s)‖, where pmodel(s) ∈ R
3 is

the model-predicted position, and pmeas(s) ∈ R
3 is the mea-

sured position, and we denote the average of pe(s) across all

configurations as p̄e(s). The angular error is given by

θe(s) = cos−1

(
trace(Rmeas(s)Rmodel(s)

T − 1

2

)
(49)
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TABLE IV
AVERAGE (MAXIMAL) ABSOLUTE POSITION AND ORIENTATION ERRORS IN MM

AND
◦

FOR THE SEGMENT IN FIG. 9

End disk disk

routing routing

passive

strings

where Rmeas(s) ∈ SO(3) is the measured rotation matrix and

Rmodel(s) ∈ SO(3) is the model-predicted rotation matrix. Both

the end disk routing and the middle disk routing reduced the

mean end disk errors compared to the constant curvature model

by more than 89% in position and 58% in angle. The maximum

end disk error was reduced compared to the constant curvature

model by more than 85% in position and 40% in angle for both

string routing designs. Both routing designs have average tip

position errors below 2.0% of the total arc length, a significant

improvement compared to the constant curvature model error of

18.7% of total arc length. The maximum tip position error of our

approach was 4.8% of the total arc length, compared to 34.9%

for the constant-curvature model.

The third disk routing reduced the mean position error at s3
by 0.5 mm and the maximum by 1 mm. The third disk routing

design also reduced the mean angular error at s3 by 0.4◦ and

the maximum by 1.8◦. Fig. 12 shows the histograms of the

normalized error en ∈ R at the end disk and the third disk:

en =
√

‖pmodel − pmeas‖+ c�θe (50)

where c� is the characteristic length used in the string rout-

ing design optimization procedure (in this case, we used the

kinematic radius of the disk 0.1304/2 m as shown in Fig. 10).

We observe that, as expected, the error distribution of T(s3)
is shifted leftward towards reduced error due to the increase in

ℵg(J�ξ(s3)). However, we also observe that the maximum errors

for T(L) were higher using the routing optimized for the end

disk. This indicates that the change in the noise amplification

index at T(L) when using the routing optimized for the third

disk was not significant enough to affect the tip pose error in a

way that would overcome other sources of error, i.e., friction,

mechanical clearances, and the continuously parallel routing

assumption. Overall, while the general trends in the errors match

the expected behavior due to the noise amplification index, we

observe that the pose error of the middle and end disk was not

substantially affected, meaning that either of the two optimized

string routing designs could be used. This provides flexibility in

the string routing design.

In this section, we have presented the kinematic formula-

tion for sensing deflections of robots with negligible torsional

stiffness. The formulation results in a constant configuration

space Jacobian and linear shape sensing equations. We validated

the model and approach for a collaborative continuum robot

with high torsional stiffness and constant pitch radius string

paths, showing that our approach sensed the tip position with

errors below 4.8% of total arc length. We now demonstrate the

Fig. 14. To validate our approach for torsional deflections and helical string
routing, we simulated a modular soft continuum segment. The segment’s in-
terlocking subsegments are overmolded with silicone, and a Nitinol rod passes
through their centers. Four string encoders are mounted at the segment’s base,
and each intermediate disk (b) has 32 holes to enable helical string paths.

approach for the more general case of robots with nonnegligible

torsional deflections and helical string routing.

VI. SENSING TORSIONAL DEFLECTIONS WITH HELICAL

STRING PATHS

In the section above, we validated our shape sensing approach

on a segment with high torsional stiffness. Neglecting torsional

stiffness significantly simplifies the model equations and reduces

the computation cost of solving for the shape. However, many

continuum robots have relatively low torsional stiffness, so

torsional deflections cannot always be neglected. In this section,

we consider helical string routing as a way to sense torsional

deflections. We then validate the approach in a simulation study

using a Cosserat rod mechanics model.

We chose the geometry of the simulated continuum robot

based on a concept for a modular soft continuum robot, shown in

Fig. 14. The subsegments of the robot are built with cylindrical

silicone overmolded on the outer circumference of the interme-

diate disks to act as a soft outer cover, and the bottom plate of

each subsegment has locking tabs that mate with a slot in the top

plate of the previous subsegment. A 293-mm long solid Nitinol

rod passes through the center of the continuum robot to prevent

compression of the structure.

Four string encoders (as described in Section IV) are mounted

below the segment, and four tendons are routed to actuators via

idler pulleys below the segment’s base. In this embodiment, the

actuation tendons are routed in straight paths with the tendon

path given by (41). We assume that two of the tendons are

anchored at the end disk, and that two of the tendons are anchored

at disk 7. This choice in anchor points for the actuation tendons

allows all four actuation tendons to provide shape information

(since more than two strings anchored to a disk will result in

a singular J�c when the robot is straight) while still allowing

the segment to bend in all four directions and have a large

reachable workspace. The string encoders are routed in helical

paths given by (51). As shown in Fig. 14(c), the bottom plate of
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each subsegment has 32 holes through which the strings pass,

allowing the strings to be routed in the desired helical shape. We

now optimize the anchor points of the four string encoders and

the twist rate of their helical paths.

The helical routing string path function is given by [36]

tri(s) = rs[cos(ωs+ αi), sin(ωs+ αi), 0]
T (51)

where rs is the radius of the helical path, ω is the twist rate of the

helical path (which we assumed was constant and equal for all

four strings to prevent the string paths from intersecting), and αi

is an angular offset for each string. Since we have eight inputs

to our shape sensing model (four passive string encoders and

four active actuation tendons), we choose a modal basis with

eight columns. The modal shape basis is given by (4) with the

following shape functions:

φx(s) = φy(s) =
[
T0, T1(s), T2(s)

]T

φz(s) =
[
T0, T1(s)

]T
(52)

where the Chebyshev functions Ti(s) are given by (9). We

compute the string lengths and the configuration space Jacobian

J�c by numerically integrating (12) and (18), respectively.

We solved the optimization problem (27) with ε = 1e-7

through a brute-force search of all possible string anchor points

(disks 1–10) and helical path design parameters. Given the 32

holes on the intermediate disks, as shown in Fig. 14, the helical

path twist rate can be approximated as ω = nωγ, where nω ∈ R
determines the number of routing holes to skip in between the

intermediate disks when routing the string, and γ = 2π
32 is the

angle between the routing holes, as shown in Fig. 14. We con-

strained the twist rate tonω < 2 to prevent large twist rates, since

excessive twist rates increase the possibility of binding between

the string and the routing holes. With the ten possible string

anchor points and two possible twist rates for four strings, there

were 20 000 possible string routing designs that we evaluated.

Using a prototype subsegment, we experimentally determined

that each subsegment can bend up to 10◦ and twist up to 7.5◦

without mechanical failure, so the admissible workspace was

defined as a set of 32 sampled configurations that did not exceed

10◦ of bending and 7.5◦ of twist in each subsegment. We chose

the characteristic length to be radius of the segment, 37.5 mm.

We discarded all designs that violated ℵg(J�c) ≥ 1e-7. We will

consider below the fourth, sixth, and end disk as representative

examples to optimize J�ξ for, so we stored the noise amplifica-

tion indices for s = L, s = s4 (the location of the fourth disk),

and s = s6 (the location of the sixth disk).

Fig. 15 shows the noise amplification indices across all string

routing designs that did not violate ℵg(J�c) ≥ 1e-7, sorted in

descending order of ℵg(J�ξ(L)). Table V shows the values

ℵg(J�ξ(L)), ℵg(J�ξ(s6)), and ℵg(J�ξ(s4)) for the designs that

maximize each of these three values (which are also indi-

cated with arrows in Fig. 15). We observe that the design

that maximizes ℵg(J�ξ(s6)) results in only a 0.8% decrease in

ℵg(J�ξ(L)), however, the design that maximizes ℵg(J�ξ(s4))
results in a 90% decrease in ℵg(J�ξ(L)). Choosing the string

routing design that maximizesℵg(J�ξ(s4))would therefore tend

Fig. 15. Noise amplification indices across all physically realizable string rout-
ing designs for the simulated soft robot with torsional deflections. The routing
that maximizes ℵg(J�ξ(s4)) results in a significantly reduced ℵg(J�ξ(L)), but
for disk 6, ℵg(J�ξ(L)) does not significantly change.

TABLE V
NOISE AMPLIFICATION INDICES FOR OPTIMIZED STRING ROUTING DESIGNS ON

SIMULATED SEGMENT WITH HELICAL ROUTING

to increase the pose error at s = L. We also note thatℵg(J�ξ(s4))
only increases by 4.6% between the end disk routing and the

fourth disk routing, indicating that we would not expect to see

a significant change in the pose error at s4 between these two

designs. We will now validate these predicted behaviors in a

simulation study.

We simulated the robot in Fig. 14 using the Cosserat rod model

from [36]. This model takes as inputs the applied tensions on

the actuation tendons as well as the external forces/moments

applied to the tip of the segment and returns the curvature,

shear, and extension of the segment. We simulated the robot

with a preload force of 25 N applied on all four tendons, and

applied additional forces of up to 300 N on the tendons to bend

the segment in 8 different directions. For each direction, we

applied 12 different external wrenches with forces of ±20 N

and moments of ± 4 Nm, expressed in the world frame. We

selected these loads to generate a large variety of shapes without

exceeding the maximum curvature to keep the segment within

its admissible workspace. We also included constant forces of

3.3 N on the helical strings due to the constant-torque spring in

the string encoder housing.

For each tendon tension/external wrench combination, we

started with the segment initially unloaded and incremented the

external wrench with 5 steps to incrementally apply the load and

solve for the shape at each external wrench increment. We did
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Fig. 16. (a) A subset of the spatial configurations used to validate our shape
sensing approach on a segment subject to torsional loads utilizing helical routing,
and (b) the segment in its zero-curvature configuration.

TABLE VI
AVERAGE (MAXIMAL) ABSOLUTE POSITION AND ORIENTATION ERRORS IN MM

AND
◦

FOR THE SEGMENT IN FIG. 14

this to ensure that a good initial guess was provided to the solver -

a subset of which is shown in Fig. 16. This simulation resulted in

480 different configurations of the continuum segment. For each

configuration, we stored the string/tendon lengths, and then used

these lengths as inputs to our kinematic shape sensing model

to compare the accuracy of our shape sensing approach. Our

unoptimized MATLAB 2019b implementation used MATLAB’s

lsqnonlin() to solve (16) for c at a rate of ∼ 4 Hz on average,

using an 80 point trapezoid rule to compute J�c. Future code

can be orders of magnitude faster with direct implementation in

C++.

We compared the mechanics model to two different shape

sensing models. The first used all 8 length measurements (4

string encoders and 4 actuation tendons) with the modal basis

given by (52). The second used only the 4 actuation tendons

to compare our shape sensing model to a scenario without

any helical shape sensing strings. For this second model, the

modal basis has 4 columns and is given by (40), with the modal

functions given by φx(s) = φy(s) =
[
T0, T1(s)

]T
.

The statistical results are given in Table VI, where we denote

the string routing design that maximizes ℵg(J�ξ(L)) as the

end disk routing and the string routing design that maximizes

ℵg(J�ξ(s4)) as the fourth disk routing. Both optimized string

routing designs had maximum absolute end disk position errors

below 2% of arc length. However, the fourth disk routing resulted

in a 616% increase in max(θe(L)) compared to the end disk

routing. There was also a 474% increase in θ̄e(L), and small

increases in both p̄e(L) and max(pe(L)) when compared to the

fourth disk routing. This confirms the expected behavior due to

the large decrease in ℵg(J�ξ(L)) in the fourth disk routing given

in Table V.

Fig. 17. Histograms of normalized pose error at the end disk and at the fourth
intermediate disk for the routing that maximizesℵg(J�ξ(L)) and for the routing
that maximizes ℵg(J�ξ(s4)). The pose error at the fourth intermediate disk is
not significantly effected by the change in routing design, but the tip pose error
is significantly effected due to the larger change in ℵg(J�ξ(L)) between the
two designs.

Fig. 17 shows the histograms of the error at the end disk and

the fourth disk, normalized using (50). We observe that the end

disk error with the end disk routing is shifted leftward compared

to the fourth disk routing errors, as expected due to the large

change in ℵg(J�ξ(L)). Furthermore, since ℵg(J�ξ(s4)) did not

significantly change, we do not see a significant difference in the

error distribution for the fourth disk pose, and in fact see a small

shift rightward with the fourth disk routing. This increase in error

using the fourth disk routing is explained by the known fact that

kinematic conditioning indices are not guaranteed to directly

correlate with the true errors (see [51]). Large changes in the

conditioning index should be sought to increase the possibility

of reducing the true errors.

Compared to the model without string measurements, the end

disk routing reduced the maximum end disk position error by

90% and the maximum angular end disk error by 87%. The

fourth disk routing reduced the fourth disk maximum position

error by 51% and the fourth disk maximum angular error by 90%.

These simulation results demonstrate that 4 passive string (to-

gether with the four actuation tendons) can significantly improve

the accuracy of continuum robot kinematics over actuation-

based sensing alone.

VII. CONCLUSION

In this article, we have presented a Lie group kinematic

formulation for capturing variable curvature deflections of con-

tinuum robots using general string encoder routing. We used this

formulation for a sensitivity analysis of the error propagation

from error in string extension measurements to error in the

modal coefficients and error in the central backbone shape. This

analysis allows the designer to avoid string encoder routings that

lead to illconditioned Jacobians. We then applied the approach

on a planar example, a segment with high torsional stiffness,
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and a robot subject to torsional deflections using helical routing,

showing that this shape sensing approach can result in mean and

maximal absolute position error below 2% and 5% of arc length,

respectively.

Our results provided several simple design guidelines for

routing the strings to improve numerical conditioning, which

we summarize here. For a planar segment, the strings should

not be anchored at the same disk, and the pitch radius should

be maximized. For a segment with high torsional stiffness, no

more than two strings should be anchored to a disk, and if two

strings are anchored to a disk, their anchor points should not be

collinear in the radial direction of the disk. For segments with

general deflections including torsion, simple design rules are

more difficult to define, but the numerical conditioning can be

improved using our proposed design optimization procedure.

This sensing approach utilizes standard mechanical and elec-

trical components, providing a relatively low-cost way of sens-

ing the variable curvature deflections of large continuum robots,

and the kinematic formulation and analysis presented herein

enables practitioners to design string routings that improve

the numerical conditioning of shape sensing. We have shown

that four string encoders can provide accurate shape sensing,

and have demonstrated a physical embodiment of a segment

utilizing this approach, but a drawback of this approach com-

pared to other sensing methods is the physical space required

to mount the string encoders within the robot. To overcome

this drawback, directions for future work include investigating

more tightly integrated design of the string encoder mechanical

components into the robot body or mounting of the string

encoder housing remotely outside of the robot body. Future

work also includes evaluation on multi-segment continuum

robots and using this shape sensing approach and Lie group

kinematic formulation to provide updates to continuum robot

mechanics models.
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