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Abstract We study mean-field BSDEs with jumps and a generalized mean-field operator
that can capture higher-order interactions. We interpret the BSDE solution as a dynamic
risk measure for a representative bank whose risk attitude is influenced by the system.
This influence can come in a wide class of choices, including the average system state or
average intensity of system interactions. Using Fenchel-Legendre transforms, our main
result is a dual representation for the expectation of the risk measure in the convex case.
In particular, we exhibit its dependence on the mean-field operator.
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1. Introduction

We consider a mean-field BSDE with a mean-field operator which can accommodate several
types of interactions. The dynamics is

—dXt = f(t,w, F(t, Xt—),Xt— s Zt,ét())dt — thWt — /ft(e)N(dt, de), XT = f, (11)
E

where the mean-field operator F is a B([0,7]) x B(L?)— measurable operator from [0,7] x L?
to R. The precise conditions are given in the next sections.

Mean-field BSDEs of type (1.1) are studied in [1], where standard existence, uniqueness, and
comparison results are provided for the special case where the mean field captures the average
state in the system. We also refer to the seminal paper on mean-field BSDEs and their
stochastic limit approach (see [5]) and to the papers [20, 21] in which the coefficient of the
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BSDE depends, in particular, also on the law of the quadruplet of the solution of the forward-
backward SDE with jumps.

In our present work, we start from the observation that in many applications (and specifically
in interacting systems), it may be desirable to incorporate the intensity of system interactions as
well, and not only the average state. The driver of the BSDE may contain in our case a “second-

order” mean-field interaction term of the form
F(t, X;) = / w2 ) (da)pe (da') = E[w(Xe, Xi)], (X, X)) ~ e @ pur) (1.2)
RxR

for a Lipschitz function k:R xR — R. This can be viewed as a kernel that captures the
intensity of interactions. The process X;’ is an independent copy of the same distribution pu; as
X;. Note that setting the kernel x constant in its first argument, we can recover the expectation
operator considered in [1] as a particular case. In section 2.2, we provide an example where the
operator (1.2) represents the average intensity of interactions of nodes of the inhomogeneous
random graph introduced in [4].

We refer to [2] for convergence results of finite interacting particle systems with
inhomogeneous interactions to mean-field Graphon BSDEs and to [19] for convergence results of
interactive particle systems based on propagation of chaos involving BSDEs. See also [18]
and [17].

We explore how a solution to the mean-field BSDE (2.4) with driver f, mean-field operator
F, and terminal condition 7 € L?(Fr) can be interpreted as a dynamic risk measure, defined in
the usual way

pe(n,T) == =Xi(n), 0<t<T. (1.3)

We can think about this as a way to capture the risk of a representative bank subject to
system influence: a regulator imposes the capital or liquidity to be the random variable 7 at
time T, and the mean-field BSDE then tells us what are the acceptable levels of capital or
liquidity at time ¢, for a given driver capturing how a representative bank’s position evolves
with dependence on the mean-field term, where the mean-field term is meant to represent the
average intensity of interactions in the system.

Contributions and organization of the paper. Our stream of novel results starts with the strict
comparison result in Theorem 2.11, which is then used to verify the no arbitrage condition of the
dynamic risk measure. The other results in section 2 are usual properties for the mean-field
BSDE of type (1.1), proven in the case of general mean-field operators. Under Lipschitz conditions,
the existence, uniqueness, and the (non-strict) comparison results are standard and are provided
for completeness. Armed with the comparison results, section 3.1 checks that suitable conditions
for a dynamic risk measure are satisfied. We provide properties for the global dynamic risk
measures such as monotonicity, consistency, and convexity under appropriate hypotheses.

Our mean-field operator is thought of as a model for the average intensity of interactions of an
inhomogeneous random graph (in the limit when the graph is large). While the distribution of
each banks’ risk process is the same (and in this sense the system is symmetric), at each point in
time, the banks have different risk positions and interact according to this inhomogeneity via the
kernel function.

We introduce global dynamic risk measures induced by mean-field BSDEs. When the mean-
field operator captures the average intensity of system interactions, the interpretation is that of
a dynamic risk measure which can incorporate system influence for the representative bank.
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Our main result is the dual representation for the expectation of the dynamic risk measure in
the convex case, provided in section 3.2. New challenges for the proof strategy arise with respect
to the classical literature as we deal with the Fenchel-Legendre transform of the mean-field
functional F. We first need to establish bounds on the effective domain of this transform
(Lemma 3.3). Moreover, since the mean-field operator is inside the driver, we have an additional
dual variable with respect to the classical case and we need to establish new bounds for it. In
particular, we provide an explicit form to the conjugacy relation of (F,F*) and rely on a new
SDE of mean-field type. The presence of the mean-field term in combination with the jumps
poses additional challenges, in particular, to ensure the equivalence of the worst-case probability
measure appearing in the representation and the real-world probability measure.

We obtain a representation as the expectation under a worst-case discount factor and the worst-
case probability measure of the final acceptable capital level plus a penalty function. The
dependence on the mean-field operator (or its Fenchel-Legendre transform) of the worst-case
probability measure, discount factor, and penalty distinguishes our results from past literature
on classical dynamic risk measures. Since the mean-field operator can capture the influence of
the system on the representative bank (for example, via the average liquidity position in the
system or the average strength of interactions), using such a dynamic risk measure can account
for the system influence.

Our risk measure represents a complementary approach to systemic risk measurement,
whereby we consider a “representative ban” whose risk attitude is impacted not only by its own
practice but by the system as well, according to the mean-field operator. For example, the risk
attitude can be different in low vs. high average system liquidity /capital or system lending intensity.
To account for the impact of the system, the bank computes its risk by assuming that other
banks are exchangeable copies of itself. With wide modeling choices, the driver enables risk
measures that are compatible with the risk attitude of the “representative bank” under system
influence, be that the average state in the system or the average intensity of interactions. This is
a way to aggregate the influence of other banks in the system, and allows for a dynamic risk

assessment.

Related literature. Whereas our global risk measure is not a systemic risk measure, it is a
related concept. Indeed, the first generation of systemic risk models were based on mean-field
interactions. For example, [6, 13, 15, 16] rely on interacting particle systems, with a particle’s
drift depending on the average state of the system. In [6], the authors define the state of a
particle i in a system of size N, Xti’N, as monetary reserves. The drift of Xti’N has a form

N
1 . )
ol % > O XPN - XN | dt. (1.4)
j=1

When the monetary reserve reaches zero, the bank defaults. The financial interpretation of such
drift is that parameter a captures the rate of interbank lending when the banks with more
liquidity than average lend to banks with less liquidity than average.

Our setup is closer in spirit to an aggregation of system influence. The mean-field term

1 , ,
operator (2.3) can be seen as a limit of N2 doijelN k(XN X7, which represents the average

intensity of interactions in the system, where the interactions of any two banks are state-
dependent and captured by the kernel . We can set, for example, k(z,y) = ¢(x — y), where ¢
is the gaussian kernel. This leads to a tiered structure where banks with similar capital interact,
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while there is little interaction for banks of dissimilar size. To obtain a core-periphery structure
(shown to be quite realistic [9]), we could additionally restrict the interaction of two small banks:
either large banks interact with each other and small banks interact with large banks. For this case,
we can choose k(z,y) = ¢(x — y)lavy>s,, Which means that interaction occurs only if at least
one of the banks has a size larger than sy. Other variations of the kernel definition can capture
various market structures.

We interpret the mean-field BSDE solution as a dynamic risk measure for a representative bank.
The driver captures how the liquidity or financial position of an institution depends on the rest
of the system and allows (in a somewhat reduced form) to account for interactions with the system.
The drift form (1.4) above is one example by which the liquidity position of one bank depends
on the rest of the system, and this dependence is on the average liquidity. Our setup is quite
flexible in terms of modeling choices. In particular, we can use the states (e.g., liquidity positions)
of the nodes to define the intensity of lending (or the existence of a link) among nodes. In the
example of (1.4), the rate of interbank lending is a constant a. It would be interesting to replace
this with the average intensity of interactions in the system: if the intensity of interactions is low,
then there is little interbank lending. Our setup would allow for the average intensity of
interactions (possibly in addition to the average state of the system) to be a critical part of the
driver.

2. Mean-field BSDEs with jumps

2.1 Notation and definitions

Let (2, F P) be a probability space. Let W be a one-dimensional Brownian motion. Let
E:=R":=R\ {0} equipped with its Borelian c-algebra B(E). Suppose that it is equipped with
a o-finite positive measure v and let N(dt,de) be an independant Poisson random measure
with compensator v(de)dt. Let N(dt,de) be its compensated process. Let IF = {F;,t >0} be
the completed natural filtration associated with W and N. Let T > 0. Let P be the
predictable o-algebra on [0,7] x Q.

We use the following notation: L% (Fr) (simply denoted by L?) is the set of R-valued square-
integrable Fr-measurable random variables; JH? is the set of real-valued predictable processes

¢ such that [|¢]3,. :=E { fOT qbfdt] < o0; 8? denotes the set of real-valued, right-continuous

with left limits (RCLL), adapted processes ¢ such that [|¢[|%. := E(supoc,cr [f:]*) < 00; We
also introduce the following spaces:

® L2 is the set of Borelian functions ¢:E — R such that [;[¢(e)]*v(de) < +oo. The set L2
is a Hilbert space equipped with the scalar product. (¢, ¢'), := [, l(e)l'(e)v(de) for all ¢, ¢
L2 x L2, and the norm ||[¢||2 := [; [¢(e)|*v(de).

e IH? is the set of all mappings £:[0,7] x @ x E — R that are P @ B(E)/B(R)— measurable
andsatisfy [|€||3,. :=E [fOT ||€t||3dt} < 00, where 4 (w, €) = £(t,w, e) forall (t,w,e) € [0,T] x Q x E.

Definition 2.1 (Driver, Lipschitz driver) A function f is said to be a driver if

o [:OX[0,T]xRxR**x L2 =R, (w,t,y,y,2,0:)— flwt,y,y,2L:) is PoBR*)®
B(L?)— measurable,

® £(.,0,0,0,0,0) € H>.
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A driver f is called a Lipschitz driver if, moreover, there exists a constant C >0 such that
dt ® dF-a.s., for each (yi,y1,21,01), (Y5, y2,22,¢2),
[f(w, by, 91, 21, 01) — fw, b, Y5, 92, 22, 62|
< O(lyr — yol + lyr — yo| + |21 — 2| + (|61 = L2]],).

We now introduce the mean-field operator F. As we see below, the canonical example is the
expectation or the expected intensity of state dependent interactions.

Definition 2.2 An operator F is said to be a mean-field operator if
® F:[0,T] x L? =R, (t,X)w F(t,X) is B([0,T)) x B(L*)— measurable,
® For each t € [0,T], F(t,0) < +oo.
A mean-field operator F is said to be Lipschitz if there exists a constant C > 0, such that for

each (X1,Xz2) € L? x L%,
| [F(t, X1) — F(t, Xp)| < Ol X1 — Xa2, (2.1)

where || - ||o stands for the L? norm.

2.2 Examples of mean-field operators

Example 2.3 (First-order interactions) The first example for the mean-field operator that
satisfies the Lipschitz condition 1is the expectation of a Lipschitz function of the state:
F(t,X) = E[¢(t, X)] for X € L*>(F, P), where
| ¢:[0,T]xR—=R, (t,z)— ot 2)
is a Lipschitz function such that ¢(t,X) € L%

Note that for a random variable X € L*(F,P), one can consider F(t,X) as a lifted function
of the law Px of X, but one can also consider, e.g., F(t,X)= E[Xn], for some fixed
n € L3(F, P), so that F(t,X) is not necessarily only a function of Px.

Example 2.4 (Second-order interactions) A more general mean-field operator is given by
\ F(t,X)=E[x(t, X, X1)], (2.2)
where k 1s a Lipschitz kernel that captures the intensity of interactions and variable X1 is an

independent copy of the same distribution as X. The expectation is understood over the product
space.

We now establish links of the operator (2.2) to a dynamic version of the inhomogeneous graph
model of [4].

Inhomogeneous random graph and limit of average intensity of interactions. We consider a

sequence of N points (X“V),—; n in R equipped with a Borel-probability measure p. We
1

assume that the empirical measure N Zf\;l dxi.~ converges in probability to a measure u as

N — oo, with p(R) = 1." We define a kernel x as a measurable function on R x R. Given the
sequence (X“N);_; n, we consider a dynamic version of the inhomogeneous random graph

model (see [4, Remark 2.4]). We let (XZ’N)Z-:LNJG[O,T] € 82, and we assume convergence of the

unidimensional empirical distributions: for all ¢ € [0,T], ~ Zfil dyi~ converges in probability
t

! This means that for any u-continuity set A we have that #{i, X*~ € A}/N & n(A).
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to a measure pu; as N — oo. Over time, nodes i and j interact according to a Poisson process
of intensity x(X;",X7")/N.

Following [4], we say that a kernel k is graphical if the following conditions hold:

(i) & is continuous on R x R;
(ii) x € LY(R x R);

1 , ,
(iii) NEZMGLN w(XPN XN N — Jrur 6(5, 8 ) pe(ds)pe(ds’), as N — oo, for all t € T.

The first two conditions are natural technical conditions. The last condition can be interpreted
as the average intensity of interactions converges to a limit as the size of the graph tends to infinity.

We can now interpret the mean-field operator in the context of an inhomogeneous random
graph as the limit of average intensity of interactions in the system. In the existing literature on
mean-field models, the nodes’ states depend on the average state of all other nodes. Here we
allow dependence on the average intensity of interactions. If nodes do not interact with each other,
there is little structural reason why the nodes’ states depend on others. We propose the
following operator suggested by condition (iii) above:

F(t, X) = /R s, (A, (4, (2.3)

where px, is a distribution of X;. We can check that this operator satisfies Definition 2.2 and it
is Lipschitz if the kernel k is Lipschitz, that is, if there exists a constant C > 0 such that for
each z,Y, x/uy/v |/€((E,y) - /i($/,y/)| < C(|(K - IIT/| + |y - y/‘)

2.3 Properties of mean-field BSDEs with jumps

We now introduce the BSDE with jumps, whose driver depends on the mean-field operator F .

Definition 2.5 (Mean-field BSDEs) A solution of a mean-field BSDE with jumps with driver f,
mean-field operator F, terminal time T, and terminal condition & in L2(Fr), consists of a
triplet of processes (X, Z,1) € 8? x H? x le, satisfying

—dX; = f(t,w, F(t, X1~ ), Xy, Z4, 6())dt — Z,dW, — /Et(e)N(dt,de);
E
Xr = 67
where X is a RCLL-optional process, and Z (resp., £) is an R-valued predictable process
defined on Q x [0,T] (resp., Q x [0,T] x R* ) such that the stochastic integral with respect to W

(resp. N ) is well defined. We denote by (X (&,T), Z(€,T),4(€,T)) the solution of the mean-field
BSDE associated with terminal conditions (T, ).

(2.4)

2.3.1 Existence and uniqueness results
We note that an existence and uniqueness result was proven in [1] in the particular case of F
capturing the expectation of the state (or a function thereof).

Theorem 2.6 (Ezistence and Uniqueness for mean-field BSDEs) Let f be a Lipschitz driver,
F a Lipschitz mean-field operator (see Definitions 2.1 and 2.2), and & in L*(Fr). The mean-
field BSDE (2.4) admits a unique solution (X, Z,0(.)) € 8% x H?* x H?2.

Proof By using a priori estimates based on the Lipschitz property of both f and F, we
establish the contraction property and the convergence of the Picard iterative sequence.
Let (X7, Z7, %) be the solution of the following iterating BSDE with jumps

s17Vs
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T T T
Xt"=€+/ f(saF(s,XZfl),X?—,ZSJ?)dS—/ Z?st—/ /5?(6)N(dt7de)7 (2.5)
t t t E

for n>1 and t € [0,1] and where, for n =0, we set (XY, 2%,£%) = (0,0,0). The existence and
the uniqueness in each iteration is established by classical results, see [25], and we denote by ®
the resulting map (X", Z", ") = &(X"~ L, Zn-1 m—1)2

Let X' =X — XY Zp =20 — 2274 00 = ¢p — €7~ . For 8> 0 and ¢ in IH?, we introduce
the norm ||¢[|s :=E [fOT eﬁsqﬁds} and for 1 in IH?Z, we set ||l||, 5 :=E [fOT 6'35||ls||12,ds}. We now
show that ® is a contraction in IH? x H?* x H 3 equipped with this norm (which implies that
(X™, Z™ L") >0 is a Cauchy sequence).

By applying Ito’s formula to €*|X™ — X712, n > 1, we have, analogously to [22, Proposition
A.4],

T T T
PP 4+ B / 5 (X7)2ds + / ¢55(Zm)2ds + / 9|0 |2ds
t t t
T

— 2/ ePEXIf(s, F(s, XD, X", Z0 0%) — f(s, F(s, X"2), X1 zn=1 m=1)]ds
t

s 7s

T T
) / B X Znd W, — / ofs / (@X™ " (u) + 0" (u)) N (ds, de).
t t *

Taking the conditional expectation given JF;, which we denote by E; (local martingales are
martingales since X", X"~ € §%), we get

T T
XD 1K, |8 / 5 (X)2ds + / eB5(Z0)? + |7 2)ds
t t

T
= 2K, l/ XY f (s, F(s, X071, XU, Z0,00) = fls, F(s, X072), X07H 2074 007 )]ds
t

Moreover,
f (s, Fs, X071), X3, Z8,00) = [ s, F (s, XP72()), X074, 2074, 007

s§717s

< CollF(s, XI71) — F(s, X072 + | XT] + [ 23] + 11€21].)
SCUX M2+ XTI+ 120 + 1211] = CUEIXI )2 + X2+ 122 + 16 11)-

2
Now, for all real numbers z, 2z, | and € >0, 22(Cx+ Cz+ Cl) < % +e2(Cx+Cz+Cl)? <
2
_ _ 1 - _
% +3¢2(C2a? + C%22 + C22), and, for all n, E2X7(E|X212)}] < B[ | X2[2 + n?E|Xr—1[2] =
n

1 _
—E|X?[? + n’E|X?~![*. Thus, we obtain that
n
T _ T N B
5[ s [ ez ||£2|31ds]
t t

C 1 T B T B
(G+5) [ erorason [ ezt
€ t t

PHXT)? + By

T
+3C262/ eﬂs[(X?)2+(Z?)2+|??||31d81~
t

*Note that in our current setting the map @ does not depend on its last two arguments, but it would if we had a mean-
field term of the form F(s, X?7'(-),Z"7'(-),¢" '(-)). Existence and uniqueness results would go similarly through in
this case.
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C+1
+ > 2Ce? and 1—3C?e2 > 2C¢?,
we obtain the contraction inequality
IX™ 15 + 1215 + e (HX" HEHIZHE + 11T p)- (2.6)
Therefore the map ¢ is a contraction with respect to the norm || - ||z. By the Banach fixed-

point theorem, the map ® has a unique fixed point (X, Z,¢). Now taking the limit in (2.5), we
conclude that (X, Z,¢) is the unique solution of (2.4). O

2.3.2 Comparison results
In this section, in order to compare the first components of the solutions of two mean-field BSDEs,
we need additional assumptions due to the presence of jumps and of the mean-field operator.

Assumption 2.7 Assume that dt @ dF -a.s. for each (2',x,2,01,02) € R3 x (L)
Fta! 2, 00) — f(ta! 2, 2, 0y) > (08550 g — 1),
with
or =0l [0 T x Q x R x (L2)2 = L2;  (t,w, 2,1, 2,01, 05) — 0F @50t (g ),

P @ B(R*) @ B((L?)?)— measurable, bounded, and satisfying dP @ dt @ dv(u)-a.s., for each
(x/ax327£1;£2) € R3 X (LE)Q}

07 B w) 2 1 and |07 W) < (), &7)
where ¢ € L2.

Theorem 2.8 (Comparison Theorem for mean-field BSDEs) Let f;= fi(w,t,2' ,x,2,1),
i =1,2, be two Lipschitz drivers, and fi satisfies Assumption 2.7. Furthermore, we assume:

® [ is non-decreasing in z’;
F is Lipschitz on L? and satisfies the following property:

® [ is non-decreasing in X in the following sense: let X1,X, € L?, if X1 < X3 a.s., then
for each t € [0,T], F(t,X1) < F(t, X2).

Let &1,& € L? and denote by (X1, ZY,0Y) and (X?,7Z2,0%) the solution of the mean-field
BSDE with jumps (2.4) associated with (&1, f1) and (&2, f2) . Then, suppose that

L 61 = §2a a.s.,
o fi(wt,a',x,2,0(:) > falw,t, 2,2, 2,0(-), a.s. for all (t,2',z,2 €(-)) € R* x L2.
Then, we have X} > X2, Vt € [0,T] a.s..

Proof For i =1,2,let (X>", Zb™ 14™) be the solution of the following iterating BSDE with jumps
X"t =&+ / fi(s, F(s, Xbrmh), Xbn Zbn gihn)ds

_/t ZimdB, — / /et N(dt,de), (2.8)

for n > 1 and t € [0,1]. For n =0, we set (X0, 710 ¢1.0) =(0,0,0).
Now, we define
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fi(s,m,2,0) = fils, F(s, X2 1), 2, 2,1),
f2"(57:1:7z,l) = fg(s,F(s7Xf’"_1)7x,z,l).

Then, we have f} > f} and f] satisfies the monotone assumption in [23, Theorem 4.2]. Thus

by the classic comparison theorem for BSDE with jumps [23, Theorem 4.2], we have
| XM > X2 as, sel0,7). (2.9)
Now, since fo is non-decreasing in z’, we have
ff(s,x,z,l) = fi(s, F(s, X}V, 2, 2,1) > fo(s, F(s, X}Y), x, 2,1)
> fo(s, F(s, X231, x, 2,1) = f2(s,x, 2,1),

where the last inequality follows from (2.9) and f, and F are non-decreasing. Using again the
comparison results for classic BSDEs with jumps, we get

| X2 > X2%%as., sel0,T).
By the same argument as above, we iteratively obtain that
| X' > X2 as, se€0,T), n>1. (2.10)

Using the proof of the existence and uniqueness result, we have that for i=1,2,
(X Zbn f4n), 5o converges to the respective solution with drivers (fi)i=12, call these
Xt Zi 0. We have that X! > X?,t€[0,7] as. follows directly from the fact that
X' > X2t e [0,T) as.. O

Remark 2.9 We can weaken the non-decreasing property of F , and consider it in the sense of
distribution. Let Di(x) =P(X; < x) and Ds(x) =P(Xy < x). Then we say that F is non-
decreasing in x, if Di(x) = Da(z) implies F(t,X1) < F(t, X3).

Take Example 2.3, when F(X)=E(¢(t, X)), for X € L?>, F is non-decreasing if ¢ is C*
and non-decreasing. Assuming that Dy and Do are sufficiently smooth, this can be verified by
direct computation : F(t,X1) — F(t,X2) = E(¢(t, X1)) — E(¢(t, X2)) = [ ¢(t,2)d(D1 — D2)(x) =

J g—x(t,x)(D2 — Dy)(z)dx = f%(t, z)[Ds(z) — D1 (z)]dz.

In the example of an operator given by an inhomogeneous random graph of section 2.2, we
make the assumption that the kernel k is (D1 x Dy and Ds x Dy—almost everywhere)
differentiable and

82

= . 2.11
3I3yﬁ(:v,y) >0 (2.11)

In this case, F(t,X1)= [k(z,y)dD;(z)dD:(y k(z,y)D1(x)D1(y)dady and the

32
) = Jrxr D20y
non-decreasing property of Ffollows from (2.11). This condition, along with the Lipschitz condition,
are satisfied if one uses a truncated Gaussian kernel of coefficient o

—(z—y)?

e 2% Zf ‘l‘ - y' <o,

k(z,y) = (2.12)

0, otherwise.

We also note that X1 < X5 a.s. implies that Di(x) = Da(z).

Remark 2.10 Symmetrically, if we assume one of the drivers is non-increasing in ©' and F is
a non-increasing operator, the arguments in Theorem 2.8 still hold.
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We now provide a strict comparison theorem, which states that under a strict inequality on
the map 6, two solutions of the BSDEs are equal at all times if they are equal at the initial time.
This theorem is used for bullet 5 in section 3.1 and is interesting in the context of no-arbitrage
pricing theory.

Theorem 2.11 (Strict comparison for mean-field BSDEs) Suppose the assumptions of
’ 1 p2
Theorem 2.8 hold with strict inequality 67 > " (u) > =1 dt @ dF -a.s.. If X} =X as. for
some to € [0,T], then X'. = X2, a.s. on [to, T).
Proof Let X, = X! - X2, Z, =Z! — 72; [,(u) = (}(u) — £2(u). We suppose that f is non-
decreasing in 2’ and Assumption 2.7 with strict inequality holds for f;. Then

—dX, = hgds — Z,dW, — /Zs(e)N(ds,de), Xp =& — &,
E

where hg = f1(s, F(s, X1), XL, Z1 0}) — fa(s, F(s, X2), X2, Z2 (?).

R R

Let ¢(s) := fi(s, F(s, X1), X2, Z2,0%) — fa(s, F(s, X2), X2, Z2,/2). Note that we have
hs = ¢s + fl(S’F(stsl)’X;7Z517€;) - f1(87F(87X51)7X5252527£§)'

Below we use a classical linearization procedure. We can write
fi(s,F(s, X, X5, 21 0%) — fi(s, F(s, X1, X2, 72, 0?)

= fl(S7F(57Xsl)7XslaZslv£i) _fl(st(S’Xsl)ngvzslﬁei) +f1(57F(37X51)7X52’Z;’£i>
_fl(saF(&Xsl)aX?aZgag;)+f1(SaF(57Xsl)7X32aZ527£;) _f1(87F(3aX;)7X3272§’€§)'

Then from the Assumption 2.7 on fi, there exist bounded processes § and 5 on € x [0,7],
such that

fl(saF(Sval)instlvgi) —f1(87F(8,X51),X§,Z2 ‘62) 2 53Xs +ﬁsZs + <95azs>l/

sr™s
with

LR

. fl(SﬂF(SvX§)7X§7Z;7£i) _f1(57F(87X51)7X527Z1 gl)
55 = XS 1{)25#0}7

fi(s, F(s, X1), X2, ZL 1Y) — f1(s, F(s, X1}), X2, Z2 1))

sr*s ERAC]

Z, Liz.z0p

Bs =

and 0y is as in Assumption 2.7.
Thus we have hy > ¢ + 6s X, + BsZs + (05, 45), dt ® dF-a.s.. Foreach t € [0, T, let (Tt,s)sept,1)
be the unique solution of the forward SDE

dly s =T - [(5Sds + B dW, + / %(e)]\?(dt,de)]; [ =1.
E

By classical comparison results with respect to a linear BSDE (see, e.g., [23, Lemma 4.1]), we
derive that

t
Ky > E[Tya(és — &) + / Ty ud(s)ds|F], to<t<T.
to

By Theorem 2.8, we have X; = X! — X2 > 0, and using the non-decreasing property of F, we
can write
fi(s, F(s, X1, X2,22,02) > fols, F(s, X2), X2, Z2,02) > fo(s, F(s,X2), X2, Z2,¢2)

s1%s 5178

by the assumption on f; and fs. We conclude the proof by pointing out the fact that
6(s) = fr(s, F(s, X;), X2, Z3,62) = fals, (s, X3), X2, Z3,45) > 0
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and that if 05(u) > —1dP ® ds ® dv(u)-a.s., then I'; 4 > 0 a.s. from [23, Corollary 3.5]. O

Remark 2.12 We can weaken the assumption of Theorem 2.11 by assuming that the strict

’ 1 52 1 2 2 pl p2
inequality 0F “** " (u) > =1 holds only along the solutions, that is, Hf(t’xt)’x"zt bk (u) >

—1 dt®dF-a.s.. In the symmetric case when fo is Lipschitz and non-decreasing in ', we

2 2 2 p1 p2
obtain the results by assuming Hf(t’Xt)’Xt Ziokeoby (u) > -1 dt ® dF -a.s..

3. Global dynamic risk measures

In light of the role played by BSDEs in risk measures (see, e.g., [3, 14, 22], to name just a few,
for the Brownian case, and [23, 24] for the addition of jumps), we now explore the link between
mean-field BSDEs and dynamic risk measures, which we interpret in this case as global dynamic
risk measures. The global dynamic risk measure can be seen as the regulatory capital or liquidity
for a representative bank.

3.1 Definition and properties

Let T > 0 be a time horizon and f be a Lipschitz driver. Set
‘ pt(n’T) = _Xt(naT)7 0<t< T7 (31)

where X;(n,T) denotes the solution of the mean-field BSDE (2.4) with driver f, mean-field
operator F, and terminal condition n € L?(F7). We can think of 1 as the amount of liquidity
or capital that is acceptable to a regulator at time 7. The risk measure p;(n,T) is interpreted
as the amount of capital needed at time ¢ in order to be acceptable at time 7T . Note also that,
in insurance, the functional —p = X can represent a risk premium.

The functional p: (n,T) — p.(n,T) represents a global dynamic risk measure induced by the
mean-field BSDE with driver f and mean-field operator F. When the dependence on the time
horizon T is clear from the context, we drop it from the notation and write p;(n) for p¢(n,T).

We now provide properties of global dynamic risk measures, based on the comparison results
of the previous section. We work under Assumption 2.7, which guarantees the monotonicity of
the risk measure in the jumps. Contrary to the standard non mean-field case, the risk of a zero
position may not be zero when the mean-field operator F is introduced. The first three properties,
which we give for completeness, are standard and follow the pattern of the classical literature on
dynamic risk measures, see, e.g., [23], in which we plug the comparison or uniqueness results
specific to our case.

(1) Consistency. Let S be a stopping time. Then for each time ¢ smaller than S, the risk-
measure associated with position & and maturity 7 coincides with the risk-measure associated
with maturity S and position —pg(¢,T) = Xg(&,T), that is,

\ Vi <SS, p(€,T) =pe(—ps(§,T),S) as..

This corresponds to the flow property of mean-field BSDEs, which is the consequence of the
uniqueness result.

(2) Continuity. Let {#* a € R} be a family of stopping times converging a.s. to a stopping
time 6 as «a tends to ag. Let {£* a € R} be a family of random variables such that
Eless sup,, (£€%)?] < 0o, and for each «a, &% is JFpa-measurable. Suppose also that £* converges
a.s. to an Fp-measurable random variable £ as « tends to ag. Then for each stopping time S,
the random variable pg(£%,0%) — ps(€,0) a.s. and the processes p(£%,0%) — p(£,0) in S?
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when o — ag.

This property follows as in the proofs of [23, appendix], in which the a priori estimates for mean-
field BSDEs can be easily extended to account for the mean-field contribution.

(3) Monotonicity. p is non-increasing with respect to &, i.e., for each ¢,¢2 € L2, if €' > &2
a.s., then p (&, T) < pe(€2,T), 0<t<T as.

This is the direct consequence of the comparison results (Theorem 2.8).

(4) Convexity. Suppose f is concave with respect to (z’,z,z,1). Moreover, suppose that f is
non-decreasing in z’ and F is a non-decreasing concave operator in X. Then the dynamic risk-
measure p is convex, that is, for any A € [0,1], £!,£2 € L?

pAE" + (1= NEXLT) < Ap(€h,T) + (1 = Np(€%,T).

Proof For i=1,2, let (X%, Z% (") be a solution of the mean-field BSDE (2.4) associated to
terminal time 7, driver f, mean-field operator F, and terminal condition &*. Set & :=
MU+ (1=NE, X = AX'+ (1 =NX2 Z:=XZ"+ (1= \)Z2, {:= "+ (1 — \){2. We have

—dX, = (L F (X)), X 20 6) + (L= Nf (L F(LXE), XE 22, 67)]de

— ZydW; — / ly(e)N(dt,de); Xp=¢.
E

By the assumptions on f and F, we have
Af(F (6 XD, X Z4 ) + (L= N f(t F(t, X)), X7, 27 67)
FENFE XY + (1= NF(t, X2, X+ (1 = NXZNZE+ (1= N Z2 N+ (1= N2
ft, FEAX 4+ (1 =X AX) + (1= NXZENZE+ (1= NZ2 M + (1= M3
= f(t, F(t, Xy), Xy, Ze, 0y).
Thus

<
<

_dX, < f(t F(t X)), Ko, Ze, 0t — ZedW, — / 0,(e)N(dt, de); Xp = €.
E

Let (X,Z,f) be a solution of the mean-field BSDE (2.4) associated to terminal time 7,
driver f, mean-field operator F, and terminal condition é , i.e.,

*dXt = f(t, F(t,Xt),Xt, Zt,zt)dt — thWt — / Zt(e)N(dt,de), XT = é
E

By the (extended) comparison results in Theorem 2.8, we get X, < X, as desired. O

Furthermore, suppose in Assumption 2.7 that we have Hf/’m’z’€17e2 (u) > —1. Then we have the
following property.

(5) No Arbitrage. For each ¢1,62 € L2 if &' > €% as. and if pi(Y,T) = ps(€2,T) a.s. on
A€ F;, then &' = €2 as. on A.

This is the direct consequence of the strict comparison results (Theorem 2.11).
3.2 Dual representation for convex global risk measures

We now provide a representation for the expectation of risk measures induced by mean-field
BSDEs in terms of the value of a stochastic control problem in the convex case. This dual
representation is given via the supremum over a set of probability measures which are absolutely
continuous with respect to F.

With the mean-field term, the dual representation relies on a careful analysis of the
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Fenchel-Legendre transform F*. We first need to establish bounds on the effective domain of
this transform (Lemma 3.3). Moreover, since the mean-field operator is inside the driver, we
have an additional dual variable with respect to the classical case and we need to establish new
bounds for it. New elements specific to the mean-field case arise. In particular, Lemma 3.5
provides an explicit form to the conjugacy relation of (F,F*) and relies on a new SDE of mean-
field type, for which we give uniqueness and existence results in Lemma 3.4. The presence of the
mean-field term in combination with the jumps poses technical challenges, in particular, to
ensure the equivalence of the worst-case probability measure appearing in the representation and
the real-world probability measure.
In the following, we make the following assumptions on f and F.

Assumption 3.1 Let f be a Lipschitz driver. Suppose | is concave with respect to (z',z,z,1)
and non-decreasing with respect to x' and satisfies Assumption 2.7 with strict inequality
O:(u) > —1 dt ® dF -a.s.. Let F be a Lipschitz mean-field operator. Suppose F is non-decreasing
and concave in X , and moreover satisfies the following property: for each s,t € [0,T] and
X € L?, F(t,E[X|F,]) = F(t, X).

For each (w,t), we denote by f* the Fenchel-Legendre transform of f, defined for each
(8,q,01,9) € R x L? and F* the Fenchel-Legendre transform of F, defined for each ¢ € L2,
that is (see, e.g., [12]),

f*(w7taq767al7a2): sup [f(w,t,x’,x,z,l)—qx/—ﬁx—alz—<a2,l>y],
(2 ,x,2,l)ER3X L2

F*(t>6) = Ssup [F(tuX) - <X75>L2] .
XeL?
For each predictable processes a; = (aj,a?(+)), let Q* be the probability absolutely continuous
with respect to F which admits I'T as density with respect to F on JF7, where I'“ is the

solution of

dry =T (af dW, +/ af(u)dN(dt,du)); T§ = 1. (3.2)

The process W := W, fo (s,as)ds is a Brownian motion with respect to Q® and N is
a Poisson random measure independant from W under Q¢ with compensated process
Ne(dt, du) := N(dt,du) — a?(t, o, w)v(du)dt.

Now we define the dual set of probability measures in terms of their densities. Let A7 be the
set of predictable processes a, = (al,a?) such that

° fo 2ds+f0 la?||2ds is bounded.
® a2(u) > -1 v(du)-as

From [23, Propositions 3.1 and 3.2], we have that for all a. € A7, T'¥ >0,0<¢ <7 a.s. and
(T)o<i<T € S% We therefore obtain that Q* and F are equivalent.

Let A7 be the set of processes (i, B¢, qr, f, @2), where (B4, q:,at,a?) are predictable and
is adapted, such that:

® (f* (Ld, tv qt, Btv a;flv a?))tG[O,T] belongs to H27
® o = (atl,af())te[oj] belongs to Ar;
e 0< ¢ <C,Vvte[0,T], dF as;

® The processes (I'¢e™ s Vsds)te[oﬂ belong to IH?.
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3.2.1 Technical lemmas
We begin with some technical lemmas establishing bounds on the effective domain of the
Fenchel-Legendre transforms f* and F™.

Lemma 3.2 For each (s,w), the set of (q,3,a1,a) € R® x L? such that f*(w,s,q, B, 01,az) <
+o0 is included in the set U defined by the following conditions:

® g >0 and is bounded by C;

® [ and oy are bounded by C;

® asx(u) > -1 and |az(u)| <C v(dw)-a.s.,
where C is the Lipschitz constant of f.

Proof Suppose by contradiction that ¢ < 0. By the definition of f*, we have
f*(t’q567051’a2) 2 f(ta'r/aoa())()) - Jf/q
for each x’. This holds, in particular, for z, :=n, n € N. We thus get
f*(t7Q757a17a2) > f(t7nu07070) —ngq > f(t70307070) —ng,

where the last inequality follows by the non-decreasingness of the map f with respect to z’. By
letting n — 400 in the above inequality, we get lim,, . f(¢,0,0,0,0) — gn = 400, since g < 0.
This implies that f*(¢,q, 8, a1, a3) = 400, which provides the desired contradiction, We thus
have proved that ¢ > 0. The fact that ¢, 8, and « are included in the bounded domain [-C, C]|
is due to the uniform Lipschitz property of f. Finally, for the bounds on (aj,as), the proof
follows as in the classical case, see, e.g., [23, Lemma 5.4]. O

Lemma 3.3 Assume that operator F satisfies Assumption 3.1. Then for each t€[0,T],
{6 € L2|F*(t,6) < +oo} (the effective domain of F* ) satisfies the following property: 6 > 0 dF
a.s. and ||0]]2 < C, where C is the Lipschitz constant of F .

Proof Suppose ¢ > 0 dF-a.s. is not true. We denote A = {w € Q| §(w) < 0}. Then P(A4) > 0.
By the definition of F*, we have for each X € L2,

F*(t,6) > F(t,X) — (X,8) 2 = F(t,X) — EP[X4].

This holds, in particular, for X, (w) := —nd(w)la(w), where n € N. This gives X,, > 0 dF a.s.
and thus by the non-decreasing properties of F, we obtain

F*(,6) > F(t, X") — EP[X,0] > F(t,0) — EP[X,0] = F(£,0) +n /A 16(w) 2P (w).

By letting n — +oo in the above inequality, we get F*(§) = 400, which gives the desired
contradiction, which implies § > 0 dF a.s.. The boundedness of § is a direct consequence of the
Lipschitz property of F. d

The following lemma establishes the existence of the solution of a particular mean-field SDE,
used towards an explicit form to the conjugacy relation of (F, F*) in Lemma 3.5 below.

Lemma 3.4 Let (al,a?(-))sst belong to Az, (Us)sst be adapted and uniformly bounded in
L? and (hs)s>t uniformly bounded almost surely. Then the following SDE admits a solution
(Vs)s>t € S2.
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dV, =V, [aldW, +/ a2(e)dN(ds, de)] + UE[Vih|ds, t<s<T, (3.3)
Vi=1.
Proof We define inductively the sequence (V™) of the processes by setting VY =1 and for
n =1,

V=1 +/ vrtdM, +/ UE[V"'h,]ds,
t

t

where dM, = atdW, + [;. a2(e)dN(ds, de). Note that V" is adapted and right-continuous and,

moreover, we have

E { sup [V —V;’Q}

t<s<u

s 2 s 2
sup (/ (m"—w"—l)er> + sup (/ UTE[VT"—I/;"‘l]dr> 1 (3.4)
t<s<u t t<s<u t

Using the Doob and Cauchy—Schwarz inequalities, it follows that

([on- Vs"—1>dMs>2

<se | [ oz -vepanen, || [ B PEY - vePas).
t t
(3.5)
We have that d[M, M], = (al)?ds + fR*(aE(e))sz(d&de) + Jr-(@2(e))?v(de)ds, (al,ai(-))s>t
belongs to A7 and (Us)s>t
constant K such that

<2E

E [ sup |V — V:P] < 8E

t<s<u

u
+2TE U |UE[V™ — VS"—l]|2ds]
t

is uniformly bounded in L2?. We then obtain that there exists a

E { sup |V — V:ﬂ <2K(4+T)E [/ |V — v:1|2ds}
t

t<s<u

<2K(4+T)E [/ sup [V — v:—”ds] . (3.6)
t

t<s<u

We set C=2K(4+T) and let D :=E [sup,c.cr |V} — VO[?]. It then follows from the above

computation that for each t <u <7 and n,

DCc™T

E |: sup |Vsn _ ‘/STL—1|2:| < .

t<s<u n!

Consequently,

o0

Dol s (VP -V| < oo

— t<s<u

n=1 2

Thus the series *° su vV — VPl converges a.s. and, as a result, V™ converges a.s.
n=1 t<s<u |V's s ) )

uniformly on every bounded interval to a right-continuous adapted process V that is a solution
to (3.3). O

3.2.2 Dual representation theorem
We now give the main result of this section, the dual representation theorem for the expected
risk measure. For (v,q,3,al,a?) € Ar, we denote
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Dt‘i;%q = exp (/ (Bu + 7u1E[qu]>0)du> ;o 0<t<s<T, (3.7)
t

which can be interpreted as a discount factor. We recall that the process TI'“® follows the
dynamics defined in (3.2).
The following lemma gives the existence of the process (7s)s>: associated to the mean-field term,

which is used towards the dual representation theorem.

Lemma 3.5 Given the predictable processes (Xs,s,Bs,@s)s>t, with E[gs] >0 for all
s €[0,T], there exists an adapted process (7s)s>¢ such that (Fo_‘sefts Yudu) S belongs to H? and

satisfies the following equation:

F(s,Xs) —

EQ (XD o TeDi
iy T P gepiag ) e €T G8)

Proof Since F is concave and Lipschitz on L2, the conjugacy relation of (F,F*) gives that
for each s, there exists Y, € L? such that

F(s, X,) — B [X,Y,] = F*(5,Yy) (3.9)

and since F is non-decreasing, by Lemma 3.3 we have Y > 0 dF a.s. and ||Ys||z, < C.
Fix now s € [t,T]. For each Y in L?(F,) and feasible, by Assumption 3.1, we have for each
Xel?
F(s, X) —E”[XY] < F(s,E[X|F]) — EP[E[X|F,]Y].
This gives
F*(s,Y)= sup [F(s,X)—(X,Y)r2]= sup [F(s,X)—(X,Y)pe].

XeL?(Fr) XeL?(Fy)

Therefore, we can restrict the operator F on the subspace L?(F,).® This implies that we can
choose Y, € L%(F;) in (3.9), and thus it is adapted.

Now let (Vi)ss: € S? be the solution of (3.3) with U =e~ I7 Bud“YS, hs = eli B“d"q_s and
V; = 1. We apply Itd’s formula to V4(I'¢)~! and we obtain

AV ™)y = Ved(T9) ™+ (09) 71V, + AV, (0) 1), (3.10)
= (PS) e Ji Buduy B[V el Pudug ]ds. '
Thus V1! := V(I'*)~! satisfies the stochastic differential equation
d(V1), = (D)~ te J ey BIDSV ] el Pudug ]ds, (3.11)

Since 'Y >0, s >0, Y, >0dF as., and V;':=V;=1>0 a.s., we have V! >0 a.s.. Thus,
the process 7, satisfying el Tudu — V> is well defined due to (3.11). We obtain that

,%eff Fudugg — d(efts "yudu)s _ (1—\?)—16— I EuquSE[FS&eff Fudu o f; B“du(js]ds, (3.12)
which implies that (9s)s>: satisfies
F&DE7’7777
s —t,s v —Y; a.5

*Note that we could have alternatively defined for each s the Fenchel-Legendre transform of the restriction of
operator F on the subspace L2(F,). In this case, we conjecture that the last property of Assumption 3.1 would not be
necessary.
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and Fg‘efts Tudu — V belongs to IH?. Since (Ys)s>: is adapted, this gives the adaptedness of
(’75)s>t~ O

We are now ready to give the main result. The expected risk measure can be interpreted as
the expectation (under a worst-case discount factor and a worst-case probability measure) of the
final position & plus a penalty function. The lemmas in the previous section ensure that the
supremum is finite as the effective domain is bounded.

Theorem 3.6 Let f and F satisfy Assumption 3.1. Then, for each t € [0,T], the expectation
of the conver risk-measure py, that is, Ep:(.,T) has the following representation: for each
§el?,

Ept(gv T) = sup - [EQ@DE”]?’(](_%-) - Ct(')/’ ﬁa q, o, T) ) (313)
(v.8,¢,0)€ AT

where the function (, called penalty function, is defined for each T and (v,q,B,a',a?) € Ar by

T o«
Gi(v,8,¢,,T) :Z/t <]EQ (D77 (5, qs, Bss )]

Dﬁmq

a ry Vs
+EQ D Fr [, —— " 1o ds
[ t, ‘1] Q- [Dggqs] EQ* [q,]>0

with T following the dynamics defined in (3.2). Moreover, for each & € L?, there exists
(3, @i, Br, at,a2) € Az achieving the supremum in (3.13).

Proof For each process (7s,qs, Bs,al,a?) € Ar, we apply Itd’s formula to D,f 79X, between
t and T, where (X, Z,1) is the solution of mean-field BSDE (2.4). We obtain

T
Xt = Dtﬁ,j’!,qg +/ Dgg’q[fﬂsXs - rYle[qs]>OXs - O‘izs - <Oégals>y + f(st(SaXs)7Xs; Z87ls)]d5
t

T «
- /t My, (3.14)

where dM¢ = D)7 Z,dWe + [ D}715(e)dN*(dt, de).
For each s € [t,T], we have
= BaXs = Yalglg]>0Xs — 0 Zs — (03, L)y + f(5, F(s, Xo), X, Zs, 1)
= BsXs = asF (5, Xs) =y Zs— (a2, L)y +f (5, F (5, Xs), X, Zis, Ls) + (45 F (5, X) =75 1g[g,)50Xs)-
Since gs > 0 dF a.s., we note that
| 4sF (5, Xs) = Vslg[g)>0Xs = (asF (5, Xs) = 7sXs)1g[q,)>0-

By taking expectation on both sides in (3.14), we obtain that

T
E[X,] =E¥ [Dfﬁ’qﬁ + / DB X, — g, F(X,) — alZ,
t

— (@2, 1) + f(s,F(s,Xs), X, Zs,15)] | ds

EQ” [XSD&M”YS]
EQ*[D}7q,]

T
+ [ B9 DI [R5, X -
t

] 1]E[qs]>0d5'

Since Q and F are equivalent measures and ¢, > 0 dF a.s., we have 1g(g.)>0 = 1geo(q,]>0-
By the definition of Fenchel-Legendre transform, we have
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f(sa F(S7Xs)7Xsa ZS7 ls) - QSF(Sst) - BSXS - O‘;Zs - <O[§7ls>,/ g f*(S7QS7Bsa Oéi, OZS)
a.s. and
EQ°[X, D))

E[L X, D)), _ TeD; s
EQ” [Dtﬁ,’sv%}

F(s, X,) — — F(s, X,) — (s, —2ts ey
( ) ( ) E[F?DIE’S’YH(]S] ( ]EQQ [Dtﬁ,‘,s'y,qqs])

Since by assumption Dﬁaj’q >0 and ¢s > 0 dQ“ a.s., we obtain

EX, < if E® D’”q$+/ DY (5, gus B 0l 02) | ds
(7,8,¢,0)EAT
T o s a%Q,y
+/ EQ" (D79, | F* 3,73 1poe ds. 3.15
) [Dy, J1E( IEQ“[Df,J"s]) EQ® [g,]>0 (3.15)

Recall that for any (w,s) € 2 x [0,7T], f is Lipschitz, concave in (2,z,z,1), and the following
conjugacy relation of (f, f*) holds. Let U be the set introduced in Lemma 3.2, we have

flw, s, 2" @, 2,1) = inf {f*(w,s,q,8, a0, a*) + qz' + Bz + o'z + (1)}
(q,8,a1,a2)eU

= f*(w,$,q B,a",&%) + gz’ + Bz + a'z + (a%,1),, (3.16)

where U is the closure of set U, that is, the set in which «ay satisfies as(u) > —1 instead of the
strict inequality.

Now, since U is strongly closed and convex, we obtain that there exists (g, 3,a',a?) € U
that satisfy (3.16). Since v is a o-finite measure and B(E) is countably generated, by [8,
Proposition 3.4.5], the space L2 is separable. We can thus apply the measurable selection
theorem ([11, appendix of Chapter III]) as in [23, Lemma 5.5] to assert the existence of the
predictable processes (s, (s, at, a?)s>; satisfying

f(s7F(S7 XS)7XS) ZS7lS) = /BSXS + q_SF(XS) + &izs + <d§’l5>y + f*(sﬁ Bs7qs’d;’d§) a.S..
(3.17)

Similarly, since F is Lipschitz and concave, the conjugacy relation also holds for (F,F™).
Given the predictable processes (X, Gs, s, as)s>t € S? x Ar, we now introduce

Gs = Gslgas(g,)50 + Clgas(gi—o

with C the Lipschitz constant of f. By Lemma 3.5 there exists an adapted process (s)s>i
such that

EQa X DB:YQ_@ F&DB:Yf—Q
F(s, Xs) - [, nln e 5, o te T (3.18)
EQ” (D 75,] EQ° (D] 14,]
Since ¢s = @, for any s such that E[gs] > 0, we obtain

Together with (3.15), we obtain (3.13).
Finally, (3.17) implies that the process f*(w,t,q, b, ar,a?) belongs to IH3, since by
assumption (X, Z,1(.)) € 82 x H? x H? and (g, 3;,a},a?) are bounded. O
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Remark 3.7 We note that our running examples of mean-field operators F satisfy the
assumptions in Theorem 3.6. First, let a mean-field operator capture first-order interactions. Namely,
set F(t,X):=E[p(t,X)] for X € L*(Q, P, Fr), where ¢:[0,T] x R R, (t,z) — p(t,z) is a
Lipschitz and concave function such that ¢(t,X) € L?. Then F is Lipschitz and concave.

Second, let a mean-field operator capture the average intensity of interactions in an
inhomogeneous random graph as in section 2.2. For F as in (2.3) and under the further
assumptions that the kernel k is Lipschitz and concave, we check that F is Lipschitz and concave.
In particular, for the kernel x of (2.12) these conditions are satisfied.

We end this remark by making the connection of our mean-field operator (2.3) with the
economics literature. To see this, we note that

F(t,X)= /R Rn(a:,y)dDX(x)dDX(y)

- / w(D! (u), Dy (v))dudo, (3.19)
[0,1]x[0,1]

where Dx and D;(l denote the distribution function of X and its generalized inverse. The form
in (3.19) of the operator appears in the literature as a utility functional quadratic in probabilities
(as opposed to linear in probabilities as in the case of expected utility), see [10, Example 2.5] and
[7]. In [10] this operator is an example of Shur-concave functional, and the main result of the
paper is a representation theorem of F and its Fenchel transform F* in terms of a family of non-
negative affine combinations of Choquet integrals.

4. Conclusion

We have studied mean-field BSDEs with jumps, whose driver can capture system influence
with higher-order interactions. The mean-field term can capture, for example, the intensity of
bilateral interactions that depend on the states of the end nodes by means of a kernel function.
This opens the path towards using dynamic risk measures induced by mean-field BSDE as a
complementary approach to systemic risk measurement. The expectation of the risk measure is
interpreted as the necessary capital of the “representative” bank to make it acceptable. We have
given a dual representation for the expectation of dynamic risk measures induced by mean-field
BSDEs. The risk measure can be represented using a worst-case probability measure, discount factor,
and penalty applied to the terminal financial position. The representation of the penalty
function involves the Fenchel-Legendre transform of the mean-field operator.
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