When Push Comes to Shove:
Empirical Analysis of Web Push Implementations in the Wild

Alberto Carboneri
University of Illinois Chicago
acarbo4@uic.edu

Soroush Karami"
Paypal, Inc.
skarami@paypal.com

ABSTRACT

Web push notifications are becoming an increasingly prevalent capa-
bility of modern web apps, intended to create a direct communication
pipeline with users and increase user engagement. The seemingly
straightforward functionality of push notifications obscures the
complexities of the underlying design and implementation, which
deviates from a near-universal practice in the web ecosystem: the
ability to access an account (and the associated functionality) from
practically any browser or device upon successful completion of the
authentication process. Instead, push notifications create a commu-
nication endpoint for a specific browser instance. As a result, the
challenges of deploying push notifications are further exacerbated
due to the integration obstacles that arise from other aspects of web
apps and user browsing behaviors (e.g., multi-device environments,
account and session management). In this paper, we conduct an em-
pirical analysis of push notification implementations in the wild, and
identify common deployment pitfalls. We also demonstrate a series of
attacks that target push notification functionality, including a novel
subscription-sniffing attack, through a selection of use cases. To
better understand current practices in push notifications implemen-
tations, we present a large-scale measurement of their deployment
and also provide the first, to our knowledge, exploration and analysis
of third-party service providers. Finally, we provide guidelines for
developers and propose an approach for correctly handling push
notifications in multi-browser, post-authentication settings.

1 INTRODUCTION

Web applications have rapidly grown in popularity over the last
decade, as they improve the user experience by eliminating the need
for manual software installation, and can seamlessly synchronize
data between mobile and desktop platforms. Even common tasks
that were previously conducted using native applications, such as
sending emails, or editing documents and spreadsheets, are now
predominantly performed through web applications (or “web apps”).
This shift has driven browser vendors to continuously deploy new
browser functionality to enable and ease the development of complex
features and close the gap between traditional desktop applications
and web apps. However, these features and their implementations of-
ten carry associated security and privacy risks [10, 29, 34, 37] which,
if left unchecked, can expose users to severe threats.

For instance, Progressive Web Apps (PWAs) constitute a major
evolution in web app capabilities and have garnered significant

“Work was done while at the University of Illinois Chicago.

Mohammad Ghasemisharif
University of Illinois Chicago
mghas2@uic.edu

Jason Polakis
University of Illinois Chicago
polakis@uic.edu

traction within the developer community. PWAs are powered by
the Service Worker API (released in 2015), which allows websites to
cache resources, better handle background sync operations, operate
offline, and manage web push notifications. Service Workers operate
by enabling websites to register an event-driven script that remains
inactive until specific events occur, even after the originating website
has been closed. Web Push notifications are an additional powerful
capability intended for increasing user engagement by allowing
websites to deliver custom messages to a target user (in actuality,
they target a specific browser instance). Push notifications work
differently from traditional communication channels, such as SMS
and e-mails, as the message is sent directly to the user’s device
and shown as soon as it is online, resembling mobile and desktop
notifications. This effectively reduces the time required for users to
notice messages, resulting in an increased click rate. According to
reports [39,40], push notifications have been shown to outperformall
other commonly used communication channels in terms of click rates.
Moreover, web push notifications, unlike e-mails and SMS, allow for
anonymous opt-in, potentially increasing the privacy of users.

The basic implementation of Web Push notification requires com-
plex operations and multiple interactions between different systems.
The inherent complexity of such systems creates the potential for
implementation flaws that can result in security and privacy threats,
and affected QoS deterioration that leads to user dissatisfaction or
even revenue loss for vendors. While many websites have developed
custom implementations of Web Push notification functionality, oth-
ers rely on third-party providers as that allows them to sidestep the
development complexities and overhead through a straightforward
script inclusion. However, both approaches face challenges. Custom
implementations are found throughout the web and a great number
of popular websites have opted for this strategy. While this approach
allows websites to have more control over the usage and handling of
more complex scenarios, incorrect implementations pose a privacy
threat to end users, especially when the notifications’ content is
sensitive (e.g., private messages). While third-party providers offer
the same basic features with fewer implementation barriers to a wide
range of websites, any vulnerability in their source code will impact
alarger number of websites.

Prior work on PWAs has mainly focused on examining the security
aspects of Service Workers’ caching or background synchroniza-
tion mechanisms [26, 38, 43], yet push notifications have received
little scrutiny from the security community. Existing works explored

ACSAC’23, December 4-8, 2023, Austin, Texas, USA

the correlation between Web Push notifications and phishing at-
tacks [31], the de-anonymization threat posed by web push notifi-
cations [36], and the use of the technology to deliver malicious ad
campaings [44]. However, while push notifications are conceptually
straightforward, correct implementations pose various interesting
challenges that have been overlooked, including correctly imple-
menting third-party service providers, bounding push notifications
to users’ sessions and properly accounting for session changes (e.g.,
users logging out).

To bridge this gap, in this paper we provide an in-depth empir-
ical analysis of potential vulnerabilities, and a large-scale measure-
ment of Web Push notifications in the wild. Our work first presents
an overview of challenges when incorporating push notification
functionality in modern web apps, while also shedding light on the
ecosystem of third-party service providers for websites that want to
avoid implementing custom push notification capabilities. To study
the current state of Web Push notification adoption and analyze its
prevalence we develop an automated framework built on top of an in-
strumented Chromium. Our tool crawls websites and automatically
extracts information related to push notification functionality inter-
cepting all calls to relevant APIs, such as PushManager and Notifi-
cation and analyzing the content of installed service workers. To
better understand the implications of different attack scenarios and
the current state of the web ecosystem, our tool needs to differentiate
between custom and third-party push notification implementation.
To that end we have created a set of heuristics that identifies the
presence of a wide-range of third-party push notification providers.

Our empirical analysis highlights the complexities of properly
integrating push notifications into a modern website and adhering
to secure practices in regards to properly handling session-related
changes. For instance, we find two major web apps (namely, Twit-
ter and Poshmark) that, respectively, incorrectly handle multiple
browsers, leading to push notifications not being sent in some sit-
uations, or incorrectly handle user logout, possibly leaking private
data in the case, for example, of a shared computer. Accordingly,
we propose an information workflow for bypassing pitfalls when
deploying push notifications in authenticated contexts, providing a
blueprint for web app developers to correctly handle such scenarios.
Next, we introduce Subscription Sniffing, a novel variant of a
history-sniffing attack that leverages websites improperly using of
the postMessage API for inferring which websites a user has sub-
scribed to for push notifications. We find that four of the 40 most
prevalent third-party push notification providers are vulnerable to
our attack. We also present a more severe variant of this attack,
which also affects existing providers, that allows attackers to obtain
more sensitive information (For example previous notifications sent
to the user or notifications the user has previously clicked on) and
also forcefully unsubscribe users from a target website. Next, we
highlight an additional pitfall when deploying push notification
functionality and the importance of integrating them with exist-
ing security mechanisms. Specifically, we present a case study of a
website where the lack of the necessary anti-CSRF tokens allows
attackers to silently hijack the victim’s push notifications.

Finally, we conduct alarge-scale measurement and analysis of web
push notification in the wild. We find over 18,566 sites in the Tranco
top 500K currently employ Web Push notifications. When taking into

Alberto Carboneri, Mohammad Ghasemisharif, Soroush Karami, and Jason Polakis

account that many additional websites may only expose push func-

tionality post-authentication, which will be missed by our crawler, it

is evident that push notifications are becoming increasingly common

across the web. Notably, among those sites we find that 7,388 (40%)

utilize custom implementations and 3,117 (42%) of those aggressively

request push permissions from users. We also found at least 1,187

websites that are potentially vulnerable to our proposed subscription-

sniffing attack, 479 of which are exposed to the more dangerous

variant that allows attackers to obtain more sensitive information

about the user or stealthily deleting the user’s push subscription.
In summary, this research presents the following contributions:

e We conduct an empirical analysis of the security and privacy risks
introduced by the adoption of web push notifications, an integral
part of progressive web apps. We present and demonstrate a se-
ries of attacks that target push notifications, that pose significant
privacy risks to users.

o We present a large-scale measurement of push notification adop-
tion in the wild that highlights both the prevalence of push noti-
fication functionality, as well as the dependence of websites on
third-party providers. Our analysis highlights the extent of the
risks that users face, and a series of use cases that better illuminate
the real-world implications of implementation flaws in web push
notifications.

e We present a detailed workflow for personalized push notifica-
tions in multi-browser, post-authentication settings, as a blueprint
for developers to avoid the pitfalls we uncovered.

2 BACKGROUND

In this section, we provide pertinent background information about
Web Push Notifications (WPNs) that provides the necessary contex-
tual information for the subsequent sections.

Push Notification. Generally, push notifications have been a
feature commonly available in native applications, which have be-
come available on the web as well in recent years. Such notifications
appear in the form of pop-up messages sent by the browser to a user’s
device and typically include a title, message, image, and URL. Note
that websites can send push notifications at any time, which will be
delivered to the user’s device even if the corresponding website is not
currently open in the browser. WPNs are permission-based, meaning
that users have to explicitly opt-in to receive them. There are two
methods for requesting users’ permission. In the first approach, a
browser-based prompt will be shown to users and ask for permission
of showing notifications. In the second approach, which is called
“soft ask”, the website will provide more information via a custom
message before showing the browser prompt. For example, it may ex-
plain the value of receiving push notifications and if the user accepts
the “soft ask”, the website will proceed with displaying the browser
prompt. Unlike other subscription and marketing methods, WPN
provides an anonymous opt-in approach where users do not have
to share their personal information, such as their name, email, or
phone number to receive notifications. Instead, this communication
channel is bound to the specific browser instance; as such, if the
web service does not have information about the user’s identity or
account, this communication will essentially be anonymous.

Service Workers. Service workers are a special type of script
installed by websites that operate independently in the background,

When Push Comes to Shove:
Empirical Analysis of Web Push Implementations in the Wild

ACSAC’23, December 4-8, 2023, Austin, Texas, USA

self.addEventListener ('push', function(event) {
var title = event.data.notification.title;
var message = event.data.notification.message;
var icon = event.data.notification.icon;
event.waitUntil(
self.registration.showNotification(title, {
body: message,
icon: icon

D)D)

{
"endpoint": "https://a-push-service.com/unique-id/",
"keys": {
"p256dh": "BNcRdreALRFXTkOOUHK1E e8QcYP7DkM="",
"auth": "tBHItJI5svbpez7KI4CCXg=="
}
}

Listing 1: An example use of the push event in service workers
for receiving and handling push notifications.

separate from the DOM rendering process. Web push is built on
service workers, allowing them to listen for push events and display
incoming messages as notifications. Put simply, service workers en-
able websites to show notifications regardless of whether the website
is currently open or not.

Push Services. WPNs work by maintaining a persistent connec-
tion to a push service provided by browser vendors (e.g., Mozilla’s
autopush [4] service for Firefox). Upon opening the browser, it con-
tacts its push service and keeps the connection open via a WebSocket.
When a user subscribes to notifications from a specific website, the
push service creates a new “mailbox” which is a secret URL referred
to as the endpoint. When a website attempts to send a notification,
its server contacts the browser’s push service by sending an HTTP
POST request to the push service of the recipient’s browser (i.e.,
endpoint). The push service then stores the data and delivers the
new notifications when the browser establishes a connection. It’s
important to note that a single browser can have multiple endpoints
simultaneously, each belonging to different websites. Moreover, the
websites do not have any control over the push services and browsers
can use any random push services. The push service APIs are stan-
dardized [7], which means websites are not required to know the
underlying push service implementation.

Client-side implementation. There are two methods adopted
by websites for requesting notification permissions. The first ap-
proach uses the Notification interface. The returned promise
from calling Notification.requestPermission() includes the
user’s response to the permission request. Websites can check the
status of current permission via the Notification.permission
property, whose value can be default, granted, or denied. The
second approach is to use the PushManager interface. The PushMan-
ager.subscribe () function subscribes the user to a push service.
Before obtaining the subscription, it will verify the current noti-
fication permission status. If permission has not been granted, it
prompts the user for permission through the browser prompt. Oth-
erwise, it works with a push service to generate the subscription.
Ultimately, this function returns a promise that resolves to a Push-
Subscription object containing all the information the application
server needs for sending a push message to the user. A new push
subscription is created if the current service worker does not have
an existing subscription. This is all done in JavaScript using the Push
APL An example using PushSubscription is provided in Listing 2.
To protect the generated endpoint, a VAPID [45] key must be used.
When the PushManager . subscribe () function is called, the corre-
sponding public key must be passed as an argument. The generated
subscription data is tied to that key, and can only be used in conjunc-
tion with the private key. This ensures confidentiality in the case
the subscription data is stolen. Moreover, since service workers can

Listing 2: In this push subscription example, the “endpoint”
specifies the browser that will receive the notifications and
the keys are being used for the cryptographic operations.

only be installed in an HTTPS context, websites must use HTTPS
to be able to successfully send push notifications (or outsource push
notifications to a third-party provider).

The service workers incorporate a push event listener to receive
notifications. When a push message is received, a push event is trig-
gered within the worker. This event is then directed to the push
event listener, allowing the website to process the message and dis-
play a notification. Listing 1 shows an example using the push event
listener. The self.registration.showNotification() function
calls the operating system’s notification API to show the notification.

Server-side implementation. Push services provide APIs that
allow websites to send push notifications to their users. Using the
APIs, the website specifies the recipient of the message, the message
content and any relevant information which is then transmitted to
the push service. The push service receives the data and validates it
using the corresponding cryptographic keys. It then finds the appro-
priate browser using the endpoint and delivers the push message.

3 DEPLOYMENT & INTEGRATION PITFALLS

In this section, we first provide an overview of the basic infor-
mation workflow of WPNs. Subsequently, we discuss deployment
and integration pitfalls, based on the findings from our empirical
analysis of existing custom implementations in popular websites,
and the code and documentation of third-party push notification
service providers. Specifically, we focus on the challenges of relying
on third-party service providers for handling notification function-
ality, as well as the additional complexity of correctly integrating
push notifications into web apps’ authenticated functionality.

Basic deployment. Websites can use the Push and Notification
APIs to enable the delivery of WPNs. The Push API allows web ap-
plications to receive messages pushed from a server, regardless of
whether the web app is currently active or loaded in the browser.
This empowers developers to deliver asynchronous notifications
and updates to their subscribers. The Notifications API also allows
web apps to control the display of system notifications to the end
user. Since these are outside of the top-level browsing context view-
port they can be displayed even when the user has switched tabs or
moved to a different page.

Figure 1 illustrates information flow in Web Push: @) the web-
page requests Notification permission through the browser-specific
prompt and @ if the user grants permission, the Push Service gener-
ates a Push Subscription for the browser. After obtaining a Push Sub-
scription, @€ the webpage will forward it to its backend server, which
then stores the subscription in a database. This stored subscription al-
lows the server to send push messages to the respective user at alater
time. When the server intends to send a push message to its users,

ACSAC’23, December 4-8, 2023, Austin, Texas, USA

Wesbsite Browser User
frontend

Request subscription
L equest subscription,
@ Request permissio

Permission given
<o omission given,

j Subscribe

R

; Website
(o] [2225)

Subscription data |

Subscription data

esubscription data :

| @ notification data | |

Website stores'
subscription data

‘websocket
connection

9 Notification data

Service worker's
push listener

receives data and
shows notification

Figure 1: The workflow of Web Push communication between
user’s browser and server. The webpage uses a JavaScript API
to get the push subscription information and send them to
the server.

@ it initiates an API call to a specific endpoint of the push service.
The endpoint information and the required authentication keys are
included in the subscription data as shown in Listing 2. This API call
includes details regarding the data to be sent, the recipient of the mes-
sage, and any specific criteria regarding the delivery of the message.

When a push service receives a network request, @ it verifies its
authenticity and delivers a push message to the intended browser.
If the browser is offline, the message is stored in a queue until the
user’s device becomes online and the push service can deliver the
messages. When a message is successfully delivered, the browser
receives and decrypts the data, triggering a push event in the service
worker. Finally, @ the service worker uses the Notification API to
display the notification to the user.

3.1 Integrating Third-Party Push Providers

WPNs were initially introduced for sending first-party messages.
However, to facilitate adoption, WPNs can be deployed by inte-
grating third-parties that provide this feature as a service. Service
Providers facilitate the process of integrating web push to the website
by providing a simple script to be served by the websites. After in-
cluding the script, the website owners can use the service provider’s
dashboard to compose messages (including title, message, image, and
URL) and send notifications. There are two main approaches for inte-
grating this service. In the first approach, service providers create ser-
vice worker scripts for their customers and instruct themto host these
scripts. Additionally, they request website owners to include a script
tag that registers the service worker and manages user subscriptions.

However, there are some caveats associated with this approach
that can pose challenges for customers. First, if the website currently
uses service workers, it may create a conflict with the provider’s
script. However, this can be managed by registering the service
worker on a different scope. Second, the websites’ contents must be

Alberto Carboneri, Mohammad Ghasemisharif, Soroush Karami, and Jason Polakis

served via HTTPS to be able to use such services. To expand their
customer base, service providers employ an alternative approach
that circumvents these limitations. For each customer, they create
a third-party domain that is served via an HTTPS protocol. They
use this page to request permission and subscribe to notifications.
Since the origins are different, there will be no conflicts for service
workers. Under this approach, when a user decides to subscribe to
push notifications, a pop-up window will be launched to install a
service worker, use the Push API and manage the push subscription.
Next, the service providers create a unique URL for a script, which is
hosted on their servers, and instruct the website’s owner to include
it. This script verifies the user’s notification subscription status, and
if not subscribed, it will display a subscribe button which opens the
above-mentioned pop-up window to ask for permission.

As the subscription is completed on a third-party domain, no
cookie can be saved on the customer’s website to mark a successful
subscription. The script thereby loads a specific page of the third-
party domain into an iFrame, which uses the postMessage API to
return the current subscription status. In the following section, we
examine the potential security risks that may arise from these design
decisions and their corresponding implementations.

3.2 Implementing Personalized WPNs

Push notifications serve as a direct communication channel between
web applications and users. Web applications use push notifications
to inform users about a set of events that users may find important,
and certain notifications may contain sensitive information which
is tailored to individual users. For instance, email users (e.g., Gmail)
may receive notification messages containing the sender’s name
and email title when they receive an email. In these scenarios, the
implementation of WPNs requires careful consideration, as compo-
sitionality issues can arise when other security mechanisms need
to be integrated into the WPN pipeline.

Session management. As discussed earlier, when a user logs
into a website, a session ID is assigned to the user. The session ID has
a limited lifespan and gets revoked when the user logs out from the
web application or expires after a certain duration. In either case, the
server must stop sending notifications to the user. However, if the
server does not verify the validity of the session for each endpoint, or
does not correctly invalidate sessions on the server side, it will send
notifications to users that are already logged out. In a correct design,
only the users with a valid session who have subscribed should re-
ceive the notifications. To test the correctness of an implementation,
we consider the following rules, which capture pitfalls that can occur
when implementing personalized WPNs :

(1) Having multiple active sessions should not impact correctly re-
ceiving notifications.

(2) Even after logging out and logging back in, the user should con-
tinue to receive notifications.

(3) The notifications should be received correctly on active sessions
when there are both active and inactive sessions.

4 EXPLOITING IMPLEMENTATION PITFALLS

As discussed in Section 3, developers have various options for imple-
menting push notifications, and we highlighted various flaws that
can occur during the integration and deployment process. In this

When Push Comes to Shove:
Empirical Analysis of Web Push Implementations in the Wild

section, we continue our empirical analysis and further explore the
security and privacy risks posed by this technology. To that end, we
first detail the threat model that will guide our analysis. Next, we
present two different attacks that target WPNs. Initially, we intro-
duce a novel history-sniffing attack, and then provide an in-depth
analysis of the security implications of CSRF in WPN deployments.

Threat model. For our empirical analysis, we consider two differ-
entattacker scenarios. First, we employ the web attacker threat model,
which is typical for studies exploring web technologies. Specifically,
we assume that the victim visits a website under the control of the
attacker, who is then able to execute JavaScript code in the user’s
browser. Nonetheless, several of the attacks explored in this work
could be executed at a larger scale through other attack vectors (e.g.,
ads). Additionally, in recent years the security community has in-
creasingly studied intimate partner violence and highlighted how
abusers exploit technology [20]. As such, due to the idiosyncrasies
of WPNs (which use specific browser instances as communication
endpoints) we also consider a malicious individual that can obtain
physical access to the victim’s browser when studying push notifi-
cations in conjunction with session management.

Subscription sniffing. History sniffing attacks, in which attack-
ers cross-check a list of target websites against the user’s browser
to (partially) infer the user’s browsing history, pose a severe privacy
threat as they can reveal a plethora of sensitive user information (e.g.,
age, gender, sexual orientation, medical issues, and political affilia-
tion). While websites cannot directly access the browsing history,
prior research has demonstrated a wide variety of techniques for
inferring visited websites via side-channel attacks [48] or abusing
certain browser features [26, 42].

Here we present subscription sniffing, a novel variant of history-
sniffing attacks that targets third-party push notification providers.
To illustrate the attack, Figure 2 outlines the information flow of a
push notification service when it is “outsourced” to a third-party
provider. In this example, the website uses an iFrame to load the
third-party page (2) and check whether the user is subscribed. This
information is saved into a cookie on the third-party domain. The
iFrame then checks the presence of the cookie (3) and sends back
the information using the postMessage method (@) . The first-party
then registers an event listener to receive the information and if
the user is not subscribed yet, it opens the third-party domain as a
pop-up to ask for the necessary permission (5)-(9).

In this method, each website has a unique domain for providing
the third-party notification service. A common mistake in using the
postMessage method is not restricting the target origin of the sent
messages. Specifically, as an iFrame may not be able to correctly
identify the including origin, the postMessage APIrequires asecond
parameter that specifies which origins should be allowed to receive
the sent message. The browser will then deliver the message only to
the correct destination. However, a value of “*” is allowed, mainly for
development, which allows any origin to receive the sent message.
If this is the case, an attacker can also use the same iFrame @ to
check whether the user has subscribed to notifications of a specific
website by listening to the sent messages @ . By finding the list of
websites that a user has subscribed to, the attacker can perform a
subscription-sniffing attack and infer sensitive user information.

ACSAC’23, December 4-8, 2023, Austin, Texas, USA

& Notification
'
Q (:) Website
© Provider owner
dashboard
Generate Request

subscription permission

PN TN

Browser @ sbdomain.provider.com/subscribe.html|
vendor

$
il
&)
§
< @ Store
8 | sub
9 X data
XX @

5
1
K @ example.com

Provider
2 > . z

@ sbdomain.provider.com/check.html

(7
.\(,(b«\

Popup
paquosqng

User browser

iFrame
paquosgns

/s 2@

Subscription
check

A\ 4

@ evil.com

Figure 2: Subscription-sniffing attack against third-party
WPN providers.

S
B
5\)‘0 6\-@\\)%

CSREF. Cross-Site Request Forgery [28] attacks remain a severe
threat that can manifests in different contexts of web app function-
ality [11, 13, 16, 27, 50]. Here we explore the implications of such an
attack in the context of push notifications. As discussed previously,
after obtaining the PushSubscription the website will send the
necessary information to the server. Since the request sent to the
server carries the user’s cookies, the server will be able to match it to
the corresponding user and store the subscription information. For
simplicity we assume that the web app does not employ any form
of CSRF protection [12]; nonetheless, prior work has demonstrated
methods for bypassing CSRF protections [50]. Once the user visits
a website controlled by the attacker, the attacker’s page can “force”
the victim’s browser into generating a request with the attacker’s
PushSubscription, which carries all the necessary cookies for the
server to consider this a valid request actually issued by the user.
This will result in the server storing the attacker’s PushSubscrip-
tion instead of the victim’s, and the web app sending all subsequent
notifications intended for the user to the attacker. It is important
to emphasize that this attack is completely “silent” and the victim
does not even need to grant the notification permission. In essence,
the server receives a seemingly valid PushSubscription from the
request and will store the attacker’s associated endpoint for sending
notifications. The result of the attack in the situation when the user
is already subscribed depends on the underlying web application.

ACSAC’23, December 4-8, 2023, Austin, Texas, USA

1111

1-100k 100k-200k 200k-300k 300k-400k 400k-500k
Rank

o
<]

e
)

% of websites
o
~

o
N

Figure 3: Percentage of sites requesting direct permission to
send WPNs.

The legitimate user subscription may get overwritten, especially in
the case when the attack is executed on the same browser where the
subscription was made from, or it may simply be added into a list.

5 EXPERIMENTS AND MEASUREMENTS

In this section, we present our large-scale measurement study on the
prevalence and state of WPNs in the wild. We also present a series of
case studies that highlight the pitfalls of deploying push notification
functionality and demonstrate the impact of our attacks.

5.1 Large-Scale Measurement

Collection methodology. To collect the data related to push noti-
fications, we instrumented Chromium to capture all calls to Service-
WorkerContainer,ServiceWorkerGlobalScope, ServiceWorker-
RegistrationPush,Notification, and PushManager APIs along-
side all events dispatched inside a service worker such as register,
install, sync, and fetch. The instrumentation was made at the
browser level by patching the chromium source code to log relevant
data during calls to the above APIs. Moreover, to enable the automatic
detection of websites requesting notification permission directly,
we also introduced a Chromium patch to automatically accept no-
tification requests after a short amount of time. This was achieved
by editing the flow used to trigger the permission popup. We use
dynamic and static approaches for detecting custom implementation
of push notifications. By analyzing API call logs, particularly by ex-
amining the occurrence of Notification.requestPermission()
or pushManager . subscribe () function calls, which are necessary
for obtaining user permission for notifications, we can dynamically
identify websites that invoke these functions to acquire notification
permission and send notifications. However, there are cases where
the dynamic approach cannot capture the APIs, particularly when
these APIsrequire user interaction to be invoked. For instance, a user
hasto visit the website’s settings and explicitly ask the website to send
them notifications. This action triggers the notifications permission
and invokes the APIs. Therefore, we also developed an approach to
statically analyze the service worker scripts and determine whether
a website uses the push APL Typically, websites have only one main
service worker script that may include multiple scripts. In our static
approach, we use the list of APIs to recursively download all scripts
and analyze them. We use a straightforward keyword-matching
technique on the source code of the service workers to identify rele-
vant APIs. To construct the list of keywords, we performed a smaller

Alberto Carboneri, Mohammad Ghasemisharif, Soroush Karami, and Jason Polakis

experiment using the dynamic approach until we obtained a list
of 500 websites using WPN, examined their service workers and
manually extracted relevant keywords from the source code to min-
imize the occurrence of false negatives to zero. The list of obtained
keywords contains common strings such as ‘Notificationclick’, ‘han-
dlePushEvent’, and ‘push’ events registration in ‘addEventListener’.

Data collection. We used Puppeteer [6] and the instrumented
browser to visit the top 500k Tranco websites and utilized the afore-
mentioned approaches to obtain information about the website’s
push notifications. For each website, we open a new browser instance
waiting for the page to load (we wait a maximum of 60 seconds or un-
tilno network requests occur for at least 500ms); after that we wait for
an additional 30 seconds to ensure that everything has been fetched
and loaded. To quantify the prevalence of third-party providers, and
the associated flaws, we took the top 40 providers (according to
builtWith [8]) and built a tool for determining whether a website
utilizes a particular provider. The tool loads the website, as aforemen-
tioned, and then detects the use of providers through custom-tailored
heuristics, such as by examining the DOM content for domains and
tags present in the scripts distributed by the providers or verifying
the existence of a specific service worker in a specific path which
is required in order for that provider to function.

Our findings are reported in Table 1. The table differentiates be-
tween websites detected by our dynamic, static, and third-party
detection approaches. We note that the total number of websites
reported is greater than the total as some websites were flagged by
more than one approach. In total, both our scripts successfully run
on 396,154 websites. We discovered 18,566 (4.68%) unique websites
that use push notifications. Among them, 3,117 (0.78%) were found
to request permission immediately upon a user visiting the page.
A breakdown of those websites, where each bucket is normalized
based on the number of sites analyzed within the given bucked so
as to avoid bias, is shown in Figure 3. While we find such invasive
practices slightly more often in popular websites, their prevalence
is comparable across all ranks. Next, we explore the prevalence of
custom implementations, as shown in Figure 4. Surprisingly, we find
that relying on third-party WPN service providers is common prac-
tice regardless of a website’s popularity as, overall, 11,178 (2.82%)
websites employed a third-party provider while 7,388 (1.86%) had
a custom implementation. As discussed in §3, the complexity of
implementing WPNs may incentivize websites to employ a service
provider. Despite the obvious benefits, however, any flaws in the
third-party’s implementation will result in widespread vulnerabil-
ities across the web ecosystem. Overall, our script failed to run on
103,846 websites mainly due to missing DNS records or anti-bot
features detecting and blocking our automated framework..

Manual validation. Next, we conduct a manual analysis on a subset
of the websites, to verify the accuracy of our heuristics. The dynamic
approach does not have any false positives (websites not using WPN
but being flagged as so), but it may have false negatives (websites us-
ing WPN but not being flagged). We note that even though the static
approach helps reduce false negatives, it may still fail to detect web-
sites with a heavily obfuscated service worker code. Both approaches
are unable to detect websites that install a service worker only after a
user interaction has occurred as both relies on API calls made during
or after the service worker installation. To verify our third-party
detection approach, we collected at most 10 websites per provider

When Push Comes to Shove:
Empirical Analysis of Web Push Implementations in the Wild

Custom implementation ez
Third-party implementation &==xx1

~

(&)

% of websites
n

o

1-100k 100k-200k 200k-300K 400k-500k

Rank

300k-400k

Figure 4: Custom and third-party implementation usage,
grouped by global rank.

Table 1: Breakdown of WPN detection per technique.

Technique Websites

Dynamic approach 3,117
Static approach 8,750
Third-party detection | 11,178

Table 2: False negatives in third-party provider detection.

Issue ‘ Websites
User action required 12
Cloudflare anti-bot detection | 3

Code obfuscation 1

from builtWith which we manually classified and checked to be
loading correctly. We note that for some providers we were unable to
find 10 different valid websites and for this reason the total number
of analyzed websites is lower. We also randomly selected 20 websites
from the Tranco top 500k where our system did not detect push noti-
fications. In total, we manually classified 343 websites and compared
our findings with the ones obtained from our system. For our third-
party detection approach we found 5 (1.4%) false positives, all due to
leftover code in the website, and 16 (4.7%) false negatives, which can
be attributed to factors such as code obfuscation, websites blocking
our automated framework, or situations where user interaction is
necessary. The number of websites affected per issue are reported
in Table 2. Overall, our system reported a 5.6% FPR and a 5.8% FNR.

5.2 Case Studies

To check a website in an automated manner, we should be able to
log in and properly evaluate the efficacy of the notification system.
However, we have opted for a manual process due to the various
challenges of automating the testing pipeline. Apart from the diffi-
culty of automating the account-creation and authentication process,
enabling WPNs may be hidden within an account’s settings. More
importantly, even if those challenges are overcome, actually trigger-
ing push notifications can require site-specific actions (e.g., another
account sending a message) or only occur periodically when trig-
gered by the server. As such, here we present a series of use cases
that detail vulnerabilities and flaws that we uncovered during our
empirical analysis, highlighting the challenging nature of deploying
WPNs and the threat posed by the threats we present in our work. A

ACSAC’23, December 4-8, 2023, Austin, Texas, USA

summary of the findings of our case study and vulnerable websites
and service providers is provided in Table 3. Note that in this table
the entry ‘Session Mismanagement’ includes informations about
both ‘Session termination’ and ‘Session management’ issues.

Session termination. As mentioned in Section 4, if websites do
not verify session validity, personalized notifications can be received
even when the user is logged out. During our empirical analysis
we manual inspected poshmark.com, a popular social commerce
marketplace for clothing and accessories (Ranked 1,703 on Tranco).
While Poshmark has incorporated WPNs into their authenticated
workflow and send account-specific notifications, they do not cor-
rectly handle session changes. Specifically, they continue to send
personalized notifications even after the user has logged out. This
canreveal sensitive information to other individuals that gain or have
access to that browser. We further discuss the conceptual disconnect
that exists between typical account-functionality and WPNs in §6.

Session Management. Upon comprehensive testing of Twitter’s
behavior, we discovered that there are certain scenarios where their
pushnotification service does not function as intended due to flaws in
integrating WPNs into their authentication workflow and correctly
handling session changes. First, if users log out and subsequently
log in again, they will no longer receive notifications. In fact, users
need to repeat their push subscription to be able to get notifications,
indicating that session terminations in Twitter lead to WPN push
subscription termination. Second, If a user logs in from two separate
machines that have the same OS (regardless of its version) and use
the same browser vendor (regardless of its version), Twitter will
send notifications only to the most recent browser that logged in.
To better illustrate this, suppose that a user has two valid sessions
on two devices: DeviceA running macOS v12 and using Chrome
v109, and DeviceB running macOS v13 and Chrome v114. The user
has also subscribed to Twitter notifications from both devices, and
DeviceA was the last to subscribe to Twitter. In that case, the user
will only receive notifications on DeviceA.

Upon further experimentation with Twitter’s notification system,
we deduced that it likely stores subscriptions in a custom table, along-
side a sessionID, browser vendor, and OS. When a user subscribes
to notifications, the system checks if the user’s OS and browser com-
bination already exists in the table. If it does not, a new record is
inserted. However, if the OS and browser combination matches an
existing record, the system updates the session and subscription
fields of that record with the new information. In other words, Twit-
ter infers the endpoint based on sessionID, OS and browser fields. As
aresult, if the user uses a similar OS and browser on another system,
Twitter will lose track of the previous subscription information and
just push the notifications to the latest.

A correct design must validate sessions before sending notifica-
tions, which would prevent sending them to endpoints with invalid
sessions. Additionally, Twitter does not update the corresponding
sessionIDs when users get a new one (e.g., logging out and logging
in). As a result, users are compelled to resubscribe to notifications af-
ter each login. Overall, the issues that we have uncovered in Twitter
highlight the true complexity of incorporating WPNs in authenti-
cated environments where session management needs to be incor-
porated into the life cycle of notification management. Moreover,
the presence of such issues on a site as popular as Twitter, is a good
indication that such flaws may also affect many other services.

ACSAC’23, December 4-8, 2023, Austin, Texas, USA

Table 3: Example of push notification vulnerabilities discov-
ered in various websites.

Flaws ‘ Service

Session Mismanagement | Twitter, Poshmark
Subscription Sniffing Webpushr, LetReach, Cleverpush, Pushalert, VWO
CSRF gama.ir

350

Generic iFrame inclusion ez
Cleverpush ===x1

300

250

€ 200
=
Q
O 150 -

100

50 -

200k-300k _300k-400K
Rank

Figure 5: Rank breakdown of websites affected by the iFrame
inclusion vulnerability and the Cleverpush flaw.

Subscription sniffing. LetReach [3] is a push notification provider
that uses the aforementioned iFrame method for subscribing users.
The iFrame uses the postMessage method to inform the first-party
website whether the user is subscribed for receiving notifications.
Since the iFrame should only be loaded by the original website, the
messages should only be sent to that specific origin. However, Le-
tReach incorrectly sets the targetOrigin of the postMessage to
“x”, thereby enabling any website to receive these messages. Conse-
quently, an adversary can exploit the absence of proper destination
validation and obtain the list of websites to which the user has sub-
scribed by including the iFrames into a website they are in control
of and registering an event listener for messages sent by the third-
party domain. This attack can also target a specific customer (i.e.,
website) since each website that uses this functionality has a custom
subdomain generated by the provider (Section 3).

Additionally, these messages contain a unique identifier for the
user’s subscription if the user has accepted receiving notifications
on the target website, which can potentially reveal additional infor-
mation about the victim to the attacker. Our in-depth analysis of the
JavaScript included in the iFrames revealed numerous endpoints
for managing the user’s subscription. There is also an unsubscribe
endpoint that accepts unique identifiers sent by the iFrame to the
original page as a parameter, potentially allowing an attacker to un-
subscribe users. However, at the time of writing, that endpoint does
not work correctly even for legitimate uses. Several other providers,
including Webpushr [9] (the third most commonly used according
to BuiltWith), have the same flaw in their implementation. However,
unlike LetReach, most providers only offer subscriptions through
a subdomain upon explicit request, resulting in potentially fewer
websites being vulnerable to this issue.

Cleverpush [2], another notification provider, is also vulnerable
to this issue and includes an iFrame for all websites, even when
HTTPS is directly supported on the customer’s domain. Moreover,

Alberto Carboneri, Mohammad Ghasemisharif, Soroush Karami, and Jason Polakis

the JavaScript code loaded within the iFrame exposes a postMes-
sage API that lacks the necessary origin checks. An attacker can
include an iFrame in their website and gain access to information
such as whether the user has visited and accepted notifications, the
internal subscription ID, a list of notifications the user has interacted
with, and even forcibly unsubscribe the user from push notifications.
Most importantly, the unsubscribing process is never revealed to
the target website, which will not prompt the user again for permis-
sion to send push notifications unless the browser data associated
with both the target and the iFrame origin is deleted. In total, we
identified 1,187 websites that could potentially be vulnerable to this
history-sniffing attack and we discovered 479 websites affected by
the vulnerability present in Cleverpush.

An analysis of third-party providers affected by this vulnerability,
whose results are shown in Figure 5, revealed that, while the generic
issue is almost equally distributed between websites’ ranks, Clev-
erpush is mostly used by high-ranking websites, leading to more
users being affected. All those websites are mainly categorized as
“General News”, “Blogs/Wiki”, “Entertainment”, and “Business”, and
more than 30 websites classified as “Finance/Banking”.

CSREF. During our manual analysis, we found that gama. ir does
not include protection against CSRF attacks on the subscription
endpoint. Gama is an Iranian website for teachers to share and pub-
lish educational content, including exam questions. When a user
subscribes to the push notifications of Gama, no protection against
CSRF is implemented. An attacker can deceive the victim into vis-
iting their website, where they can add their subscription to the
victim’s account and gain access to their notifications.

6 AUTHENTICATED WORKFLOW DESIGN

Conceptually, WPNs constitute a straightforward communication
mechanism between two endpoints, i.e., the web server and the user’s
browser. However, as discussed and demonstrated in the previous
sections, various flaws can occur during implementation, as well as
during the integration of third-party service providers. Our empirical
analysis revealed that the most complex aspect is correctly handling
WPNss in conjunction with session management. Web applications
use push notifications to inform users about a set of events that
users may find important or interesting, and some may contain sen-
sitive information tailored to the individual user. For instance, email
providers may push notification messages containing the sender’s
name and email title. In these scenarios, the implementation of WPNs
requires careful consideration. To that end, this section explores var-
ious strategies and possible approaches for designing a custom push
notification system for settings where authentications is required.
Prior research has shown that developers struggle with integrat-
ing additional mechanisms into their authentication workflows and
correctly handling session changes [21]. Similarly, incorporating
push notification functionality into a web app’s post-authentication
workflow introduces considerable complexity as it combines two
different communication abstractions: that of a user’s account and
that of a user’s browser. To put it differently, account-specific func-
tionality and data are not tied to a specific device and are available
to any browser running on any device once the authentication pro-
cess completes successfully (i.e., the user is able to log into their
account). On the other hand, push notification functionality is tied

When Push Comes to Shove:
Empirical Analysis of Web Push Implementations in the Wild

to the specific browser instance from which the user subscribed, and
is not available to any other browsers or devices from which the
user may log in. As such, the workflow of push notifications in a
post-authentication setting is significantly more complicated. To
that end, here we present a workflow for handling notifications for
authenticated users, and also provide additional implementation-
related details that will allow developers to sidestep deployment
pitfalls and correctly incorporate push notifications into their apps.

Figure 1 provides a detailed overview of the workflow for an
authenticated notification system. The server has to store the infor-
mation representing the relationship between the Push Subscription
and the user account which can be a table in the database. This en-
ables the server to find the recipient of the notification once an event
is triggered. It may appear straightforward to assume that we can
simply store this information by creating a table where each row of
the table stores the user_id and the PushSubscription. However, a
user can have multiple active sessions at the same time on the same
or even different devices. In this case, we may need to have multiple
rows for the same user_id to store different PushSubscriptions. Once
there is an event for this user, the server has to locate the information
for that specific user and send the notification to all of them.

While this approach may seem correct, it does not factor in a case
in which a user logs out from only one session or when only one
session expires while another sessions remain active. The discussed
design does not have any mechanism to consider such cases which
will result in sending notification messages to all sessions even when
they are inactive. An alternative approach is to store the session IDs,
which are unique identifiers assigned to each session, in addition
to the notification information. Once a push event is triggered, the
server will query the table and only sends the notifications to the
endpoints that have a valid session ID. However, including session
IDs adds more complexity to the process where the servers must
update the table every time the session ID is renewed. For example,
if a user logs in and out of her account from the same browser, the
session ID will change whereas the PushSubscription will remain
intact. Therefore, the server needs to know what specific row be-
longs to this specific browser and update the row by replacing the
previous session ID with the new one.

Figure 6 depicts the correct workflow for managing personal-
ized WPNs in the event of a logout or session expiration. In the top
section (1) — (7), the same user subscribes to the push service on
two different browsers. The notification server (2) sends back the
new endpoint that is generated for the website. When the website
receives this information, (6) it will send it back to its server along
with the cookies and a proper browser fingerprint. The server uti-
lizes the session ID cookies to find the user_id and then (7) stores
them in a database next to the PushSubscription information. In the
bottom section, the workflow demonstrates (8) the initial triggering
of an event. The server (9 locates the valid endpoints from
the database and @ @ sends the message to those endpoints
through the browser’s vendor servers. The endpoints, which are
managed by the browser vendor, will contact the browser and send
the notification to the user. Then @ the user logs out from the first

browser. The session invalidation must be correctly updated in

the database so that a @ future notification @ — (18 will only
be sent to the still logged-in browsers.

ACSAC’23, December 4-8, 2023, Austin, Texas, USA

Subscription Phase

. Browser @ a
Log-in .
e oo ‘https.//examp\e.com
n »
Subscription
K ¢ data, session

cookies,browser
@ SW.js 2
@U :

fingerprint
sw install

Subscription Subscription
request data, session
@ @ cookies, browser

Subscription fingerprint

data

Flow for Flow for

Browser Vendor browser 1 browser 2

Session Invalidation

Browser
. Log-out
> Session
invalidated

M % P
X
@12

19
Get user @

subscription data

g

©

@ User subscription

Notification data

delivery

-

Browser's vendor

© 6

@ 11) (18
-
Notification @ External

delive ificati i
v Notification sender notification trigger

Figure 6: Server stores the push subscription data in a table,
along with the cookie and a browser identifier. Once an event
is dispatched, this data is used to determine the endpoints
with valid sessions to which the notification should be sent.

We note that the workflow proposed here is a guideline for imple-
menting subscription management in multi-browser authenticated
environments, highlighting the nuances and pitfalls that can occur.
Designing such a system is not a straightforward task, and develop-
ers may need to adapt their design to better match the intricacies of
their web app architecture and information workflow.

7 DISCUSSION AND LIMITATIONS

In section we further discuss our research, outline the limitations
of our work and detail possible future directions.

Realistic crawling. Recent studies have studied the counter-
measures deployed by web services for mitigating bot traffic, and
explored strategies for automated crawlers to more realistically re-
semble actual user traffic [25, 49]. As such, while our measurements
rely on the processing of a large number of websites, in practice
certain websites may behave differently when being visited by our
tool. First, running Chromium in headless mode may affect code ex-
ecution and page rendering in certain websites, potentially causing
some websites being inadvertently excluded or overlooked. This also

ACSAC’23, December 4-8, 2023, Austin, Texas, USA

includes websites that detect and respond differently to automated
browsers. Furthermore, our approach sets a finite time limit for the
website to load, so as to reduce overhead in our large-scale measure-
ment study, which although sufficient for most websites, may not be
adequate for others (particularly slower websites). Since our system
only visits home pages on websites, it may overlook cases where
websites install service workers only on internal pages rather than
the home page. Additionally, our framework does not emulate any
user actions and thus if the tested features require user interaction,
our framework cannot capture its presence on those websites. Based
on our experimental observation and previous research [26], the
number of websites that require either visiting additional pages or
requires user action to install a service worker is relatively small, and
therefore, does not significantly affect our studies findings; nonethe-
less, we consider our numbers to be a lower bound. An interesting
future direction would be a measurement study that employs a more
realistic browsing environment and user interactions.

Post-authentication measurements. We note that websites
may require account creation for enabling push notifications, espe-
cially for personalized notifications. However, our system does not
automate account creation or login. While we found a large number
of websites that only allow subscribing to notifications after logging
in, we observed that in almost all of those cases the website installed
the required service worker on the landing page, thus enabling our
static approach detecting them. Additionally, our empirical analysis
also relies on extensive manual experiments. Nonetheless, future
work could leverage an automated account creation and authentica-
tion framework (e.g., [14, 17]) for conducting a more comprehensive
post-authentication analysis.

Automated vulnerability discovery. Our tool cannot automat-
ically assess whether websites suffer from some of the flaws that
we discovered manually (i.e., on Twitter and Poshmark). This is pri-
marily due to the multitude of distinct behaviors that would need
to be tested and the complexity involved in developing a system
that can automatically trigger a notification on an unknown website.
We also note that detecting websites that are vulnerable to CSRF
attacks on their subscription endpoint is outside the scope of this
work. Nonetheless, multiple vulnerability scanners already exist for
such tasks (e.g., ZAP [5], w3af [1]), and recent academic studies have
also proposed systems for detecting CSRF vulnerabilities [13, 27].

Ethics and disclosure. All of the experiments with web apps
and third-party service providers that required a user account, were
completed using test accounts. We did not interact, target, or affect
any actual users. Additionally, due to the significant implications of
our findings, we have disclosed them to all of the affected websites
and third-party providers via dedicated channels when present or
customer support, and are currently waiting for a response. Specifi-
cally, we disclosed the discovered subscription sniffing vulnerability
to Webpushr, LetReach, Cleverpush, Pushalert, and VWO and no-
tified Twitter, Poshmark, and gama.ir regarding the issues we found
on their respective websites. At the time of writing, only VWO and
Cleverpush have acknowledged the issues and have informed us that
they are actively working on a fix. Moreover, we note that the issue
that we uncovered in Twitter regarding the mishandling of session
changes was fixed prior to our disclosure; the second reported issue,
which allows for breaking the notification system by enabling it on

Alberto Carboneri, Mohammad Ghasemisharif, Soroush Karami, and Jason Polakis

two computers with the same OS and browser vendor, is still present
at the time of this writing.

8 RELATED WORK

Service Workers. Service workers are quite a novel functional-
ity in modern browsers, and while their security has been tested,
further research is required to fully understand the related issues.
Papadopoulos et al. [38] analyzed their usage for stealthy crypto-
mining on client-side applications. Franken et al. [19] revealed how
requests initiated by service workers are almost never checked and
blocked by browser privacy extensions when carrying third-party
cookies, possibly allowing tracing of the user even in such conditions.
An novel, persistent, MITM attack was proposed by Watanabe et
al. [46]. This attack abuses the fetch event listener in the context
of a rehosting website and can manipulate requests and responses
to such website. Squarcina et al. [43] analyzed their implications in
escalating XSS attacks and found an attack vector through the Cache
API which allow for performing a MITM attack.

Web push notifications. Research in this field, as previously
mentioned in this paper, is currently lacking. However, a few notable
mentions do exist. Lee et al. [31] analyzed the connection between
web push notifications and phishing attacks, and found multiple web-
sites abusing the notification icon by using the logo of a well-known
website such as WhatsApp or YouTube to increase the click rate.
Moreover they found how, at the time, Firefox desktop and mobile
in certain environments, and Samsung Internet browser in all cases,
didn’t show the origin of the notification, potentially allowing at-
tackers to mount an even more realistic phishing attack. Finally, they
found how third-party providers making use of subdomains to send
notifications make the problem worse by confusing the user. Unre-
lated to push notifications, they also showed how to exploit the offline
browsing feature in PWAs using a cache to infer the victim’s history
of visited PWAs. Loreti et al. [36] researched the privacy issues re-
lated to mobile push applications and found that an attacker, if able
to trigger a notification to a device, can successfully detect whether
such device is currently located on the same network. Finally, Sub-
ramani at al. [44] developed a crawler and instrumented Chromium
to analyze WPN notifications and discover malicious ad campaigns.
While their patching strategy is similar to the system we developed,
there are differences in the API calls collected. Moreover, their re-
search is focused on the content of sent notifications and their use for
malicious advertisement, while our work aims at identifying pitfalls
that occur during the implementation and deployment of push notifi-
cations and, thus, focuses more on the service workers’ source code.

Mobile push notifications. While the underlying technology
and implementation of push notifications in mobile platforms differ
significantly to those of web push notifications due to the inherent
differences between web app and mobile app capabilities, and we,
prior work has explored various aspects of Android push notifica-
tions. One of the first such security studies was by Li et al. [33],
who conducted a security analysis of popular mobile push messag-
ing services, under the assumption that the attacker was able to
install a malicious app on the user’s device. Liu et al. [35] explored
aggressive push notification practices, and proposed a system for
automatically exercising Android apps and detecting aggressive
push notification behaviors. Prior work by Hyun et al. [24] and Lee

When Push Comes to Shove:
Empirical Analysis of Web Push Implementations in the Wild

et al. [30] explored how botnets could leverage push notifications
for establishing stealthy C&C channels.

History sniffing. Many attacks on CSS properties have been pro-
posed during the years [15, 22, 23, 42, 47] which enabled attackers
to know the browser’s history of a visiting user. Felten and Schnei-
der [18] analyzed web timing attacks with the objective of compro-
mising user data, in particular their browsing history. By measuring
the time needed to access aresource the attacker could detect whether
it was previously cached. Side-channel attacks, as demonstrated by
Wou et al. [48] in the specific case of browser rendering, and service
workers, as shown by Karami et al. [26], are another vector which
an attacker may use to obtain information about users’ browsing
history. Finally, Lee et al. [32] demonstrated how AppCache, a novel
functionality of HTML5 could allow an attacker to detect the status
of a target URL and infer previous logins on such websites.

CSRF. CSRF vulnerabilities have been extensively investigated
by the security community and numerous prior studies have ex-
plored the threat that they pose [11, 13, 16, 27, 28, 50]. Semastin et
al. [41] analyzed existing measures and proposed a combined so-
lution, Barth et al. [12] proposed new techniques, while Zheng et
al. [50] analyzed methods to bypass existing protections. However,
detecting such flaws remains a complex task and is an active research
topic. Calzavara et al. [13] proposed an approach based on machine
learning for detecting CSRF vulnerabilities in a black-box scenario,
while Khodayari et al. [27] focused on client-side CSRF and released
a tool to test for its presence.

9 CONCLUSIONS

Web push notifications present a departure from the multitude of
web technologies of the past, as they obviate users’ ability to access
account functionality regardless of the device or browser being used.
Instead, push notification create a notification channel whose client-
side endpoint is attached to a specific browser instance. By deviating
from the de-facto user abstraction of an account to that of a browser,
pushnotifications create an incompatibility that significantly compli-
cates deployment and integration with other web app functionality
(e.g., session management). In this paper we presented an in-depth
empirical analysis of push notifications in the wild, and highlighted
a series of implementation pitfalls. We also demonstrated a series
of attacks, including a novel history-sniffing attack, that affect pop-
ular web services and push notification providers. To that end we
provided a series of guidelines for developers, including a detailed
workflow for correctly handling push notifications when users need
to authenticate and use multiple devices to access their account.
Overall, push notifications constitute a uniquely interesting web
technology that can expose users to significant threats, and should
be further scrutinized by the security community.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers and Shepherd for their help-
ful feedback. This project was supported by the National Science
Foundation (CNS-2211574, CNS-2143363). The views in this paper
are only those of the authors and may not reflect those of the US
Government or the NSF.

ACSAC’23, December 4-8, 2023, Austin, Texas, USA

REFERENCES

] 2013. w3af. http://w3af.org/.

] 2023. Cleverpush. https://cleverpush.com/

] 2023. LetReach. https://www.letreach.com/

[4] 2023. Mozilla autopush. https://autopush.readthedocs.io/

] 2023. OWASP ZAP. https://www.zaproxy.org/.

] 2023. Puppeteer. https://pptr.dev/

] 2023. Push APL https://www.w3.org/TR/push-api/

] 2023. Push Notifications Usage Distribution in the Top 1 Million Sites.
https://trends.builtwith.com/widgets/push-notifications
[9] 2023. Webpushr. https://www.webpushr.com/

[10] Mir Masood Ali, Binoy Chitale, Mohammad Ghasemisharif, Chris Kanich, Nick
Nikiforakis, and Jason Polakis. 2023. Navigating Murky Waters: Automated
Browser Feature Testing for Uncovering Tracking Vectors.. In NDSS.

[11] Elham Arshad, Michele Benolli, and Bruno Crispo. 2022. Practical attacks on
Login CSRF in OAuth. Computers & Security 121 (2022), 102859.

[12] Adam Barth, Collin Jackson, and John C Mitchell. 2008. Robust defenses for
cross-site request forgery. In Proceedings of the 15th ACM conference on Computer
and communications security. 75-88.

[13] Stefano Calzavara, Mauro Conti, Riccardo Focardi, Alvise Rabitti, and Gabriele

Tolomei. 2019. Mitch: A machine learning approach to the black-box detection

of CSRF vulnerabilities. In 2019 IEEE European Symposium on Security and Privacy

(EuroS&P). IEEE, 528-543.

Stefano Calzavara, Hugo Jonker, Benjamin Krumnow, and Alvise Rabitti. 2021.

Measuring web session security at scale. Computers & Security 111 (2021), 102472.

Andrew Clover. 2002. CSS visited pages disclosure. https://lists.w3.org/Archives/

Public/www-style/2002Feb/0039.html

Luca Compagna, Hugo Jonker, Johannes Krochewski, Benjamin Krumnow, and

Merve Sahin. 2021. A preliminary study on the adoption and effectiveness of

SameSite cookies as a CSRF defence. In 2021 IEEE European Symposium on Security

and Privacy Workshops (EuroS&PW). IEEE, 49-59.

Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis. 2020. The cookie hunter:

Automated black-box auditing for web authentication and authorization flaws. In

Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications

Security. 1953-1970.

[18] E. W. Felten and M. A. Schneider. 2000. Timing attacks on web privacy.

Proceedings of the ACM Conference on Computer and Communications Security.

https://doi.org/10.1145/352600.352606

Gertjan Franken, Tom Van Goethem, and Wouter Joosen. 2018. Who left open the

cookie jar? A comprehensive evaluation of third-party cookie policies. Proceedings

of the 27th USENIX Security Symposium.

Diana Freed, Jackeline Palmer, Diana Minchala, Karen Levy, Thomas Ristenpart,

and Nicola Dell. 2018. “A Stalker’s Paradise” How Intimate Partner Abusers

Exploit Technology. In Proceedings of the 2018 CHI conference on human factors

in computing systems. 1-13.

Mohammad Ghasemisharif, Chris Kanich, and Jason Polakis. 2022. Towards au-

tomated auditing for account and session management flaws in single sign-on de-

ployments. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 1774-1790.

Mario Heiderich, Marcus Niemietz, Felix Schuster, Thorsten Holz, and Jorg

Schwenk. 2012. Scriptless attacks - Stealing the pie without touching the sill.

Proceedings of the ACM Conference on Computer and Communications Security.

https://doi.org/10.1145/2382196.2382276

[23] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and J. Schwenk. 2014. Scriptless

attacks: Stealing more pie without touching the sill. Journal of Computer Security

22 (2014). Issue 4. https://doi.org/10.3233/JCS-130494

Sangwon Hyun, Junsung Cho, Geumhwan Cho, and Hyoungshick Kim. 2018.

Design and analysis of push notification-based malware on android. Security and

Communication Networks 2018 (2018).

Jordan Jueckstock, Shaown Sarker, Peter Snyder, Aidan Beggs, Panagiotis

Papadopoulos, Matteo Varvello, Ben Livshits, and Alexandros Kapravelos. 2021.

Towards Realistic and Reproducible Web Crawl Measurements. In Proceedings

of The Web Conference (WWW).

Soroush Karami, Panagiotis Ilia, and Jason Polakis. 2021. Awakening the Web’s

Sleeper Agents: Misusing Service Workers for Privacy Leakage. In NDSS.

[27] Soheil Khodayari and Giancarlo Pellegrino. 2021. JAW: Studying client-side
CSREF with hybrid property graphs and declarative traversals. In USENIX Security
Symposium.

[28] KirstenS. 2021. Cross Site Request Forgery (CSRF) | OWASP Foundation.

[29] Brian Kondracki, Assel Aliyeva, Manuel Egele, Jason Polakis, and Nick Nikiforakis.
2020. Meddling middlemen: Empirical analysis of the risks of data-saving mobile
browsers. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 810-824.

[30] Hayoung Lee, Taeho Kang, Sangho Lee, Jong Kim, and Yoonho Kim. 2014. Punobot:

Mobile botnet using push notification service in android. In Information Security

Applications: 14th International Workshop, WISA 2013, Jeju Island, Korea, August

19-21, 2013, Revised Selected Papers 14. Springer, 124-137.

Jiyeon Lee, Hayeon Kim, Junghwan Park, Insik Shin, and Sooel Son. 2018. Pride

and prejudice in progressive web apps: Abusing native app-like features in Web

[14

[15

[16

(17

[19

IS
=

[21

[22

[24

™~
2

™
S

[31

ACSAC’23, December 4-8, 2023, Austin, Texas, USA

[32]

[33

[34]

)
S

[36]

[37

[38

[39]

[40]

[41]

applications. Proceedings of the ACM Conference on Computer and Communications
Security. https://doi.org/10.1145/3243734.3243867

Sangho Lee, Hyungsub Kim, and Jong Kim. 2015. Identifying Cross-origin Resource
Status Using Application Cache. https://doi.org/10.14722/ndss.2015.23027
Tongxin Li, Xiaoyong Zhou, Luyi Xing, Yeonjoon Lee, Muhammad Naveed, Xi-
aoFeng Wang, and Xinhui Han. 2014. Mayhem in the push clouds: Understanding
and mitigating security hazards in mobile push-messaging services. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security.
978-989.

Xu Lin, Panagiotis Ilia, and Jason Polakis. 2020. Fill in the blanks: Empirical
analysis of the privacy threats of browser form autofill. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security. 507-519.
Tianming Liu, Haoyu Wang, Li Li, Guangdong Bai, Yao Guo, and Guoai Xu. 2019.
Dapanda: Detecting aggressive push notifications in android apps. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 66-78.

Pierpaolo Loreti, Lorenzo Bracciale, and Alberto Caponi. 2018. Push attack:
Binding virtual and real identities using mobile push notifications. Future Internet
10 (2018). Issue 2. https://doi.org/10.3390/£i10020013

Francesco Marcantoni, Michalis Diamantaris, Sotiris loannidis, and Jason Polakis.
2019. A large-scale study on the risks of the html5 webapi for mobile sensor-based
attacks. In The World Wide Web Conference. 3063-3071.

Panagiotis Papadopoulos, Panagiotis Ilia, Michalis Polychronakis, Evangelos P.
Markatos, Sotiris Ioannidis, and Giorgos Vasiliadis. 2019. Master of Web
Puppets: Abusing Web Browsers for Persistent and Stealthy Computation.
https://doi.org/10.14722/ndss.2019.23070

pushcrew. 2016. The State of Web Push Notifications. https://gallery.mailchimp.
com/fccee8d27b3a55c46b81ce8ae/files/The_State_of Web_Push_Notifications_
2016.pdf.

PushEngage. 2021. Email vs Push Notifications: Statistics & Expert Strategies.
https://www.pushengage.com/email-vs-push-notifications- statistics.

Emil Semastin, Sami Azam, Bharanidharan Shanmugam, Krishnan Kannoorpatti,
Mirjam Jonokman, Ganthan Narayana Samy, and Sundresan Perumal. 2018.

Alberto Carboneri, Mohammad Ghasemisharif, Soroush Karami, and Jason Polakis

[42

[43

[45

[46

[47

(48

[50

]

Preventive measures for cross site request forgery attacks on Web-based
Applications. International Journal of Engineering and Technology(UAE) 7 (2018).
Issue 4. https://doi.org/10.14419/ijet.v7i4.15.21434

Michael Smith, Craig Disselkoen, Shravan Narayan, Fraser Brown, and
Deian Stefan. 2018. Browser history re:visited. In 12th USENIX Workshop
on Offensive Technologies (WOOT 18). USENIX Association, Baltimore, MD.
https://www.usenix.org/conference/woot18/presentation/smith

Marco Squarcina, Stefano Calzavara, and Matteo Maffei. 2021. The Remote on
the Local: Exacerbating Web Attacks Via Service Workers Caches. Proceedings
- 2021 IEEE Symposium on Security and Privacy Workshops, SPW 2021, 432-443.
https://doi.org/10.1109/SPW53761.2021.00062

Karthika Subramani, Xingzi Yuan, Omid Setayeshfar, Phani Vadrevu, Kyu Hyung
Lee, and Roberto Perdisci. 2020. When Push Comes to Ads: Measuring the Rise
of (Malicious) Push Advertising. Proceedings of the ACM SIGCOMM Internet
Measurement Conference, IMC. https://doi.org/10.1145/3419394.3423631

M Thomson and P Beverloo. 2017. Voluntary Application Server Identification
for Web Push. IETF Tools (2017).

Takuya Watanabe, Eitaro Shioji, Mitsuaki Akiyama, and Tatsuya Mori. 2020.
Melting Pot of Origins: Compromising the Intermediary Web Services that Rehost
Websites. https://doi.org/10.14722/ndss.2020.24140

Gilbert Wondracek, Thorsten Holz, Engin Kirda, and Christopher Kruegel. 2010.
A practical attack to de-anonymize social network users. Proceedings - IEEE
Symposium on Security and Privacy. https://doi.org/10.1109/SP.2010.21

Shujiang Wu, Jianjia Yu, Min Yang, and Yinzhi Cao. 2022. Rendering Contention
Channel Made Practical in Web Browsers. In 31st USENIX Security Symposium
(USENIX Security 22). 3183-3199.

David Zeber, Sarah Bird, Camila Oliveira, Walter Rudametkin, Ilana Segall, Fredrik
Wollsén, and Martin Lopatka. 2020. The representativeness of automated web
crawls as a surrogate for human browsing. In Proceedings of The Web Conference
2020.167-178.

Xiaofeng Zheng, Jian Jiang, Jinjin Liang, Haixin Duan, Shuo Chen, Tao Wan, and
Nicholas Weaver. 2015. Cookies Lack Integrity: Real-World Implications. In 24th
USENIX Security Symposium (USENIX Security 15).

	Abstract
	1 Introduction
	2 Background
	3 Deployment & Integration Pitfalls
	3.1 Integrating Third-Party Push Providers
	3.2 Implementing Personalized WPNs

	4 Exploiting Implementation Pitfalls
	5 Experiments and measurements
	5.1 Large-Scale Measurement
	5.2 Case Studies

	6 Authenticated Workflow Design
	7 Discussion and Limitations
	8 Related Work
	9 Conclusions
	References

