Read Between the Lines: Detecting Tracking JavaScript with
Bytecode Classification

Mohammad Ghasemisharif
University of Illinois Chicago
Chicago, Illinois, USA
mghas2@uic.edu

ABSTRACT

Browsers and extensions that aim to block online ads and tracking
scripts predominantly rely on rules from filter lists for determining
which resource requests must be blocked. These filter lists are often
manually curated by a community of online users. However, due to
the arms race between blockers and ad-supported websites, these
rules must continuously get updated so as to adapt to novel bypass-
ing techniques and modified requests, thus rendering the detection
and rule-generation process cumbersome and reactive (which can
result in major delays between propagation and detection). In this
paper, we address the detection problem by proposing an auto-
mated pipeline that detects tracking and advertisement JavaScript
resources with high accuracy, designed to incur minimal false posi-
tives and overhead. Our method models script detection as a text
classification problem, where JavaScript resources are documents
containing bytecode sequences. Since bytecode is directly obtained
from the JavaScript interpreter, our technique is resilient against
commonly used bypassing methods, such as URL randomization or
code obfuscation. We experiment with both deep learning and tra-
ditional ML-based approaches for bytecode classification and show
that our approach identifies ad/tracking scripts with 97.08% accu-
racy, significantly outperforming cutting-edge systems in terms of
both precision and the level of required features. Our experimental
analysis further highlights our system’s capabilities, by demonstrat-
ing how it can augment filter lists by uncovering ad/tracking scripts
that are currently unknown, as well as proactively detecting scripts
that have been erroneously added by list curators.
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1 INTRODUCTION

The modern web has been marked by the proliferation of web track-
ers and advertisements. While certain websites include tracking
scripts to support web analytics and use the data to customize
their content and improve the user experience, other online enti-
ties supply sites with scripts for tracking users across different
sites. This large-scale collection of data powers the ad ecosys-
tem and allows companies to profit by selling users’ data to the
highest bidders. The stateful (e.g., using cookies [21, 61, 62] or
other stored identifiers [67]) or stateless (e.g., using browser finger-
prints [28, 42, 48, 66]) tracking of users’ activities, and the sharing
of data with other trackers via cookie syncing [49], have become
common practice [26, 35, 56]. This not only diminishes the user ex-
perience by bloating the website [29], but also violates their privacy.
Users are becoming increasingly aware of these privacy-invasive
techniques and attempt to take actions for protecting their data [23].

Countermeasures typically rely on blocking invasive scripts. In
more detail, blocking rules are designed to block external scripts as
well as requests related to advertising or tracking, as third-party
trackers primarily use JavaScript (e.g., browser APIs used for fin-
gerprinting) to generate unique identifiers or serve ads, and HTTP
requests for transferring these identifiers. Browser vendors such
as Brave [20] and popular content-blocking extensions [2, 31] use
manually curated and crowd-sourced filter lists, such as EasyList [5]
and EasyPrivacy [6], to detect and block communications with the
endpoints. Due to the ongoing arms race between trackers and con-
tent blockers [36], these filter lists need to be frequently updated
through a rigorous manual process by a group of online users.

As a result, automated detection systems have been proposed
to complement the manual effort. These systems typically utilize
features extracted from the network, JavaScript, and HTML lay-
ers [17, 32, 34, 37, 38, 41, 41, 60, 74, 76]. In response, advertisers and
trackers have employed evasion techniques such as CNAME cloak-
ing [24], URL randomization [72], and JavaScript obfuscation [63]
to avoid being detected. Accordingly, more advanced systems uti-
lize multiple features to improve their robustness. Nonetheless,
such techniques can still be vulnerable to adversarial evasion at-
tacks based on how a given feature’s weight influences the system’s
decision. For instance, AdGraph [37] employs various inputs like
network information and content-based features. However, content
features such as the URL length have a greater influence on the
model’s results and can be easily tampered with, making it more
susceptible to manipulation of those features. Subsequently, meth-
ods that assign a higher priority to the request’s origin (i.e., being
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a third-party) [32, 41, 73] may not be effective in identifying first-

party trackers. Therefore, the effectiveness of a detection system

depends on the robustness of the features the system operates on.

Certain websites may intentionally, or inadvertently, tie the web-
site’s functionality to blocked resources, which can result in website
breakage when these resources are blocked. Such malfunctions are
often reported to the filter list maintainers and are fixed by including
exception rules that allow such requests to bypass the content block-
ers. For example, EasyPrivacy blocks googletagmanager.com/gtm. js
in most websites, but allows it to bypass tracking blockers on cer-
tain domains. Systems that only rely on URL-based features fail
to distinguish between the two identical requests, rendering sys-
tems ineffective in detecting allowlisted resources. While breakage
analysis through manual inspection [37, 38, 43, 60] can evaluate
the impact of incorrectly blocked functional resources, it does not
assess the models’ ability to detect allowlisted resources, especially
at scale, which is an essential part of the update cycle for filter lists.

In this work, we propose a method for accurately identifying
external JavaScript resources that exhibit advertising and tracking
characteristics. Ultimately, our goal is to address the deficiencies
of previous detection methods by utilizing features that cannot
be trivially altered. Our method is origin-agnostic (i.e., it can be
applied to both first-party and third-party), does not rely on URL
features, and is independent of static features in the code. Instead of
extracting specific features such as Web API calls [41, 70, 73] using
dynamic analysis, our system utilizes the information obtained
directly from the JavaScript interpreter as a representation of the
execution flow, for classifying the script’s behavior. This makes our
method resilient against code obfuscation and URL modification,
and also allows us to classify allowlisted scripts based on their
different execution patterns (i.e., being categorized as AT on one
website and benign on another).

To that end, we instrument Chromium’s V8 engine to append
necessary additional information to the bytecode sequences we
obtain, and use it to crawl, collect, and label scripts from the top
50K websites according to Tranco [52]. We then approach byte-
code classification as a text classification task and evaluate three
different models including both supervised machine learning and
deep learning models that differ in generalizability, performance,
and resource requirements. Our extensive experimental evaluation
shows that these classifiers can detect ad and tracking scripts with
97.08% accuracy, demonstrating their effectiveness in automating
the time-consuming task of creating filter lists. We compare our
bytecode classification technique to prior cutting-edge approaches
and find that bytecode classification outperforms the existing detec-
tion systems by 6.37-11.22% in accuracy. Crucially, our longitudinal
analysis of filter lists shows that our models can identify scripts
that are undetected by current filter lists, incorrectly detected as
trackers and later removed or allowlisted by the lists.

In summary, our work makes the following contributions:

(1) We design a novel bytecode-classification-based approach for
identifying ad and tracking scripts that is origin-agnostic, con-
siders code dependencies, and is resilient to evasion techniques
like URL and code obfuscation.

(2) We extensively explore the performance of bytecode classifica-
tion using both traditional machine learning and deep learning
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models. Our comprehensive evaluation shows that bytecode
classification outperforms state-of-the-art systems.

(3) To enable reproducibility, facilitate additional research, and
assist filter list maintainers in automating the filter list lifecycle
process, we will publicly release our code and data https://
github.com/byte-learn/byte-learn.git.

2 BACKGROUND & RELATED WORK

2.1 Preliminaries

The crux of this work is classifying (external) JavaScript resources,
which are files that have a script resource type and are fetched
as users visit websites. Each script contains JavaScript executable
source code, and as the scripts are parsed and syntax trees are
created the interpreter generates the bytecode representation for
the executable code; in this work, we use the bytecode to represent
each script and predict its behavior. Throughout this paper we
refer to ad or tracking JavaScript resources as malicious scripts or,
for brevity, AT. We also refer to non-tracking/ad scripts as non-
malicious or benign. These scripts are often essential for websites’
functionality and do not carry out AT actions. However, there are
some scripts that exhibit both AT and benign behavior. We discuss
the implication of such cases in §6.

We consider two content blocking methods: online and offline. In
the online approach, features are extracted and rules are generated
in real-time during the web page visit. Implementing these methods
commonly requires in-browser instrumentation, which can add
overhead to the page load. Offline approaches, or blocklist-based
techniques, rely on lists that contain rules that provide instructions
for blocking browser requests. EasyList [5] and EasyPrivacy [6]
are prevalent examples of such lists. In contrast to online methods,
these rules are typically manually crafted beforehand, and updated
over time by a group of web users in a tedious crowd-sourced effort.

We consider three main steps in the filter list lifecycle: 1) detec-
tion, 2) rule generation, 3) update and/or correction. Improving the
detection step involves finding a set of features that can reliably
identify AT requests, which is the primary focus of prior work in
this space. The rule generation step uses the information obtained
during the detection process to create a set of efficient rules. Lastly,
the generated rules are updated as the ongoing arms race between
advertising/tracking entities and content blockers continues. While
step (3) has been mostly overlooked by prior AT detection studies,
our work is an offline approach that addresses both (1) and (3).

The update cycle also includes adding exception rules, where
certain blocked resources are allowlisted to prevent breakage in web-
sites. Listing 1 illustrates an allowlisted example from EasyPrivacy.
The first rule (line 1) instructs content blockers to block requests
to any URL that contains the domain googletagmanager.com,
whereas the second rule (line 2) makes an exception for specific
requests towards googletagmanager.com/gtm. js when the orig-
inating domain is okwave. jp because blocking it causes break-
age [1]. We use allowlisted to describe these exception rules (indi-
cated by the “@@” prefix) and provide more details in Appendix A.1.

2.2 Feature Selection & Challenges

Existing methods use JavaScript-based properties, request-based
features, or a combination of both, to identify and block advertising
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Listing 1: An example of filter syntax in EasyPrivacy

1 | |googletagmanager.com”
2 @@| |googletagmanager.com/gtm. js$script , domain=okwave. jp

and tracking related resources on webpages in mobile [58, 59, 75]
or desktop browsers [34, 37, 41, 60]. These properties are often used
to train classifiers for identifying AT requests and/or facilitate the
creation of filter lists in an offline approach.

Request-based features include the HTTP request/response
structure and URL or domain characteristics, such as whether do-
mains belong to third-parties [32, 41], URLs contain special key-
words [17], or requests are sent consecutively to a domain [38].
A combination of these features is used to determine whether a
request belongs to AT. However, adversarial evasion techniques can
bypass request-based detection, such as randomizing the hostname
and path [72], moving a domain to a different origin, or simply
removing keywords from URLs [65]. Third-party trackers have
been a focus of many studies, while first-party trackers are often
overlooked and considered inconsequential because they do not
track users across different websites. As a result, detection sys-
tems that rely on the request’s origin are also vulnerable to evasive
techniques, like CNAME cloaking [24, 25]. More importantly, URL
features alone are not sufficient for detecting allowlisted resources,
as the exact same URL can be allowed for one domain and blocked
for another. These shortcomings highlight the importance of select-
ing features that cannot be easily circumvented.

JavaScript-based features typically refer to syntactical or struc-
tural attributes of JS code, such as identifying the script’s behavior
based on a sequence of API calls [41] or whether it produces pre-
defined signatures in the event loop [22]. Such features are extracted
statically or dynamically. However, relying on static features may
fail to detect dynamically generated code, or incorrectly identify
code that is not actually being executed. For instance, features ob-
tained from a function that is defined in the code but never called
would be incorrectly taken into account. More importantly, static
analysis is vulnerable to JavaScript obfuscation [27, 63]. To bypass
obfuscation, extraction methods can collect such features directly
from the JavaScript engine through instrumentation.

2.3 Motivation

Given the limitations of relying on request-based and JavaScript
features, a resilient detection system must utilize features that do
not require prior knowledge about the AT method, and are not
easily evaded. If a set of known features is used, it is possible that
features that participated in the AT scripts will be overlooked, due
to not being known at the time of signature creation. For instance,
a classifier that uses a set of known Web API calls to determine a
script’s behavior will be outdated when such features are removed
or replaced and require additional investigation to examine the
effectiveness of newly added APIs. Moreover, features that have
bigger weights in a classifier’s decision can be modified by adver-
saries for bypassing detection systems [37, 60]. To tackle these
shortcomings, we consider the task of script classification as a se-
quence classification problem. To do this, we represent scripts using
sequences of bytecode generated by the interpreter and evaluate
different classifiers to predict each script’s behavior. Using bytecode
presents multiple advantages:
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Table 1: Comparison of our JavaScript bytecode classification
method in detecting tracking and/or ad scripts to related
work. We label data samples as (S)mall (below 10k), (M)edium
(10k-100k), and (L)arge (above 100k).

Method ‘ Features Focus Party Susceptible ‘ Allowlist ‘ Sample
‘ Req JS ‘ Track Ad ‘ 1st  3rd ‘ Reqman ]S obf ‘ Analysis ‘ Size

Bhagavatulaetal. [17] | v X v Vv o/ v X X M
Gugelmann et al. [32] | v X v I X o/ v X X S
Wuetal [73] | X v X | x v X X X N
Kaizer and Gupta [41] | vV v X | x v v X X M
lkrametal. [34] | X v X|v v X v X N
Sunetal [70] | X v X | x v X X X S
WebGraph[60] | v v | v /| v/ v x x vix L
Bytecode Classification | X v/ v |V / X X v L

Their analysis focuses on website breakage.

o Representativeness: V8’s lazy parsing generates bytecode for
the invoked functions, offering a representation of the JavaScript
code that was actually executed and excluding unexecuted func-
tions, which impact techniques that rely on static analysis and
can lead to misclassification (false positives/negatives). Lever-
aging bytecode enables us to take the entire execution into ac-
count and classify its behavior, compared to other dynamic anal-
ysis methods that rely on predefined signatures. In §5, we com-
pare bytecode classification’s performance with prior work that
uses predefined features including Web API calls. We find that
such preset features can result in misclassifications; for instance,
hCaptcha [10] being misclassified as AT while our bytecode clas-
sification successfully captures the appropriate context and cor-
rectly classifies it. Conceptually, our bytecode-based approach is
akin to classifying text based on its meaning rather than merely
relying on the presence of specific keywords.

o Resilience: Bytecode is resilient against obfuscation techniques,
such as code obfuscation and URL randomization, as it is ob-
tained directly from the JavaScript engine. While similar scripts
can generate different bytecode sequences (e.g., invoke differ-
ent functions), in contrast to approaches that rely on predefined
signatures, such nuances can be mitigated by a context-aware
text classification model that captures the syntactic and semantic
relationships between bytecode sequences.

¢ Efficiency: Bytecode can be quickly extracted from a large col-
lection of scripts with minimal overhead. Having a large set
of samples can closely represent the input space compared to
smaller sets used in prior work (due to the need for manual
inspection or instrumentation overhead). Even though training
such a classifier has an upfront cost, the inference cost is minimal.
We provide a more in-depth discussion in §6.

e Accuracy: Our technique can uncover blocked scripts that should
be removed or allowlisted in addition to new AT scripts that cur-
rent filter lists have not yet detected.

2.4 Related Work

Due to the painstaking effort and challenging nature of manually
curating rules, previous studies have demonstrated that errors are
unfortunately common in popular filter lists [65]. This is especially
problematic as over half the websites could suffer from false positive
errors lasting more than a month, and obsolete rules can take two to
three months to be removed [16]. While a plethora of prior studies
have focused on content blocking, our approach overcomes the
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Listing 2: An example of code dependecy

1 <!-- external script where tracking() function is declared -->
2 <!-- function tracking(){ ... } -->
3 <script src="https://domain.com/tracking.js"></script>
4
5 <!-- inline script calls the function from external script -->
6 <script>
7 var uid = tracking();
8 </script>
Listing 3: Declared function in tracking.js
1 function tracking(){
2 // no bytecode generated for unused_func()
3 function unused_func(){ ... }
4 // tracking()'s bytecode from here (if invoked)
5 var uid = ...;
6 return uid;
7|3

pitfalls of prior work by using features that are more robust to
evasion and achieves higher accuracy in both the detection and
update phases of the filter list lifecycle, and also achieving early
detection of both false positives and false negatives.

Online techniques. Such approaches often rely on a special
tool (e.g., instrumented browser) that enables their features to be
computed on-the-fly, and blocking decisions are made in real-time.
AdGraph [37] creates a graph representation of the website during
page load and uses the features extracted from the graph to decide
which requests should be blocked. The top features used in AdGraph
are content-based features, such as URL length or the script’s origin,
which are prone to adversarial evasions. Khaleesi [38] is another
online approach that focuses on detecting advertising and tracking
request chains using request and response features, and sequential
features such as the number of unique domains in the chain.

Offline methods. In practice, popular AT blockers (e.g., Ad
Block Plus [2]) and browsers (e.g., Brave [20]) use offline techniques
that rely on pre-computed filter lists. Many existing studies have fo-
cused on improving (and automating) the rule-generation process,
which relies on human intervention, because incorrect rules can
cause breakage and have unwanted consequences. These studies
use different feature sets and train supervised and unsupervised
classification models to identify potential AT scripts. Their methods
vary in terms of the type of features they use, their classification
technique, and the sample size. Bhagavatula et al. [17] used URL
features such as the presence of ad-related keywords or particular
parameters in query strings to train a machine learning model. The
authors in [70] used Web API calls to classify JavaScript execution,
while [22] focused on the behavior of scripts during the JavaScript
event loop to identify AT behavior. Kaizer and Gupta [41] leveraged
request-based features such as the presence of referer and cookies
in HTTP headers in addition to JavaScript features such as web
API calls. WebGraph [60] is an offline implementation of AdGraph
that was introduced to improve the robustness of the graph-based
approach and reduce AdGraph’s susceptibility to evasion. In con-
trast to our work, WebGraph employs features extracted from the
network, storage, JavaScript, and HTML layers via instrumentation,
which greatly increases the workload. We compare the core aspects
of our work to prior studies in Table 1.

JS bytecode. To the best of our knowledge no prior work has
used JavaScript bytecode sequences as a predictor for AT scripts.
The closest study was conducted by Rozi et al. [55], which uses
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Chromium

[generated bytecode for function: (0x2bda7b5bb8e9
<SharedFunctionInfo>) ]

Parameter count 7

Register count 33

Frame size 264

0x2bda7b5bcf96 @ 0 : 84 00 4b CreateFunctionContext [0], [75]
0x2bda7b5bcf99 @ 3 : 16 e7 PushContext r20
0x2bda7b5bcf9b @ 5 : 25 06 al

0x2bda7b5bcf9d @ 7 : 1d 05 urrentContextSlot [5]
0x2bda7b5bcf9f @ 9 : 25 04 a3

0x2bda7b5bcfal @ 11 : 1d 04 urrentContextSlot [4]
O0x2bda7b5bcfa3 @ 13 : Of heHole

0x2bda7b5bcfad @ 14 : 1d 06 urrentContextSlot [6]
Ox2bda7b5bcfa6 @ 16 : 0f 1

O0x2bda7b5bcfa7 @ 17 : 1d 07 >xtSlot [7]
O0x2bda7b5bcfad @ 19 : 0f

Instrumented Chromium

[generated bytecode for function: (0x2bda7b5bb8e9
<SharedFunctionInfo>)

Parameter count 7

Register count 33

Frame size 264

Bytecode: [CreateFunctionContext,PushContext,Ldar,
StaCurrentContextSlot,Ldar,StaCurrentContextSlot,LdaTheHole,
StaCurrentContextSlot,LdaTheHole, StaCurrentContextSlot,
LdaTheHole, ...]

Source: function (){...}

URL: https://domain.com/resource.js

Figure 1: Bytecode generated for a function using unmodified
Chromium (top) and our instrumented Chromium (bottom)
which only keeps bytecode needed for our method and adds
the script URL of this function.

bytecode classification to identify malware. There are several ma-
jor differences in our work. First, we focus on an entirely differ-
ent class of malicious behaviors. In their work AT and functional
scripts belong to the same class, whereas our objective is to iden-
tify JavaScript files that exhibit AT behavior. Moreover, blocking
AT indiscriminately can cause breakage. Thus, an effective model
must also distinguish between disruptive and non-disruptive AT,
highlighting the unique challenge. More importantly, they execute
JavaScript files in the jsdom [12] environment which is slow, injects
unrelated (jsdom) bytecode sequences into the dataset, and does
not work in the web ecosystem, where dependent scripts loaded
from different locations are needed for correct and complete exe-
cution. This is important due to how V8 generates bytecode. Since
parsing and generating bytecode for all functions can be costly, V8’s
lazy parsing[13] approach parses and generates bytecode when the
functions are invoked. The functions can be invoked within the
scripts they were declared or from other scripts. Listing 2 illustrates
an example of an inline script (line 7) that calls a function declared
in an external script (line 3). In this example, loading the external
script in jsdom, without invoking the tracking() function will not
generate a bytecode sequence due to the lazy parsing. Since we do
not have a-priori knowledge about such code dependencies, we can-
not know which scripts (inline or otherwise) must be included prior
to execution for jsdom to generate bytecode that is equivalent to
visiting the website. To accurately capture the script’s bytecode, we
need to render the web page in a browser, obtain the bytecode and
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create references from bytecode sequences to their origin, which is
not a capability provided by V8. To that end, we instrument V8 to
obtain bytecode faster with less noise (i.e., unrelated bytecode) and
the ability to capture code dependencies. It is particularly important
to ignore unrelated bytecode where the sequences can be extremely
long, especially for training neural networks, as GPU memory is
expensive and limited.

3 METHODOLOGY

Here we describe our pipeline for collecting, pre-processing and la-
beling the data prior to training. First, we present our instrumented
browser for collecting data. Next, we describe the process of gener-
ating, cleaning and storing bytecode sequences. Third, we provide
an overview of obtaining word and document embeddings. Finally,
we describe our bytecode classification models.

3.1 V8 Instrumentation

V8 is a JavaScript engine used in Node.js and Chromium. To execute
a piece of JavaScript code, the JavaScript source code is first parsed
into an Abstract Syntax Tree and then the interpreter generates
bytecode from it. The bytecode will be used to generate optimized
machine code. To obtain bytecode from the interpreter, one can
run Node.js or Chromium with the —print-bytecode flag. Figure 1
(top) shows an example of the printed bytecode for a function. A
script can have several functions, but the generated bytecode for
each function is printed separately and can be attached together to
represent a script. Note that the printed bytecode for a function rep-
resents the parts that will be executed. An example of this is shown
in Listing 3 where unused_func() does not generate bytecode even
though it is declared inside an invoked function. However, V8 does
not include the source code or the URL of the script. Therefore,
when a website is visited, a stream of bytecode sequences is gener-
ated, but there are no corresponding links or source code to indicate
which bytecode sequence belongs to which script. We instrument
the DoFinalizeJobImpl function in V8’s interpreter in Chromium
to obtain the script’s source code and its URL (if available) from the
SharedFunctionInfo object and print them along with the byte-
code sequences. Since bytecode sequences can be lengthy, we also
modify the Disassemble and Decode functions to only print the
bytecode sequence used by our system. In total, we added 40 lines
of code for including source code and URL, and modified/removed
about 130 lines to change the output format. We anticipate that
this code will be easily adaptable for future versions of V8. Figure 1
(bottom) shows an example of the generated bytecode from our
instrumented V8. Adding the script URL allows us to collect the
function bytecode and label it based on the originating URLs. For
brevity, throughout the paper, we refer to the Chromium browser
with our instrumented V8 engine as “instrumented Chromium”.

3.2 Pre-processing

Generating Bytecode. Training our classification models requires
a large number of scripts with their corresponding binary labels

(AT/benign). To collect the scripts, we use our instrumented Chromium

and developed a tool using Puppeteer [14] to crawl the homepage of
the top 50K websites from the Tranco list [52]. Our tool visits a web-
site, listens on requestfinished network events (i.e., successful
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Visit website with
instrumented Chromium

I Function Bytecode:

t [CreateFunctionContext, PushContext, I***"T*%

fe eEmptyArrayLiteral, : —P 'R ]

i StaCurrentContextSlot,LdaGlobal, ...]s H mnm
H L |

samples

m| Vectorize
u

URL: https://not-tracking.com/xyz.Js|
Function Bytecode:
LdaGlobalInsideTypeof, TestTypeOf,
LogicalNot, JumpIfFalse,LdaGlobal,

starl,...] i
{URL: https://tracking.com/abc.3s  § H Classifier
HEP onContex ushContext, ;

Tracking/Ad

Store URLs and the corresponding —
generated bytecodes. Label the
bytecodes based on URLs —

Figure 2: The process of collecting and classifying bytecode.
Note that AT and benign bytecode sequences are combined
and then labeled based on their associated URLs prior to
training. The red dotted lines illustrate AT related bytecode
whereas the green line specifies that the bytecode belongs to
a benign script.

requests) and if the request’s resource type is a script it collects
the request’s URL and the script’s content. We also incorporate
Adblock-rs [19] to parse the Adblock Plus syntax and label each
request as AT (true) or not (false). We use EasyList [5], EasyPri-
vacy [6] and Fanboy’s Enhanced Tracking [7] rules as ground truth
for classifying requests. We label allowlisted resources as false since
filter lists detect them as benign. After visiting the website, our
pipeline saves the printed bytecode to a file. Another script extracts
the bytecode from the file and stores it in a database. Visiting a
website and storing the generated bytecode are the initial steps in
our pipeline, and illustrated on the left side of Figure 2. We note that
bytecode sequences, such as those shown in Figure 2’s example, are
not meaningful to humans and do not have visually distinguishable
features. In other words, one cannot distinguish AT from benign
scripts by simply perusing and contrasting their bytecodes. As such,
there is a need for a machine-learning-based approach for extract-
ing and identifying patterns in bytecode sequences that concretely
capture AT functionality in scripts. After storing all function byte-
code generated from visiting a website, a Python script parses the
output, combines the function bytecode of each script based on its
URL, and stores them in the database. Each row in the database
contains information about the website’s rank and hostname, the
script’s URL, its source code and the associated label.

Data Cleaning. Each script generates a stream of bytecode out-
puts that are separated per function. The top item in Figure 1 shows
a sample output for a function generated by a Chromium browser.
The bottom item shows the “cleaned” bytecode generated using our
instrumented Chromium. To clean the data, we ignore most of the
output and only extract the bytecode sequences without register in-
formation. We also ignore any bytecode that does not have a script
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URL, or that belongs to Puppeteer (indicated by _puppeteer_), or
has no source code associated with it. We consider each bytecode
as a separate word and each function as a separate sentence. After
parsing and cleaning, the end result for each script forms a list of
sentences in a document. Finally, since different scripts can gener-
ate the same bytecode sequences, we locate and remove duplicate
bytecode to avoid any pollution during our experiments and ensure
that all test data will be unseen.

Data Compression. The bytecode sequences can be very long
with repetitive words, which takes up unnecessary space when
stored. We opt to compress data by replacing each bytecode with a
shorter word. Each bytecode in our dataset has a length between
3-42 characters. The distribution of bytecode sequence length in
our dataset is illustrated in Figure 5. In total, we gathered 524 byte-
code from both Chromium’s source code (488) and traversing and
identifying unique bytecode in the collected data (36). Therefore,
every bytecode in our data can be represented with a 2-character
word. We created a word mapping dictionary by assigning each
bytecode to a randomly generated 2-character string and substi-
tuted all instances of that bytecode in the documents. The total
number of unique bytecode observed in our data is 339. The com-
pressed bytecode sequences required 76.32% (58 GB) less storage
space compared to the original bytecode.

3.3 Word Embedding

In order to train our model, we first need to create a representa-
tion for each word; this task is shown in Figure 2 as the sample
vectorization part of the pipeline. There are various methods for
converting the documents to vectors (e.g., count vectors), which
vary in computation time and the amount of information they can
capture in terms of context and semantics. We use two methods,
Word2vec [47] and FastText [18], to learn a distributed word (i.e.,
bytecode) representation in a vector space and create the word
embeddings. Prior work has shown that using unsupervised em-
beddings in DPCNN improves performance [39]. Word2vec is an
unsupervised algorithm that can be used to create a vector for each
word that keeps the semantic closeness of the words by learning
which words the target word more often occurs with. Word2vec
has two architectures: Continuous Bag of Words (CBOW) and Skip-
Gram. The CBOW architecture predicts the word given the neigh-
boring words (context) while Skip-Gram predicts the neighboring
words in a certain range before and after a given word. FastText fol-
lows a similar approach but focuses on character n-grams: a word
representation using the sum of character n-grams. We provide
additional details about FastText in the following subsection.

The output layer of the Skip-Gram model is a softmax layer with
1 x V dimensions, where V is the size of the vocabulary and each
value in this probability vector represents the probability score of
the word in that position. However, we only need the hidden layer’s
output for creating word embeddings. After training on the corpus,
the weight matrix in the hidden layer is used to calculate the vector
representation of each bytecode, and the vectorized bytecode se-
quences are used to train our model. We note that while increasing
the word range in the Skip-Gram architecture increases the predic-
tion accuracy, it also increases the computational complexity [47].
Therefore, tuning the parameters to achieve the best accuracy with
reasonable performance is crucial, as we detail in §4.1.
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Table 2: Number of all and unique script samples collected.
We use unique bytecode sequences for training and testing.

Dataset ‘ Label #Samples
. Benign 545,223
All Script
JavaSerip ‘ Ad/tracking 368,667
. R Benign 265,861
U Script
nique JavaSeript |\ 4/tracking 130,50

Document Embedding. After training, Word2vec generates a
vector representation for each word in the vocabulary. We directly
use this as the embedding layer of DPCNN, which is a look-up table
for vectors of each word obtained from Word2vec. Since Word2vec
only provides word embeddings we need to use another method to
represent the document (i.e., script) vector which will be used in
traditional machine learning methods. One popular method is cal-
culating the mean of all the word vectors in the scripts to represent
each script as a vector [44, 57]. We use this approach to prepare
our data for training a random forest classifier and compare our
ML-based classifier with our deep learning model.

3.4 Classification

Next, we provide an overview of our classifiers, which differ in terms
of performance and training costs as we detail in later sections.

DPCNN. The Deep Pyramid Convolutional Neural Network [39]
is a text classification model that can efficiently capture global
information and long-range associations in the text [39]. The model
begins with a text region embedding with optional unsupervised
embeddings (for improving accuracy). We train Word2vec on our
dataset and use it to transform bytecode sequences into vectors
for this layer. The first feature extraction layer consists of two
convolutional layers with a max-pooling layer and a skip connection
with pre-activation. This can be written as z + f(z) [33], where
f(z) are the two convolutional skipped layers with pre-activation
and the activation function o(.) is the rectifier o(x) = max(0, x).
After each convolution block, there is a max-pooling layer with
pooling stride 2 and kernel size 3 which reduces the size of the
representation by half. The repeated halving reduces the size of the
document’s internal representation and forms a pyramid.

A typical text document has a large vocabulary of words with
a few repetitive neighboring words. However, the nature of our
dataset is different: each document has a relatively small vocabu-
lary with very long sequences. The document length distribution
is shown in Figure 5. Therefore, we need to change the default
parameters that were originally proposed by [39] to improve the
model’s performance in this specific domain. We use a PyTorch
implementation of DPCNN [53] to train and test the model.

FastText. FastText [18] attempts to improve Word2vec by ex-
tending the Skip-Gram model to include character-level informa-
tion and represent the internal structure of the words. This model
is particularly useful when a word can have a large number of
morphological forms. In this model, words are bag-of-character
n-grams. For instance, the word “track” with n = 3 will be decom-
posed into <tr, tra, rac, ack, ck> as well as the special sequence
<track>, where < and > are special characters added at the begin-
ning and end of the words. Each n-gram is then represented by a
vector, therefore the word will be represented by the sum of these
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Table 3: Top 10 FQDNs that served AT JavaScript files. The re-
ported counts for all collected scripts and scripts with unique
bytecodes are separated.

Unique Scripts All Scripts
FQDN Count | FQDN Count

41,869 (11.36%)
26,812 (7.27%)
23,481 (6.37%)

www.googletagmanager.com
www.google-analytics.com
connect.facebook.net

33,234 (25.46%) | www.googletagmanager.com
11,933 (9.14%) | www.google-analytics.com
6,652 (5.1%) | connect.facebook.net
)

securepubads.g.doubleclick.net 5,351 (4.1%) | googleads.g.doubleclick.net 12,397 (3.36%)
tags.tigedn.com 3,834 (2.94%) | tpc.googlesyndication.com 11,935 (3.24%)
pagead2.googlesyndication.com 3,558 (2.73%) | www.googleadservices.com 9,935 (2.69%)
www.clarity.ms 2,624 (2.01%) | pagead2.googlesyndication.com 8,781 (2.38%)
www.googletagservices.com 2,383 (1.83%) | securepubads.g.doubleclick.net 7,646 (2.07%)
script.hotjar.com 2,224 (1.7%) | assets.adobedtm.com 7,529 (2.04%)

mc.yandex.ru 1,399 (1.07%) | tags.tigcdn.com 7,145 (1.94%)

character n-gram vectors. FastText can be used for both supervised
and unsupervised learning. FastText’s supervised learning for text
classification [40] uses document/sentence vectors as features by
averaging the word/n-gram vectors and uses multinomial logis-
tic regression to perform text classification. For obtaining word
embeddings, we use Gensim’s [54] implementation of FastText’s
unsupervised learning since we use the same library for Word2vec.
For the classification task, we use [8]’s implementation.

Random Forest (RF). We use a random forest classifier to
compare the performance of a classic machine learning technique,
which also requires less time and resources to train. Similar to
the DPCNN model, we need to represent our inputs as vectors.
While in DPCNN the word embedding acted as a lookup table for
word vectors, here we need to find a representation for each script
document. We use the same vectors generated by Word2vec and
FastText with the difference being that for each script we create
a document/sentence vector v by replacing each bytecode (word)
with its corresponding b; vector (obtained from Word2vec) and
then averaging all the bytecode vectors:

1 n
U=;;bi

where n is the number of bytecode (words) in the script and v’s di-
mension is the same as the bytecode vectors generated by Word2vec.
We follow the same method with vectors created by FastText to
compare its performance with Word2vec’s vectors. Finally, for the
classification task, we use the scikit-learn [51] implementation
of a random forest classifier.

4 EXPERIMENTAL SETUP

Here we provide details about the experimental setup used to collect
data and train our models. We also provide performance comparison
between different bytecode classification models and additional
details about our models’ parameter configuration process.

Hardware. We performed all data collection, as well as training
and testing our models, on an Ubuntu 18.04 server with an Intel(R)
Xeon(R) Silver 4110 CPU, three GeForce GTX 1080 Ti GPU and
64GB RAM. Data collection was performed using Puppeteer and
our instrumented Chromium browser (version 100.0.4889.2) from a
university network with an IP address located in the US. We used
GNU Parallel [71] to run tasks in parallel.

Dataset breakdown. We collected 913,890 scripts from the top
50K websites and, after processing, obtained 396,370 scripts that
generated unique bytecode sequences. The division between AT and
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Figure 3: The top section includes all scripts and the bottom is
plotted based on unique scripts. The left plots are comparison
CDFs between observed (JavaScript) resource requests from
the top 10 AT FQDNss in relation to other trackers over ranks.
The right plots illustrate the dispersion of top 10 AT (FQDNs)
across ranks when grouped by their entity.

benign JavaScript is shown in Table 2. The unique bytecodes will be
used to train and test our models’ performance (§5). To find the ratio
of first- and third-party trackers, we compare the fully qualified
domain names (FQDN) of the script URLs against the websites from
where the requests were initiated. We note that 366,944 (99.5%) AT
scripts are third-party resources whereas only 1,723 are first-party.
This ratio is similar for unique scripts, with 129,819 (99.5%) being
third-party as opposed to 690 from first-parties. If we use a more
relaxed comparison using the apex domain (instead of FQDN), the
third-party ratios of AT scripts are 359,083 (97.4%) and 126,288
(96.8%) for all and unique scripts respectively.

To better analyze the prevalence of tracking scripts, we group
them based on their FQDNSs. Table 3 shows the top 10 most frequent
FQDNS that served AT JavaScript, which constitutes more than 50%
of the trackers in our unique scripts data. We also note that more
than half of the top 10 FQDNSs belong to a single entity (i.e., Google).
We then divide the top 10 tracking FQDNSs into three separate
entities: Google, Facebook, and others, and count their frequency
throughout the data. Figure 3 shows the distribution of the FQDNs
over different ranks. The first observation is that while the majority
of trackers belong to Google, all three categories are dispersed
uniformly across different ranks. Second, when we ignore the top
10 trackers we observe a similar distribution among ranks. In other
words, our collected data is not biased towards a particular set of
ranks (popular or unpopular) and is representative of AT-related
JavaScript observed across different websites.
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Figure 4: Loss and accuracy comparison of DPCNN training
using different embeddings.

4.1 Model Parameters

DPCNN. In the original DPCNN paper [39], the authors used a 300-
dim unsupervised embedding. The typical range for the dimension
size is 50-300 [50]. However, because of the unique characteristics
of our dataset which consists of very long sequences with a limited
set of recurrent words, we opt for fewer dimensions as that is more
efficient computationally. Therefore, to obtain the embedding, we
train Word2vec with a vector size of 100 and a window size of 3.
We do not set a vocabulary size and let the model choose the size
based on the observed data. The default setting for Gensim’s [54]
implementation of Word2vec does not include words with a fre-
quency less than 5 in the final vocabulary. We also use FastText
with the same parameters to generate pre-trained unsupervised
word embeddings to compare the performance of different embed-
dings. We use the vocabulary size, the vector size (100) and obtained
embedding weights to create the (unsupervised) embedding layer.
The embedding generated from Word2vec and FastText has 334
words.

In our experiments, we find that the maximum sequence of
bytecode directly impacts the model’s performance as the larger
sequence can capture more global information. However, large
sequences also require more GPU memory and negatively affect
the computation time. With our experimental setup, we were able
to fit bytecode with maximum sequence lengths of 280,000 words.
We test different parameters by building on top of the parameters
proposed in [55]. Initially, we considered a kernel size of 100 with
a small pooling stride of 2 (which was used in the original model)
and then gradually changed the parameters. We achieved the best
results with a kernel size of 51 and a pooling stride of 15. We
used the Adam optimizer [45] as the optimization algorithm. We
experimented with different learning rates (e.g., 0.0005, 0.00075,
0.001, etc.) and as the learning rate increased, we observed more
sensitivity and higher loss fluctuation. In general, lower learning
rates may result in a more accurate model but can also cause slower
convergence. Through extensive and systematic empirical analysis
we found that the model performed well with a learning rate of
0.00075. Lastly, we set the dropout [69] to 0.2 to prevent overfitting.

FastText. We use the aforementioned parameters for Word2vec
to obtain unsupervised word embedding. However, for the text
classification task we set the word vector dimension to 100 and
the learning rate to 1.0. We obtained the best results by setting the
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word n-gram to 10, the context window size to 10, and the training
step to 150 epochs. Note that the word n-gram is set by passing
the wordNgram argument, while the character n-gram (described
in §3.4) is set by using the maxn and minn arguments in FastText’s
library. We use the default value for character n-gram parameters.
Since the classes in our dataset are unbalanced, we used hierarchical
softmax for the loss function [9]. We note that due to the large word
n-gram and epochs, the training time is much higher compared to
our Random Forest model, though less than DPCNN. We further
explore prediction and training time comparison in §5 and §6.
Random Forest (RF). We used GridSearchCV [51] to find the
best set of parameters for training a random forest classifier on our
data. Our findings show that the best results are achieved using the
Gini criterion, 200 estimators, and setting the number of features
allowed for splitting the tree to the square root of all features.

5 EVALUATION

We perform two different sets of experiments to compare the per-
formance of the models. In the first experiment, we compare the
predictive power of models on the same set of test cases. Then
we compare the generalizability of the models based on the filter
lists released at a later time. For our performance comparison and
manual analysis we use the following metrics:

(1) False Positives: JavaScript resources that are classified as AT
by our model while they are labeled as benign by the filter lists.

(2) True Positives: Both our model and the filter lists classified
these JavaScript resources as AT.

(3) False Negatives: JavaScript resources which are classified as
benign by our model but included in the filter lists as AT.

(4) True Negatives: JavaScript resources classified as benign by
our model while also not being included in the filter lists.

Given the above metrics, we explore the accuracy of classify-
ing JavaScript resources (i.e., external scripts). In the first set of
experiments, we used the collected data described in §3 to train
and measure our models’ performance. In models that use word
embeddings, we use the embeddings generated by both Word2vec
and FastText and compare the performance to understand which
word embedding provides better results. Our goal is to compare the
model’s performance based on how the embedding is obtained and
different model architectures for text classification.

After parsing the bytecode output, we split it into training (80%)
and testing (20%) sets and only use the training set to train Word2vec
and FastText and create the unsupervised embedding layer. For
DPCNN, we replace the bytecodes with their corresponding indices
in the embeddings. This data format along with the embedding will
be used to train the DPCNN model. Bytecode sequences in our data
have different lengths and the sequence inputs to DPCNN have
to have the same length. Therefore, we limit the sequence length
to the maximum length that we can fit in the GPU based on our
experiment setup and pad sequences that are shorter with a padding
index which has a vector of zeros in the embedding’s look-up table.
For FastText, we do not need to convert the bytecodes, we only
make the compressed bytecode compatible with FastText’s format
and train the model. For RF, after replacing each bytecode with its
corresponding vector, we calculate the mean of word vectors in
each script and use it to train the classifier. Finally, we train and
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Table 4: Model performance for script classification using
different classifiers and embeddings. The FastText model
refers to supervised text classification, while unsupervised
learning was used to obtain the FastText embedding.

Model ‘Embedding Accuracy(%) Precision(%) Recall(%) F-1  Train Time (h)

Word2vec 96.65 96.07 93.66 94.85 140
DPCNN FastText 96.89 96.47 93.98 95.21 232
FastText ‘ - 97.08 95.62 95.49 95.56 60
RF Word2vec 96.48 98.61 90.58 94.42 0.027
FastText 96.46 98.64 90.49 94.39 -

test the models and compare their performance on the same data.
Because DPCNN and FastText require a significant amount of time
to train, we only compared 5-fold cross-validation in the RF model
and note that the results are similar and slightly better than the
reported results in Table 4, which indicates that RF does not have a
selection bias and generalizes well.

Figure 4 illustrates the loss and accuracy when using different
embeddings in DPCNN; the kernel and stride were set to 51 and
15 respectively, and the max sequence length was set to 280,000.
While Word2vec’s embedding triggered the early stopping sooner,
FastText’s embedding resulted in lower loss and higher accuracy.
The upfront cost for training is an important factor to consider, espe-
cially when adding a new set of bytecode to V8, or having additional
samples that require re-training. Table 4 shows the performance of
the classifiers as well as the trade-off between performance and the
upfront cost. Training RF took less than 2 minutes and produced
the lowest false positives compared to 60 hours training time for
FastText which achieved the lowest false negatives. The results for
DPCNN were in between these two models and the training time
took >140 hours to complete. While no model achieved the best
score in all metrics, FastText produced the best accuracy, recall and
F-1 score compared to other classifiers.

Summary I: All three models performed comparably well in
detecting AT scripts. Random Forest achieved the highest pre-
cision with the lowest upfront cost, while FastText had higher
upfront cost, though lower than DPCNN, but achieved the high-
est overall performance.

5.1 Proactive Detection

We investigate the models’ performance in detecting AT resources
that are not yet present in the current version of filter lists, but
are added in future versions. This experiment also examines how
well the models are generalized in detecting new scripts. Filter
lists such as EasyList and EasyPrivacy are frequently updated to
include newly added rules for detecting unwanted resources or
remove stale or incorrect rules that may cause website breakage.
We downloaded updated versions of all filter lists 2 and 4 months
after the initial download. We labeled the initial list, which was
used for labeling the training and testing dataset, as list (A) and the
subsequent lists as lists (B) and (C). We located the false positive
cases of DPCNN and RF with Word2vec embedding (higher false
positives) and FastText (See Figure 6), and tested them against the
new filter lists. If they were detected as AT by the new lists, we
downloaded their JavaScript file and compared the content (using
difflib [4]) with the source code of the script we obtained during
the data collection, to ensure that their inclusion in the updated
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Table 5: Proactive detection results by comparing false pos-
itives against new filter lists. Lists (B) and (C) were down-
loaded 2 and 4 months after the original filter list.

List (B) List (C)
Overall Same Scripts Overall Same Scripts
Model ‘ Total Malicious Total Malicious ‘ Total Malicious Total Malicious
DPCNN (w2v) | 21 8 7 1 | 29 8 13 1
FastText | 22 8 6 1| 33 8 12 1
RF (w2v) | 10 4 5 o | 13 4 8 0

filter lists was not due to modifications in the code. We also checked
whether the scripts were detected as false due to being allowlisted
in list (A), and whether the undetected URLs were identified as
malicious by Virus Total [68].

The results are reported in Table 5 and include both the total
collection of scripts and the scripts where string matching reported
at least a 90% similarity across script versions. The overall results
also contain scripts where string matching was lower than 90% and
the scripts where we received errors such as “404 Not Found” or
“403 Forbidden”. The malicious results are scripts that were detected
as malicious at least by one source in Virus Total. None of the
false positives were bypassed as a result of being allowlisted by
list (A). We note that RF detected fewer scripts overall, which can
indicate that the model is less generalized compared to FastText and
DPCNN. Crucially, our findings show that these classifiers are able
to proactively detect scripts that show AT behaviors. We also note
that the number of true positives increased between two lists (2
months apart), indicating that the false positives reported in Table 4
are an overestimation.

We also performed a similar experiment for false negative sam-
ples to examine the proactive detection of allowlisted scripts. These
are the samples that were labeled as AT by filter list (A) but de-
tected as benign by our models. We checked these false negative
samples against updated filter lists (B) and (C); if they were detected
as benign by these lists we performed additional string matching
and selected the ones with above 90% similarity. We found 28, 15,
and 20 false negative samples for RF, FastText, and DPCNN re-
spectively which were detected as true negatives when using the
updated filter lists. These samples may have been added to the
exception rules (or the initial rules were deleted) to potentially
prevent usability issues. For instance, in the initial list, there was
no specific rule for palmettostatearmory . com, whereas in the up-
dated list (C) there was a rule that allows a website to send a request
to palmettostatearmory.com/static/. We also found a similar
case for batteriesplus.com. Evidently, both of these experiments
show that the trained models are generalized well enough that our
approach is able to go beyond simply detecting the current rules
and proactively locate AT scripts that should be added or even
removed (allowlisted) from the lists.

Summary II: All three models were able to uncover new scripts
that had not been detected by the existing filter lists, with Fast-
Text detecting the highest number. The number of previously
undiscovered scripts increased over time which suggests that
our findings represent a lower bound.

Manual Inspection. To further examine the false positive, we
randomly selected 30 (out of 334) samples from RF’s false positives
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Figure 5: The left plot shows CDF of bytecode sequence length
generated for AT and benign JavaScript code. The right plot
provides a comparison between bytecode sequence lengths
among the false positives.

(See Figure 6) and manually inspected their code to check whether
an incorrectly detected script was actually a true positive by having
code snippets related to tracking or advertisement behavior. We
ensured that the selected samples are different from the samples
reported in the proactive detection experiment. We used indicators
such as having script comments (e.g., Tealium, Google Analytics) or
JavaScript code with the purpose of collecting and sending tracking
data (e.g., ad impressions). Lastly, we checked whether EasyList or
EasyPrivacy had exception rules for these domains. Our manual
analysis showed that out of 30 scripts, 23 (76%) scripts correctly
detected by our model as tracking. Out of the 7 remaining samples,
5 did not have any discernible tracking code and 2 samples were
being allowlisted in the filter lists. The manual inspection, as well
as the proactive detection experiment, illustrate that our models
can identify tracking scripts that are not present in the current filter
lists.

We also examined the false positives from each model to inves-
tigate whether there were common characteristics among them.
For instance, we examined whether there was a relationship be-
tween the length of the sequence and the misclassification of benign
scripts by any of the models. To explore the sequence length’s effect,
we grouped each model’s false positives based on the bytecode’s
sequence length and compared their distribution. The distribution
for each model is shown in Figure 5. The left plot describes the
(bytecode) length distribution of AT and benign scripts and the
right plot shows the distribution only for the false positives. We
note that RF’s false positive cases, which had the highest precision,
closely follow the length distribution of AT samples while Fast-
Text and DPCNN'’s false positives are closer to the benign class.
We should note that when we only consider the shared cases (i.e.,
incorrectly classified by all models) the distribution is similar to
RF’s. Nevertheless, FastText and DPCNN misclassified more benign
samples with shorter sequence lengths compared to RF. Therefore,
in situations where the majority of samples have smaller bytecode
sequences, the RF model may perform better in terms of precision.
Even though Data URIs are challenging for request-based methods,
our FastText model detected 3 Data URI cases that were incorrectly
detected as benign by filter lists.

Detecting allowlisted scripts. Some AT scripts are added
to filter lists’ allowlists to prevent breakage and ensure that the
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Figure 6: Confusion matrix comparison for the three models.
For brevity, we only provide the confusion matrix for the
models used in proactive detection. We use the “1” and “0”
labels to represent AT and benign classes respectively.

website functions properly. While prior manual breakage analy-
sis [37, 38, 60] can subjectively examine tools’ performance from
a user’s perspective, it does not provide a systematic evaluation
of a tool’s ability in identifying allowlisted resources. As such, we
created a new filter list by removing allowlisted rules. Next, we
used both lists to identify allowlisted scripts. If a sample is detected
as AT with the modified filter list (which does not have exception
rules) but not the original list, we add it to the allowlisted samples.
We checked all false positives detected by our models against the
allowlisted samples. We call these false positive cases “allowlisted
false positives”, and report the results in Table 6. These are identi-
fied as false positives because they were explicitly allowed in the
filter lists to bypass content blockers. We note that these scripts are
a small portion of the 538 allowlisted samples. In other words, 538
cases were selectively bypassed by the filter lists for reasons such
as breakage or causing usability issues and the models were able
to correctly classify >90% of them. The most commonly occurring
allowlisted false positive belonged to www.googletagmanager.com,
which is also the most frequent FQDN in our data (Table 3).

Summary III: In addition to uncovering new AT scripts, all
three models correctly identified more than 90% of the al-
lowlisted scripts. The length of the sequence had a greater im-
pact on DPCNN and FastText than RF, where false positives
with shorter sequences were more prevalent.

5.2 Comparison to State-of-the-Art

In this section, we compare the classification accuracy of our ap-
proach to prior state-of-the-art machine learning-based techniques
that specifically focused on identifying AT with high accuracy and
varied in the type of features they used. Some of the techniques
required new data collection. Therefore, did not consider methods
that relied on (1) a special tool that was not publicly available, or
required being built from scratch with significant effort (e.g., in-
strumenting a browser), or (2) a particular data collection method
that was not available to us, such as collecting traffic from a large
number of users [32]. Additionally, we only compared replicable
methods where the features are clearly described in the paper.
Request-based. First, we look into prior work that used request-
based features. We compare our bytecode classification model with
BD+ [17] which is an offline method that applies machine learning
to request-based features. We collected a new set of data for byte-
code classification and BD+ by using OpenWPM [26] in parallel
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Table 6: Allowlisted false positives.

Model
m DPCNN (w2v) DPCNN (ft) FastText RF (w2v) RF (ft)

Allowlisted FP | 48 (4.81%) 38 (4.24%) 47 (4.13%) 34(10.17%) 33 (10.15%)
Total FP 997 895 1,138 334 325

with our instrumented Chromium and crawled 5K random web-
sites ranked between 50K-60K (we choose a different range so as to
obtain additional data than one used in previous experiments). We
only visited the home page without interacting with the website
similar to our large data collection. We call this dataset D1. In total,
the shared data between both datasets has 42,927 samples with 29%
of the samples belonging to AT scripts.

We performed a 5-fold cross-validation on the shared data and
used the parameters proposed by [17] to train and test the models.
We also made sure the data used for training and testing the models
have the same ordering, to prevent any performance discrepancies.
For BD+ we performed a k-Nearest Neighbors (kNN) with k = 5.
For bytecode classification, we used a random forest (RF) model
with FastText word vectors and in each iteration we trained the
unsupervised embeddings (see §3.3) on the training samples prior
to training, and then used it for vectorizing the training and testing
samples and calculating the means. The results are reported in
Table 7. We find that BD+ suffers from both high false positives
and false negatives, which aligns with our intuition that classifiers
that only rely on request-based features do not perform well as
advertisers are incentivized to employ evasive techniques. BD+’s
performance can also be attributed to its reliance on features that are
not commonly found in JavaScript resources, such as whether the
URL contains a semicolon or dimension information. Our bytecode
classification achieved 27.62% higher precision and 11.22% higher
accuracy than BD+. Having fewer false positives is particularly
important in content blockers where the incorrect detection of
scripts can cause breakage in websites.

JavaScript-based. We compare our method with the approach
proposed by Kaizer and Gupta [41] that uses JavaScript-based fea-
tures in addition to URL features, and WebGraph [60] that extends
AdGraph [37]’s network layer by including storage information and
data flow in the graph. [41] uses 18 features including 13 JavaScript
Web API calls and 5 request-based features for classification. Since
OpenWPM already collects the Web API calls from scripts, we used
the same data collected for BD+ and selected the scripts that had
at least one JavaScript API call, to ensure their execution trace
was captured, and their matching requests and responses (which is
used for URL features) where available. We found 20,309 samples
that matched these conditions and overlapped with our bytecode
dataset. We call this dataset D2. The AT samples constituted 46%
of the data. The labeling approach described in [41] considers first-
party external JavaScript requests as benign. However, using our
ground truth filter lists (and focusing on apex domains) we found
681 first-party JavaScript samples from the original data, including
206 overlapping samples from D2 that belonged to the AT class.
Therefore, we followed the same labeling approach explained in §3
for generating the ground truth. To provide a fair comparison, we
perform a 5-fold cross-validation using a random forest classifier
with 200 decision trees. In each fold, we trained an unsupervised

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Table 7: 5-fold classification performance of bytecode classi-
fication compared to BD+ [17], Kaizer and Gupta [41], and
WebGraph [60].

Data ‘ Method
RF (FastText)

Precision(%)  Recall(%) F-1 Accuracy(%)

98.61+021 81.41+086 89.18+0.48 94.32+0.22

b1 ‘ BD+ [17] ‘ 70.99 + 0.84 69.70 £ 1.79  70.33 + 1.22 83.10 + 0.59
D2 RF (FastText) 98.34 £0.25 88.06+0.54 9291037 93.75+0.32

Kaizer and Gupta [41] 87.17 £ 0.22 84.92+0.69 86.03 +0.44  87.16 = 0.37
D3 RF (FastText) ‘ 98.96 + 0.26 74.82 + 1.84 85.20+1.22 92.62 +0.53

WebGraph [60] 80.28 + 1.59 68.44+0.90 73.89+1.19  86.25 % 0.66

FastText embedding on the training set, used it to vectorize the
training and testing samples, and then calculated the mean to obtain
a vector representation for each script.

For WebGraph, we used the Docker image provided by the au-
thors [15] and crawled the same 5K websites using the included
OpenWPM alongside our instrumented Chromium browser. For
extracting WebGraph’s features, however, we were only able to
process 1,500 websites due to the huge processing overhead (see §6).
The pre-processing step was conducted using the default features
provided in the WebGraph implementation, and the training and
testing were done using the intersection of WebGraph'’s data and the
collected bytecode. We call the shared dataset D3, which has 12,136
samples where 28% belong to the AT class. For both experiments,
we used a random forest (RF) classifier. For bytecode classification,
we used the FastText embedding to pre-process the data, and for
WebGraph we used the parameters specified by the authors. We
conducted a 5-fold cross-validation to compare the performance.
Table 7 summarizes the cross-validation results where bytecode
classification outperforms WebGraph across all measures, specifi-
cally in reporting fewer false positives with an 18% improvement in
precision. Bytecode classification using D3 dataset had lower recall
compared to D1 and D2 datasets, which can be attributed to the
smaller sample size due to only processing 1,500 websites. We note
that WebGraph, which outperforms AdGraph [37], reports a 4-9%
improvement if content features are added. However, even then the
precision is lower than what is achieved by our model while also
decreasing WebGraph’s robustness and making it more susceptible
to evasion techniques.

Summary IV: Bytecode classification significantly outperforms
existing methods, produces fewer false positives and false nega-
tives while maintaining high accuracy in identifying AT scripts
even in smaller datasets.

6 DISCUSSION

Here we further discuss pertinent aspects of our technique.
Upfront vs. downstream cost. To achieve the best results for
the DPCNN model we utilized three discrete GPUs and required a
week of training, whereas the FastText model only needed one CPU
(with 16 cores) and less than three days for training. While the RF
model that achieved the best precision only needed a few minutes
to train, DPCNN and FastText generalize better (see §4). On the
other hand, precision is an important metric due to the negative
impact of false positives on the user experience. Overall, once the
model is trained, pre-processing and classification time will remain
the only (downstream) cost. Therefore, we view the training cost as
an infrequent, one-time upfront cost that occurs when a new set of



CCS *23, November 26-30, 2023, Copenhagen, Denmark

Pre-process & Prediction Time Prediction Time

1 — 1 — =
! - A -
091 ¥y 095 o
H K i -
osl! < 08 3
] &4 add 2]
ozt 4 o7l 4
G -
06/ 06
$ .'l:' g
Tospf o5t 1
a " s
004 0.4p:
a i
0.3 fji 03ff
02} 02f
1 DPCNN ==+ DPCNN ==+
014 FastText — — o1 FastText ——
oli Random Forest o Random Forest
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
Seconds Seconds

Figure 7: Comparison of prediction and pre-processing time
per sample between different models. The left figure includes
the pre-processing time in addition to the prediction time.
Note that FastText does not have pre-processing overhead as
the inputs are passed to the model directly.

bytecode is incorporated into V8, as opposed to the data collection
and prediction performance.

We calculated the average pre-processing and prediction time
for each sample based on 5 separate runs. The results are shown in
Figure 7. While hardware requirement differences should be taken
into account, we note that DPCNN and FastText are faster for a
single sample classification compared to RF. However, performance
can be vastly different and improved when batching is used. To
measure the downstream cost of data collection, we selected 500
websites randomly from the top 10K and conducted a simultaneous
crawl with and without printing the bytecode using our instru-
mented Chromium. We also set an upper bound of 120 seconds per
website. We observed a mean and median of 2.58 and 1.01 seconds
overhead respectively for saving the generated bytecode, and 1.4
and 0.91 seconds for bytecode extraction and processing. Figure 8
shows the CDF for the additional overhead incurred in crawling
websites and storing bytecode, and subsequently extracting the
bytecode. We compared our technique to a graph-based approach
such as WebGraph [60], and the processing overhead using Web-
Graph was 345 seconds per website, which is significantly slower
than our pipeline and consistent with the overhead reported by
other studies [38]. While our method incurs a higher training cost,
it outperforms prior approaches in terms of speed and accuracy
when applied to large-scale experiments.

Robustness. Our approach is party-agnostic, does not rely on
static features of the code or HTTP request information and is
not vulnerable to code obfuscation techniques where previous ap-
proaches falter. Whether the loaded JavaScript resource is first or
third-party is irrelevant to the model’s ability for classifying the
script’s behavior. Using the party (i.e., origin) as a feature can in-
troduce bias; for instance, while visiting redbull.com, our model
identified a first-party script https://qm.redbull.com/analytics.js as
tracking even though the URL did not match the filter lists’ rules.
Similarly, our model detected the https://www.footmercato.net/
lib/prebid7.1.0.js script while visiting footmercato.net. Since the
generated bytecode depends on how the website uses the script
(execution), our method can differentiate between seemingly simi-
lar scripts (e.g., based on URL) originating from different websites.
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Figure 8: The added overhead for collecting bytecode from
500 websites using the instrumented Chromium as well as
extracting bytecode.

For example, the execution flow for a JavaScript library that con-
tains both AT and benign functions will depend on which functions
within the library are called at runtime, which results in having
different bytecode streams for different websites even if they are
using the same library. This variability in execution flows can be
leveraged to distinguish allowlisted scripts from AT ones.

A model’s robustness to evasion depends on its sensitivity to
easily alterable features. In our approach, the input is a vector
embedding learned from a bytecode sequence obtained from the
script’s execution. This is harder to manipulate since the embed-
dings capture the sequence’s context. An adversary would need to
create scripts that generate specific bytecode sequences where the
average of its word vectors (for RF) would significantly change the
model’s prediction. This makes our approach more robust to adver-
sarial evasion compared to models that rely on feature engineering.

Disclosure. We have disclosed the new resources identified
during the manual inspection in §5 to EasyList’s maintainers and
are awaiting their response. Thus far, one of them has been accepted.

6.1 Limitations & Future Work

Data collection. We used a custom instrumented Chromium browser
and OpenWPM to collect our data. However, some websites may
use anti-crawling measures which can prevent automated browsers
from accessing their content. This can limit the amount of data that
can be collected, as well as potentially introduce bias in the collected
data. Furthermore, the data received from the automated crawls
of the homepage may differ from what real users receive through
interactions with the websites which may affect the distribution
of the collected data, particularly in websites that require user au-
thentication or include dormant scripts [35] that do not execute
during non-interactive page visits. However, prior research [77]
also showed that compared to human browser users, crawlers expe-
rience more third-party activities. Moreover, interacting with the
website and mimicking a real user’s behavior can increase the exe-
cution coverage and mitigate the impact of dormant scripts. While
such limitations are inevitable in large-scale studies, collecting data
from a large number of websites can minimize the potential impact.
Evasion. While code obfuscation and URL randomization can-
not evade our method, more challenging evasion techniques such
as code bundling and inlining can impact dynamic analysis and
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circumvent filter-list-based techniques. Code bundling combines
functional code with pieces of AT related code so that the website’s
functionality depends on allowing the external (bundled) script.
Such resources often become allowlisted in filter lists (see §5). In
code inlining, the AT code is directly wrapped inside the <script>
tags instead of being loaded as an external script (i.e., src attribute
of <script>) and, thus, cannot be blocked by filter lists even if
they are detected by our model. Similar to prior work, we are still
bound to analyzing a single bundled script as our goal is to identify
externally loaded AT scripts and not to locate the parts of the script
that exhibit tracking behavior. In other words, our method is an
automated offline solution to detect external AT scripts and help
craft rules for lists. If AT and benign code are bundled in one script,
our method is not sufficient for locating parts of the script. To pre-
vent function execution in inline or bundled scripts, a model has
to classify function bytecode accurately, which have much smaller
sequence lengths. This is very challenging, primarily due to the lack
of high-quality ground truths especially when similar functions are
prevalent among AT and benign scripts. Moreover, the models used
in this work performed well on finding long-range associations
in scripts’ bytecode which do not have similar performance for
functions’ bytecode with much smaller sequence lengths. However,
if a classifier accurately detects function bytecode sequences, an
approach such as SugarCoat [64] can benefit from it for creating
privacy-preserving function wrappers. We consider the exploration
of language models suitable for function-level classification part of
our future work.

Explainability. In recent years there has been an increasing
interest in the ability to better understand (i.e., explain) the deci-
sions reached by machine learning models. Certain models, such as
decision trees, are easier to interpret as opposed to more complex
models, especially those that rely on deep learning techniques (e.g.,
DNNs). Figure 9 (Appendix A.2) shows an example of the word
importance obtained from the DPCNN model using Captum [3].
While such visualizations can provide some insights into these
“blackbox” models, an interpretable system must also generate de-
scriptions that are sufficiently simple and straightforward for a
person to comprehend [30]. However, unlike other domains where
explainability has garnered attention from researchers (e.g., specific
regions in images, or specific words in natural language text), byte-
code does not inherently convey sufficient meaning for a person so
as to explain a model’s decision making. Additionally, despite the
clear explanation provided by RF’s feature importance, the use of
word vectors as features makes it difficult to interpret. Therefore,
even though model interpretability methods exist, using bytecode
as a feature poses challenges when it comes to providing human-
understandable insight into the model’s decision-making process.

non-JS requests. A limitation of our method is that we can
only detect and craft rules for external JavaScript resources, as our
primary goal is to improve the detection of AT scripts based on
how the JavaScript interpreter observes them. For instance, we
cannot detect tracking pixels that are statically included in HTML.
Nevertheless, if a tracking HTTP request (e.g., pixel) is dynamically
generated as a result of code execution, our approach can effectively
detect the script from where the request originated.

New browsers & retraining. Since JavaScript bytecodes are
not standardized and each browser has its own implementation,
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the trained classifier that works on one browser (e.g., Chromium)
may not be able to effectively detect AT scripts when presented
with the bytecode sequence captured by a different browser. How-
ever, this does not affect our overall objective since our goal is to
augment the filter list creation process, and these lists are typically
browser-agnostic. Nevertheless, exploring the effectiveness of byte-
code classification across browsers is part of our future research
direction. Additionally, as browsers evolve and new features are be-
ing added, the generated bytecode in the JavaScript engine can also
change. This means that while the bytecode classification approach
as a technique is applicable, different Chromium versions with a
new set of bytecode words may require additional data collection
and re-training of the models, which increases the upfront costs.
Ground truth. Lastly, we relied on popular filter lists to label
our data. Even though EasyList and EasyPrivacy are widely used
and frequently updated, there can be biases and inconsistencies
in the lists (e.g., human error) that are also learned by the models.
Nonetheless, using filter lists as the ground truth is common prac-
tice in prior studies [22, 37, 38]. Due to the scale, examining and
manually labeling each script is not feasible. One solution would
be to decrease the number of samples and create a smaller dataset
through manual analysis. However, such an approach can be prone
to more biases as the small sample size cannot cover the vast ma-
jority of websites and requires prior knowledge of the tracking
practices used by the scripts. Summarily, as further proven by our
manual analysis, our approach is highly accurate and our models
are also generalizable and able to proactively uncover new scripts.

7 CONCLUSION

Content blockers rely on filter lists which are maintained by a
community of users, and can provide many benefits to users such
as reducing distractions and protecting their privacy and security.
Maintaining the filter lists, however, requires a significant amount
of manual effort for reviewing and updating the rules frequently,
particularly due to the arms race between advertisers and adblock-
ers. In this paper, we presented a novel and automated pipeline for
accurately identifying unwanted scripts based on bytecode words
obtained from the JavaScript engine. Our proposed technique is
resilient against code obfuscation, captures code dependencies be-
tween inline and external scripts and can scale due to imposing
minimal overhead. We show that in addition to detecting current
scripts, bytecode classification uncovers currently-undetected AT
scripts and, more importantly, can accurately classify allowlisted
resources. While bytecode classification only relies on bytecode
sequences as features, it outperforms the existing state-of-the-art
detection systems that use request information, JavaScript features
or a combination of both. To augment the filter list generation pro-
cess and help the community of curators, we will release our system
as an automated tool that can identify AT scripts in websites as
well as determine which resources may need to be allowlisted.
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Pred Word Importance

... LdaZero Star1 LdaNamedProperty TestLessThan JumplfFalse Ldar
LdaKeyedProperty Star3 CallUndefinedReceiver1 Ldar AddSmi Star1 JumpLoop
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A APPENDIX

This section provides additional information that is pertinent to
our analysis and methodology.

A.1 EasyList Syntax

The rules in popular filter lists such as EasyList and EasyPrivacy
follow a specific syntax that instructs the blockers when to block
or allow a network request that matches the rules. While Adblock
Plus provides detailed documentation on writing filters [11], we
only address the allowlisted rules here as it is relevant to our work.

Listing 1 provides an example for two rules. The first line be-
gins with a | |, and specifies that this rule should be applied to any
URL that matches googletagmanager . com pattern beginning from
the domain name (e.g., supports both http and https). The caret
symbol (") acts a delimiter that separates the (domain) pattern and
instructs the blocker to block the request regardless of what comes
after the pattern, such as port, path or query. On the other hand,

line 2, which begins with “@@”, indicates that this rule should be
treated as an exception rule. The two pipelines serve the same pur-

pose as before, while $script specifies that the rule only applies
to script requests. Therefore, this is an exception rule for the rule
presented in line 1. Lastly, domain=okwave. jp determines that this
rule only applies to requests originating from okwave. jp. A rule
can be applied to multiple originating domains, but they should be
separated by a | symbol (e.g., okwave. jp|example. com). Under-
standing the structure of the exception rule helped us measuring
the performance of our model in detecting allowlisted scripts (§5).

A.2 Explainability

There have been many studies on explaining how a machine learn-
ing model arrives at a particular output or decision, which has
resulted in the creation of tools such as Captum [3] and SHAP [46]
to help explain the output of a model. Figure 9 shows parts of four
bytecode samples (taken from long sequences) next to their predic-
tions by the DPCNN model. The word importance is obtained using
Captum. Green and red colors illustrate the positive or negative at-
tribution of the bytecode in that particular position to the predicted
class. The intensity of the colors indicate the strength of the feature
attributions. Such visualizations are helpful in understanding how
features have participated in the outcome. However, interpretation
is only useful (to humans) if the features are also understandable.
For example, humans understand natural language; therefore, in
a sentiment-classification task, highlighting words such as “bad”
or “good” conveys that the model assigns weights to words similar
to how humans use them. On the other hand, since bytecode is
not understandable to humans, such visualizations do not convey a
meaningful explanation, especially in cases where sequences are
extremely long.
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