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ABSTRACT

Browsers and extensions that aim to block online ads and tracking

scripts predominantly rely on rules from filter lists for determining

which resource requests must be blocked. These filter lists are often

manually curated by a community of online users. However, due to

the arms race between blockers and ad-supported websites, these

rules must continuously get updated so as to adapt to novel bypass-

ing techniques and modified requests, thus rendering the detection

and rule-generation process cumbersome and reactive (which can

result in major delays between propagation and detection). In this

paper, we address the detection problem by proposing an auto-

mated pipeline that detects tracking and advertisement JavaScript

resources with high accuracy, designed to incur minimal false posi-

tives and overhead. Our method models script detection as a text

classification problem, where JavaScript resources are documents

containing bytecode sequences. Since bytecode is directly obtained

from the JavaScript interpreter, our technique is resilient against

commonly used bypassing methods, such as URL randomization or

code obfuscation. We experiment with both deep learning and tra-

ditional ML-based approaches for bytecode classification and show

that our approach identifies ad/tracking scripts with 97.08% accu-

racy, significantly outperforming cutting-edge systems in terms of

both precision and the level of required features. Our experimental

analysis further highlights our system’s capabilities, by demonstrat-

ing how it can augment filter lists by uncovering ad/tracking scripts

that are currently unknown, as well as proactively detecting scripts

that have been erroneously added by list curators.
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1 INTRODUCTION

The modern web has been marked by the proliferation of web track-

ers and advertisements. While certain websites include tracking

scripts to support web analytics and use the data to customize

their content and improve the user experience, other online enti-

ties supply sites with scripts for tracking users across different

sites. This large-scale collection of data powers the ad ecosys-

tem and allows companies to profit by selling users’ data to the

highest bidders. The stateful (e.g., using cookies [21, 61, 62] or

other stored identifiers [67]) or stateless (e.g., using browser finger-

prints [28, 42, 48, 66]) tracking of users’ activities, and the sharing

of data with other trackers via cookie syncing [49], have become

common practice [26, 35, 56]. This not only diminishes the user ex-

perience by bloating the website [29], but also violates their privacy.

Users are becoming increasingly aware of these privacy-invasive

techniques and attempt to take actions for protecting their data [23].

Countermeasures typically rely on blocking invasive scripts. In

more detail, blocking rules are designed to block external scripts as

well as requests related to advertising or tracking, as third-party

trackers primarily use JavaScript (e.g., browser APIs used for fin-

gerprinting) to generate unique identifiers or serve ads, and HTTP

requests for transferring these identifiers. Browser vendors such

as Brave [20] and popular content-blocking extensions [2, 31] use

manually curated and crowd-sourced filter lists, such as EasyList [5]

and EasyPrivacy [6], to detect and block communications with the

endpoints. Due to the ongoing arms race between trackers and con-

tent blockers [36], these filter lists need to be frequently updated

through a rigorous manual process by a group of online users.

As a result, automated detection systems have been proposed

to complement the manual effort. These systems typically utilize

features extracted from the network, JavaScript, and HTML lay-

ers [17, 32, 34, 37, 38, 41, 41, 60, 74, 76]. In response, advertisers and

trackers have employed evasion techniques such as CNAME cloak-

ing [24], URL randomization [72], and JavaScript obfuscation [63]

to avoid being detected. Accordingly, more advanced systems uti-

lize multiple features to improve their robustness. Nonetheless,

such techniques can still be vulnerable to adversarial evasion at-

tacks based on how a given feature’s weight influences the system’s

decision. For instance, AdGraph [37] employs various inputs like

network information and content-based features. However, content

features such as the URL length have a greater influence on the

model’s results and can be easily tampered with, making it more

susceptible to manipulation of those features. Subsequently, meth-

ods that assign a higher priority to the request’s origin (i.e., being
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a third-party) [32, 41, 73] may not be effective in identifying first-

party trackers. Therefore, the effectiveness of a detection system

depends on the robustness of the features the system operates on.

Certain websites may intentionally, or inadvertently, tie the web-

site’s functionality to blocked resources, which can result in website

breakage when these resources are blocked. Such malfunctions are

often reported to the filter list maintainers and are fixed by including

exception rules that allow such requests to bypass the content block-

ers. For example, EasyPrivacy blocks googletagmanager.com/gtm.js

in most websites, but allows it to bypass tracking blockers on cer-

tain domains. Systems that only rely on URL-based features fail

to distinguish between the two identical requests, rendering sys-

tems ineffective in detecting allowlisted resources. While breakage

analysis through manual inspection [37, 38, 43, 60] can evaluate

the impact of incorrectly blocked functional resources, it does not

assess the models’ ability to detect allowlisted resources, especially

at scale, which is an essential part of the update cycle for filter lists.

In this work, we propose a method for accurately identifying

external JavaScript resources that exhibit advertising and tracking

characteristics. Ultimately, our goal is to address the deficiencies

of previous detection methods by utilizing features that cannot

be trivially altered. Our method is origin-agnostic (i.e., it can be

applied to both first-party and third-party), does not rely on URL

features, and is independent of static features in the code. Instead of

extracting specific features such as Web API calls [41, 70, 73] using

dynamic analysis, our system utilizes the information obtained

directly from the JavaScript interpreter as a representation of the

execution flow, for classifying the script’s behavior. This makes our

method resilient against code obfuscation and URL modification,

and also allows us to classify allowlisted scripts based on their

different execution patterns (i.e., being categorized as AT on one

website and benign on another).

To that end, we instrument Chromium’s V8 engine to append

necessary additional information to the bytecode sequences we

obtain, and use it to crawl, collect, and label scripts from the top

50K websites according to Tranco [52]. We then approach byte-

code classification as a text classification task and evaluate three

different models including both supervised machine learning and

deep learning models that differ in generalizability, performance,

and resource requirements. Our extensive experimental evaluation

shows that these classifiers can detect ad and tracking scripts with

97.08% accuracy, demonstrating their effectiveness in automating

the time-consuming task of creating filter lists. We compare our

bytecode classification technique to prior cutting-edge approaches

and find that bytecode classification outperforms the existing detec-

tion systems by 6.37-11.22% in accuracy. Crucially, our longitudinal

analysis of filter lists shows that our models can identify scripts

that are undetected by current filter lists, incorrectly detected as

trackers and later removed or allowlisted by the lists.

In summary, our work makes the following contributions:

(1) We design a novel bytecode-classification-based approach for

identifying ad and tracking scripts that is origin-agnostic, con-

siders code dependencies, and is resilient to evasion techniques

like URL and code obfuscation.

(2) We extensively explore the performance of bytecode classifica-

tion using both traditional machine learning and deep learning

models. Our comprehensive evaluation shows that bytecode

classification outperforms state-of-the-art systems.

(3) To enable reproducibility, facilitate additional research, and

assist filter list maintainers in automating the filter list lifecycle

process, we will publicly release our code and data https://

github.com/byte-learn/byte-learn.git.

2 BACKGROUND & RELATED WORK

2.1 Preliminaries

The crux of this work is classifying (external) JavaScript resources,

which are files that have a script resource type and are fetched

as users visit websites. Each script contains JavaScript executable

source code, and as the scripts are parsed and syntax trees are

created the interpreter generates the bytecode representation for

the executable code; in this work, we use the bytecode to represent

each script and predict its behavior. Throughout this paper we

refer to ad or tracking JavaScript resources as malicious scripts or,

for brevity, AT. We also refer to non-tracking/ad scripts as non-

malicious or benign. These scripts are often essential for websites’

functionality and do not carry out AT actions. However, there are

some scripts that exhibit both AT and benign behavior. We discuss

the implication of such cases in ğ6.

We consider two content blocking methods: online and offline. In

the online approach, features are extracted and rules are generated

in real-time during the web page visit. Implementing these methods

commonly requires in-browser instrumentation, which can add

overhead to the page load. Offline approaches, or blocklist-based

techniques, rely on lists that contain rules that provide instructions

for blocking browser requests. EasyList [5] and EasyPrivacy [6]

are prevalent examples of such lists. In contrast to online methods,

these rules are typically manually crafted beforehand, and updated

over time by a group of web users in a tedious crowd-sourced effort.

We consider three main steps in the filter list lifecycle: 1) detec-

tion, 2) rule generation, 3) update and/or correction. Improving the

detection step involves finding a set of features that can reliably

identify AT requests, which is the primary focus of prior work in

this space. The rule generation step uses the information obtained

during the detection process to create a set of efficient rules. Lastly,

the generated rules are updated as the ongoing arms race between

advertising/tracking entities and content blockers continues. While

step (3) has been mostly overlooked by prior AT detection studies,

our work is an offline approach that addresses both (1) and (3).

The update cycle also includes adding exception rules, where

certain blocked resources are allowlisted to prevent breakage in web-

sites. Listing 1 illustrates an allowlisted example from EasyPrivacy.

The first rule (line 1) instructs content blockers to block requests

to any URL that contains the domain googletagmanager.com,

whereas the second rule (line 2) makes an exception for specific

requests towards googletagmanager.com/gtm.js when the orig-

inating domain is okwave.jp because blocking it causes break-

age [1]. We use allowlisted to describe these exception rules (indi-

cated by the ł@@ž prefix) and provide more details in Appendix A.1.

2.2 Feature Selection & Challenges

Existing methods use JavaScript-based properties, request-based

features, or a combination of both, to identify and block advertising



Read Between the Lines: Detecting Tracking JavaScript with Bytecode Classification CCS ’23, November 26ś30, 2023, Copenhagen, Denmark

Listing 1: An example of filter syntax in EasyPrivacy

1 ||googletagmanager.com^

2 @@||googletagmanager.com/gtm.js$script ,domain=okwave.jp

and tracking related resources on webpages in mobile [58, 59, 75]

or desktop browsers [34, 37, 41, 60]. These properties are often used

to train classifiers for identifying AT requests and/or facilitate the

creation of filter lists in an offline approach.

Request-based features include the HTTP request/response

structure and URL or domain characteristics, such as whether do-

mains belong to third-parties [32, 41], URLs contain special key-

words [17], or requests are sent consecutively to a domain [38].

A combination of these features is used to determine whether a

request belongs to AT. However, adversarial evasion techniques can

bypass request-based detection, such as randomizing the hostname

and path [72], moving a domain to a different origin, or simply

removing keywords from URLs [65]. Third-party trackers have

been a focus of many studies, while first-party trackers are often

overlooked and considered inconsequential because they do not

track users across different websites. As a result, detection sys-

tems that rely on the request’s origin are also vulnerable to evasive

techniques, like CNAME cloaking [24, 25]. More importantly, URL

features alone are not sufficient for detecting allowlisted resources,

as the exact same URL can be allowed for one domain and blocked

for another. These shortcomings highlight the importance of select-

ing features that cannot be easily circumvented.

JavaScript-based features typically refer to syntactical or struc-

tural attributes of JS code, such as identifying the script’s behavior

based on a sequence of API calls [41] or whether it produces pre-

defined signatures in the event loop [22]. Such features are extracted

statically or dynamically. However, relying on static features may

fail to detect dynamically generated code, or incorrectly identify

code that is not actually being executed. For instance, features ob-

tained from a function that is defined in the code but never called

would be incorrectly taken into account. More importantly, static

analysis is vulnerable to JavaScript obfuscation [27, 63]. To bypass

obfuscation, extraction methods can collect such features directly

from the JavaScript engine through instrumentation.

2.3 Motivation

Given the limitations of relying on request-based and JavaScript

features, a resilient detection system must utilize features that do

not require prior knowledge about the AT method, and are not

easily evaded. If a set of known features is used, it is possible that

features that participated in the AT scripts will be overlooked, due

to not being known at the time of signature creation. For instance,

a classifier that uses a set of known Web API calls to determine a

script’s behavior will be outdated when such features are removed

or replaced and require additional investigation to examine the

effectiveness of newly added APIs. Moreover, features that have

bigger weights in a classifier’s decision can be modified by adver-

saries for bypassing detection systems [37, 60]. To tackle these

shortcomings, we consider the task of script classification as a se-

quence classification problem. To do this, we represent scripts using

sequences of bytecode generated by the interpreter and evaluate

different classifiers to predict each script’s behavior. Using bytecode

presents multiple advantages:

Table 1: Comparison of our JavaScript bytecode classification

method in detecting tracking and/or ad scripts to related

work.We label data samples as (S)mall (below 10k), (M)edium

(10k-100k), and (L)arge (above 100k).

Method
Features Focus Party Susceptible Allowlist Sample

Req JS Track Ad 1st 3rd Req man JS obf Analysis Size

Bhagavatula et al. [17] ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ M

Gugelmann et al. [32] ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗ S

Wu et al. [73] ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ S

Kaizer and Gupta [41] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ M

Ikram et al. [34] ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ S

Sun et al. [70] ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ S

WebGraph [60] ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓/✗* L

Bytecode Classification ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ L

* Their analysis focuses on website breakage.

• Representativeness: V8’s lazy parsing generates bytecode for

the invoked functions, offering a representation of the JavaScript

code that was actually executed and excluding unexecuted func-

tions, which impact techniques that rely on static analysis and

can lead to misclassification (false positives/negatives). Lever-

aging bytecode enables us to take the entire execution into ac-

count and classify its behavior, compared to other dynamic anal-

ysis methods that rely on predefined signatures. In ğ5, we com-

pare bytecode classification’s performance with prior work that

uses predefined features including Web API calls. We find that

such preset features can result in misclassifications; for instance,

hCaptcha [10] being misclassified as AT while our bytecode clas-

sification successfully captures the appropriate context and cor-

rectly classifies it. Conceptually, our bytecode-based approach is

akin to classifying text based on its meaning rather than merely

relying on the presence of specific keywords.

• Resilience: Bytecode is resilient against obfuscation techniques,

such as code obfuscation and URL randomization, as it is ob-

tained directly from the JavaScript engine. While similar scripts

can generate different bytecode sequences (e.g., invoke differ-

ent functions), in contrast to approaches that rely on predefined

signatures, such nuances can be mitigated by a context-aware

text classification model that captures the syntactic and semantic

relationships between bytecode sequences.

• Efficiency: Bytecode can be quickly extracted from a large col-

lection of scripts with minimal overhead. Having a large set

of samples can closely represent the input space compared to

smaller sets used in prior work (due to the need for manual

inspection or instrumentation overhead). Even though training

such a classifier has an upfront cost, the inference cost is minimal.

We provide a more in-depth discussion in ğ6.

• Accuracy:Our technique can uncover blocked scripts that should

be removed or allowlisted in addition to new AT scripts that cur-

rent filter lists have not yet detected.

2.4 Related Work

Due to the painstaking effort and challenging nature of manually

curating rules, previous studies have demonstrated that errors are

unfortunately common in popular filter lists [65]. This is especially

problematic as over half the websites could suffer from false positive

errors lasting more than a month, and obsolete rules can take two to

three months to be removed [16]. While a plethora of prior studies

have focused on content blocking, our approach overcomes the
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Listing 2: An example of code dependecy

1 <!-- external script where tracking () function is declared -->

2 <!-- function tracking (){ ... } -->

3 <script src="https://domain.com/tracking.js"></script >

4

5 <!-- inline script calls the function from external script -->

6 <script >

7 var uid = tracking ();

8 </script >

Listing 3: Declared function in tracking.js

1 function tracking(){

2 // no bytecode generated for unused_func ()

3 function unused_func(){ ... }

4 // tracking ()'s bytecode from here (if invoked)

5 var uid = ...;

6 return uid;

7 }

pitfalls of prior work by using features that are more robust to

evasion and achieves higher accuracy in both the detection and

update phases of the filter list lifecycle, and also achieving early

detection of both false positives and false negatives.

Online techniques. Such approaches often rely on a special

tool (e.g., instrumented browser) that enables their features to be

computed on-the-fly, and blocking decisions are made in real-time.

AdGraph [37] creates a graph representation of the website during

page load and uses the features extracted from the graph to decide

which requests should be blocked. The top features used in AdGraph

are content-based features, such as URL length or the script’s origin,

which are prone to adversarial evasions. Khaleesi [38] is another

online approach that focuses on detecting advertising and tracking

request chains using request and response features, and sequential

features such as the number of unique domains in the chain.

Offline methods. In practice, popular AT blockers (e.g., Ad

Block Plus [2]) and browsers (e.g., Brave [20]) use offline techniques

that rely on pre-computed filter lists. Many existing studies have fo-

cused on improving (and automating) the rule-generation process,

which relies on human intervention, because incorrect rules can

cause breakage and have unwanted consequences. These studies

use different feature sets and train supervised and unsupervised

classification models to identify potential AT scripts. Their methods

vary in terms of the type of features they use, their classification

technique, and the sample size. Bhagavatula et al. [17] used URL

features such as the presence of ad-related keywords or particular

parameters in query strings to train a machine learning model. The

authors in [70] used Web API calls to classify JavaScript execution,

while [22] focused on the behavior of scripts during the JavaScript

event loop to identify AT behavior. Kaizer and Gupta [41] leveraged

request-based features such as the presence of referer and cookies

in HTTP headers in addition to JavaScript features such as web

API calls. WebGraph [60] is an offline implementation of AdGraph

that was introduced to improve the robustness of the graph-based

approach and reduce AdGraph’s susceptibility to evasion. In con-

trast to our work, WebGraph employs features extracted from the

network, storage, JavaScript, and HTML layers via instrumentation,

which greatly increases the workload. We compare the core aspects

of our work to prior studies in Table 1.

JS bytecode. To the best of our knowledge no prior work has

used JavaScript bytecode sequences as a predictor for AT scripts.

The closest study was conducted by Rozi et al. [55], which uses

Chromium

[generated bytecode for function: (0x2bda7b5bb8e9
<SharedFunctionInfo>)] 
Parameter count 7 
Register count 33  
Frame size 264  
Bytecode: [CreateFunctionContext,PushContext,Ldar,
StaCurrentContextSlot,Ldar,StaCurrentContextSlot,LdaTheHole,
StaCurrentContextSlot,LdaTheHole,StaCurrentContextSlot,
LdaTheHole,...]
Source: function (){...}
URL: https://domain.com/resource.js 
... 

[generated bytecode for function: (0x2bda7b5bb8e9
<SharedFunctionInfo>)] 
Parameter count 7 
Register count 33  
Frame size 264  
0x2bda7b5bcf96 @ 0  : 84 00 4b CreateFunctionContext [0],[75]
0x2bda7b5bcf99 @ 3  : 16 e7    PushContext r20 
0x2bda7b5bcf9b @ 5  : 25 06    Ldar a1 
0x2bda7b5bcf9d @ 7  : 1d 05    StaCurrentContextSlot [5] 
0x2bda7b5bcf9f @ 9  : 25 04    Ldar a3  
0x2bda7b5bcfa1 @ 11 : 1d 04    StaCurrentContextSlot [4]  
0x2bda7b5bcfa3 @ 13 : 0f       LdaTheHole  
0x2bda7b5bcfa4 @ 14 : 1d 06    StaCurrentContextSlot [6] 
0x2bda7b5bcfa6 @ 16 : 0f       LdaTheHole  
0x2bda7b5bcfa7 @ 17 : 1d 07    StaCurrentContextSlot [7]  
0x2bda7b5bcfa9 @ 19 : 0f       LdaTheHole 
... 

Instrumented Chromium

Figure 1: Bytecode generated for a function using unmodified

Chromium (top) and our instrumented Chromium (bottom)

which only keeps bytecode needed for our method and adds

the script URL of this function.

bytecode classification to identify malware. There are several ma-

jor differences in our work. First, we focus on an entirely differ-

ent class of malicious behaviors. In their work AT and functional

scripts belong to the same class, whereas our objective is to iden-

tify JavaScript files that exhibit AT behavior. Moreover, blocking

AT indiscriminately can cause breakage. Thus, an effective model

must also distinguish between disruptive and non-disruptive AT,

highlighting the unique challenge. More importantly, they execute

JavaScript files in the jsdom [12] environment which is slow, injects

unrelated (jsdom) bytecode sequences into the dataset, and does

not work in the web ecosystem, where dependent scripts loaded

from different locations are needed for correct and complete exe-

cution. This is important due to how V8 generates bytecode. Since

parsing and generating bytecode for all functions can be costly, V8’s

lazy parsing[13] approach parses and generates bytecode when the

functions are invoked. The functions can be invoked within the

scripts they were declared or from other scripts. Listing 2 illustrates

an example of an inline script (line 7) that calls a function declared

in an external script (line 3). In this example, loading the external

script in jsdom, without invoking the tracking() function will not

generate a bytecode sequence due to the lazy parsing. Since we do

not have a-priori knowledge about such code dependencies, we can-

not know which scripts (inline or otherwise) must be included prior

to execution for jsdom to generate bytecode that is equivalent to

visiting the website. To accurately capture the script’s bytecode, we

need to render the web page in a browser, obtain the bytecode and
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URL, or that belongs to Puppeteer (indicated by _puppeteer_), or

has no source code associated with it. We consider each bytecode

as a separate word and each function as a separate sentence. After

parsing and cleaning, the end result for each script forms a list of

sentences in a document. Finally, since different scripts can gener-

ate the same bytecode sequences, we locate and remove duplicate

bytecode to avoid any pollution during our experiments and ensure

that all test data will be unseen.

Data Compression. The bytecode sequences can be very long

with repetitive words, which takes up unnecessary space when

stored. We opt to compress data by replacing each bytecode with a

shorter word. Each bytecode in our dataset has a length between

3-42 characters. The distribution of bytecode sequence length in

our dataset is illustrated in Figure 5. In total, we gathered 524 byte-

code from both Chromium’s source code (488) and traversing and

identifying unique bytecode in the collected data (36). Therefore,

every bytecode in our data can be represented with a 2-character

word. We created a word mapping dictionary by assigning each

bytecode to a randomly generated 2-character string and substi-

tuted all instances of that bytecode in the documents. The total

number of unique bytecode observed in our data is 339. The com-

pressed bytecode sequences required 76.32% (58 GB) less storage

space compared to the original bytecode.

3.3 Word Embedding

In order to train our model, we first need to create a representa-

tion for each word; this task is shown in Figure 2 as the sample

vectorization part of the pipeline. There are various methods for

converting the documents to vectors (e.g., count vectors), which

vary in computation time and the amount of information they can

capture in terms of context and semantics. We use two methods,

Word2vec [47] and FastText [18], to learn a distributed word (i.e.,

bytecode) representation in a vector space and create the word

embeddings. Prior work has shown that using unsupervised em-

beddings in DPCNN improves performance [39]. Word2vec is an

unsupervised algorithm that can be used to create a vector for each

word that keeps the semantic closeness of the words by learning

which words the target word more often occurs with. Word2vec

has two architectures: Continuous Bag of Words (CBOW) and Skip-

Gram. The CBOW architecture predicts the word given the neigh-

boring words (context) while Skip-Gram predicts the neighboring

words in a certain range before and after a given word. FastText fol-

lows a similar approach but focuses on character n-grams: a word

representation using the sum of character n-grams. We provide

additional details about FastText in the following subsection.

The output layer of the Skip-Gram model is a softmax layer with

1 ×𝑉 dimensions, where 𝑉 is the size of the vocabulary and each

value in this probability vector represents the probability score of

the word in that position. However, we only need the hidden layer’s

output for creating word embeddings. After training on the corpus,

the weight matrix in the hidden layer is used to calculate the vector

representation of each bytecode, and the vectorized bytecode se-

quences are used to train our model. We note that while increasing

the word range in the Skip-Gram architecture increases the predic-

tion accuracy, it also increases the computational complexity [47].

Therefore, tuning the parameters to achieve the best accuracy with

reasonable performance is crucial, as we detail in ğ4.1.

Table 2: Number of all and unique script samples collected.

We use unique bytecode sequences for training and testing.

Dataset Label #Samples

All JavaScript
Benign 545,223

Ad/tracking 368,667

Unique JavaScript
Benign 265,861

Ad/tracking 130,509

Document Embedding. After training, Word2vec generates a

vector representation for each word in the vocabulary. We directly

use this as the embedding layer of DPCNN, which is a look-up table

for vectors of each word obtained from Word2vec. Since Word2vec

only provides word embeddings we need to use another method to

represent the document (i.e., script) vector which will be used in

traditional machine learning methods. One popular method is cal-

culating the mean of all the word vectors in the scripts to represent

each script as a vector [44, 57]. We use this approach to prepare

our data for training a random forest classifier and compare our

ML-based classifier with our deep learning model.

3.4 Classification

Next, we provide an overview of our classifiers, which differ in terms

of performance and training costs as we detail in later sections.

DPCNN. The Deep Pyramid Convolutional Neural Network [39]

is a text classification model that can efficiently capture global

information and long-range associations in the text [39]. The model

begins with a text region embedding with optional unsupervised

embeddings (for improving accuracy). We train Word2vec on our

dataset and use it to transform bytecode sequences into vectors

for this layer. The first feature extraction layer consists of two

convolutional layerswith amax-pooling layer and a skip connection

with pre-activation. This can be written as 𝑧 + 𝑓 (𝑧) [33], where

𝑓 (𝑧) are the two convolutional skipped layers with pre-activation

and the activation function 𝜎 (.) is the rectifier 𝜎 (𝑥) = 𝑚𝑎𝑥 (0, 𝑥).

After each convolution block, there is a max-pooling layer with

pooling stride 2 and kernel size 3 which reduces the size of the

representation by half. The repeated halving reduces the size of the

document’s internal representation and forms a pyramid.

A typical text document has a large vocabulary of words with

a few repetitive neighboring words. However, the nature of our

dataset is different: each document has a relatively small vocabu-

lary with very long sequences. The document length distribution

is shown in Figure 5. Therefore, we need to change the default

parameters that were originally proposed by [39] to improve the

model’s performance in this specific domain. We use a PyTorch

implementation of DPCNN [53] to train and test the model.

FastText. FastText [18] attempts to improve Word2vec by ex-

tending the Skip-Gram model to include character-level informa-

tion and represent the internal structure of the words. This model

is particularly useful when a word can have a large number of

morphological forms. In this model, words are bag-of-character

n-grams. For instance, the word łtrackž with 𝑛 = 3 will be decom-

posed into <tr, tra, rac, ack, ck> as well as the special sequence

<track>, where < and > are special characters added at the begin-

ning and end of the words. Each n-gram is then represented by a

vector, therefore the word will be represented by the sum of these
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Table 3: Top 10 FQDNs that served AT JavaScript files. The re-

ported counts for all collected scripts and scripts with unique

bytecodes are separated.

Unique Scripts All Scripts

FQDN Count FQDN Count

www.googletagmanager.com 33,234 (25.46%) www.googletagmanager.com 41,869 (11.36%)

www.google-analytics.com 11,933 (9.14%) www.google-analytics.com 26,812 (7.27%)

connect.facebook.net 6,652 (5.1%) connect.facebook.net 23,481 (6.37%)

securepubads.g.doubleclick.net 5,351 (4.1%) googleads.g.doubleclick.net 12,397 (3.36%)

tags.tiqcdn.com 3,834 (2.94%) tpc.googlesyndication.com 11,935 (3.24%)

pagead2.googlesyndication.com 3,558 (2.73%) www.googleadservices.com 9,935 (2.69%)

www.clarity.ms 2,624 (2.01%) pagead2.googlesyndication.com 8,781 (2.38%)

www.googletagservices.com 2,383 (1.83%) securepubads.g.doubleclick.net 7,646 (2.07%)

script.hotjar.com 2,224 (1.7%) assets.adobedtm.com 7,529 (2.04%)

mc.yandex.ru 1,399 (1.07%) tags.tiqcdn.com 7,145 (1.94%)

character n-gram vectors. FastText can be used for both supervised

and unsupervised learning. FastText’s supervised learning for text

classification [40] uses document/sentence vectors as features by

averaging the word/n-gram vectors and uses multinomial logis-

tic regression to perform text classification. For obtaining word

embeddings, we use Gensim’s [54] implementation of FastText’s

unsupervised learning since we use the same library for Word2vec.

For the classification task, we use [8]’s implementation.

Random Forest (RF). We use a random forest classifier to

compare the performance of a classic machine learning technique,

which also requires less time and resources to train. Similar to

the DPCNN model, we need to represent our inputs as vectors.

While in DPCNN the word embedding acted as a lookup table for

word vectors, here we need to find a representation for each script

document. We use the same vectors generated by Word2vec and

FastText with the difference being that for each script we create

a document/sentence vector 𝑣 by replacing each bytecode (word)

with its corresponding 𝑏𝑖 vector (obtained from Word2vec) and

then averaging all the bytecode vectors:

𝑣 =

1

𝑛

𝑛∑︁

𝑖=1

𝑏𝑖

where 𝑛 is the number of bytecode (words) in the script and 𝑣 ’s di-

mension is the same as the bytecode vectors generated byWord2vec.

We follow the same method with vectors created by FastText to

compare its performance with Word2vec’s vectors. Finally, for the

classification task, we use the scikit-learn [51] implementation

of a random forest classifier.

4 EXPERIMENTAL SETUP

Here we provide details about the experimental setup used to collect

data and train ourmodels.We also provide performance comparison

between different bytecode classification models and additional

details about our models’ parameter configuration process.

Hardware. We performed all data collection, as well as training

and testing our models, on an Ubuntu 18.04 server with an Intel(R)

Xeon(R) Silver 4110 CPU, three GeForce GTX 1080 Ti GPU and

64GB RAM. Data collection was performed using Puppeteer and

our instrumented Chromium browser (version 100.0.4889.2) from a

university network with an IP address located in the US. We used

GNU Parallel [71] to run tasks in parallel.

Dataset breakdown. We collected 913,890 scripts from the top

50K websites and, after processing, obtained 396,370 scripts that

generated unique bytecode sequences. The division betweenAT and
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Figure 3: The top section includes all scripts and the bottom is

plotted based on unique scripts. The left plots are comparison

CDFs between observed (JavaScript) resource requests from

the top 10 AT FQDNs in relation to other trackers over ranks.

The right plots illustrate the dispersion of top 10 AT (FQDNs)

across ranks when grouped by their entity.

benign JavaScript is shown in Table 2. The unique bytecodes will be

used to train and test our models’ performance (ğ5). To find the ratio

of first- and third-party trackers, we compare the fully qualified

domain names (FQDN) of the script URLs against the websites from

where the requests were initiated. We note that 366,944 (99.5%) AT

scripts are third-party resources whereas only 1,723 are first-party.

This ratio is similar for unique scripts, with 129,819 (99.5%) being

third-party as opposed to 690 from first-parties. If we use a more

relaxed comparison using the apex domain (instead of FQDN), the

third-party ratios of AT scripts are 359,083 (97.4%) and 126,288

(96.8%) for all and unique scripts respectively.

To better analyze the prevalence of tracking scripts, we group

them based on their FQDNs. Table 3 shows the top 10 most frequent

FQDNs that served AT JavaScript, which constitutes more than 50%

of the trackers in our unique scripts data. We also note that more

than half of the top 10 FQDNs belong to a single entity (i.e., Google).

We then divide the top 10 tracking FQDNs into three separate

entities: Google, Facebook, and others, and count their frequency

throughout the data. Figure 3 shows the distribution of the FQDNs

over different ranks. The first observation is that while the majority

of trackers belong to Google, all three categories are dispersed

uniformly across different ranks. Second, when we ignore the top

10 trackers we observe a similar distribution among ranks. In other

words, our collected data is not biased towards a particular set of

ranks (popular or unpopular) and is representative of AT-related

JavaScript observed across different websites.
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Figure 4: Loss and accuracy comparison of DPCNN training

using different embeddings.

4.1 Model Parameters

DPCNN. In the original DPCNN paper [39], the authors used a 300-

dim unsupervised embedding. The typical range for the dimension

size is 50-300 [50]. However, because of the unique characteristics

of our dataset which consists of very long sequences with a limited

set of recurrent words, we opt for fewer dimensions as that is more

efficient computationally. Therefore, to obtain the embedding, we

train Word2vec with a vector size of 100 and a window size of 3.

We do not set a vocabulary size and let the model choose the size

based on the observed data. The default setting for Gensim’s [54]

implementation of Word2vec does not include words with a fre-

quency less than 5 in the final vocabulary. We also use FastText

with the same parameters to generate pre-trained unsupervised

word embeddings to compare the performance of different embed-

dings. We use the vocabulary size, the vector size (100) and obtained

embedding weights to create the (unsupervised) embedding layer.

The embedding generated from Word2vec and FastText has 334

words.

In our experiments, we find that the maximum sequence of

bytecode directly impacts the model’s performance as the larger

sequence can capture more global information. However, large

sequences also require more GPU memory and negatively affect

the computation time. With our experimental setup, we were able

to fit bytecode with maximum sequence lengths of 280,000 words.

We test different parameters by building on top of the parameters

proposed in [55]. Initially, we considered a kernel size of 100 with

a small pooling stride of 2 (which was used in the original model)

and then gradually changed the parameters. We achieved the best

results with a kernel size of 51 and a pooling stride of 15. We

used the Adam optimizer [45] as the optimization algorithm. We

experimented with different learning rates (e.g., 0.0005, 0.00075,

0.001, etc.) and as the learning rate increased, we observed more

sensitivity and higher loss fluctuation. In general, lower learning

rates may result in a more accurate model but can also cause slower

convergence. Through extensive and systematic empirical analysis

we found that the model performed well with a learning rate of

0.00075. Lastly, we set the dropout [69] to 0.2 to prevent overfitting.

FastText. We use the aforementioned parameters for Word2vec

to obtain unsupervised word embedding. However, for the text

classification task we set the word vector dimension to 100 and

the learning rate to 1.0. We obtained the best results by setting the

word n-gram to 10, the context window size to 10, and the training

step to 150 epochs. Note that the word n-gram is set by passing

the wordNgram argument, while the character n-gram (described

in ğ3.4) is set by using the maxn and minn arguments in FastText’s

library. We use the default value for character n-gram parameters.

Since the classes in our dataset are unbalanced, we used hierarchical

softmax for the loss function [9]. We note that due to the large word

n-gram and epochs, the training time is much higher compared to

our Random Forest model, though less than DPCNN. We further

explore prediction and training time comparison in ğ5 and ğ6.

Random Forest (RF).We used GridSearchCV [51] to find the

best set of parameters for training a random forest classifier on our

data. Our findings show that the best results are achieved using the

Gini criterion, 200 estimators, and setting the number of features

allowed for splitting the tree to the square root of all features.

5 EVALUATION

We perform two different sets of experiments to compare the per-

formance of the models. In the first experiment, we compare the

predictive power of models on the same set of test cases. Then

we compare the generalizability of the models based on the filter

lists released at a later time. For our performance comparison and

manual analysis we use the following metrics:

(1) False Positives: JavaScript resources that are classified as AT

by our model while they are labeled as benign by the filter lists.

(2) True Positives: Both our model and the filter lists classified

these JavaScript resources as AT.

(3) False Negatives: JavaScript resources which are classified as

benign by our model but included in the filter lists as AT.

(4) True Negatives: JavaScript resources classified as benign by

our model while also not being included in the filter lists.

Given the above metrics, we explore the accuracy of classify-

ing JavaScript resources (i.e., external scripts). In the first set of

experiments, we used the collected data described in ğ3 to train

and measure our models’ performance. In models that use word

embeddings, we use the embeddings generated by both Word2vec

and FastText and compare the performance to understand which

word embedding provides better results. Our goal is to compare the

model’s performance based on how the embedding is obtained and

different model architectures for text classification.

After parsing the bytecode output, we split it into training (80%)

and testing (20%) sets and only use the training set to trainWord2vec

and FastText and create the unsupervised embedding layer. For

DPCNN, we replace the bytecodes with their corresponding indices

in the embeddings. This data format along with the embedding will

be used to train the DPCNN model. Bytecode sequences in our data

have different lengths and the sequence inputs to DPCNN have

to have the same length. Therefore, we limit the sequence length

to the maximum length that we can fit in the GPU based on our

experiment setup and pad sequences that are shorter with a padding

index which has a vector of zeros in the embedding’s look-up table.

For FastText, we do not need to convert the bytecodes, we only

make the compressed bytecode compatible with FastText’s format

and train the model. For RF, after replacing each bytecode with its

corresponding vector, we calculate the mean of word vectors in

each script and use it to train the classifier. Finally, we train and



Read Between the Lines: Detecting Tracking JavaScript with Bytecode Classification CCS ’23, November 26ś30, 2023, Copenhagen, Denmark

Table 4: Model performance for script classification using

different classifiers and embeddings. The FastText model

refers to supervised text classification, while unsupervised

learning was used to obtain the FastText embedding.

Model Embedding Accuracy(%) Precision(%) Recall(%) F-1 Train Time (h)

DPCNN
Word2vec 96.65 96.07 93.66 94.85 140

FastText 96.89 96.47 93.98 95.21 232

FastText ś 97.08 95.62 95.49 95.56 60

RF
Word2vec 96.48 98.61 90.58 94.42 0.027

FastText 96.46 98.64 90.49 94.39 ś

test the models and compare their performance on the same data.

Because DPCNN and FastText require a significant amount of time

to train, we only compared 5-fold cross-validation in the RF model

and note that the results are similar and slightly better than the

reported results in Table 4, which indicates that RF does not have a

selection bias and generalizes well.

Figure 4 illustrates the loss and accuracy when using different

embeddings in DPCNN; the kernel and stride were set to 51 and

15 respectively, and the max sequence length was set to 280,000.

While Word2vec’s embedding triggered the early stopping sooner,

FastText’s embedding resulted in lower loss and higher accuracy.

The upfront cost for training is an important factor to consider, espe-

cially when adding a new set of bytecode to V8, or having additional

samples that require re-training. Table 4 shows the performance of

the classifiers as well as the trade-off between performance and the

upfront cost. Training RF took less than 2 minutes and produced

the lowest false positives compared to 60 hours training time for

FastText which achieved the lowest false negatives. The results for

DPCNN were in between these two models and the training time

took >140 hours to complete. While no model achieved the best

score in all metrics, FastText produced the best accuracy, recall and

F-1 score compared to other classifiers.

Summary I: All three models performed comparably well in

detecting AT scripts. Random Forest achieved the highest pre-

cision with the lowest upfront cost, while FastText had higher

upfront cost, though lower than DPCNN, but achieved the high-

est overall performance.

5.1 Proactive Detection

We investigate the models’ performance in detecting AT resources

that are not yet present in the current version of filter lists, but

are added in future versions. This experiment also examines how

well the models are generalized in detecting new scripts. Filter

lists such as EasyList and EasyPrivacy are frequently updated to

include newly added rules for detecting unwanted resources or

remove stale or incorrect rules that may cause website breakage.

We downloaded updated versions of all filter lists 2 and 4 months

after the initial download. We labeled the initial list, which was

used for labeling the training and testing dataset, as list (A) and the

subsequent lists as lists (B) and (C). We located the false positive

cases of DPCNN and RF with Word2vec embedding (higher false

positives) and FastText (See Figure 6), and tested them against the

new filter lists. If they were detected as AT by the new lists, we

downloaded their JavaScript file and compared the content (using

difflib [4]) with the source code of the script we obtained during

the data collection, to ensure that their inclusion in the updated

Table 5: Proactive detection results by comparing false pos-

itives against new filter lists. Lists (B) and (C) were down-

loaded 2 and 4 months after the original filter list.

List (B) List (C)

Overall Same Scripts Overall Same Scripts

Model Total Malicious Total Malicious Total Malicious Total Malicious

DPCNN (w2v) 21 8 7 1 29 8 13 1

FastText 22 8 6 1 33 8 12 1

RF (w2v) 10 4 5 0 13 4 8 0

filter lists was not due to modifications in the code. We also checked

whether the scripts were detected as false due to being allowlisted

in list (A), and whether the undetected URLs were identified as

malicious by Virus Total [68].

The results are reported in Table 5 and include both the total

collection of scripts and the scripts where string matching reported

at least a 90% similarity across script versions. The overall results

also contain scripts where string matching was lower than 90% and

the scripts where we received errors such as ł404 Not Foundž or

ł403 Forbiddenž. The malicious results are scripts that were detected

as malicious at least by one source in Virus Total. None of the

false positives were bypassed as a result of being allowlisted by

list (A). We note that RF detected fewer scripts overall, which can

indicate that the model is less generalized compared to FastText and

DPCNN. Crucially, our findings show that these classifiers are able

to proactively detect scripts that show AT behaviors. We also note

that the number of true positives increased between two lists (2

months apart), indicating that the false positives reported in Table 4

are an overestimation.

We also performed a similar experiment for false negative sam-

ples to examine the proactive detection of allowlisted scripts. These

are the samples that were labeled as AT by filter list (A) but de-

tected as benign by our models. We checked these false negative

samples against updated filter lists (B) and (C); if they were detected

as benign by these lists we performed additional string matching

and selected the ones with above 90% similarity. We found 28, 15,

and 20 false negative samples for RF, FastText, and DPCNN re-

spectively which were detected as true negatives when using the

updated filter lists. These samples may have been added to the

exception rules (or the initial rules were deleted) to potentially

prevent usability issues. For instance, in the initial list, there was

no specific rule for palmettostatearmory.com, whereas in the up-

dated list (C) there was a rule that allows a website to send a request

to palmettostatearmory.com/static/. We also found a similar

case for batteriesplus.com. Evidently, both of these experiments

show that the trained models are generalized well enough that our

approach is able to go beyond simply detecting the current rules

and proactively locate AT scripts that should be added or even

removed (allowlisted) from the lists.

Summary II: All three models were able to uncover new scripts

that had not been detected by the existing filter lists, with Fast-

Text detecting the highest number. The number of previously

undiscovered scripts increased over time which suggests that

our findings represent a lower bound.

Manual Inspection. To further examine the false positive, we

randomly selected 30 (out of 334) samples from RF’s false positives
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Table 6: Allowlisted false positives.

P
P
P

P
P

P
P

Model
Results DPCNN (w2v) DPCNN (ft) FastText RF (w2v) RF (ft)

Allowlisted FP 48 (4.81%) 38 (4.24%) 47 (4.13%) 34 (10.17%) 33 (10.15%)

Total FP 997 895 1,138 334 325

with our instrumented Chromium and crawled 5K random web-

sites ranked between 50K-60K (we choose a different range so as to

obtain additional data than one used in previous experiments). We

only visited the home page without interacting with the website

similar to our large data collection. We call this dataset D1. In total,

the shared data between both datasets has 42,927 samples with 29%

of the samples belonging to AT scripts.

We performed a 5-fold cross-validation on the shared data and

used the parameters proposed by [17] to train and test the models.

We also made sure the data used for training and testing the models

have the same ordering, to prevent any performance discrepancies.

For BD+ we performed a k-Nearest Neighbors (kNN) with k = 5.

For bytecode classification, we used a random forest (RF) model

with FastText word vectors and in each iteration we trained the

unsupervised embeddings (see ğ3.3) on the training samples prior

to training, and then used it for vectorizing the training and testing

samples and calculating the means. The results are reported in

Table 7. We find that BD+ suffers from both high false positives

and false negatives, which aligns with our intuition that classifiers

that only rely on request-based features do not perform well as

advertisers are incentivized to employ evasive techniques. BD+’s

performance can also be attributed to its reliance on features that are

not commonly found in JavaScript resources, such as whether the

URL contains a semicolon or dimension information. Our bytecode

classification achieved 27.62% higher precision and 11.22% higher

accuracy than BD+. Having fewer false positives is particularly

important in content blockers where the incorrect detection of

scripts can cause breakage in websites.

JavaScript-based. We compare our method with the approach

proposed by Kaizer and Gupta [41] that uses JavaScript-based fea-

tures in addition to URL features, and WebGraph [60] that extends

AdGraph [37]’s network layer by including storage information and

data flow in the graph. [41] uses 18 features including 13 JavaScript

Web API calls and 5 request-based features for classification. Since

OpenWPM already collects the Web API calls from scripts, we used

the same data collected for BD+ and selected the scripts that had

at least one JavaScript API call, to ensure their execution trace

was captured, and their matching requests and responses (which is

used for URL features) where available. We found 20,309 samples

that matched these conditions and overlapped with our bytecode

dataset. We call this dataset D2. The AT samples constituted 46%

of the data. The labeling approach described in [41] considers first-

party external JavaScript requests as benign. However, using our

ground truth filter lists (and focusing on apex domains) we found

681 first-party JavaScript samples from the original data, including

206 overlapping samples from D2 that belonged to the AT class.

Therefore, we followed the same labeling approach explained in ğ3

for generating the ground truth. To provide a fair comparison, we

perform a 5-fold cross-validation using a random forest classifier

with 200 decision trees. In each fold, we trained an unsupervised

Table 7: 5-fold classification performance of bytecode classi-

fication compared to BD+ [17], Kaizer and Gupta [41], and

WebGraph [60].

Data Method Precision(%) Recall(%) F-1 Accuracy(%)

D1
RF (FastText) 98.61 ± 0.21 81.41 ± 0.86 89.18 ± 0.48 94.32 ± 0.22

BD+ [17] 70.99 ± 0.84 69.70 ± 1.79 70.33 ± 1.22 83.10 ± 0.59

D2
RF (FastText) 98.34 ± 0.25 88.06 ± 0.54 92.91 ± 0.37 93.75 ± 0.32

Kaizer and Gupta [41] 87.17 ± 0.22 84.92 ± 0.69 86.03 ± 0.44 87.16 ± 0.37

D3
RF (FastText) 98.96 ± 0.26 74.82 ± 1.84 85.20 ± 1.22 92.62 ± 0.53

WebGraph [60] 80.28 ± 1.59 68.44 ± 0.90 73.89 ± 1.19 86.25 ± 0.66

FastText embedding on the training set, used it to vectorize the

training and testing samples, and then calculated the mean to obtain

a vector representation for each script.

For WebGraph, we used the Docker image provided by the au-

thors [15] and crawled the same 5K websites using the included

OpenWPM alongside our instrumented Chromium browser. For

extracting WebGraph’s features, however, we were only able to

process 1,500 websites due to the huge processing overhead (see ğ6).

The pre-processing step was conducted using the default features

provided in the WebGraph implementation, and the training and

testingwere done using the intersection ofWebGraph’s data and the

collected bytecode. We call the shared dataset D3, which has 12,136

samples where 28% belong to the AT class. For both experiments,

we used a random forest (RF) classifier. For bytecode classification,

we used the FastText embedding to pre-process the data, and for

WebGraph we used the parameters specified by the authors. We

conducted a 5-fold cross-validation to compare the performance.

Table 7 summarizes the cross-validation results where bytecode

classification outperforms WebGraph across all measures, specifi-

cally in reporting fewer false positives with an 18% improvement in

precision. Bytecode classification using D3 dataset had lower recall

compared to D1 and D2 datasets, which can be attributed to the

smaller sample size due to only processing 1,500 websites. We note

that WebGraph, which outperforms AdGraph [37], reports a 4-9%

improvement if content features are added. However, even then the

precision is lower than what is achieved by our model while also

decreasing WebGraph’s robustness and making it more susceptible

to evasion techniques.

Summary IV: Bytecode classification significantly outperforms

existing methods, produces fewer false positives and false nega-

tives while maintaining high accuracy in identifying AT scripts

even in smaller datasets.

6 DISCUSSION

Here we further discuss pertinent aspects of our technique.

Upfront vs. downstream cost. To achieve the best results for

the DPCNN model we utilized three discrete GPUs and required a

week of training, whereas the FastText model only needed one CPU

(with 16 cores) and less than three days for training. While the RF

model that achieved the best precision only needed a few minutes

to train, DPCNN and FastText generalize better (see ğ4). On the

other hand, precision is an important metric due to the negative

impact of false positives on the user experience. Overall, once the

model is trained, pre-processing and classification time will remain

the only (downstream) cost. Therefore, we view the training cost as

an infrequent, one-time upfront cost that occurs when a new set of
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Figure 7: Comparison of prediction and pre-processing time

per sample between differentmodels. The left figure includes

the pre-processing time in addition to the prediction time.

Note that FastText does not have pre-processing overhead as

the inputs are passed to the model directly.

bytecode is incorporated into V8, as opposed to the data collection

and prediction performance.

We calculated the average pre-processing and prediction time

for each sample based on 5 separate runs. The results are shown in

Figure 7. While hardware requirement differences should be taken

into account, we note that DPCNN and FastText are faster for a

single sample classification compared to RF. However, performance

can be vastly different and improved when batching is used. To

measure the downstream cost of data collection, we selected 500

websites randomly from the top 10K and conducted a simultaneous

crawl with and without printing the bytecode using our instru-

mented Chromium. We also set an upper bound of 120 seconds per

website. We observed a mean and median of 2.58 and 1.01 seconds

overhead respectively for saving the generated bytecode, and 1.4

and 0.91 seconds for bytecode extraction and processing. Figure 8

shows the CDF for the additional overhead incurred in crawling

websites and storing bytecode, and subsequently extracting the

bytecode. We compared our technique to a graph-based approach

such as WebGraph [60], and the processing overhead using Web-

Graph was 345 seconds per website, which is significantly slower

than our pipeline and consistent with the overhead reported by

other studies [38]. While our method incurs a higher training cost,

it outperforms prior approaches in terms of speed and accuracy

when applied to large-scale experiments.

Robustness. Our approach is party-agnostic, does not rely on

static features of the code or HTTP request information and is

not vulnerable to code obfuscation techniques where previous ap-

proaches falter. Whether the loaded JavaScript resource is first or

third-party is irrelevant to the model’s ability for classifying the

script’s behavior. Using the party (i.e., origin) as a feature can in-

troduce bias; for instance, while visiting redbull.com, our model

identified a first-party script https://qm.redbull.com/analytics.js as

tracking even though the URL did not match the filter lists’ rules.

Similarly, our model detected the https://www.footmercato.net/

lib/prebid7.1.0.js script while visiting footmercato.net. Since the

generated bytecode depends on how the website uses the script

(execution), our method can differentiate between seemingly simi-

lar scripts (e.g., based on URL) originating from different websites.
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Figure 8: The added overhead for collecting bytecode from

500 websites using the instrumented Chromium as well as

extracting bytecode.

For example, the execution flow for a JavaScript library that con-

tains both AT and benign functions will depend on which functions

within the library are called at runtime, which results in having

different bytecode streams for different websites even if they are

using the same library. This variability in execution flows can be

leveraged to distinguish allowlisted scripts from AT ones.

A model’s robustness to evasion depends on its sensitivity to

easily alterable features. In our approach, the input is a vector

embedding learned from a bytecode sequence obtained from the

script’s execution. This is harder to manipulate since the embed-

dings capture the sequence’s context. An adversary would need to

create scripts that generate specific bytecode sequences where the

average of its word vectors (for RF) would significantly change the

model’s prediction. This makes our approach more robust to adver-

sarial evasion compared to models that rely on feature engineering.

Disclosure. We have disclosed the new resources identified

during the manual inspection in ğ5 to EasyList’s maintainers and

are awaiting their response. Thus far, one of them has been accepted.

6.1 Limitations & Future Work

Data collection.Weused a custom instrumented Chromiumbrowser

and OpenWPM to collect our data. However, some websites may

use anti-crawling measures which can prevent automated browsers

from accessing their content. This can limit the amount of data that

can be collected, as well as potentially introduce bias in the collected

data. Furthermore, the data received from the automated crawls

of the homepage may differ from what real users receive through

interactions with the websites which may affect the distribution

of the collected data, particularly in websites that require user au-

thentication or include dormant scripts [35] that do not execute

during non-interactive page visits. However, prior research [77]

also showed that compared to human browser users, crawlers expe-

rience more third-party activities. Moreover, interacting with the

website and mimicking a real user’s behavior can increase the exe-

cution coverage and mitigate the impact of dormant scripts. While

such limitations are inevitable in large-scale studies, collecting data

from a large number of websites can minimize the potential impact.

Evasion.While code obfuscation and URL randomization can-

not evade our method, more challenging evasion techniques such

as code bundling and inlining can impact dynamic analysis and
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circumvent filter-list-based techniques. Code bundling combines

functional code with pieces of AT related code so that the website’s

functionality depends on allowing the external (bundled) script.

Such resources often become allowlisted in filter lists (see ğ5). In

code inlining, the AT code is directly wrapped inside the <script>

tags instead of being loaded as an external script (i.e., src attribute

of <script>) and, thus, cannot be blocked by filter lists even if

they are detected by our model. Similar to prior work, we are still

bound to analyzing a single bundled script as our goal is to identify

externally loaded AT scripts and not to locate the parts of the script

that exhibit tracking behavior. In other words, our method is an

automated offline solution to detect external AT scripts and help

craft rules for lists. If AT and benign code are bundled in one script,

our method is not sufficient for locating parts of the script. To pre-

vent function execution in inline or bundled scripts, a model has

to classify function bytecode accurately, which have much smaller

sequence lengths. This is very challenging, primarily due to the lack

of high-quality ground truths especially when similar functions are

prevalent among AT and benign scripts. Moreover, the models used

in this work performed well on finding long-range associations

in scripts’ bytecode which do not have similar performance for

functions’ bytecode with much smaller sequence lengths. However,

if a classifier accurately detects function bytecode sequences, an

approach such as SugarCoat [64] can benefit from it for creating

privacy-preserving function wrappers. We consider the exploration

of language models suitable for function-level classification part of

our future work.

Explainability. In recent years there has been an increasing

interest in the ability to better understand (i.e., explain) the deci-

sions reached by machine learning models. Certain models, such as

decision trees, are easier to interpret as opposed to more complex

models, especially those that rely on deep learning techniques (e.g.,

DNNs). Figure 9 (Appendix A.2) shows an example of the word

importance obtained from the DPCNN model using Captum [3].

While such visualizations can provide some insights into these

łblackboxž models, an interpretable system must also generate de-

scriptions that are sufficiently simple and straightforward for a

person to comprehend [30]. However, unlike other domains where

explainability has garnered attention from researchers (e.g., specific

regions in images, or specific words in natural language text), byte-

code does not inherently convey sufficient meaning for a person so

as to explain a model’s decision making. Additionally, despite the

clear explanation provided by RF’s feature importance, the use of

word vectors as features makes it difficult to interpret. Therefore,

even though model interpretability methods exist, using bytecode

as a feature poses challenges when it comes to providing human-

understandable insight into the model’s decision-making process.

non-JS requests. A limitation of our method is that we can

only detect and craft rules for external JavaScript resources, as our

primary goal is to improve the detection of AT scripts based on

how the JavaScript interpreter observes them. For instance, we

cannot detect tracking pixels that are statically included in HTML.

Nevertheless, if a tracking HTTP request (e.g., pixel) is dynamically

generated as a result of code execution, our approach can effectively

detect the script from where the request originated.

New browsers & retraining. Since JavaScript bytecodes are

not standardized and each browser has its own implementation,

the trained classifier that works on one browser (e.g., Chromium)

may not be able to effectively detect AT scripts when presented

with the bytecode sequence captured by a different browser. How-

ever, this does not affect our overall objective since our goal is to

augment the filter list creation process, and these lists are typically

browser-agnostic. Nevertheless, exploring the effectiveness of byte-

code classification across browsers is part of our future research

direction. Additionally, as browsers evolve and new features are be-

ing added, the generated bytecode in the JavaScript engine can also

change. This means that while the bytecode classification approach

as a technique is applicable, different Chromium versions with a

new set of bytecode words may require additional data collection

and re-training of the models, which increases the upfront costs.

Ground truth. Lastly, we relied on popular filter lists to label

our data. Even though EasyList and EasyPrivacy are widely used

and frequently updated, there can be biases and inconsistencies

in the lists (e.g., human error) that are also learned by the models.

Nonetheless, using filter lists as the ground truth is common prac-

tice in prior studies [22, 37, 38]. Due to the scale, examining and

manually labeling each script is not feasible. One solution would

be to decrease the number of samples and create a smaller dataset

through manual analysis. However, such an approach can be prone

to more biases as the small sample size cannot cover the vast ma-

jority of websites and requires prior knowledge of the tracking

practices used by the scripts. Summarily, as further proven by our

manual analysis, our approach is highly accurate and our models

are also generalizable and able to proactively uncover new scripts.

7 CONCLUSION

Content blockers rely on filter lists which are maintained by a

community of users, and can provide many benefits to users such

as reducing distractions and protecting their privacy and security.

Maintaining the filter lists, however, requires a significant amount

of manual effort for reviewing and updating the rules frequently,

particularly due to the arms race between advertisers and adblock-

ers. In this paper, we presented a novel and automated pipeline for

accurately identifying unwanted scripts based on bytecode words

obtained from the JavaScript engine. Our proposed technique is

resilient against code obfuscation, captures code dependencies be-

tween inline and external scripts and can scale due to imposing

minimal overhead. We show that in addition to detecting current

scripts, bytecode classification uncovers currently-undetected AT

scripts and, more importantly, can accurately classify allowlisted

resources. While bytecode classification only relies on bytecode

sequences as features, it outperforms the existing state-of-the-art

detection systems that use request information, JavaScript features

or a combination of both. To augment the filter list generation pro-

cess and help the community of curators, we will release our system

as an automated tool that can identify AT scripts in websites as

well as determine which resources may need to be allowlisted.
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A APPENDIX

This section provides additional information that is pertinent to

our analysis and methodology.

A.1 EasyList Syntax

The rules in popular filter lists such as EasyList and EasyPrivacy

follow a specific syntax that instructs the blockers when to block

or allow a network request that matches the rules. While Adblock

Plus provides detailed documentation on writing filters [11], we

only address the allowlisted rules here as it is relevant to our work.

Listing 1 provides an example for two rules. The first line be-

gins with a ||, and specifies that this rule should be applied to any

URL that matches googletagmanager.com pattern beginning from

the domain name (e.g., supports both http and https). The caret

symbol (ˆ) acts a delimiter that separates the (domain) pattern and

instructs the blocker to block the request regardless of what comes

after the pattern, such as port, path or query. On the other hand,

line 2, which begins with ł@@ž, indicates that this rule should be
treated as an exception rule. The two pipelines serve the same pur-

pose as before, while $script specifies that the rule only applies

to script requests. Therefore, this is an exception rule for the rule

presented in line 1. Lastly, domain=okwave.jp determines that this

rule only applies to requests originating from okwave.jp. A rule

can be applied to multiple originating domains, but they should be

separated by a | symbol (e.g., okwave.jp|example.com). Under-

standing the structure of the exception rule helped us measuring

the performance of our model in detecting allowlisted scripts (ğ5).

A.2 Explainability

There have been many studies on explaining how a machine learn-

ing model arrives at a particular output or decision, which has

resulted in the creation of tools such as Captum [3] and SHAP [46]

to help explain the output of a model. Figure 9 shows parts of four

bytecode samples (taken from long sequences) next to their predic-

tions by the DPCNNmodel. The word importance is obtained using

Captum. Green and red colors illustrate the positive or negative at-

tribution of the bytecode in that particular position to the predicted

class. The intensity of the colors indicate the strength of the feature

attributions. Such visualizations are helpful in understanding how

features have participated in the outcome. However, interpretation

is only useful (to humans) if the features are also understandable.

For example, humans understand natural language; therefore, in

a sentiment-classification task, highlighting words such as łbadž

or łgoodž conveys that the model assigns weights to words similar

to how humans use them. On the other hand, since bytecode is

not understandable to humans, such visualizations do not convey a

meaningful explanation, especially in cases where sequences are

extremely long.
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