
When Push Comes to Shove:
Empirical Analysis ofWeb Push Implementations in theWild

Alberto Carboneri
University of Illinois Chicago

acarbo4@uic.edu

Mohammad Ghasemisharif
University of Illinois Chicago

mghas2@uic.edu

Soroush Karami∗

Paypal, Inc.
skarami@paypal.com

Jason Polakis
University of Illinois Chicago

polakis@uic.edu

ABSTRACT

Web push notifications are becoming an increasingly prevalent capa-

bility ofmodernwebapps, intended to create adirect communication

pipeline with users and increase user engagement. The seemingly

straightforward functionality of push notifications obscures the

complexities of the underlying design and implementation, which

deviates from a near-universal practice in the web ecosystem: the

ability to access an account (and the associated functionality) from

practically any browser or device upon successful completion of the

authentication process. Instead, push notifications create a commu-

nication endpoint for a specific browser instance. As a result, the

challenges of deploying push notifications are further exacerbated

due to the integration obstacles that arise from other aspects of web

apps and user browsing behaviors (e.g., multi-device environments,

account and session management). In this paper, we conduct an em-

pirical analysis of push notification implementations in thewild, and

identifycommondeploymentpitfalls.Wealsodemonstratea seriesof

attacks that target push notification functionality, including a novel

subscription-sniffing attack, through a selection of use cases. To

better understand current practices in push notifications implemen-

tations, we present a large-scale measurement of their deployment

and also provide the first, to our knowledge, exploration and analysis

of third-party service providers. Finally, we provide guidelines for

developers and propose an approach for correctly handling push

notifications in multi-browser, post-authentication settings.

1 INTRODUCTION

Web applications have rapidly grown in popularity over the last

decade, as they improve the user experience by eliminating the need

for manual software installation, and can seamlessly synchronize

data between mobile and desktop platforms. Even common tasks

that were previously conducted using native applications, such as

sending emails, or editing documents and spreadsheets, are now

predominantly performed throughweb applications (or łweb appsž).

This shift has driven browser vendors to continuously deploy new

browser functionality to enable andease thedevelopment of complex

features and close the gap between traditional desktop applications

andweb apps. However, these features and their implementations of-

ten carry associated security and privacy risks [10, 29, 34, 37] which,

if left unchecked, can expose users to severe threats.

For instance, ProgressiveWeb Apps (PWAs) constitute a major

evolution in web app capabilities and have garnered significant

∗Work was done while at the University of Illinois Chicago.

traction within the developer community. PWAs are powered by

the ServiceWorker API (released in 2015), which allows websites to

cache resources, better handle background sync operations, operate

offline, andmanageweb push notifications. ServiceWorkers operate

by enabling websites to register an event-driven script that remains

inactive until specific events occur, even after the originatingwebsite

has been closed. Web Push notifications are an additional powerful

capability intended for increasing user engagement by allowing

websites to deliver custom messages to a target user (in actuality,

they target a specific browser instance). Push notifications work

differently from traditional communication channels, such as SMS

and e-mails, as the message is sent directly to the user’s device

and shown as soon as it is online, resembling mobile and desktop

notifications. This effectively reduces the time required for users to

notice messages, resulting in an increased click rate. According to

reports [39, 40],pushnotificationshavebeenshowntooutperformall

othercommonlyusedcommunicationchannels in termsofclickrates.

Moreover, web push notifications, unlike e-mails and SMS, allow for

anonymous opt-in, potentially increasing the privacy of users.

The basic implementation ofWeb Push notification requires com-

plex operations andmultiple interactions between different systems.

The inherent complexity of such systems creates the potential for

implementation flaws that can result in security and privacy threats,

and affected QoS deterioration that leads to user dissatisfaction or

even revenue loss for vendors.While manywebsites have developed

custom implementations ofWeb Push notification functionality, oth-

ers rely on third-party providers as that allows them to sidestep the

development complexities and overhead through a straightforward

script inclusion. However, both approaches face challenges. Custom

implementations are found throughout the web and a great number

of popularwebsites have opted for this strategy.While this approach

allows websites to have more control over the usage and handling of

more complex scenarios, incorrect implementations pose a privacy

threat to end users, especially when the notifications’ content is

sensitive (e.g., private messages). While third-party providers offer

the same basic featureswith fewer implementation barriers to awide

range of websites, any vulnerability in their source code will impact

a larger number of websites.

PriorworkonPWAshasmainly focusedonexamining thesecurity

aspects of Service Workers’ caching or background synchroniza-

tion mechanisms [26, 38, 43], yet push notifications have received

little scrutiny from the security community. Existingworks explored



ACSAC’23, December 4-8, 2023, Austin, Texas, USA Alberto Carboneri, Mohammad Ghasemisharif, Soroush Karami, and Jason Polakis

the correlation between Web Push notifications and phishing at-

tacks [31], the de-anonymization threat posed by web push notifi-

cations [36], and the use of the technology to deliver malicious ad

campaings [44]. However, while push notifications are conceptually

straightforward, correct implementations pose various interesting

challenges that have been overlooked, including correctly imple-

menting third-party service providers, bounding push notifications

to users’ sessions and properly accounting for session changes (e.g.,

users logging out).

To bridge this gap, in this paper we provide an in-depth empir-

ical analysis of potential vulnerabilities, and a large-scale measure-

ment ofWeb Push notifications in the wild. Our work first presents

an overview of challenges when incorporating push notification

functionality in modern web apps, while also shedding light on the

ecosystem of third-party service providers for websites that want to

avoid implementing custom push notification capabilities. To study

the current state of Web Push notification adoption and analyze its

prevalencewe develop an automated framework built on top of an in-

strumented Chromium. Our tool crawls websites and automatically

extracts information related to push notification functionality inter-

cepting all calls to relevant APIs, such as PushManager and Notifi-

cation and analyzing the content of installed service workers. To

better understand the implications of different attack scenarios and

the current state of theweb ecosystem, our tool needs to differentiate

between custom and third-party push notification implementation.

To that end we have created a set of heuristics that identifies the

presence of a wide-range of third-party push notification providers.

Our empirical analysis highlights the complexities of properly

integrating push notifications into a modern website and adhering

to secure practices in regards to properly handling session-related

changes. For instance, we find twomajor web apps (namely, Twit-

ter and Poshmark) that, respectively, incorrectly handle multiple

browsers, leading to push notifications not being sent in some sit-

uations, or incorrectly handle user logout, possibly leaking private

data in the case, for example, of a shared computer. Accordingly,

we propose an information workflow for bypassing pitfalls when

deploying push notifications in authenticated contexts, providing a

blueprint for web app developers to correctly handle such scenarios.

Next, we introduce Subscription Sniffing, a novel variant of a

history-sniffing attack that leverages websites improperly using of

the postMessageAPI for inferring which websites a user has sub-

scribed to for push notifications. We find that four of the 40 most

prevalent third-party push notification providers are vulnerable to

our attack. We also present a more severe variant of this attack,

which also affects existing providers, that allows attackers to obtain

more sensitive information (For example previous notifications sent

to the user or notifications the user has previously clicked on) and

also forcefully unsubscribe users from a target website. Next, we

highlight an additional pitfall when deploying push notification

functionality and the importance of integrating them with exist-

ing security mechanisms. Specifically, we present a case study of a

website where the lack of the necessary anti-CSRF tokens allows

attackers to silently hijack the victim’s push notifications.

Finally,weconduct a large-scalemeasurementandanalysis ofweb

push notification in the wild. We find over 18,566 sites in the Tranco

top 500Kcurrently employWebPushnotifications.When taking into

account that many additional websites may only expose push func-

tionality post-authentication, whichwill bemissed by our crawler, it

is evident that pushnotifications are becoming increasingly common

across the web. Notably, among those sites we find that 7,388 (40%)

utilize custom implementations and 3,117 (42%) of those aggressively

request push permissions from users. We also found at least 1,187

websites that arepotentiallyvulnerable toourproposed subscription-

sniffing attack, 479 of which are exposed to the more dangerous

variant that allows attackers to obtain more sensitive information

about the user or stealthily deleting the user’s push subscription.

In summary, this research presents the following contributions:

• We conduct an empirical analysis of the security and privacy risks

introduced by the adoption of web push notifications, an integral

part of progressive web apps. We present and demonstrate a se-

ries of attacks that target push notifications, that pose significant

privacy risks to users.

• We present a large-scale measurement of push notification adop-

tion in the wild that highlights both the prevalence of push noti-

fication functionality, as well as the dependence of websites on

third-party providers. Our analysis highlights the extent of the

risks that users face, and a series of use cases that better illuminate

the real-world implications of implementation flaws in web push

notifications.

• We present a detailed workflow for personalized push notifica-

tions inmulti-browser, post-authentication settings, as a blueprint

for developers to avoid the pitfalls we uncovered.

2 BACKGROUND

In this section, we provide pertinent background information about

Web Push Notifications (WPNs) that provides the necessary contex-

tual information for the subsequent sections.

Push Notification. Generally, push notifications have been a

feature commonly available in native applications, which have be-

come available on the web as well in recent years. Such notifications

appear in the formof pop-upmessages sent by the browser to a user’s

device and typically include a title, message, image, and URL. Note

that websites can send push notifications at any time, which will be

delivered to the user’s device even if the correspondingwebsite is not

currently open in the browser.WPNs are permission-based,meaning

that users have to explicitly opt-in to receive them. There are two

methods for requesting users’ permission. In the first approach, a

browser-based promptwill be shown to users and ask for permission

of showing notifications. In the second approach, which is called

łsoft askž, the website will provide more information via a custom

message before showing the browser prompt. For example, itmay ex-

plain the value of receiving push notifications and if the user accepts

the łsoft askž, the website will proceed with displaying the browser

prompt. Unlike other subscription and marketing methods, WPN

provides an anonymous opt-in approach where users do not have

to share their personal information, such as their name, email, or

phone number to receive notifications. Instead, this communication

channel is bound to the specific browser instance; as such, if the

web service does not have information about the user’s identity or

account, this communication will essentially be anonymous.

Service Workers. Service workers are a special type of script

installed by websites that operate independently in the background,



When Push Comes to Shove:
Empirical Analysis of Web Push Implementations in theWild ACSAC’23, December 4-8, 2023, Austin, Texas, USA

self.addEventListener('push', function(event) {

var title = event.data.notification.title;

var message = event.data.notification.message;

var icon = event.data.notification.icon;

event.waitUntil(

self.registration.showNotification(title , {

body: message ,

icon: icon

}));});

Listing 1: An example use of the push event in serviceworkers

for receiving and handling push notifications.

separate from the DOM rendering process. Web push is built on

service workers, allowing them to listen for push events and display

incoming messages as notifications. Put simply, service workers en-

ablewebsites to shownotifications regardless ofwhether thewebsite

is currently open or not.

Push Services.WPNs work by maintaining a persistent connec-

tion to a push service provided by browser vendors (e.g., Mozilla’s

autopush [4] service for Firefox). Upon opening the browser, it con-

tacts its push service and keeps the connection open via aWebSocket.

When a user subscribes to notifications from a specific website, the

push service creates a new łmailboxž which is a secret URL referred

to as the endpoint. When a website attempts to send a notification,

its server contacts the browser’s push service by sending an HTTP

POST request to the push service of the recipient’s browser (i.e.,

endpoint). The push service then stores the data and delivers the

new notifications when the browser establishes a connection. It’s

important to note that a single browser can have multiple endpoints

simultaneously, each belonging to different websites. Moreover, the

websites donot have any control over the push services andbrowsers

can use any random push services. The push service APIs are stan-

dardized [7], which means websites are not required to know the

underlying push service implementation.

Client-side implementation. There are two methods adopted

by websites for requesting notification permissions. The first ap-

proach uses the Notification interface. The returned promise

from calling Notification.requestPermission() includes the

user’s response to the permission request. Websites can check the

status of current permission via the Notification.permission

property, whose value can be default, granted, or denied. The

second approach is to use the PushManager interface. The PushMan-

ager.subscribe() function subscribes the user to a push service.

Before obtaining the subscription, it will verify the current noti-

fication permission status. If permission has not been granted, it

prompts the user for permission through the browser prompt. Oth-

erwise, it works with a push service to generate the subscription.

Ultimately, this function returns a promise that resolves to a Push-

Subscription object containing all the information the application

server needs for sending a push message to the user. A new push

subscription is created if the current service worker does not have

an existing subscription. This is all done in JavaScript using the Push

API. An example using PushSubscription is provided in Listing 2.

To protect the generated endpoint, a VAPID [45] key must be used.

When the PushManager.subscribe() function is called, the corre-

sponding public key must be passed as an argument. The generated

subscription data is tied to that key, and can only be used in conjunc-

tion with the private key. This ensures confidentiality in the case

the subscription data is stolen. Moreover, since service workers can

{

"endpoint": "https: //a-push -service.com/unique -id/",

"keys": {

"p256dh": "BNcRdreALRFXTkOOUHK1E ... e8QcYP7DkM=",

"auth": "tBHItJI5svbpez7KI4CCXg =="

}

}

Listing 2: In this push subscription example, the łendpointž

specifies the browser that will receive the notifications and

the keys are being used for the cryptographic operations.

only be installed in an HTTPS context, websites must use HTTPS

to be able to successfully send push notifications (or outsource push

notifications to a third-party provider).

The service workers incorporate a push event listener to receive

notifications. When a push message is received, a push event is trig-

gered within the worker. This event is then directed to the push

event listener, allowing the website to process the message and dis-

play a notification. Listing 1 shows an example using the push event

listener. The self.registration.showNotification() function

calls the operating system’s notificationAPI to show the notification.

Server-side implementation. Push services provide APIs that

allowwebsites to send push notifications to their users. Using the

APIs, the website specifies the recipient of the message, the message

content and any relevant information which is then transmitted to

the push service. The push service receives the data and validates it

using the corresponding cryptographic keys. It then finds the appro-

priate browser using the endpoint and delivers the push message.

3 DEPLOYMENT& INTEGRATION PITFALLS

In this section, we first provide an overview of the basic infor-

mation workflow ofWPNs. Subsequently, we discuss deployment

and integration pitfalls, based on the findings from our empirical

analysis of existing custom implementations in popular websites,

and the code and documentation of third-party push notification

service providers. Specifically, we focus on the challenges of relying

on third-party service providers for handling notification function-

ality, as well as the additional complexity of correctly integrating

push notifications into web apps’ authenticated functionality.

Basic deployment.Websites can use the Push and Notification

APIs to enable the delivery ofWPNs. The Push API allows web ap-

plications to receive messages pushed from a server, regardless of

whether the web app is currently active or loaded in the browser.

This empowers developers to deliver asynchronous notifications

and updates to their subscribers. The Notifications API also allows

web apps to control the display of system notifications to the end

user. Since these are outside of the top-level browsing context view-

port they can be displayed even when the user has switched tabs or

moved to a different page.

Figure 1 illustrates information flow in Web Push: 1 the web-

page requests Notification permission through the browser-specific

prompt and 2 if the user grants permission, the Push Service gener-

ates a Push Subscription for the browser. After obtaining a Push Sub-

scription, 3 thewebpagewill forward it to its backend server,which

then stores the subscription in a database. This stored subscription al-

lows the server to send pushmessages to the respective user at a later

time. When the server intends to send a push message to its users,



ACSAC’23, December 4-8, 2023, Austin, Texas, USA Alberto Carboneri, Mohammad Ghasemisharif, Soroush Karami, and Jason Polakis

Browser

Service worker's
push listener

receives data and
shows notification

1

2

6

User

websocket
connection

5

Push Service

e
n
d
p
o
i
n
t

4

Website
backend

Website stores
subscription data

Wesbsite
frontend

Request subscription
Request permission

Subscribe

Subscription data

Subscription data

Notification data

Permission given

3 Subscription data

Notification data

Figure 1: TheworkflowofWeb Push communication between

user’s browser and server. The webpage uses a JavaScript API

to get the push subscription information and send them to

the server.

4 it initiates an API call to a specific endpoint of the push service.

The endpoint information and the required authentication keys are

included in the subscription data as shown in Listing 2. This API call

includes details regarding the data to be sent, the recipient of themes-

sage, and any specific criteria regarding the delivery of the message.

When a push service receives a network request, 5 it verifies its

authenticity and delivers a push message to the intended browser.

If the browser is offline, the message is stored in a queue until the

user’s device becomes online and the push service can deliver the

messages. When a message is successfully delivered, the browser

receives and decrypts the data, triggering a push event in the service

worker. Finally, 6 the service worker uses the Notification API to

display the notification to the user.

3.1 Integrating Third-Party Push Providers

WPNs were initially introduced for sending first-party messages.

However, to facilitate adoption, WPNs can be deployed by inte-

grating third-parties that provide this feature as a service. Service

Providers facilitate theprocessof integratingwebpush to thewebsite

by providing a simple script to be served by the websites. After in-

cluding the script, the website owners can use the service provider’s

dashboard to composemessages (including title,message, image, and

URL) and send notifications. There are twomain approaches for inte-

grating this service. In thefirst approach, service providers create ser-

viceworker scripts for their customersand instruct themtohost these

scripts. Additionally, they request website owners to include a script

tag that registers the serviceworker andmanages user subscriptions.

However, there are some caveats associated with this approach

that can pose challenges for customers. First, if the website currently

uses service workers, it may create a conflict with the provider’s

script. However, this can be managed by registering the service

worker on a different scope. Second, the websites’ contents must be

served via HTTPS to be able to use such services. To expand their

customer base, service providers employ an alternative approach

that circumvents these limitations. For each customer, they create

a third-party domain that is served via an HTTPS protocol. They

use this page to request permission and subscribe to notifications.

Since the origins are different, there will be no conflicts for service

workers. Under this approach, when a user decides to subscribe to

push notifications, a pop-up window will be launched to install a

service worker, use the Push API and manage the push subscription.

Next, the service providers create a unique URL for a script, which is

hosted on their servers, and instruct the website’s owner to include

it. This script verifies the user’s notification subscription status, and

if not subscribed, it will display a subscribe button which opens the

above-mentioned pop-up window to ask for permission.

As the subscription is completed on a third-party domain, no

cookie can be saved on the customer’s website to mark a successful

subscription. The script thereby loads a specific page of the third-

party domain into an iFrame, which uses the postMessageAPI to

return the current subscription status. In the following section, we

examine the potential security risks thatmay arise from these design

decisions and their corresponding implementations.

3.2 Implementing PersonalizedWPNs

Push notifications serve as a direct communication channel between

web applications and users. Web applications use push notifications

to inform users about a set of events that users may find important,

and certain notifications may contain sensitive information which

is tailored to individual users. For instance, email users (e.g., Gmail)

may receive notification messages containing the sender’s name

and email title when they receive an email. In these scenarios, the

implementation ofWPNs requires careful consideration, as compo-

sitionality issues can arise when other security mechanisms need

to be integrated into theWPN pipeline.

Session management. As discussed earlier, when a user logs

into awebsite, a session ID is assigned to the user. The session ID has

a limited lifespan and gets revoked when the user logs out from the

web application or expires after a certain duration. In either case, the

server must stop sending notifications to the user. However, if the

server does not verify the validity of the session for each endpoint, or

does not correctly invalidate sessions on the server side, it will send

notifications to users that are already logged out. In a correct design,

only the users with a valid session who have subscribed should re-

ceive the notifications. To test the correctness of an implementation,

we consider the following rules, which capture pitfalls that can occur

when implementing personalizedWPNs :

(1) Having multiple active sessions should not impact correctly re-

ceiving notifications.

(2) Even after logging out and logging back in, the user should con-

tinue to receive notifications.

(3) The notifications should be received correctly on active sessions

when there are both active and inactive sessions.

4 EXPLOITING IMPLEMENTATION PITFALLS

As discussed in Section 3, developers have various options for imple-

menting push notifications, and we highlighted various flaws that

can occur during the integration and deployment process. In this





ACSAC’23, December 4-8, 2023, Austin, Texas, USA Alberto Carboneri, Mohammad Ghasemisharif, Soroush Karami, and Jason Polakis

 0

 0.2

 0.4

 0.6

 0.8

 1

1-100k 100k-200k 200k-300k 300k-400k 400k-500k

%
 o

f 
w

e
b

s
it
e

s

Rank

Figure 3: Percentage of sites requesting direct permission to

sendWPNs.

The legitimate user subscription may get overwritten, especially in

the case when the attack is executed on the same browser where the

subscription was made from, or it may simply be added into a list.

5 EXPERIMENTS ANDMEASUREMENTS

In this section, we present our large-scalemeasurement study on the

prevalence and state ofWPNs in the wild.We also present a series of

case studies that highlight the pitfalls of deploying push notification

functionality and demonstrate the impact of our attacks.

5.1 Large-ScaleMeasurement

Collectionmethodology. To collect the data related to push noti-

fications,we instrumentedChromiumtocaptureall calls toService-

WorkerContainer,ServiceWorkerGlobalScope,ServiceWorker-

RegistrationPush, Notification, and PushManagerAPIs along-

side all events dispatched inside a service worker such as register,

install, sync, and fetch. The instrumentation was made at the

browser level by patching the chromium source code to log relevant

dataduringcalls to theaboveAPIs.Moreover, to enable theautomatic

detection of websites requesting notification permission directly,

we also introduced a Chromium patch to automatically accept no-

tification requests after a short amount of time. This was achieved

by editing the flow used to trigger the permission popup. We use

dynamic and static approaches for detecting custom implementation

of push notifications. By analyzing API call logs, particularly by ex-

amining the occurrence of Notification.requestPermission()

or pushManager.subscribe() function calls, which are necessary

for obtaining user permission for notifications, we can dynamically

identify websites that invoke these functions to acquire notification

permission and send notifications. However, there are cases where

the dynamic approach cannot capture the APIs, particularly when

theseAPIs require user interaction to be invoked. For instance, a user

has tovisit thewebsite’s settingsandexplicitlyask thewebsite tosend

them notifications. This action triggers the notifications permission

and invokes the APIs. Therefore, we also developed an approach to

statically analyze the service worker scripts and determine whether

a website uses the push API. Typically, websites have only one main

service worker script that may include multiple scripts. In our static

approach, we use the list of APIs to recursively download all scripts

and analyze them. We use a straightforward keyword-matching

technique on the source code of the service workers to identify rele-

vant APIs. To construct the list of keywords, we performed a smaller

experiment using the dynamic approach until we obtained a list

of 500 websites using WPN, examined their service workers and

manually extracted relevant keywords from the source code to min-

imize the occurrence of false negatives to zero. The list of obtained

keywords contains common strings such as ‘Notificationclick’, ‘han-

dlePushEvent’, and ‘push’ events registration in ‘addEventListener’.

Data collection.We used Puppeteer [6] and the instrumented

browser to visit the top 500k Tranco websites and utilized the afore-

mentioned approaches to obtain information about the website’s

pushnotifications. For eachwebsite,weopenanewbrowser instance

waiting for the page to load (wewait amaximumof 60 seconds or un-

til nonetwork requests occur for at least 500ms); after thatwewait for

an additional 30 seconds to ensure that everything has been fetched

and loaded. To quantify the prevalence of third-party providers, and

the associated flaws, we took the top 40 providers (according to

builtWith [8]) and built a tool for determining whether a website

utilizes a particular provider. The tool loads thewebsite, as aforemen-

tioned, and thendetects theuseof providers throughcustom-tailored

heuristics, such as by examining the DOM content for domains and

tags present in the scripts distributed by the providers or verifying

the existence of a specific service worker in a specific path which

is required in order for that provider to function.

Our findings are reported in Table 1. The table differentiates be-

tween websites detected by our dynamic, static, and third-party

detection approaches. We note that the total number of websites

reported is greater than the total as some websites were flagged by

more than one approach. In total, both our scripts successfully run

on 396,154 websites. We discovered 18,566 (4.68%) unique websites

that use push notifications. Among them, 3,117 (0.78%) were found

to request permission immediately upon a user visiting the page.

A breakdown of those websites, where each bucket is normalized

based on the number of sites analyzed within the given bucked so

as to avoid bias, is shown in Figure 3. While we find such invasive

practices slightly more often in popular websites, their prevalence

is comparable across all ranks. Next, we explore the prevalence of

custom implementations, as shown in Figure 4. Surprisingly, we find

that relying on third-partyWPN service providers is common prac-

tice regardless of a website’s popularity as, overall, 11,178 (2.82%)

websites employed a third-party provider while 7,388 (1.86%) had

a custom implementation. As discussed in ğ3, the complexity of

implementingWPNs may incentivize websites to employ a service

provider. Despite the obvious benefits, however, any flaws in the

third-party’s implementation will result in widespread vulnerabil-

ities across the web ecosystem. Overall, our script failed to run on

103,846 websites mainly due to missing DNS records or anti-bot

features detecting and blocking our automated framework..

Manual validation.Next,we conduct amanual analysis on a subset

of thewebsites, to verify the accuracy of our heuristics. The dynamic

approach does not have any false positives (websites not usingWPN

but being flagged as so), but it may have false negatives (websites us-

ingWPN but not being flagged). We note that even though the static

approach helps reduce false negatives, it may still fail to detect web-

siteswith aheavily obfuscated serviceworker code. Both approaches

are unable to detectwebsites that install a serviceworker only after a

user interaction has occurred as both relies onAPI calls made during

or after the service worker installation. To verify our third-party

detection approach, we collected at most 10 websites per provider



When Push Comes to Shove:
Empirical Analysis of Web Push Implementations in theWild ACSAC’23, December 4-8, 2023, Austin, Texas, USA

 0

 1

 2

 3

 4

 5

1-100k 100k-200k 200k-300k 300k-400k 400k-500k

%
 o

f 
w

e
b

s
it
e

s

Rank

Custom implementation
Third-party implementation

Figure 4: Custom and third-party implementation usage,

grouped by global rank.

Table 1: Breakdown ofWPN detection per technique.

Technique Websites

Dynamic approach 3,117

Static approach 8,750

Third-party detection 11,178

Table 2: False negatives in third-party provider detection.

Issue Websites

User action required 12

Cloudflare anti-bot detection 3

Code obfuscation 1

from builtWith which we manually classified and checked to be

loading correctly.We note that for some providerswewere unable to

find 10 different valid websites and for this reason the total number

of analyzedwebsites is lower.We also randomly selected 20websites

from the Tranco top 500k where our system did not detect push noti-

fications. In total, wemanually classified 343websites and compared

our findings with the ones obtained from our system. For our third-

party detection approach we found 5 (1.4%) false positives, all due to

leftover code in the website, and 16 (4.7%) false negatives, which can

be attributed to factors such as code obfuscation, websites blocking

our automated framework, or situations where user interaction is

necessary. The number of websites affected per issue are reported

in Table 2. Overall, our system reported a 5.6% FPR and a 5.8% FNR.

5.2 Case Studies

To check a website in an automated manner, we should be able to

log in and properly evaluate the efficacy of the notification system.

However, we have opted for a manual process due to the various

challenges of automating the testing pipeline. Apart from the diffi-

culty of automating the account-creation and authenticationprocess,

enablingWPNs may be hidden within an account’s settings. More

importantly, even if those challenges are overcome, actually trigger-

ing push notifications can require site-specific actions (e.g., another

account sending a message) or only occur periodically when trig-

gered by the server. As such, here we present a series of use cases

that detail vulnerabilities and flaws that we uncovered during our

empirical analysis, highlighting the challenging nature of deploying

WPNs and the threat posed by the threats we present in our work. A

summary of the findings of our case study and vulnerable websites

and service providers is provided in Table 3. Note that in this table

the entry ‘Session Mismanagement’ includes informations about

both ‘Session termination’ and ‘Session management’ issues.

Session termination.As mentioned in Section 4, if websites do

not verify session validity, personalized notifications can be received

even when the user is logged out. During our empirical analysis

we manual inspected poshmark.com, a popular social commerce

marketplace for clothing and accessories (Ranked 1,703 on Tranco).

While Poshmark has incorporatedWPNs into their authenticated

workflow and send account-specific notifications, they do not cor-

rectly handle session changes. Specifically, they continue to send

personalized notifications even after the user has logged out. This

can reveal sensitive information to other individuals that gainorhave

access to that browser.We further discuss the conceptual disconnect

that exists between typical account-functionality andWPNs in ğ6.

SessionManagement.Upon comprehensive testing of Twitter’s

behavior, we discovered that there are certain scenarios where their

pushnotification servicedoesnot functionas intendeddue toflaws in

integratingWPNs into their authentication workflow and correctly

handling session changes. First, if users log out and subsequently

log in again, they will no longer receive notifications. In fact, users

need to repeat their push subscription to be able to get notifications,

indicating that session terminations in Twitter lead to WPN push

subscription termination. Second, If a user logs in from two separate

machines that have the same OS (regardless of its version) and use

the same browser vendor (regardless of its version), Twitter will

send notifications only to the most recent browser that logged in.

To better illustrate this, suppose that a user has two valid sessions

on two devices: DeviceA running macOS v12 and using Chrome

v109, and DeviceB running macOS v13 and Chrome v114. The user

has also subscribed to Twitter notifications from both devices, and

DeviceA was the last to subscribe to Twitter. In that case, the user

will only receive notifications on DeviceA.

Upon further experimentation with Twitter’s notification system,

wededuced that it likely stores subscriptions in a custom table, along-

side a sessionID, browser vendor, and OS.When a user subscribes

to notifications, the system checks if the user’s OS and browser com-

bination already exists in the table. If it does not, a new record is

inserted. However, if the OS and browser combination matches an

existing record, the system updates the session and subscription

fields of that record with the new information. In other words, Twit-

ter infers the endpoint based on sessionID, OS and browser fields. As

a result, if the user uses a similar OS and browser on another system,

Twitter will lose track of the previous subscription information and

just push the notifications to the latest.

A correct design must validate sessions before sending notifica-

tions, which would prevent sending them to endpoints with invalid

sessions. Additionally, Twitter does not update the corresponding

sessionIDs when users get a new one (e.g., logging out and logging

in). As a result, users are compelled to resubscribe to notifications af-

ter each login. Overall, the issues that we have uncovered in Twitter

highlight the true complexity of incorporatingWPNs in authenti-

cated environments where session management needs to be incor-

porated into the life cycle of notification management. Moreover,

the presence of such issues on a site as popular as Twitter, is a good

indication that such flaws may also affect many other services.



ACSAC’23, December 4-8, 2023, Austin, Texas, USA Alberto Carboneri, Mohammad Ghasemisharif, Soroush Karami, and Jason Polakis

Table 3: Example of push notification vulnerabilities discov-

ered in various websites.

Flaws Service

Session Mismanagement Twitter, Poshmark

Subscription Sniffing Webpushr, LetReach, Cleverpush, Pushalert, VWO

CSRF gama.ir

 0

 50

 100

 150

 200

 250

 300

 350

1-100k 100k-200k 200k-300k 300k-400k 400k-500k

C
o

u
n

t

Rank

Generic iFrame inclusion
Cleverpush

Figure 5: Rank breakdown of websites affected by the iFrame

inclusion vulnerability and the Cleverpush flaw.

Subscriptionsniffing.LetReach[3] isapushnotificationprovider

that uses the aforementioned iFramemethod for subscribing users.

The iFrame uses the postMessagemethod to inform the first-party

website whether the user is subscribed for receiving notifications.

Since the iFrame should only be loaded by the original website, the

messages should only be sent to that specific origin. However, Le-

tReach incorrectly sets the targetOrigin of the postMessage to

ł*ž, thereby enabling any website to receive these messages. Conse-

quently, an adversary can exploit the absence of proper destination

validation and obtain the list of websites to which the user has sub-

scribed by including the iFrames into a website they are in control

of and registering an event listener for messages sent by the third-

party domain. This attack can also target a specific customer (i.e.,

website) since each website that uses this functionality has a custom

subdomain generated by the provider (Section 3).

Additionally, these messages contain a unique identifier for the

user’s subscription if the user has accepted receiving notifications

on the target website, which can potentially reveal additional infor-

mation about the victim to the attacker. Our in-depth analysis of the

JavaScript included in the iFrames revealed numerous endpoints

for managing the user’s subscription. There is also an unsubscribe

endpoint that accepts unique identifiers sent by the iFrame to the

original page as a parameter, potentially allowing an attacker to un-

subscribe users. However, at the time of writing, that endpoint does

not work correctly even for legitimate uses. Several other providers,

includingWebpushr [9] (the third most commonly used according

to BuiltWith), have the same flaw in their implementation. However,

unlike LetReach, most providers only offer subscriptions through

a subdomain upon explicit request, resulting in potentially fewer

websites being vulnerable to this issue.

Cleverpush [2], another notification provider, is also vulnerable

to this issue and includes an iFrame for all websites, even when

HTTPS is directly supported on the customer’s domain. Moreover,

the JavaScript code loaded within the iFrame exposes a postMes-

sage API that lacks the necessary origin checks. An attacker can

include an iFrame in their website and gain access to information

such as whether the user has visited and accepted notifications, the

internal subscription ID, a list of notifications the user has interacted

with, and even forcibly unsubscribe the user from push notifications.

Most importantly, the unsubscribing process is never revealed to

the target website, which will not prompt the user again for permis-

sion to send push notifications unless the browser data associated

with both the target and the iFrame origin is deleted. In total, we

identified 1,187 websites that could potentially be vulnerable to this

history-sniffing attack and we discovered 479 websites affected by

the vulnerability present in Cleverpush.

An analysis of third-party providers affected by this vulnerability,

whose results are shown in Figure 5, revealed that, while the generic

issue is almost equally distributed between websites’ ranks, Clev-

erpush is mostly used by high-ranking websites, leading to more

users being affected. All those websites are mainly categorized as

łGeneral Newsž, łBlogs/Wikiž, łEntertainmentž, and łBusinessž, and

more than 30 websites classified as łFinance/Bankingž.

CSRF.During our manual analysis, we found that gama.ir does

not include protection against CSRF attacks on the subscription

endpoint. Gama is an Iranian website for teachers to share and pub-

lish educational content, including exam questions. When a user

subscribes to the push notifications of Gama, no protection against

CSRF is implemented. An attacker can deceive the victim into vis-

iting their website, where they can add their subscription to the

victim’s account and gain access to their notifications.

6 AUTHENTICATEDWORKFLOWDESIGN

Conceptually, WPNs constitute a straightforward communication

mechanismbetween twoendpoints, i.e., thewebserver and theuser’s

browser. However, as discussed and demonstrated in the previous

sections, various flaws can occur during implementation, as well as

during the integrationof third-party serviceproviders.Our empirical

analysis revealed that the most complex aspect is correctly handling

WPNs in conjunction with session management. Web applications

use push notifications to inform users about a set of events that

users may find important or interesting, and some may contain sen-

sitive information tailored to the individual user. For instance, email

providers may push notification messages containing the sender’s

nameandemail title. In these scenarios, the implementationofWPNs

requires careful consideration. To that end, this section explores var-

ious strategies and possible approaches for designing a custom push

notification system for settings where authentications is required.

Prior research has shown that developers struggle with integrat-

ing additional mechanisms into their authentication workflows and

correctly handling session changes [21]. Similarly, incorporating

push notification functionality into a web app’s post-authentication

workflow introduces considerable complexity as it combines two

different communication abstractions: that of a user’s account and

that of a user’s browser. To put it differently, account-specific func-

tionality and data are not tied to a specific device and are available

to any browser running on any device once the authentication pro-

cess completes successfully (i.e., the user is able to log into their

account). On the other hand, push notification functionality is tied





ACSAC’23, December 4-8, 2023, Austin, Texas, USA Alberto Carboneri, Mohammad Ghasemisharif, Soroush Karami, and Jason Polakis

includes websites that detect and respond differently to automated

browsers. Furthermore, our approach sets a finite time limit for the

website to load, so as to reduce overhead in our large-scale measure-

ment study, which although sufficient for most websites, may not be

adequate for others (particularly slower websites). Since our system

only visits home pages on websites, it may overlook cases where

websites install service workers only on internal pages rather than

the home page. Additionally, our framework does not emulate any

user actions and thus if the tested features require user interaction,

our framework cannot capture its presence on those websites. Based

on our experimental observation and previous research [26], the

number of websites that require either visiting additional pages or

requires user action to install a serviceworker is relatively small, and

therefore, does not significantly affect our studies findings; nonethe-

less, we consider our numbers to be a lower bound. An interesting

future direction would be ameasurement study that employs amore

realistic browsing environment and user interactions.

Post-authenticationmeasurements.We note that websites

may require account creation for enabling push notifications, espe-

cially for personalized notifications. However, our system does not

automate account creation or login. While we found a large number

of websites that only allow subscribing to notifications after logging

in, we observed that in almost all of those cases the website installed

the required service worker on the landing page, thus enabling our

static approach detecting them. Additionally, our empirical analysis

also relies on extensive manual experiments. Nonetheless, future

work could leverage an automated account creation and authentica-

tion framework (e.g., [14, 17]) for conducting a more comprehensive

post-authentication analysis.

Automated vulnerability discovery.Our tool cannot automat-

ically assess whether websites suffer from some of the flaws that

we discovered manually (i.e., on Twitter and Poshmark). This is pri-

marily due to the multitude of distinct behaviors that would need

to be tested and the complexity involved in developing a system

that can automatically trigger a notification on an unknownwebsite.

We also note that detecting websites that are vulnerable to CSRF

attacks on their subscription endpoint is outside the scope of this

work. Nonetheless, multiple vulnerability scanners already exist for

such tasks (e.g., ZAP [5], w3af [1]), and recent academic studies have

also proposed systems for detecting CSRF vulnerabilities [13, 27].

Ethics and disclosure. All of the experiments with web apps

and third-party service providers that required a user account, were

completed using test accounts. We did not interact, target, or affect

any actual users. Additionally, due to the significant implications of

our findings, we have disclosed them to all of the affected websites

and third-party providers via dedicated channels when present or

customer support, and are currently waiting for a response. Specifi-

cally, we disclosed the discovered subscription sniffing vulnerability

to Webpushr, LetReach, Cleverpush, Pushalert, and VWO and no-

tified Twitter, Poshmark, and gama.ir regarding the issues we found

on their respective websites. At the time of writing, only VWO and

Cleverpush have acknowledged the issues and have informed us that

they are actively working on a fix. Moreover, we note that the issue

that we uncovered in Twitter regarding the mishandling of session

changes was fixed prior to our disclosure; the second reported issue,

which allows for breaking the notification system by enabling it on

two computers with the sameOS and browser vendor, is still present

at the time of this writing.

8 RELATEDWORK

Service Workers. Service workers are quite a novel functional-

ity in modern browsers, and while their security has been tested,

further research is required to fully understand the related issues.

Papadopoulos et al. [38] analyzed their usage for stealthy crypto-

mining on client-side applications. Franken et al. [19] revealed how

requests initiated by service workers are almost never checked and

blocked by browser privacy extensions when carrying third-party

cookies, possibly allowing tracing of the user even in such conditions.

An novel, persistent, MITM attack was proposed by Watanabe et

al. [46]. This attack abuses the fetch event listener in the context

of a rehosting website and can manipulate requests and responses

to such website. Squarcina et al. [43] analyzed their implications in

escalating XSS attacks and found an attack vector through the Cache

API which allow for performing a MITM attack.

Web push notifications. Research in this field, as previously

mentioned in this paper, is currently lacking. However, a few notable

mentions do exist. Lee et al. [31] analyzed the connection between

webpushnotifications andphishing attacks, and foundmultipleweb-

sites abusing the notification icon by using the logo of a well-known

website such as WhatsApp or YouTube to increase the click rate.

Moreover they found how, at the time, Firefox desktop and mobile

in certain environments, and Samsung Internet browser in all cases,

didn’t show the origin of the notification, potentially allowing at-

tackers tomount an evenmore realistic phishing attack. Finally, they

found how third-party providers making use of subdomains to send

notifications make the problemworse by confusing the user. Unre-

lated topushnotifications, theyalso showedhowtoexploit theoffline

browsing feature in PWAs using a cache to infer the victim’s history

of visited PWAs. Loreti et al. [36] researched the privacy issues re-

lated to mobile push applications and found that an attacker, if able

to trigger a notification to a device, can successfully detect whether

such device is currently located on the same network. Finally, Sub-

ramani at al. [44] developed a crawler and instrumented Chromium

to analyzeWPN notifications and discover malicious ad campaigns.

While their patching strategy is similar to the systemwe developed,

there are differences in the API calls collected. Moreover, their re-

search is focused on the content of sent notifications and their use for

malicious advertisement, while our work aims at identifying pitfalls

that occur during the implementation and deployment of push notifi-

cations and, thus, focuses more on the service workers’ source code.

Mobile push notifications.While the underlying technology

and implementation of push notifications in mobile platforms differ

significantly to those of web push notifications due to the inherent

differences between web app and mobile app capabilities, and we,

prior work has explored various aspects of Android push notifica-

tions. One of the first such security studies was by Li et al. [33],

who conducted a security analysis of popular mobile push messag-

ing services, under the assumption that the attacker was able to

install a malicious app on the user’s device. Liu et al. [35] explored

aggressive push notification practices, and proposed a system for

automatically exercising Android apps and detecting aggressive

push notification behaviors. Prior work by Hyun et al. [24] and Lee



When Push Comes to Shove:
Empirical Analysis of Web Push Implementations in theWild ACSAC’23, December 4-8, 2023, Austin, Texas, USA

et al. [30] explored how botnets could leverage push notifications

for establishing stealthy C&C channels.

History sniffing.Many attacks on CSS properties have been pro-

posed during the years [15, 22, 23, 42, 47] which enabled attackers

to know the browser’s history of a visiting user. Felten and Schnei-

der [18] analyzed web timing attacks with the objective of compro-

mising user data, in particular their browsing history. By measuring

the timeneededtoaccessaresource theattackercoulddetectwhether

it was previously cached. Side-channel attacks, as demonstrated by

Wu et al. [48] in the specific case of browser rendering, and service

workers, as shown by Karami et al. [26], are another vector which

an attacker may use to obtain information about users’ browsing

history. Finally, Lee et al. [32] demonstrated howAppCache, a novel

functionality of HTML5 could allow an attacker to detect the status

of a target URL and infer previous logins on such websites.

CSRF. CSRF vulnerabilities have been extensively investigated

by the security community and numerous prior studies have ex-

plored the threat that they pose [11, 13, 16, 27, 28, 50]. Semastin et

al. [41] analyzed existing measures and proposed a combined so-

lution, Barth et al. [12] proposed new techniques, while Zheng et

al. [50] analyzed methods to bypass existing protections. However,

detecting suchflaws remains a complex task and is an active research

topic. Calzavara et al. [13] proposed an approach based on machine

learning for detecting CSRF vulnerabilities in a black-box scenario,

while Khodayari et al. [27] focused on client-side CSRF and released

a tool to test for its presence.

9 CONCLUSIONS

Web push notifications present a departure from the multitude of

web technologies of the past, as they obviate users’ ability to access

account functionality regardless of the device or browser being used.

Instead, push notification create a notification channel whose client-

side endpoint is attached to a specific browser instance. By deviating

from the de-facto user abstraction of an account to that of a browser,

pushnotifications create an incompatibility that significantly compli-

cates deployment and integration with other web app functionality

(e.g., session management). In this paper we presented an in-depth

empirical analysis of push notifications in the wild, and highlighted

a series of implementation pitfalls. We also demonstrated a series

of attacks, including a novel history-sniffing attack, that affect pop-

ular web services and push notification providers. To that end we

provided a series of guidelines for developers, including a detailed

workflow for correctly handling push notifications when users need

to authenticate and use multiple devices to access their account.

Overall, push notifications constitute a uniquely interesting web

technology that can expose users to significant threats, and should

be further scrutinized by the security community.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers and Shepherd for their help-

ful feedback. This project was supported by the National Science

Foundation (CNS-2211574, CNS-2143363). The views in this paper

are only those of the authors and may not reflect those of the US

Government or the NSF.

REFERENCES
[1] 2013. w3af. http://w3af.org/.
[2] 2023. Cleverpush. https://cleverpush.com/
[3] 2023. LetReach. https://www.letreach.com/
[4] 2023. Mozilla autopush. https://autopush.readthedocs.io/
[5] 2023. OWASP ZAP. https://www.zaproxy.org/.
[6] 2023. Puppeteer. https://pptr.dev/
[7] 2023. Push API. https://www.w3.org/TR/push-api/
[8] 2023. Push Notifications Usage Distribution in the Top 1 Million Sites.

https://trends.builtwith.com/widgets/push-notifications
[9] 2023. Webpushr. https://www.webpushr.com/
[10] Mir Masood Ali, Binoy Chitale, Mohammad Ghasemisharif, Chris Kanich, Nick

Nikiforakis, and Jason Polakis. 2023. Navigating Murky Waters: Automated
Browser Feature Testing for Uncovering Tracking Vectors.. In NDSS.

[11] Elham Arshad, Michele Benolli, and Bruno Crispo. 2022. Practical attacks on
Login CSRF in OAuth. Computers & Security 121 (2022), 102859.

[12] Adam Barth, Collin Jackson, and John C Mitchell. 2008. Robust defenses for
cross-site request forgery. In Proceedings of the 15th ACM conference on Computer
and communications security. 75ś88.

[13] Stefano Calzavara, Mauro Conti, Riccardo Focardi, Alvise Rabitti, and Gabriele
Tolomei. 2019. Mitch: A machine learning approach to the black-box detection
of CSRF vulnerabilities. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 528ś543.

[14] Stefano Calzavara, Hugo Jonker, Benjamin Krumnow, and Alvise Rabitti. 2021.
Measuring web session security at scale. Computers & Security 111 (2021), 102472.

[15] Andrew Clover. 2002. CSS visited pages disclosure. https://lists.w3.org/Archives/
Public/www-style/2002Feb/0039.html

[16] Luca Compagna, Hugo Jonker, Johannes Krochewski, Benjamin Krumnow, and
Merve Sahin. 2021. A preliminary study on the adoption and effectiveness of
SameSite cookies as a CSRF defence. In 2021 IEEE European Symposium on Security
and PrivacyWorkshops (EuroS&PW). IEEE, 49ś59.

[17] Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis. 2020. The cookie hunter:
Automated black-box auditing for web authentication and authorization flaws. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security. 1953ś1970.

[18] E. W. Felten and M. A. Schneider. 2000. Timing attacks on web privacy.
Proceedings of the ACM Conference on Computer and Communications Security.
https://doi.org/10.1145/352600.352606

[19] Gertjan Franken, Tom Van Goethem, andWouter Joosen. 2018. Who left open the
cookie jar? A comprehensive evaluation of third-party cookie policies. Proceedings
of the 27th USENIX Security Symposium.

[20] Diana Freed, Jackeline Palmer, Diana Minchala, Karen Levy, Thomas Ristenpart,
and Nicola Dell. 2018. łA Stalker’s Paradisež How Intimate Partner Abusers
Exploit Technology. In Proceedings of the 2018 CHI conference on human factors
in computing systems. 1ś13.

[21] Mohammad Ghasemisharif, Chris Kanich, and Jason Polakis. 2022. Towards au-
tomated auditing for account and session management flaws in single sign-on de-
ployments. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 1774ś1790.

[22] Mario Heiderich, Marcus Niemietz, Felix Schuster, Thorsten Holz, and Jörg
Schwenk. 2012. Scriptless attacks - Stealing the pie without touching the sill.
Proceedings of the ACM Conference on Computer and Communications Security.
https://doi.org/10.1145/2382196.2382276

[23] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and J. Schwenk. 2014. Scriptless
attacks: Stealing more pie without touching the sill. Journal of Computer Security
22 (2014). Issue 4. https://doi.org/10.3233/JCS-130494

[24] Sangwon Hyun, Junsung Cho, Geumhwan Cho, and Hyoungshick Kim. 2018.
Design and analysis of push notification-based malware on android. Security and
Communication Networks 2018 (2018).

[25] Jordan Jueckstock, Shaown Sarker, Peter Snyder, Aidan Beggs, Panagiotis
Papadopoulos, Matteo Varvello, Ben Livshits, and Alexandros Kapravelos. 2021.
Towards Realistic and Reproducible Web Crawl Measurements. In Proceedings
of TheWeb Conference (WWW).

[26] Soroush Karami, Panagiotis Ilia, and Jason Polakis. 2021. Awakening theWeb’s
Sleeper Agents: Misusing ServiceWorkers for Privacy Leakage. In NDSS.

[27] Soheil Khodayari and Giancarlo Pellegrino. 2021. JAW: Studying client-side
CSRF with hybrid property graphs and declarative traversals. In USENIX Security
Symposium.

[28] KirstenS. 2021. Cross Site Request Forgery (CSRF) | OWASP Foundation.
[29] Brian Kondracki, Assel Aliyeva, Manuel Egele, Jason Polakis, and Nick Nikiforakis.

2020. Meddling middlemen: Empirical analysis of the risks of data-saving mobile
browsers. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 810ś824.

[30] Hayoung Lee, TaehoKang, Sangho Lee, JongKim, and YoonhoKim. 2014. Punobot:
Mobile botnet using push notification service in android. In Information Security
Applications: 14th International Workshop, WISA 2013, Jeju Island, Korea, August
19-21, 2013, Revised Selected Papers 14. Springer, 124ś137.

[31] Jiyeon Lee, Hayeon Kim, Junghwan Park, Insik Shin, and Sooel Son. 2018. Pride
and prejudice in progressive web apps: Abusing native app-like features inWeb



ACSAC’23, December 4-8, 2023, Austin, Texas, USA Alberto Carboneri, Mohammad Ghasemisharif, Soroush Karami, and Jason Polakis

applications. Proceedings of the ACMConference on Computer and Communications
Security. https://doi.org/10.1145/3243734.3243867

[32] SanghoLee,HyungsubKim, and JongKim. 2015. IdentifyingCross-originResource
Status Using Application Cache. https://doi.org/10.14722/ndss.2015.23027

[33] Tongxin Li, Xiaoyong Zhou, Luyi Xing, Yeonjoon Lee, Muhammad Naveed, Xi-
aoFengWang, and Xinhui Han. 2014. Mayhem in the push clouds: Understanding
andmitigating security hazards inmobile push-messaging services. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security.
978ś989.

[34] Xu Lin, Panagiotis Ilia, and Jason Polakis. 2020. Fill in the blanks: Empirical
analysis of the privacy threats of browser form autofill. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security. 507ś519.

[35] Tianming Liu, HaoyuWang, Li Li, Guangdong Bai, Yao Guo, and Guoai Xu. 2019.
Dapanda: Detecting aggressive push notifications in android apps. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 66ś78.

[36] Pierpaolo Loreti, Lorenzo Bracciale, and Alberto Caponi. 2018. Push attack:
Binding virtual and real identities using mobile push notifications. Future Internet
10 (2018). Issue 2. https://doi.org/10.3390/fi10020013

[37] Francesco Marcantoni, Michalis Diamantaris, Sotiris Ioannidis, and Jason Polakis.
2019. A large-scale study on the risks of the html5 webapi for mobile sensor-based
attacks. In TheWorldWideWeb Conference. 3063ś3071.

[38] Panagiotis Papadopoulos, Panagiotis Ilia, Michalis Polychronakis, Evangelos P.
Markatos, Sotiris Ioannidis, and Giorgos Vasiliadis. 2019. Master of Web
Puppets: Abusing Web Browsers for Persistent and Stealthy Computation.
https://doi.org/10.14722/ndss.2019.23070

[39] pushcrew. 2016. The State ofWeb Push Notifications. https://gallery.mailchimp.
com/fccee8d27b3a55c46b81ce8ae/files/The_State_of_Web_Push_Notifications_
2016.pdf.

[40] PushEngage. 2021. Email vs Push Notifications: Statistics & Expert Strategies.
https://www.pushengage.com/email-vs-push-notifications-statistics.

[41] Emil Semastin, Sami Azam, Bharanidharan Shanmugam, Krishnan Kannoorpatti,
Mirjam Jonokman, Ganthan Narayana Samy, and Sundresan Perumal. 2018.

Preventive measures for cross site request forgery attacks on Web-based
Applications. International Journal of Engineering and Technology(UAE) 7 (2018).
Issue 4. https://doi.org/10.14419/ijet.v7i4.15.21434

[42] Michael Smith, Craig Disselkoen, Shravan Narayan, Fraser Brown, and
Deian Stefan. 2018. Browser history re:visited. In 12th USENIX Workshop
on Offensive Technologies (WOOT 18). USENIX Association, Baltimore, MD.
https://www.usenix.org/conference/woot18/presentation/smith

[43] Marco Squarcina, Stefano Calzavara, and Matteo Maffei. 2021. The Remote on
the Local: Exacerbating Web Attacks Via Service Workers Caches. Proceedings
- 2021 IEEE Symposium on Security and Privacy Workshops, SPW 2021, 432ś443.
https://doi.org/10.1109/SPW53761.2021.00062

[44] Karthika Subramani, Xingzi Yuan, Omid Setayeshfar, Phani Vadrevu, Kyu Hyung
Lee, and Roberto Perdisci. 2020. When Push Comes to Ads: Measuring the Rise
of (Malicious) Push Advertising. Proceedings of the ACM SIGCOMM Internet
Measurement Conference, IMC. https://doi.org/10.1145/3419394.3423631

[45] M Thomson and P Beverloo. 2017. Voluntary Application Server Identification
forWeb Push. IETF Tools (2017).

[46] Takuya Watanabe, Eitaro Shioji, Mitsuaki Akiyama, and Tatsuya Mori. 2020.
Melting Pot of Origins: Compromising the IntermediaryWeb Services that Rehost
Websites. https://doi.org/10.14722/ndss.2020.24140

[47] Gilbert Wondracek, Thorsten Holz, Engin Kirda, and Christopher Kruegel. 2010.
A practical attack to de-anonymize social network users. Proceedings - IEEE
Symposium on Security and Privacy. https://doi.org/10.1109/SP.2010.21

[48] ShujiangWu, Jianjia Yu, Min Yang, and Yinzhi Cao. 2022. Rendering Contention
Channel Made Practical in Web Browsers. In 31st USENIX Security Symposium
(USENIX Security 22). 3183ś3199.

[49] David Zeber, Sarah Bird, Camila Oliveira,Walter Rudametkin, Ilana Segall, Fredrik
Wollsén, and Martin Lopatka. 2020. The representativeness of automated web
crawls as a surrogate for human browsing. In Proceedings of TheWeb Conference
2020. 167ś178.

[50] Xiaofeng Zheng, Jian Jiang, Jinjin Liang, Haixin Duan, Shuo Chen, TaoWan, and
NicholasWeaver. 2015. Cookies Lack Integrity: Real-World Implications. In 24th
USENIX Security Symposium (USENIX Security 15).


	Abstract
	1 Introduction
	2 Background
	3 Deployment & Integration Pitfalls
	3.1 Integrating Third-Party Push Providers
	3.2 Implementing Personalized WPNs

	4 Exploiting Implementation Pitfalls
	5 Experiments and measurements
	5.1 Large-Scale Measurement
	5.2 Case Studies

	6 Authenticated Workflow Design
	7 Discussion and Limitations
	8 Related Work
	9 Conclusions
	References

