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Lie Group Formulation and Sensitivity Analysis for
Shape Sensing of Variable Curvature Continuum
Robots With General String Encoder Routing

Andrew L. Orekhov

Abstract—This article considers a combination of actuation ten-
dons and measurement strings to achieve accurate shape sens-
ing and direct kinematics of continuum robots. Assuming gen-
eral string routing, a methodical Lie group formulation for the
shape sensing of these robots is presented. The shape kinematics
is expressed using arc-length-dependent curvature distributions
parameterized by modal functions, and the Magnus expansion for
Lie group integration is used to express the shape as a product of
exponentials. The tendon and string length kinematic constraints
are solved for the modal coefficients and the configuration space
and body Jacobian are derived. The noise amplification index for
the shape reconstruction problem is defined and used for optimizing
the string/tendon routing paths, and a planar simulation study
shows the minimal number of strings/tendons needed for accurate
shape reconstruction. A torsionally stiff continuum segment is
used for experimental evaluation, demonstrating mean (maximal)
end-effector absolute position error of less than 2% (5%) of total
length. Finally, a simulation study of a torsionally compliant seg-
ment demonstrates the approach for general deflections and string
routings. We believe that the methods of this article can benefit the
design process, sensing, and control of continuum and soft robots.

Index Terms—Continuum robots, human-robot collaboration,
Lie group methods, shape sensing, soft robots.

I. INTRODUCTION

ONTINUUM robots achieve infinitely varied shapes gov-
C erned by their elastic equilibrium conformations rather
than being solely determined by the values of their active joints,
as shown in Fig. 1. As a result, the direct kinematics of these
robots is corrupted with a large level of uncertainty due to
structural deflections. Since active joint values alone are not
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Fig. 1. Continuum segment subject to passive deflections (a) starting in a
straight configuration, (b) starting with a bent configuration. This article ad-
dresses the problem of sensing the deflected shape using string encoders.

sufficient for achieving accurate direct kinematics, an additional
sensing source is needed. This need motivated efforts on shape
sensing for continuum and soft robots, which focused on using
extrinsic and/or intrinsic sensing.

Extrinsic sensing relies on use of external metrology (e.g.,
magnetic trackers [1] and computer vision [2], [3], [4], [5]).
Intrinsic sensing relies on sensors that augment joint-level data
to produce shape estimates. The use of polyvinylidene difluoride
(PVDF) bimorph sensors for shape sensing of soft actuators un-
der planar bending was explored in [6] along with considerations
for the number of sensors and their spacing to avoid Runge’s
phenomenon when fitting a modal function series to estimate the
shape. Others focused heavily on the use of fiber Bragg grating
(FBG) sensors for shape sensing [7], [8], [9]. A mechanics
model combined with moment sensing was presented in [10]
to estimate the shape of whiskers and in [11] for McKibben
muscle actuated continuum robots, and a mechanics model was
combined with passive cable displacement in [12] for shape
sensing. Finally, string potentiometers were explored in [11],
[13], [14] for shape sensing of continuum robots under planar
or constant curvature shapes. Despite previous works, there are
two key technological and theoretical gaps that motivate this
work. First, there is a need for a low cost solution to the problem
of shape sensing. While use of FBG sensor arrays is possible,
it is not an economical solution and seems to be at odds with
the low cost of soft and continuum robots. Therefore, this article
is focused on presenting a modeling and design optimization
framework for low-cost solutions to shape sensing of continuum
robots using intrinsic sensing. This solution assumes that the
continuum/soft robot is equipped with actively actuated tendons
(henceforth referred to simply as tendons) and a set of passive
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measurement strings (henceforth referred to simply as strings).
These strings can be in the form of string potentiometers (akin
to spring-loaded lanyards) or string encoders. The combined set
of length measurements of these tendons and strings is used to
estimate the shape of these robots. The second gap stems for the
lack of a theoretical study focused on the effect of string routing
on the shape sensing problem and design guidelines for string
routing optimization to minimize the sensitivity of the shape
sensing problem to measurement noise. To address this gap, we
present a Lie group mathematical formulation that enables us to
answer the following core questions.

1) What is the impact of string routing on the kinematic
sensitivity of the shape sensing to sensory noise?

2) How many sensors are needed per a continuum segment?
And, if one has a fixed number of sensors, where should
they be placed to minimize the shape error or to minimize
the end effector error?

While addressing these questions, we present a Lie group for-
mulation for the string routing. We use a modal representation for
the curvature distribution along the robot length and derive the
general string routing kinematics relating variations in bending
shape to string length. While one may obtain the string routing
kinematics as in [15] for calibration of continuum robots, we
believe that the use of the Lie group formulation presented here
leads to an elegant formulation of the body Jacobian. Finally, we
adapt the noise amplification index presented by [16] within the
context of robot calibration to guide the design of string routing.

Although accurate mechanics models have been presented
in prior work on continuum robots, in this work we are inter-
ested in a formulation that could be used for online control,
so we intentionally pursue a kinematics-based method, using
lower-order polynomials that lead to either closed-form expres-
sions or relatively cheap to compute optimization problems.
Our kinematic deflection sensing approach does not require
knowledge of applied loads from actuation, string encoders, or
the environment, and it provides insight at the initial design stage
for choosing string routings.

While our sensing approach does not rely on a mechanics
model, our use of modal representation of curvature is related
to continuum mechanics models for flexible [17] and contin-
uum robots [18], [19]. Lie-group based kinematic integration
formulations using the Magnus expansion have been used in
other works for solving more general Cosserat rod mechanics
models [18], [20] and a Lie-group finite-element formulation of
beam dynamics was presented in [21]. Modal representations
have also been used in prior works to parameterize the shape
of hyperredundant robots [22] and continuum/soft robots [23],
with some works using modal functions to parameterize curva-
ture/strain [19], [24] as we do here.

This article is focused on shape sensing of larger scale hyper-
redundant and continuum/soft robots, e.g., [25], [26], [27], but
we believe the approach presented herein could also be applied
to smaller continuum robots used in minimally-invasive surgery,
e.g., [28], [29]. This could potentially be achieved by mounting
the string encoder housings remotely away from the robot body,
as is already done with actuation units in surgical continuum
robots.
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Fig. 2. Variables used in our kinematic model to describe variable curvature
deflections and general string routing.

The contributions of this article lies in addressing the two
key gaps identified above for single-segment continuum robots.
In doing so, we present: 1) a Lie group kinematics formulation
for shape sensing with general string routing and modal shape
deflections; 2) an approach for optimizing string routing to
improve the shape sensing kinematic conditioning with recom-
mendations for designing string routings; and 3) an experimental
validation and a simulation study of the proposed approaches on
a torsionally stiff continuum robot and a torsionally compliant
soft robot, respectively.

II. LIE GROUP KINEMATIC FORMULATION

This section presents the kinematic formulation and modal
representation for parameterizing the variable curvature back-
bone shape and deriving the resulting pose of local frames along
the continuum segment. This parametrization will be used for
describing general string routing and the associated kinematic
Jacobians for shape sensing.

A. Central Backbone Kinematics

Referring to Fig. 2, we assume a robot with a total arc length L
and define the arc length coordinate s as shown. We also assume
that the robot’s central backbone has a high slenderness ratio
consistent with the assumption of negligible shear strains. With
this assumption, the shape of the backbone can be described by
its curvature distribution along its arc length s in three directions,
u(s) = [ug,uy,u,]" € R* Foragivenlocation, s, alocal frame
T(s) is assigned with its z-axis tangent and pointing in the
direction of arc length growth and its two other axes in the
backbone’s local cross section:

°Rq(s) “p(s)

TE =1 1

€ SE3), s€l0,L] (1)

where "Ry (s) and “p(s) are expressed in the world frame
{0}.! As the backbone changes its local curvature, this local
frame undergoes a twist 7(s) defined with the angular velocity
preceding the linear velocity. The set of local frames associated
with local curvatures u(s) has a corresponding twist distribution

!"The notation @y designates vector y described in frame {A} and ®Ry is the
orientation of frame {B} with respect to frame {A}
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1(s). Describing the twist 1(s) in its local frame T'(s), we can
write (s) = [u(s)T,el]" € R® where es = [0,0, 1] denotes
the local tangent unit vector. As the frame T'(s) undergoes the
body twist n, it satisfies the following differential equation [30]:

T'(5) = T()is), ﬁ<s>=[ﬁ§f> ‘ﬂ € se(¥)
0 —us(s)  uy(s)
u(s) = | u.(s) 0 —ug(s)| €s0(3) (2
—uy(s)  ug(s) 0

where (+)" denotes the derivative with respect to s and the hat
operator () forms the standard matrix representations of so(3)
and se(3) from their vector forms u and 7, respectively. We
also define the adjoint representation of se(3), which will be
used below for computing Jacobians

3

In the following analysis, we choose to represent the curvature
distribution u(s) as a weighted sum of polynomial functions
(similar to [18]). We denote the polynomial functions as ¢, (s),
¢>y(s), and ¢ (s) and the weights as c,, ¢, and c., for the z,
1y, and z directions, respectively. The curvature distribution then
takes the following form:

by Co ér 0 0] [e
u(s) = qS;lrcy =10 ¢3 0 cy
olc. 0 0 o |c.

= ®(s)c, ®(s) € R*>™, ceR™ 4)

where the columns of ®(s) form a modal shape basis, and c is
a vector of constant modal coefficients.

The modal description of the curvature distribution offers a
description of a variety of variable curvature deflections using
a finite set of modal coefficients. This also provides simplified
kinematic expressions for computing the workspace, solving for
the shape using the string encoder measurements, and designing
the string encoder routing to improve the numerical conditioning
of the shape sensing problem.

For a given configuration c, the frames T(s) are found by
integrating (2). A number of Lie group integration methods could
be used for this, as reviewed in [31], but here we use an approach
based on the Magnus expansion because both fourth and sixth
order expansions can be computed efficiently and because of
the Magnus expansion’s large convergence bound [31]. After
integration with a Magnus expansion method (or another Lie
group integration method), the spatial curve is given as a product
of matrix exponentials [20]

k
T(s) =T(0) [[e¥, ;€ se(3). (5)
=0

Details on computing ¥, can be found in [20] and [31].
We will show below that because we use a modal shape basis,
Lie group integration is not needed to solve the shape sensing
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Fig. 3.  First five shifted Chebyshev polynomials.

problem (i.e., determining the modal coefficients), however,
once the configuration c is determined, (2) must be integrated to
compute the robot’s forward kinematics and Jacobian, as shown
in Section II-F. In this article, we compute (5) with small step
sizes (100 points along the backbone) at a rate of ~ 45 Hz in an
unoptimized MATLAB implementation. Larger steps can be used
in practice for faster computation times [20], but we use a fine
discretization here to avoid introducing additional integration
error into this study.

B. Modal Shape Basis With Chebyshev Polynomials

Although any set of modal shape functions could be used
to form ®, (e.g., Euler curves [32], [33], monomials [15],
Legendre polynomials [17], or trigonometric functions), in this
article we use Chebyshev polynomials of the first kind since
each polynomial is bounded by 41, which provides improved
scaling of the modal coefficients and simplifies computation
of the admissible workspace, as described in Section III. The
Chebyshev polynomials can be expressed recursively as [34]

T() = 1, Tl(ZE) =T

To(z) = 22T 1(x) — Tha(x), n=2,3,... (6)

where T, (x), = € [—1,1] is the nth degree Chebyshev poly-
nomial. Since the arc length coordinate is given by s € [0, L]
and T, (z) is defined for « € [—1, 1], the following coordinate
transformation is used:

25— L
(s) = SL . %

We then evaluate T), (x(s)) via (6). For the rest of this article, we
refer to the polynomials as simply 7}, (s) with the transformation
(7) implied. The first five Chebyshev polynomials, shifted to
s € [0, L], are shown in Fig. 3. As an example, to represent a y
direction curvature with a second-order Chebyshev series, the
modal shape basis and modal coefficients would be given by

uy(s) = ¢y(5)cy
b, (s) =

where the first three Chebyshev polynomials, shifted to s €
[0, L] are given by

T 3
[TD Ti(s) Tz(s)} . ¢, €R )

2s—L 8s> 8s
T = T: =—-—+1 0

1(8) L ) 2(5) 2 3 + ( )
Fig. 4 illustrates shapes generated by these first three Chebyshev
polynomials for a planar continuum segment. Of note is that

shapes in the T, and 7} directions of the modal shape basis

Ty =1,
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Fig. 4. Deflections generated on a rod with L = 300 mm and second order
Chebyshev series modal shape basis on the y direction curvature, as given by
(8). Deflections were generated by taking 57 steps in each of the three modal
coefficient directions.

correspond to experimentally observed deflection shapes in
tendon-actuated and multibackbone robots. Shapes along the
Ty direction correspond to constant curvature deflections exhib-
ited in continuum segments with actuation wires equidistantly
distributed about the central backbone. Shapes along the T}
direction correspond to constant-orientation deflections due to
external forces applied to the end disk of a tendon-actuated
continuum segment, as shown in Fig. 1.

The shape sensing methods presented below would apply to
other choices for ® as well. For example, a modal shape basis
with coupling between the modal coefficients could be used,
e.g., [18]. If we choose ® as the identity matrix, c corresponds
directly to constant curvatures in the x, y, and z directions (see
Fig. 4), so the results here also apply to robots modeled with the
commonly used constant-curvature assumption [35].

C. General String Routing Kinematics

In [36], a Cosserat-rod based mechanics model was presented
for tendon-actuated robots with general tendon routing. In the
kinematics model presented here, we use a similar method for
describing the string routing. Assuming p strings, the string path,
as shown in Fig. 2, is expressed in the moving frame T(s) and
given by

bri(s) = [re,(s), 7y, (5),01", i=1,2,...,p.

Our kinematic formulation permits any differentiable function
for r(s), but in Sections IV and V we consider constant pitch-
radius paths and helical paths. The position of a point along the
string/wire rope path in the world frame is given as the vectorial
sum of the point p(s) along the central backbone and the radial
vector r(s), defined in the moving frame

Ow;i(s) = "p(s) + “Ry(s) 'ri(s). (11)

Noting that vector norms are invariant under rotations, the length
of the ith string is given by:

(10)

b= [CIwields =12 a2
0

where s,, designates arc length along the central backbone at

which the string is anchored to the spacer disk/end disk. Taking

the derivative of (11) with respect to s, substituting (4), and then

2311
using tw(s) = OR; Ow/(s) results in
‘wi(s) = es — Ti(s)®(s)c + 'rl(s), i=1,2,...p. (13)

Deriving the above result also requires (2), which states that
Up/(s) = "Ry(s)es and "R (s) = "Ry (s)u(s).

Recalling that ‘r;(s) is in a moving frame having a body
angular velocity U(s), we can visualize (13) as the velocity of a
point traversing the string path as the arc length s is increased at
a unit speed. This point speed is given as the sum of the induced
velocity due to the rotation of the moving frame and the velocity
of that point relative to the moving frame due to traversal along
the central backbone and the rate of change of the string’s radial
placement 'r/(s). Since (13) is a function only of the modal
basis, the string routing function, and the modal coefficients, we
can numerically integrate (12) with any quadrature rule (e.g., the
trapezoid rule) and avoid the cost of integrating the Lie group
differential equation in (2).

The string routings *r;, ¢ = 1...p can be chosen by the de-
signer, but must each satisfy a geometric constraint that the string
path in world frame must not have a cusp at any configuration of
the continuum segment. To ensure physically realizable string
paths, the local tangent to the actuation string must point in the
same direction as the local tangent of the central backbone. It is
possible for the angular rate of changes u, and u, to be large
enough to cause ‘w/, to point in the opposite direction of e,
which causes the string path to change directions. To avoid this
scenario, we require that “w’, always point in the same direction
as es. Using (13), we obtain the following set of p constraint
equations for each string:

(tw;)T €3 = 1y, (8)ug(s) — ry, (8)uy(s) +1> 0. (14)
This can be rewritten as constraints on u; and
u,(s) S Tﬂci (S)UZJ(S) + 17 uy(s) S Tyi (S)UT(S) + 1'
Ty, (s) Tz;(8) (15)

In the coming sections, the string routings will be incorporated
into a model that captures their effect on increasing the robust-
ness to noise in string length measurements to changes in the
estimated shape of the continuum segment.

D. Solving for the Modal Coefficients

To solve for the shape of the robot, we concatenate (12) for
each string together with the string length measurements £

fc)—€ =0, LERP, £ €RP (16)

and solve this system of equations for the modal coefficients
c. We then integrate T'(s) once to find the backbone pose at
any desired arc length. In some cases, for particular choices of
tr; and @, unique closed-form solutions to (16) can be found
by explicit integration of (12). This occurs below for the planar
case and for the case of robots with high torsional stiffness.

In general however, the system of equations in (16) can be
nonlinear in ¢ and may have multiple solutions, so it must be
solved by an iterative numerical method, e.g., Gauss-Newton.
A necessary condition for using the Gauss-Newton algorithm is
p > m where p is the number of strings and m is the number
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of columns in ®. The Jacobian needed for each iteration of the
Gauss-Newton method is provided in the next section.

E. Configuration Space Jacobian

Since the modal vector ¢ uniquely defines the shape of the
continuum segment for a given modal basis ®, we use c as the
configuration space variable. We also define the configuration-
space Jacobian as the Jacobian relating small changes in the
string lengths to small changes in the modal coefficients

dl = Jy.de, Jy. € RP™, (17)
Following [19], the ith row of Jy. can be derived as
dt; (o (w) )T
— = i X —= | D 18
w ( ) T

where we have dropped the dependence on s in the integrand
terms for brevity and ‘w’, was given in (13). As with the integral
in (12), (18) can be computed with any quadrature rule.

F. Body Jacobian

Next, we define the body Jacobian as the Jacobian relating the
twists of the moving frame T(s) expressed in T(s) (also called
body twists) to small changes in the modal coefficients:

&(s) = Jec(s)de, & € se(3)

where &(s) = [w(s)™,v(s)T]T is the instantaneous twist of
T(s) produced by dc, expressed in the body frame T(s) and
with angular velocity followed by linear velocity. The ¢th column
of Jec(s), denoted by J ,[;i(s) is the twist produced by a small
change in the 7th element of ¢, denoted by c¢;

19)

, 0 :
306 = (T (7)) e sel®) o)
where (-)" denotes the inverse operation of ().
Referring back to (5), we require the terms %(e‘l’f ) to be

able to compute % (T(s)). These derivatives are given by

0 v, _ w, oY,
8cie =e dexp( e,

where the dexp operator is defined in [37] as

dexp (%‘Zj> - <§:0 (;_j)lk)!adk (\I:j)> (%‘Zj> . (22

Closed-form expressions for dexp for the case of se(3)are also
available in [38].
and will vary depending on the order of the Magnus expansion
used. Alternatively, it can be estimated via finite difference
approximation.

The kinematic expressions defined above provide the equa-
tions needed for solving the shape sensing problem and com-
puting the forward/inverse kinematics for a particular continuum
robot design and string routing function definition. In Section IV,
we provide experimental validations of this modeling and shape
sensing approach.
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III. STRING ROUTING OPTIMIZATION

A benefit of our proposed kinematic formulation is that in
addition to capturing variable curvature deflections, it provides a
designer flexibility in the design of the string routing by allowing
nonstraight string routings. In some cases, there may be practical
mechanical integration considerations that would benefit from
nonstraight routing, e.g., routing strings around proprioceptive
sensing electronics embedded in the continuum structure [39] or
routing strings in a tapered path for a segment with a decreasing
diameter from base to tip [40]. In this section, we provide
considerations for choosing the string routing paths to reduce
the propagation of string measurement error to pose error while
avoiding illconditioned Jacobians.

For a general purpose manipulator, the external loading mag-
nitude and location may not be known a priori. For this reason,
here we propose a Jacobian-based method to optimize the string
routing path r;(s) without assuming any particular loading
conditions. We do this by designing ‘r;(s) to improve the
numerical conditioning of both the task space and configuration
space Jacobians to reduce the upper bound on error propagation
from the string length measurements to errors in the spatial curve
T(s). We validate the approach in simulations and experiments
in Sections IV, and V.

We first define the noise amplification index, a design measure
used in robot calibration [16]. For an expression Ax = b the
noise amplification is given by

min

O max (A)

where oin(A) and opax(A) are the minimum and maximum
singular values of A, respectively. As shown in [16], the noise
amplification index provides a bound on how errors in b prop-
agate to errors in x:

o2 (A)

R(A) = (23)

16%]| < [[ob]]. 24

( )

Within the context of shape sensing, (17) is the mapping
relating noise in string length measurement d€ to a change in
modal coefficients dc. Also, (19) provides the mapping relating
twist and changes in dc. We solve (17) for dc and substitute into
(19), then solve the equation for d£ to produce

4= Jye€(s), Joe = (JeIL)T

where () denotes the pseudoinverse. Using (24) and (25) has
the following noise amplification bound:

1
|15&(s)]] < NI

Since the pose T(s) is an integral of the twist, minimizing
the effect of string encoder measurement noise on the estimates
of the segment shape requires minimizing ||0&€(s)||, which in
turn requires maximizing R(Js¢). Since R(Jz) contains lin-
ear/angular velocity units, we multiply the first three rows
corresponding to angular velocity by a characteristic length ¢,
[41]. For our experimental and simulation results, we chose ¢y
to be the segment’s kinematic radius so that angular velocities
are scaled to represent linear velocities at the edge of the disk.

(25)

||oae]|. (26)
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We must also consider the numerical conditioning of the
configuration space Jacobian J ., since itis used when iteratively
solving (16). Since maximizing N(Jy¢) does not guarantee a
well-conditioned J ., we seek to also prevent N(J,.) = 0, which
would indicate a singular J,.. We define this design problem as
a constrained optimization problem

mlELX N, (J@g) s.t. N (ch) > € 227
where X is the global noise amplification index defined below, k
are a set of string path design parameters, and € is a lower-bound
on the noise amplification index. We will provide two examples
of defining k to ensure the string paths are physically realizable
in the simulation and experimental studies below. For these two
examples, k are restricted to a set of integers such that (27) can
be solved by a brute-force search.

We define R (A) as the global noise amplification index,
which is the average of X(A) over an admissible configuration
workspace C, denoting all admissible configurations c. This
global performance measure can be numerically approximated
by sampling C, along j sample points c; ... c; and computing
N(A) at each sampled configuration

Ry(A) = Je, NA)dC. EXJ:N(AJ. (28)

fca dca ‘7 i=1

We define the admissible workspace C,, as the set of all shapes
that a segment can achieve

Co ={c|f(c) <0} (29)

where f(c) is a vector of constraints on the robot’s configuration.
To compute the admissible workspace, we take samples in
the configuration space c and discard samples that violate the
constraints f(c). The constraints f(c) need to be defined on a
case-by-case basis, but in this article we define three constraints
that are relevant to the robots considered in our simulation
studies and experimental results.

The first set of constraints we consider are maximal strain lim-
its on the continuum structure €max = [€max,z, €max,y- €max.z]
Assuming a backbone diameter d;, and a beam model following
linear elasticity, the local curvature limits are given by

€max, j

max (uj(c,s)) @/2)

where max, denotes the maximum over s € [0, L] for a config-
uration c.

The second set of constraints we consider are the maximum
curvatures to prevent the intermediate disks from colliding.
Considering a subsegment of the robot between two intermediate
disks with length Lg, and assuming the subsegment is under
constant curvature as shown in Fig. 5, we have

(3)-57
tan (| — = ——
2 2(p* —ra)

where 6 is the angle between the intermediate disks, hg is the
height of each intermediate disk, 4 is the radius of each disk, and
p* is the radius of curvature when the disks collide. Substituting

<0, je{zyzt (30

€1V
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Fig. 5. Kinematic variables for a subsegment in a constant curvature config-
uration with disk collision.

t

Tzq

L m
Ty
Fig. 6. Variables of the kinematic model used in the planar case study.

0, = f) into (31), we have the following:

* L S

2 (p ’I“d) tan (2[)*) = hy (32)

where we solve numerically for p*. To prevent disk collision,

we then require that the curvatures in the x and y direction are

low enough to avoid this collision condition
e (o 4)) < = (33)

where 1/, (s) = [uz(s), uy(s)]" and max, again denotes the

maximum over s € [0, L].

The third set of constraints we include are given by (15), which
ensure that the string paths are physically realizable. Using
these three sets of constraints [as specified by (15), (30), and
(33)], we determine the admissible workspace by searching for
configurations that do not violate the constraints, and compute
N, for these admissible configurations. This allows us to explore
how to design the string routing paths to maximize N,, which
we do below for several simulation and experimental examples.

IV. PLANAR CASE STUDY

In this section, we present a simulation case study for a
segment subject only to planar deflections. We show that for
planar deflections and string routings with constant pitch radius,
the configuration space Jacobian J . is constant for any choice
of the modal basis ®(s). We then explore choices of string
anchor points and pitch radii that improve the noise amplifica-
tion indices N, (Jy¢) and R(J.). Consider a planar continuum
segment that is restricted to deflect in the = — z plane, i.e.,
u,; = u, = 0, as shown in Fig. 6. We choose to represent the
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Fig.7.  Tip position error between our kinematic model and a simulated Nitinol
rod rapidly converges as the number of strings p is increased. Individual data
points are shown for p = 1, and a subset of the 100 simulated variable curvature
rod shapes is shown in the inset.

curvature distribution using a second-order Chebyshev series as
given in (8), and we assume three strings are routed within the
segment and anchored at arc lengths s,,, 54,, and s,,. We also
assume the strings are routed in a path with a constant pitch
radius, i.e., 'r;(s) = [ry,,0,0]T, where r,, € R is a constant
scalar. Noting that 'r’,(s) = [0,0,0]", (13) simplifies to

twi(s) = [0, 0, (1 =70, ¢L(s)cy)] " (34)
Applying the requirement from (14) that (*w})Te3 > 0, for this
planar case, (12) simplifies to

b = Sq;, — T, /0 ¢5(s)cy ds. 35)

We will now consider how many strings are needed to ac-
curately predict the tip pose T(L) of this planar segment. We
assume here that the number of columns in the modal shape
basis is equal to the number of strings, i.e., p = m and Jy. is
square. This means each additional sensing string enables an
additional higher-order term to be added to the shape basis to
further reduce the tip pose error. Prior works that used shape
functions for modeling continuum robots have shown that low-
order shape functions can be sufficient for capturing variable
curvature deflections [18], [32], [42]. We will also demonstrate
this here for this simulation study and experimentally in Sections
IVand V.

We used a Cosserat rod mechanics model from [20], which
neglected shear strains and extension, to simulate a Nitinol rod
withalength L = 300 mm and a diameter of 4 mm (similar to the
central backbone Nitinol rod used in the robot in Section IV). To
generate a variety of variable curvature rod shapes, we subjected
the rod to planar forces in the world frame’s = direction and
moments in the world frame’s y direction, with the world frame
assigned as shown in Fig. 6. A subset of these variable curvature
shapes is shown in Fig. 7. The shape of the rod was obtained
as a solution to a boundary value problem using the shooting
method for each applied wrench. The maximum applied force
and moment were f. = [+£60,0, 0] Nand m, = [0, +6,0]T Nm,
with 10 wrenches selected between these maximum values, for
a total of 100 applied wrenches and rod shapes that were solved
for. For each set of 100 shapes and number of strings considered,
we determined the string routing radii and anchor points by
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solving the following constrained optimization problem:

max N (Jg.)

Ta;18a;

st. 0<s,, <L i=2,3,...,p (36)
where we have assumed that r,,, = 0.25 and s,, = L to repre-
sent an actuation tendon anchored at the end disk. We solved (36)
using the interior point solver provided by MATLAB’s finincon()
with an initial guess of evenly spaced radii and anchor points.
For each additional string, we used the Cosserat rod model to
determine the string lengths, then used these simulated string
lengths to predict the shape and tip pose T(L) by solving (16).

We report the error between the tip pose predicted by the
mechanics model and the solution given by solving (16) as a
percent of the segment length

ep (37)
where p, and p,, are the tip positions given by the mechanics
model and predicted via (16), respectively. The position errors
across the 100 shapes and for different numbers of strings are
shown in Fig. 7. We do not report rotation errors because, as
shown in [43], one string anchored to the end disk is sufficient
to provide the tip angle of a planar segment and the rotation
errors were therefore within numerical precision across all of
the simulations.

Fig. 7 shows rapid convergence of the tip position error as
the number of strings is increased. The average tip position
errors across the 100 simulated shapes was 15%, 0.47%, 0.059%,
and 0.0052% of the segment length for one, two, three, and
four strings, respectively. We proceed with this case study by
choosing p = 3.

Concatenating the string lengths for i = [1, 2, 3] results in

Sa1 qu(s) ds

Sa, e, 0 0 0 Y
0= |sa| = |0 rm 0|5, (s)ds|c, (38)
se] L0 0 ra] | fre 9T (s) ds

Jee

where we have denoted the Jacobian J,. with an underbrace.
For the planar case, Jy. is independent of the configuration c
(i.e., it is constant throughout the workspace).

Solving for the modal coefficients ¢, requires inverting J ..
This Jacobian is the product of a diagonal matrix whose elements
are the pitch radii of each string and a Vandermonde-like matrix
of polynomial functions determined by the choice of modal
basis. Here, we seek to design the string routing paths to improve
the numerical conditioning of Jy.. For a given choice of the
modal basis ¢, , the design parameters for each string are 1) the
pitch radii 7, ; and 2) the anchor points s,,.

There are several string routing design insights that can be
observed directly from (38). First, r,, must not be zero to
avoid rank deficiency. Second, increasing the pitch radius 7,
reduces the sensitivity of ¢, to changes in £, so increasing 7,
(while keeping the ratios of the pitch radii close to one) will
increase R(Jy.). Third, if any two string anchor points s,, are
equal, J,. will lose rank, so the strings should be anchored at
unique s,, along the segment. Noting that actuation tendons
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Values of a) R(J.) and b) R(J4¢) for different choices of string anchor points ( L and SaLQ ) shown for two sample string radii (fzL 7L and 22 ) in the

Fig. 8.

planar robot shown in Fig. 5. The location of the two peaks on each plot are marked with an asterlsk (), and a triangle (A) denotes the peak values for the other
designs included in Tables I and II. The contours for the peaks denoted with triangles are not shown for clarity, but they follow a similar pattern to the ones shown.

TABLE I
PLANAR CASE: LOCAL MAXIMA OF X(J ) COMPARED TO EQUIDISTANT
SPACING OF STRING PLACEMENT

a1 /L [ 7oy /L | say/L | say/L [ R(Jee) (x107%) [ B
o1 | 010 gL T0 o
010 | 020 g2 E—_
020 | o0 |5t 07 I3 aon
o | 020 |G O

Note: 3 shows the percent improvement in R(J.).

endowed with motor encoder sensing provide the same shape
information as a passive string encoder, this means that although
actuation tendons are commonly anchored at the end disk to
expand the segment’s workspace [35], any additional actuation
tendon anchored to the end disk provides no additional shape
information (in the planar case). In Section IV, we provide
conditions under which strings or tendons anchored at the end
disk do provide additional shape information for out-of-plane
deflections.

We will now consider how to choose s,, to maximize N(Jy,.)
(the noise amplification index of the configuration space Jaco-
bian) for our planar example. To represent an actuation tendon
that is anchored at the end disk, we choose s,, = L. We choose
T4, = 0.25 L to correspond to the typical length-diameter ratio
of most continuum robots. We now investigate how to optimally
choose the radii and anchor points of the two remaining strings.

Fig. 8(a) and Table I show N(Jy.) for different choices of
string radius and anchor point, from which we make several
observations. First, we note that each plot in Fig. 8(a) contains
two peaks, and that X(J,.) = Owhen s,, = s,, and when s,, =
Oors,, = L.Second, we observe that increasing the pitch radius
of both string increases R(Jy.) while not substantially changing
the peak location. Third, we note that increasing a single string’s
pitch radius increases N(J.) while allowing the location of the
peak to be adjusted.

Of note is the fact that the intuitive design choice of evenly
spacing out the anchor points along s = [0, L] does not result in
the best kinematic conditioning for J .. Table I shows the values
of the noise amplification index for each of the peaks in Fig. 8
as well as for designs where the string anchor points are evenly

TABLE I
LOCAL MAXIMA OF R (J z¢) COMPARED TO EQUIDISTANT
SPACING OF STRING PLACEMENT

PLANAR CASE:

rey /L | Teo /L] say /L | say/L | Ng(Ipe(L)) g
00| 010 50T 015 Hen
A e N
020 | 010 o5 osis oS T
00 | 020 |5 osr oo 7w

3 shows the percent improvement in R(Jpe).

spaced, i.e., Sq, = Sq,. Table I also shows the improvement in
the noise amplification index over the evenly spaced designs,
calculated as

6= [(R@e) =% (Tee) ) /X (Tec) ] x 100

where jgc denotes the Jacobians for designs having evenly
spaced wire anchor points at s,, = L/3,S4, = 2L/3, 54, = L.
As shown in Table I, placing the anchor points at one of the peaks
instead of using evenly spaced anchor points resulted in 46% or
greater improvement in R(Jy.) for all the cases considered.

We now consider improving the numerical conditioning of
the full kinematic mapping (joint to task space) Ry (Jge(L)).
We computed R (J ¢ (L)) for this robot using 67 configurations
sampled in the admissible workspace, which we defined as
any configuration that did not exceed 5% strain for a 4 mm
central backbone. Fig. 8(b) shows the noise amplification for
different string radii and anchor points. We observe that the
design parameters that optimize N, (J¢s(L)) are not the same
parameters that optimize N(J¢.) in Fig. 8(a), and in fact there is
a conflict between these two design objectives, since the peaks
in Fig. 8(b) correspond to valleys in Fig. 8(a). Since the design
objective is usually to minimize the pose error at a particular
location, designing for maximizing X, (J ¢ (L)) is sufficient as
long as the string routing solution avoids singularity of J,..We
also observe again that the intuitive design of using evenly
spaced anchor points does not result in an optimally conditioned
kinematic mapping. Table II shows the values of X(J (L)) for
the peaks shown in Fig. 8(b) as well as the percent improvement

n N(Jye(L)) as compared to a design using evenly spaced
anchor points, i.e., s,, = % and s,, = % The peak values

(39)
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of N, (Jse(L)) were increased by 76% or greater for all cases
considered.

In this planar example, we have shown that increasing the
number strings reduces the pose estimation error, provided string
path design considerations, and showed that the intuitive choice
of evenly spaced anchor points does not lead to optimal values
for the noise amplification. The optimal placement of string
anchor points depends to some degree on the family of deflected
shapes that a given robot experiences under target design op-
erating conditions (loading and reach). We have simulated the
same case using a monomial basis as opposed to a Chebyshev
polynomial basis and noted that the peaks in Fig. 8 experience
negligible changes. Nevertheless, the designer should carry out
asimulation as in Fig. 8 to achieve a qualitative understanding of
the optimal location of wire anchor points, and then, determine
these points while respecting practical design considerations.
Building on these simulation results, we will now demonstrate
our modeling and shape sensing approach on two other contin-
uum robot embodiments that are subject to more realistic spatial
deflections.

V. RoOBOTS WITH HIGH TORSIONAL STIFFNESS AND
CONSTANT PITCH STRING PATHS

‘We now consider robots that are subject to spatial deflections
but have sufficiently high torsional stiffness that renders the
torsional deflections negligible. We consider this category of
robots because a number of continuum robots with high torsional
stiffness have been presented in prior work [44], [45], [46], [47],
and we will present here a new modular collaborative continuum
robot in this category and use it to experimentally validate
the model we present. This model is also directly applicable
to hyperredundant robots with torsionally stiff universal joint
backbones, e.g., [25], [48]. This category of robots is also of
interest because, as we will show, if the string paths are restricted
to constant pitch radius paths, the configuration space Jacobian
is constant and the modal coefficients are linear with respect
to the string lengths, which simplifies the solution of the shape
sensing problem.

First, we will present the kinematic formulation for this cat-
egory of robots and provide considerations for designing the
string paths. In particular, we show that two strings anchored to
the same disk add distinct information only if their polar coor-
dinates are distinct by angle difference other than 0° and 180°
(i.e., they are not collinear in the radial direction of the disk). We
then present the results of the string routing optimization for our
collaborative continuum segment and experimentally validate
the sensing approach, showing that the end disk position can
be sensed with position errors below 5% of arc length using
information from four passive string encoders and two actuators.

A. Kinematic Model for Torsionally Stiff Continuum Robots

Under the assumption of negligible torsional deflections, i.e.,
u(s) = 0 the shape basis (4) takes the form

¢ 0
u(s)= |0 ¢3 ce = P(s)c. (40)
0o oL
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We restrict our consideration here to constant pitch-radius string
routings given by:
. T
I‘Z(S) = [rm Ty, O} y Tz € R, Ty, € R. 41)

Noting that r/(s) = [0,0,0]", the string path derivative (13)
simplifies to

fwl(s) = [O, 0, (ryicﬁ;rcm — mi(bgcy + 1)]T.

Applying the requirement from (14) that (‘w’)Ye3 > 0 and
using (12) results in the string length as

0= S0, + ( /0 [ry@E, —rmi¢ﬂ ds) c

(42)

(43)

where ¢ = [C;F, cg] * Concatenating for each string ¢ €
[1,...,p] gives
Sa,y [)Sa1 |:lry1 ¢37 Tz, ¢ﬂ ds
L= |+ : c. (44)
Sa,, Osap |:Typ ¢E’ _rxp ¢5:| ds
Jie

As in the planar case, we observe that J . is independent of the
configuration c.

We now consider how to choose the anchor points and string
paths to avoid singularities in J,.. Consider the scenario where
two anchor points are equal, s, = 84,7 # j. To prevent sin-
gularities, we must avoid a scenario where two rows of Jy.
become dependent, e.g., one row is a scalar multiple of another.
Considering a cross section of the segmentat s = s,, = s, this
will occur if the string radii [r,,,7y,] and [ry,, 7, ] lie on a line
passing through the origin of the body frame T'(s,,) = T(sq, ).

Furthermore, anchoring more than two strings will also cause
J . to become rank-deficient. This is apparent since two radially
noncollinear strings define the plane of the disk. Therefore, for
an inextensible, torsionally stiff continuum segment, no more
than two parallel-routed strings should be anchored to the same
intermediate disk (to prevent rank-deficiency in Jy.).

B. Experimental Validation on a Collaborative Continuum
Robot Module

We now validate our kinematic model on a continuum seg-
ment, shown in Fig. 9 and in the multimedia extension, that is a
portion of a robotic arm currently under development for collab-
orative manufacturing in confined spaces. Additional discussion
on the motivations for development of this device can be found
in [39] and [49].

The flexible structure of the segment consists of aluminum
intermediate disks with torsionally stiff metal bellows attached
to the disks with an acrylic adhesive. Each bellow has a tor-
sional stiffness of approximately 63 Nm/°, making the bellows
approximately 1950 times stiffer in torsion than in bending. For
the target application, the segments are expected to experience
static torsional loads of up to 64 Nm, resulting in approximately
1° of torsional deflection per bellow. Since these maximum
deflections are small relative to the bending deflections, we
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Fig.9. Modular continuum segment consists of torsionally stiff metal bellows
(D with a g 4 mm Nitinol rod (2) passing through their centers. The segment
is actuated with a capstan mounted on a linear ball spline (3) that is actuated
by a brushed DC motor/geartrain (#). Idler pulleys (5) provide a 2:1 reduction
in the actuation tendon force. Each continuum segment contains four string
encoders, which consist of a wire rope (6), a constant-torque return spring (7),
and a magnetic encoder (8) with an 12 C interface (9).

Shape sensing Per
string S T3 S

Actuation g it 3D
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idler ,L 1

(a)

Fig. 10. Path of the actuation tendons (numbered 5-12) and string encoders
(numbered 1-4) are shown in (a) a 3-D view, and (b) a simplified side view.
Shown in (c) is the top view of an intermediate disk with the locations where
each string/tendon passes.

neglect the torsional deflections in our kinematic model below.
These bellow subassemblies are bolted together, and a g4-mm
solid Nitinol rod is passed through the center of the structure to
prevent contraction of the segment. The length of the segment,
measured from the top of the actuation unit to the bottom of the
end disk, is 300.65 mm.

The segment is actuated by a pair of actuation tendons that
pass through bronze bushings in the intermediate disks and are
made from & 2.38-mm steel wire rope. The actuation tendons
are actuated in a differential manner (as shown in Fig. 10) by a
capstan mounted on a linear ball spline, and this ball spline
is actuated by a gearmotor with a 111:1 gear ratio (maxon
DCX?22 L/GPX22HP) through a single spur gear stage with a
gear ratio of 1.851. In the distal endplate assembly of the seg-
ment, idler pulleys route the tendons back towards the base of the
segment, and the tendons are anchored to a manual pretensioning
mechanism within the actuation unit. These idler pulleys provide
a 2:1 reduction in the tendon force, which reduces the required
sizing of the mechanical components in the actuation unit.

2317

Each intermediate disk is also equipped with 8 time-of-flight
proximity sensors and 8 contact sensors which enable mapping
of the environment, human-robot physical interaction, and brac-
ing against the environment along the entire body of the segment.
The potential for whole-body contact with this segment is one
motivation for the study of sensitivity analysis along different
arc-lengths that we carry out below. Additional details on these
sensing disks can be found in [39] and [50].

Four custom-built string encoders are mounted in the distal
portion of the segment, as shown in Fig. 9. The encoders have
a #0.33-mm diameter wire rope wrapped around a &12-mm
capstan and a constant-torque return spring (Vulcan Spring
SV3D48) that results in a constant preload of 3.3 N on each
string. This preload was sufficient to overcome friction and
keep the string taught. Although the preload had a negligible
effect on the robot shape, we note that our kinematic approach
captures any deflections that occur due to the string preload. A
printed circuit board (PCB) with a magnetic encoder (Renishaw
AM4096 12 b incremental) measures the angle of the capstan.
The PCB also has connectors for the encoder’s 12 C interface. All
of these components are housed in a 3-D printed PLA housing.
The magnetic encoder angle is read via I 2 C by a Teensy 4.1
microcontroller at a rate of ~150 Hz. The Teensy then provides
the angle via UDP using a Wiznet WIZ850IO ethernet board to
a robot operating system (ROS) node that publishes the string
extensions on a ROS topic.

The segment motors are controlled with a control box con-
taining six motor drivers (maxon ESCON 50/5), encoder reading
cards (Sensoray 526), and a PC/104 CPU (Diamond Systems
Aries) running Ubuntu/Linux with the PREEMPT-RT real-time
patch. A higher-level ROS controller computes a fifth-order
quintic polynomial trajectory and sends desired velocities to
the motor control box via UDP. A real-time PI controller then
commands desired motor currents based on the desired posi-
ton/velocity profile.

The radius of the capstan on each string encoder was cal-
ibrated by extending the string in 0.2-mm increments using
a 3-DoF Cartesian robot. The linear stages of the Cartesian
robot are Parker 404XR ballscrew linear stages actuated with
brushed dc motors (Maxon RE35) and equipped with 1000
counts-per-turn encoders. The motion control accuracy of the
linear stages was evaluated at 15 pm. The Cartesian robot was
used to extend/release the string over n, = 1201 positions given
byd, =[0,0.2,0.4,...,120,119.8,119.6,...,0]" mm. Using
the wrapping capstan model while neglecting the helix angle,
we obtain the measurement model d,, = 6.7, where 8, € R"¢
is the vector of magnetic encoder angles and 7. is radius of the
encoder capstan. We then solve for the value of r, that minimizes
the least-squares error between the predicted string extension
based on string encoder angle and the distance traveled by the
Cartesian robot by evaluating r, = der. We calibrated all four
of the string encoders and found that the average extension
measurement error was below 0.1 mm (0.08% of the total stroke)
and the maximum extension measurement error across all four
string encoders was 0.27 mm (0.23% of total stroke). Due to
space considerations for integrating sensing electronics in the
intermediate disks [39], the strings are restricted to be routed
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in constant pitch radius paths. The strings paths are therefore
given by (41), where the values for 7., and r,, are determined
from the geometry in Fig. 10(c). Since the string encoders are
mounted in the distal endplate (instead of in the robot’s base),
the string lengths ¢;, 7 € [1,2,3,4] are found via (12), except
integration is performed from s,, to L rather than from 0 to s,
resulting in an expression similar to (43).

We also use the actuation tendon lengths 4;, i € [5,...,12]
as additional input to the problem of shape estimation. The
routing path definitions for the actuation tendons require special
consideration because of the idler pulleys in the end plate that
reduce the tendon force by rerouting the tendons to the base
of the robot. We separate the actuation tendon paths into eight
different curves between the base plate and the end plate, as
partially shown in Fig. 10(a) as blue curves. We then require
the difference in the tendon path lengths on each side of the
actuation capstan be equal to the change in length due to the
actuation capstan rotation

Alyg, = A (s + lg) = —A (Lg + £1p)
Alyg, = — A (b7 +lg) = A (11 + 12)

where /5 . . . {15 refer to the actuated tendon lengths correspond-
ing with the numbered bushings shown in Fig. 10(c), and ¢,
and /g, are the change in tendon length due to rotation of the
capstan for joints 1 and 2, respectively. The values of ¢y, and
Ly, are determined from the motor angles while accounting for
the helical wrapping pattern on the capstan

bi
bo, = 27
where 6, and 6 are the angles of the first and second actuation
capstans, respectively, . is the radius of the capstan, and + is the
lead of the helical groove on the capstan. The actuation tendon
lengths ¢;, i € [5...12] are found via (43).

Information from the two motor encoders and the four string
encoders allows for a modal basis with six columns (p = 6).
Neglecting torsional deflections, the curvature distribution is
given by (40) with the following shape functions:

(45)

(2mre)? +42, i€ [L,2] (46)

$.(5) = by(5) = [T, T2 (), To(s)] 47)

The string encoder length equations for i € [1, 2,3, 4] are con-
catenated together with (45) to give the string lengths in a similar
form as in (44), but accounting for the string encoder routing as
described above while adding the tendon lengths

2 L — sq,

2 L — sq,

o) _ L= sea| Joe, Jupe € RS ceRC.
ly L — 54,

@51 0

_692_ L 0

(48)

Given a set of string measurements, we then solve (48) for the
modal coefficients ¢ with a single matrix inversion. Our MATLAB
2019b implementation computes c at a rate of ~ 125 kHz. As
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Fig. 11. Noise amplification indices at the end disk and the third disk for

all physically realizable string routing designs of the collaborative continuum
robot. A large range of noise amplification indices are possible, but the noise
amplification indices for the design optimal for end disk pose estimation is not
significantly different than for the design optimal for Disk 3 pose estimation.

with the planar example above, the configuration space Jacobian
J e 1s constant when assuming zero torsional deflections, so J .
and J,.! can be computed once and stored.

Based on the analysis in Section IV-A of singularities in J..,
the two actuation tendon equations in (45) do not introduce
singularities into J ., because the tendon pairs that are collinear
with the central backbone point are in the same equations in
(45). However, any additional string anchored at the end disk
(or equivalently at the base disk for the strings mounted in the
endplate) would not provide additional shape information. The
radius of the passive sensing strings is fixed, so in designing the
string paths for this segment, we can only change the string an-
chor points. The anchor points are also restricted to the discrete
points along the central backbone where the five intermediate
disks lie. We therefore have five possible choices for s, for each
of the four strings.

To design the string routings, we run a brute-force search
across all possible combinations of s,, (625 possible designs)
to find the combination with the largest X, (J¢(s)). We chose
the characteristic length to be 0.0652, the kinematic radius of
the actuation tendons. The global noise amplification index XN,
was computed for a set of 320 configurations in the segment’s
admissible workspace, and the noise amplification index for the
end disk, denoted as R (Jge (L)), and the noise amplification
index for the third disk, denoted as X, (J ¢ (s3)), where s3 is the
arc length at which the third disk is located, were computed at
each configuration.

Out of the 625 string routing designs considered,
225 resulted in a singular Jpe(L) and (Jpe(s3)).
Fig. 11 shows the noise amplification indices for 400 of
the string routing designs in our brute-force search that did
not result in singularities. Some designs resulted in the noise
amplification being particularly close to zero. For example, one
poorly conditioned routing design was a design with anchor
points at disk 2, disk 4, disk 3, and disk 5, for strings 1-4,
respectively, with the disk numbers given in Fig. 10. This
design places one string on each disk except disk 1. Although
this choice might seem reasonable to a designer at first glance,
its noise amplification index is Ry (Jse (L)) = 8.3e-3, which is
two orders of magnitude smaller than for the optimal design.
This highlights the importance of carrying out the sensitivity
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TABLE III
NOISE AMPLIFICATION INDICES FOR OPTIMIZED STRING ROUTING DESIGNS ON
COLLABORATIVE CONTINUUM MODULE

Disk used for routing optimization
End 3rd
Ny (Je(L)) 8.69%¢-3 6.94¢-3
Ry (Je(s3)) 5.08¢e-5 5.79-5

analysis we present herein when choosing a string routing
design to avoid these illconditioned string routings.

From the designs in Fig. 11, we found that the anchor points
that maximize R, (J¢ (L)) were disk 4, disk 4, disk 2, and disk
2, for strings 1-4, respectively. Below, we will refer to this
string routing design as the end disk routing. For maximizing
R, (Jee(s3)), the optimal anchor points were disk 1, disk 1, disk
3, and disk 3, for strings 1-4, respectively. Below, we will refer
to this string routing design as the third disk routing.

The noise amplification indices for these two optimized de-
signs are given in Table III. Although the brute-force search
optimization increased N, (Jg (L)) for the end disk routing
by 25% compared to the middle disk routing, and the value
of N, (Je(L)) for the middle disk routing was increased by
14% compared to the end disk routing, we will show in our
experimental results below that these changes in R, (J ¢ (L)) are
not large enough to have a significant effect on the pose error
either at the end disk or at the third disk. Either of these string
routing designs could be chosen for this robot without having a
significant effect on the pose error.

We experimentally validated the shape sensing approach
on the physical continuum robot. We routed the string en-
coders according to the two routing designs given by our op-
timization procedure, and for each string routing design, we
measured the shape of the segment across a large variety of
variable curvature shapes, a subset of which are shown in
Fig. 13. The segment was mounted on a revolute joint driven by
an off-the-shelf actuator (Dynamixel PH54-200-S500-R), and
the angle of the revolute joint was commanded to 0, 45°, and
90°. For each of these three angles, we commanded the segment
to move from the initial home configuration to four different
configurations: 8 = [0°,500°], 8 = [0°, —500°], 8 = [500°,0°],
and 0 = [-500°,0°], where 8 = [0, 0] contains the angles
of the actuation capstans. The motion profile to reach these four
poses was generated using a fifth-order polynomial trajectory
planner, with a time of 45 s to move to the desired configuration
from the initial home configuration. During these motions, we
continuously captured the string lengths using the rosbag ROS
package. We captured ground-truth pose of the third intermedi-
ate disk and the end disk using a stereo vision optical tracker
(ClaroNav H3-60) and optical markers mounted on the robot.
The data collection rate is limited by the optical tracker’s ~ 8.5
Hz sample rate. This experiment was carried out with the end
disk routing, and then repeated for the third disk routing.

Using the string length measurements acquired with the string
encoders, we solved for the modal coefficients using the full
shape sensing model given by (48). To compare against a sce-
nario where the robot did not have shape sensing encoders, we
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Fig. 12.  Frequency histogram of pose error when the string routing is op-
timized to minimize the effect of measurement noise for either the end disk
pose (end disk routing) or the pose of the third disk (third disk routing).
(a) The end-disk position error histograms for both routings showing that the
error distribution for T'(L) is shifted leftward compared to the third disk routing.
(b) The third-disk position error histograms for both routings showing that the
error distribution for T'(s3) is shifted leftward compared to the end disk routing.

Optical
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Fig. 13.  Subset of the variable curvature spatial configurations used to validate
our shape sensing approach for a torsionally stiff continuum segment with
straight string routing. The third and end disk poses were captured using optical
trackers with and without weights attached to the end disk.

also reconstructed the shape using only the actuation variables
0. For this case, we used a modal basis with two columns where
¢ = ¢, = 1. This is identical to the commonly used constant-
curvature model [35]. We report the constant-curvature model
results using the data set collected with the third disk routing,
but note that the errors were similar for this constant-curvature
model using the end disk routing.

The mean and maximum errors of our shape sensing model
(with the two different routing designs) as well as the constant
curvature model are given in Table IV. The position error is given
by pe(s) = ||pm0del(5) - pmeas(5>||’ where pmodel(s) S R? is
the model-predicted position, and ppeqss(s) € R® is the mea-
sured position, and we denote the average of p.(s) across all
configurations as p.(s). The angular error is given by

cos- L (trace(Rmeas(s)Rmodel(s)T — 1) “9)

0c(s) = 5
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TABLE IV
AVERAGE (MAXIMAL) ABSOLUTE POSITION AND ORIENTATION ERRORS IN MM
AND ° FOR THE SEGMENT IN FIG. 9

End disk Third disk w/o passive

routing routing strings
Pe(L), max (pe(L)) 5.9 (14.4) 6.0 (13.8) 56.2 (104.9)
Pe(s3), max (pe(s3)) | 3.8 (10.2) 3.3 (9.2) 31.8 (58.6)
0 (L), max (0 (L)) 1.5 (8.6) 1.5 (3.9) 3.6 (14.4)
e (s3), max (fe(s3)) 2.0 (6.0) 1.6 (4.2) 15.4 (28.1)

Note: The errors are specified for the end disk (s = L) and the 3rd Disk (s = s3).

where Ripeas(s) € SO(3) is the measured rotation matrix and
Rinodel (8) € SO(3) is the model-predicted rotation matrix. Both
the end disk routing and the middle disk routing reduced the
mean end disk errors compared to the constant curvature model
by more than 89% in position and 58% in angle. The maximum
end disk error was reduced compared to the constant curvature
model by more than 85% in position and 40% in angle for both
string routing designs. Both routing designs have average tip
position errors below 2.0% of the total arc length, a significant
improvement compared to the constant curvature model error of
18.7% of total arc length. The maximum tip position error of our
approach was 4.8% of the total arc length, compared to 34.9%
for the constant-curvature model.

The third disk routing reduced the mean position error at s
by 0.5 mm and the maximum by 1 mm. The third disk routing
design also reduced the mean angular error at s3 by 0.4° and
the maximum by 1.8°. Fig. 12 shows the histograms of the
normalized error e,, € IR at the end disk and the third disk:

€n = \/Hpmodel - pmeasH + c0. (50)

where ¢, is the characteristic length used in the string rout-
ing design optimization procedure (in this case, we used the
kinematic radius of the disk 0.1304/2 m as shown in Fig. 10).
We observe that, as expected, the error distribution of T(s3)
is shifted leftward towards reduced error due to the increase in
N, (Jee(s3)). However, we also observe that the maximum errors
for T(L) were higher using the routing optimized for the end
disk. This indicates that the change in the noise amplification
index at T'(L) when using the routing optimized for the third
disk was not significant enough to affect the tip pose error in a
way that would overcome other sources of error, i.e., friction,
mechanical clearances, and the continuously parallel routing
assumption. Overall, while the general trends in the errors match
the expected behavior due to the noise amplification index, we
observe that the pose error of the middle and end disk was not
substantially affected, meaning that either of the two optimized
string routing designs could be used. This provides flexibility in
the string routing design.

In this section, we have presented the kinematic formula-
tion for sensing deflections of robots with negligible torsional
stiffness. The formulation results in a constant configuration
space Jacobian and linear shape sensing equations. We validated
the model and approach for a collaborative continuum robot
with high torsional stiffness and constant pitch radius string
paths, showing that our approach sensed the tip position with
errors below 4.8% of total arc length. We now demonstrate the

IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 3, JUNE 2023

221 mm

locking .
tabs disk 1 (b)

string encoders (x4)
o g

silicone (a)

cover

idler pulley (x4)

Fig. 14.  To validate our approach for torsional deflections and helical string
routing, we simulated a modular soft continuum segment. The segment’s in-
terlocking subsegments are overmolded with silicone, and a Nitinol rod passes
through their centers. Four string encoders are mounted at the segment’s base,
and each intermediate disk (b) has 32 holes to enable helical string paths.

approach for the more general case of robots with nonnegligible
torsional deflections and helical string routing.

VI. SENSING TORSIONAL DEFLECTIONS WITH HELICAL
STRING PATHS

In the section above, we validated our shape sensing approach
on a segment with high torsional stiffness. Neglecting torsional
stiffness significantly simplifies the model equations and reduces
the computation cost of solving for the shape. However, many
continuum robots have relatively low torsional stiffness, so
torsional deflections cannot always be neglected. In this section,
we consider helical string routing as a way to sense torsional
deflections. We then validate the approach in a simulation study
using a Cosserat rod mechanics model.

We chose the geometry of the simulated continuum robot
based on a concept for a modular soft continuum robot, shown in
Fig. 14. The subsegments of the robot are built with cylindrical
silicone overmolded on the outer circumference of the interme-
diate disks to act as a soft outer cover, and the bottom plate of
each subsegment has locking tabs that mate with a slot in the top
plate of the previous subsegment. A 293-mm long solid Nitinol
rod passes through the center of the continuum robot to prevent
compression of the structure.

Four string encoders (as described in Section IV) are mounted
below the segment, and four tendons are routed to actuators via
idler pulleys below the segment’s base. In this embodiment, the
actuation tendons are routed in straight paths with the tendon
path given by (41). We assume that two of the tendons are
anchored at the end disk, and that two of the tendons are anchored
at disk 7. This choice in anchor points for the actuation tendons
allows all four actuation tendons to provide shape information
(since more than two strings anchored to a disk will result in
a singular Jy. when the robot is straight) while still allowing
the segment to bend in all four directions and have a large
reachable workspace. The string encoders are routed in helical
paths given by (51). As shown in Fig. 14(c), the bottom plate of
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each subsegment has 32 holes through which the strings pass,
allowing the strings to be routed in the desired helical shape. We
now optimize the anchor points of the four string encoders and
the twist rate of their helical paths.

The helical routing string path function is given by [36]

fri(s) = rsfcos(ws + ay), sin(ws + a;), O}T (51)

where 7 is the radius of the helical path, w is the twist rate of the
helical path (which we assumed was constant and equal for all
four strings to prevent the string paths from intersecting), and «;
is an angular offset for each string. Since we have eight inputs
to our shape sensing model (four passive string encoders and
four active actuation tendons), we choose a modal basis with
eight columns. The modal shape basis is given by (4) with the
following shape functions:

T
$.(5) = b, () = [To, Ta(5), To(5)]

T
6.(5) = [T, Ta(s)] (52)
where the Chebyshev functions T;(s) are given by (9). We
compute the string lengths and the configuration space Jacobian
J¢c by numerically integrating (12) and (18), respectively.

We solved the optimization problem (27) with € = le-7
through a brute-force search of all possible string anchor points
(disks 1-10) and helical path design parameters. Given the 32
holes on the intermediate disks, as shown in Fig. 14, the helical
path twist rate can be approximated as w = n,,7y, where n,, € R
determines the number of routing holes to skip in between the
intermediate disks when routing the string, and v = % is the
angle between the routing holes, as shown in Fig. 14. We con-
strained the twistrate ton,, < 2to prevent large twistrates, since
excessive twist rates increase the possibility of binding between
the string and the routing holes. With the ten possible string
anchor points and two possible twist rates for four strings, there
were 20 000 possible string routing designs that we evaluated.
Using a prototype subsegment, we experimentally determined
that each subsegment can bend up to 10° and twist up to 7.5°
without mechanical failure, so the admissible workspace was
defined as a set of 32 sampled configurations that did not exceed
10° of bending and 7.5° of twist in each subsegment. We chose
the characteristic length to be radius of the segment, 37.5 mm.
We discarded all designs that violated R, (Jg.) > le-7. We will
consider below the fourth, sixth, and end disk as representative
examples to optimize J ¢ for, so we stored the noise amplifica-
tion indices for s = L, s = s,4 (the location of the fourth disk),
and s = sg (the location of the sixth disk).

Fig. 15 shows the noise amplification indices across all string
routing designs that did not violate R, (J,.) > le-7, sorted in
descending order of N, (Js(L)). Table V shows the values
Vo (Jee(L)), Ng(Jee(s6)), and Ry (Jre(s4)) for the designs that
maximize each of these three values (which are also indi-
cated with arrows in Fig. 15). We observe that the design
that maximizes N, (J ¢ (s¢)) results in only a 0.8% decrease in
R, (Jee(L)), however, the design that maximizes Ny (Jse(s4))
results in a 90% decrease in Ng(Jge(L)). Choosing the string
routing design that maximizes X, (J ¢ (s4)) would therefore tend
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Fig.15.  Noise amplification indices across all physically realizable string rout-
ing designs for the simulated soft robot with torsional deflections. The routing
that maximizes Ry (J g¢ (s4)) results in a significantly reduced Ry (Jz¢ (L)), but
for disk 6, Ny (Jg¢ (L)) does not significantly change.

TABLE V
NOISE AMPLIFICATION INDICES FOR OPTIMIZED STRING ROUTING DESIGNS ON
SIMULATED SEGMENT WITH HELICAL ROUTING

Disk used for routing optimization
End 6th 4th
Ny (Je(L)) | 3.47e-3 | 3.50e-3 3.35¢e-4
Ny (Jre(s6)) | 5.24e-4 | 5.40e-4 2.27e-4
Ny (Jge(sa)) | 791e-5 | 8.27e-5 8.85¢-5

to increase the pose error at s = L. We also note that R (J ¢ (s4))
only increases by 4.6% between the end disk routing and the
fourth disk routing, indicating that we would not expect to see
a significant change in the pose error at s, between these two
designs. We will now validate these predicted behaviors in a
simulation study.

We simulated the robot in Fig. 14 using the Cosserat rod model
from [36]. This model takes as inputs the applied tensions on
the actuation tendons as well as the external forces/moments
applied to the tip of the segment and returns the curvature,
shear, and extension of the segment. We simulated the robot
with a preload force of 25 N applied on all four tendons, and
applied additional forces of up to 300 N on the tendons to bend
the segment in 8 different directions. For each direction, we
applied 12 different external wrenches with forces of £20 N
and moments of + 4 Nm, expressed in the world frame. We
selected these loads to generate a large variety of shapes without
exceeding the maximum curvature to keep the segment within
its admissible workspace. We also included constant forces of
3.3 N on the helical strings due to the constant-torque spring in
the string encoder housing.

For each tendon tension/external wrench combination, we
started with the segment initially unloaded and incremented the
external wrench with 5 steps to incrementally apply the load and
solve for the shape at each external wrench increment. We did
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Fig. 16. (a) A subset of the spatial configurations used to validate our shape

sensing approach on a segment subject to torsional loads utilizing helical routing,
and (b) the segment in its zero-curvature configuration.

TABLE VI
AVERAGE (MAXIMAL) ABSOLUTE POSITION AND ORIENTATION ERRORS IN MM
AND ° FOR THE SEGMENT IN FIG. 14

End disk Fourth disk w/o passive

routing routing strings
Pe(L), max (pe(L)) 1.29 (3.39) 1.94 (5.64) | 5.61(32.87)
Pe(s4), max (pe(sa)) | 0.45(0.90) | 0.52 (1.51) 0.63 (3.07)
O (L), max (6. (L)) 1.17 (3.04) | 6.72 (21.78) | 4.55(23.44)
0c(s4), max (0e(s4)) 0.61 (1.55) | 0.57 (1.20) | 2.15 (12.17)

Note: Errors are specified for the end disk (s = L) and the 4th disk (s = s4).

this to ensure that a good initial guess was provided to the solver -
asubset of which is shown in Fig. 16. This simulation resulted in
480 different configurations of the continuum segment. For each
configuration, we stored the string/tendon lengths, and then used
these lengths as inputs to our kinematic shape sensing model
to compare the accuracy of our shape sensing approach. Our
unoptimized MATLAB 2019b implementation used MATLAB’S
Isgnonlin() to solve (16) for c at a rate of ~ 4 Hz on average,
using an 80 point trapezoid rule to compute J,.. Future code
can be orders of magnitude faster with direct implementation in
C++.

We compared the mechanics model to two different shape
sensing models. The first used all 8 length measurements (4
string encoders and 4 actuation tendons) with the modal basis
given by (52). The second used only the 4 actuation tendons
to compare our shape sensing model to a scenario without
any helical shape sensing strings. For this second model, the
modal basis has 4 columns and is given by (40), with the modal

functions given by ¢, (s) = ¢, (s) = [To, Tl(s)} '

The statistical results are given in Table VI, where we denote
the string routing design that maximizes Ny (J¢e(L)) as the
end disk routing and the string routing design that maximizes
Ny (Jee(sa)) as the fourth disk routing. Both optimized string
routing designs had maximum absolute end disk position errors
below 2% of arc length. However, the fourth disk routing resulted
in a 616% increase in max(6.(L)) compared to the end disk
routing. There was also a 474% increase in 6. (L), and small
increases in both p. (L) and max(p. (L)) when compared to the
fourth disk routing. This confirms the expected behavior due to
the large decrease in R, (J ¢ (L)) in the fourth disk routing given
in Table V.
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Fig. 17. Histograms of normalized pose error at the end disk and at the fourth

intermediate disk for the routing that maximizes X ¢ (J z¢ (L)) and for the routing
that maximizes Ry (J ¢ (s4)). The pose error at the fourth intermediate disk is
not significantly effected by the change in routing design, but the tip pose error
is significantly effected due to the larger change in N (Jz¢ (L)) between the
two designs.

Fig. 17 shows the histograms of the error at the end disk and
the fourth disk, normalized using (50). We observe that the end
disk error with the end disk routing is shifted leftward compared
to the fourth disk routing errors, as expected due to the large
change in N, (J g (L)). Furthermore, since Ny (Jy(s4)) did not
significantly change, we do not see a significant difference in the
error distribution for the fourth disk pose, and in fact see a small
shift rightward with the fourth disk routing. This increase in error
using the fourth disk routing is explained by the known fact that
kinematic conditioning indices are not guaranteed to directly
correlate with the true errors (see [51]). Large changes in the
conditioning index should be sought to increase the possibility
of reducing the true errors.

Compared to the model without string measurements, the end
disk routing reduced the maximum end disk position error by
90% and the maximum angular end disk error by 87%. The
fourth disk routing reduced the fourth disk maximum position
error by 51% and the fourth disk maximum angular error by 90%.
These simulation results demonstrate that 4 passive string (to-
gether with the four actuation tendons) can significantly improve
the accuracy of continuum robot kinematics over actuation-
based sensing alone.

VII. CONCLUSION

In this article, we have presented a Lie group kinematic
formulation for capturing variable curvature deflections of con-
tinuum robots using general string encoder routing. We used this
formulation for a sensitivity analysis of the error propagation
from error in string extension measurements to error in the
modal coefficients and error in the central backbone shape. This
analysis allows the designer to avoid string encoder routings that
lead to illconditioned Jacobians. We then applied the approach
on a planar example, a segment with high torsional stiffness,
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and a robot subject to torsional deflections using helical routing,
showing that this shape sensing approach can result in mean and
maximal absolute position error below 2% and 5% of arc length,
respectively.

Our results provided several simple design guidelines for
routing the strings to improve numerical conditioning, which
we summarize here. For a planar segment, the strings should
not be anchored at the same disk, and the pitch radius should
be maximized. For a segment with high torsional stiffness, no
more than two strings should be anchored to a disk, and if two
strings are anchored to a disk, their anchor points should not be
collinear in the radial direction of the disk. For segments with
general deflections including torsion, simple design rules are
more difficult to define, but the numerical conditioning can be
improved using our proposed design optimization procedure.

This sensing approach utilizes standard mechanical and elec-
trical components, providing a relatively low-cost way of sens-
ing the variable curvature deflections of large continuum robots,
and the kinematic formulation and analysis presented herein
enables practitioners to design string routings that improve
the numerical conditioning of shape sensing. We have shown
that four string encoders can provide accurate shape sensing,
and have demonstrated a physical embodiment of a segment
utilizing this approach, but a drawback of this approach com-
pared to other sensing methods is the physical space required
to mount the string encoders within the robot. To overcome
this drawback, directions for future work include investigating
more tightly integrated design of the string encoder mechanical
components into the robot body or mounting of the string
encoder housing remotely outside of the robot body. Future
work also includes evaluation on multi-segment continuum
robots and using this shape sensing approach and Lie group
kinematic formulation to provide updates to continuum robot
mechanics models.
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