Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

ScienceDirect

IFAC PapersOnLine 55-25 (2022) 55-60

Facial Input Decompositions for Robust
Peak Estimation under Polyhedral

Uncertainty
Jared Miller * Mario Sznaier *

* ECE Department, Northeastern University, Boston, MA 02115.
(Emails: miller.jare@northeastern.edu, msznaier@coe.neu.edu,).

Abstract: This work bounds extreme values of state functions for a class of input-affine
continuous-time systems that are affected by polyhedral-bounded uncertainty. Instances of
these systems may arise in data-driven peak estimation, in which the state function must be
bounded for all systems that are consistent with a set of state-derivative data records corrupted
under L-infinity bounded noise. Existing occupation measure-based methods form a convergent
sequence of outer approximations to the true peak value, given an initial set, by solving a
hierarchy of semidefinite programs in increasing size. These techniques scale combinatorially
in the number of state variables and uncertain parameters. We present tractable algorithms
for peak estimation that scale linearly in the number of faces of the uncertainty-bounding
polytope rather than combinatorially in the number of uncertain parameters by leveraging
convex duality and a theorem of alternatives (facial decomposition). The sequence of decomposed
semidefinite programs will converge to the true peak value under mild assumptions (convergence

and smoothness of dynamics).
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1. INTRODUCTION

Robust peak estimation aims to bound all possible values
of a function p(z(t)) of the state x of an uncertain
dynamical system along the trajectories that start from
an initial set Xo C X C R™. This problem with admissible
uncertainty processes w(t) remaining in a set W in times
[0, T] may be expressed as,
P = ma z(t | wo, w(t 1
t6[07T]7woeXXo,w(t)p( (t] 20, w(t))) 1)
i(t) = f(t2(t), w(t)), w(t) €W VEe [0,T]
This paper considers a continuous-time input-affine dy-
namical system of the form:

(1) = f(t,a(t),w(t) = folt:2)+ Xy welt) fe(t, 2). (2)

The uncertainty set W is restricted to a compact non-
empty polytope described by,

W ={w| Aw < b} AcR™E peR™.  (3)

The uncertainty set dimension L and number of affine
constraints m are each assumed to be finite.

The peak estimation problem in (1) is a particular instance
of an optimal control problem with zero running cost
and a free terminal time. Infinite-dimensional Linear Pro-
grams (LPs) in occupation measures were developed for
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optimal control in (Lewis and Vinter, 1980). These infinite-
dimensional programs were truncated into a converging
sequence of finite-dimensional Linear Matrix Inequalities
in increasing size through the moment-Sum of Squares
(SOS) hierarchy in (Henrion et al., 2008).

Infinite-dimensional LPs in measures for peak estimation
were formulated in (Cho and Stockbridge, 2002) and were
solved through a gridded discretization of the infinite-
dimensional LP and through Markov Chain Martingale
techniques. The work in (Fantuzzi and Goluskin, 2020)
applied the converging moment-SOS hierarchy to the dual
peak estimation problem in terms of a continuous auxiliary
function v(¢, ). Peak estimation was extended to systems
with dynamical uncertainty in (Miller et al., 2021), which
includes the class of systems considered in Eq. (2). Infinite-
dimensional LPs have also been applied to perform reach-
able set approximation (Henrion and Korda, 2013).

This paper is a sequel to (Miller et al., 2021), which formu-
lates a peak estimation program for general uncertainties
w(t) € W possibly including switching structure (vertex
decomposition of W). The approach in (Miller et al., 2021)
yields a convex optimization problem for polyhedral W,
but its computational complexity scales in a combinatorial
manner as L increases. To address this issue, this paper
uses a facial decomposition of the polyhedral W in (3)
with respect to input-affine dynamics (2) to eliminate the
variables w and generate tractable Semidefinite Programs
(SDPs) for peak estimation. The facial decomposition of
W arises from a theorem of alternatives in robust opti-
mization (Ben-Tal et al., 2015) and convex duality (Boyd
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et al., 2004). Specific cases of facial decompositions when
W is a unit box were discussed in (Majumdar et al., 2014;
Korda et al., 2015); this paper allows for general compact
and convex polytopes W to be considered.

Letting deg(f) be the degree of the polynomial dynamics
function f(t,x,w), the following table lists the size of the
largest Positive Semidefinite (PSD) (Gram) Matrix for
a peak estimation problem under polyhedral uncertainty
with parameters d = 4, L = 10, n = 2, deg(f) = 3 (Lie
constraint to be observed in Section 6) in the degree-d SOS
tightenings of the robust peak estimation programs.

Table 1. Size of largest Lie constraint Gram Matrix

Miller et al. (2021) (" HiHideeln/2I=1) — g568

This paper (1+”+d+ma’;ﬂ§eg(m/21_l) =56

Imposing that a symmetric matrix of size 8568 is PSD is
intractable in numerical solvers such as Mosek and Sedumi.
The polytope W has 7534 vertices and 33 faces. A vertex
decomposition would require 7534 PSD constraints of size
56, while the equivalent facial decomposition imposes 33+
1 = 34 PSD constraints of size 56.

Polytopic uncertainty sets in (3) may arise from data-
driven settings, in which a noisy set of state-derivative
observations are collected. The uncertainty terms w(t)
may represent either external inputs or unknown pa-
rameters of the uncertain dynamical system. Data D =
{(th, z, y) yne, are acquired where y(ty) = @(tx) + M
with respect to dynamics (2) for Lo, bounded error terms
ni. These errors 1y are intended to model the approxima-
tion error when (t) is computed numerically using finite
differences.

The contributions of this paper are,

e Application of a theorem of alternatives to simplify a
Lie constraint for continuous-time systems

e Extending facial input decompositions to general
polytopes W

e Reduction in computational complexity of SDPs

e Presentation and demonstration of convex data-
driven peak estimation programs

This paper is organized as follows: Section 2 reviews pre-
liminaries including notation, peak estimation, and the
data-driven uncertainty formalism. Section 3 splits up
the Lie derivative constraint through a facial decompo-
sition for arbitrary polytopic sets W using a Theorem of
Alternatives. The decomposed peak estimation program
for polytopic time-varying uncertainty is formulated in
Section 4. The data-driven framework and its polytopic
description of W is covered in Section 5. Examples of
polytopic-decomposed peak estimation problems in the
context of data-driven system analysis are presented in
Section 6. Section 7 presents some conclusions and briefly
discusses future work. An extended version of this paper
(including applications to reachable set estimation, further
examples, and proofs of function continuity) is available at
https://arxiv.org/abs/2112.14838.

2. PRELIMINARIES
2.1 Notation

The set of real numbers is R, and the n-dimensional
Euclidean space is R™. Two vectors x,y € R™ have the
relation © > y if each element satisfies x; > y; for all
i = 1,...,n. The inner product between two vectors in
r,yeR"isz-y =2ty =3, z;y;. A matrix Q € R"*" is
PSD (Q = 0) if the associated quadratic form satisfies
Ve € R : z7Qx > 0. The set of polynomials with
real coefficients in indeterminate values x is Rlz]. The
degree of a polynomial p € R[z] is deg(p). If p is a vector
of polynomials such that p; € Rlz] Vi = 1,...,n, then
deg(p) = max; deg(p;). The set of polynomials in degree
at most d is R[z]<q4.

The set of continuous functions over a space X is C(X).
Its subcone of nonnegative continuous functions over X
is C1(X) C C(X). The set of continuous functions with
continuous first derivatives is C1(X) C C(X).

2.2 Sum-of-Squares Hierarchy

A polynomial p(r) € Rz] is SOS if it may be (non-
uniquely) decomposed into the sum p(z) = >, ¢;(z)?* for
a finite number of polynomial terms ¢;(x) € R[z] Vi =
1,...,N. The cone of SOS polynomials is written as X[x],
and this cone is a subcone of the set of nonnegative
polynomials. For every p € X[z], there exists a @ > 0 and
a polynomial vector m(z) such that p(x) = m(z)TQm(x).
The ratio of the volume between SOS and nonnegative
polynomials for fixed degree d approaches zero as n — oo
(Blekherman, 2006).

A basic semiagebraic set is a set formed by the locus of
a finite number of bounded degree inequality constraints,
such as K = {z | g;(x) > 0Vi = 1,...,N.}. The set K
satisfies the Archimedean condition if there exists a finite
R and SOS polynomials {o;(x)} X<, such that,

R? — [z} = oo(z) + 1y oilw)gi(x).  (4)
Every compact basic semialgebraic set K may be made
Archimedean by appending the redundant ball constraint
R% — ||z]|2 > 0 to the description of K.

The constrained optimization problem of P* = min ¢k c(x)
may be expressed through a nonnegativity constraint as,

P*=max v, c¢(z)—~v>0 Ve e K (5a)

YER
M. Putinar introduced an algebraic certificate (Puti-
nar Positivestellensatz) that is a necessary and sufficient
condition for a function p(xz) to be positive over the
Archimedean basic semialgebraic set K (Putinar, 1993),

p(a) = oo(x) + X0, oi(z)gi (@) ©)
o(z) € X[z] oi(x) € X[z] :i=0,...,N,.

The degree-d SOS tightening of problem (5a) uses a
bounded-degree Putinar Psatz in place of the nonnega-
tivity constraint (5a),

dy = sup v (Ta)
o(x) =y = oo(x) + iy 0s(2)gi(x)  (Tb)
oi(x) € X[x]aa Yi=0,...,N, (7c)
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Problem (7) is a Semidefinite Program (SDP) in terms
of elements of the finite-dimensional Gram matrices
Qo ... Qn, describing the Putinar multipliers oy ...on,.
The objective values between programs (5a) and (7) are
related by d} < P*, and the chain of lower bounds obeys
dy <djy, ., <dj, ,...as the degree of the SOS tightening
increases (Lasserre, 2009). When K is Archimedean, the
objective value d; will converge to P* as the relaxation
degree d approaches co. The SOS (moment-SOS) hierarchy
is the process of forming SDPs in increasing degree by
replacing polynomial nonnegativity constraints by SOS
constraints. The size of a Gram matrix in n variables
and at degree d is N = (";d) ~ n?. The per-iteration
complexity of an Interior Point Method for solving an SDP
up to e-accuracy with an N-dimensional SDP matrix and
M affine constraints is O(N3M + N2M?2 + M3) (Alizadeh,
1995). This runtime is polynomial in n for fixed d, and is
combinatorial as d increases in the SOS hierarchy.

2.3 Peak Estimation and Uncertainty

In this paper, we make the following assumptions:

A1l The time horizon T is finite.

A2 The state z € X C R™ and initial condition zq €
Xp C X lie in compact sets.

A3 The dictionary functions fo(t,2) and f,(t,x) for all
¢ =1,...,L are each assumed to be Lipschitz.

A4 The uncertainty set W is a compact polytope with a
non-empty interior.

A5 At least one optimal trajectory with P* = p(z(t* |
xf, w*(t))) satisfies t* € [0,T], z§ € Xo, and z(t’ |
x§) € X, w*(t') € W for all ¢/ € [0,¢*].

Remark 1. The combination of Al and A2 imply that

system (2) does not have finite escape time. Further, if

the function p(z) is continuous, this assumption implies

that P* is bounded above

Figure 1 illustrates an example of peak estimation under
uncertainty. The system dynamics are a modification of
the Flow system from (Prajna and Jadbabaie, 2004) with
a new time-varying uncertainty term w(t) € [—0.5,0.5],

@(t) = [z2(t); —a1(t) — 22(t) + (L +w(t))ai(t)/3]. (8)
Sample trajectories in Figure 1 (cyan curves) start within
the initial set Xo = {z | (z1 — 1.5)% + 22 < 0.4?} (black
circle) and follow Flow dynamics for a time horizon of
T = 5. It is desired to lower-bound the minimum value of
the vertical coordinate xs.

Fig. 1. Plot of Uncertain Flow system (8) trajectories
The Lie derivative of a test function v(t,z) € C*([0,T] x
X) along dynamics f(¢t,x,w) is,

Lyv(t,z) = Op(t, ) + f(t, 2, w) - Veu(t, ). (9)

The peak estimation LP in terms of an auxiliary function
v(t,x) € CH([0,T] x X) and a parameter v € R for a time-
varying disturbance w(t) € W is (Miller et al., 2021)

d* = min (10a)
v(t,x),y

v > (0, z) Vx € Xo (10b)

Lio(t,z) <0 V(t,z,w)€[0,T)]x X xW (10c)

v(t,x) > plx) Y(t,z)e€[0,T] x X (10d)

The auxiliary function v(¢, x) must decrease along trajec-
tories generated by all possible admissible disturbance pro-
cesses w(t) (Fantuzzi and Goluskin, 2020). The objectives
P* = d* between programs (1) and (10) are equal when
[0,T] x X x W is compact, p(z) is bounded below, and
f(t, z,w) is Lipschitz (Lewis and Vinter, 1980).

The infinite-dimensional LP in (10) may be approximated
through the moment-SOS hierarchy as discussed in Section
2.2. When the set X satisfies the Archimedean property,
the sequence of SOS-tightenings dj > dj,, > ... will
converge as limg_,o d; = P*. The order-4 moment-SOS
peak estimate to program (10) yields a bound zy(t) >
—0.7862 along trajectories starting from Xy for time t €
[0, 5], as shown in Figure 1 by the red line.

3. DECOMPOSED LIE CONSTRAINT

The decomposable expression of interest for polytopic un-
certainty of the form (3), is the Lie derivative constraint in
(10c). An auxiliary function v(t,z) € C1([0,T] x X) must
be non-increasing along trajectories of the disturbance-
affine dynamical system f. The Lie derivative in (9) may
be expanded into,

Lov(t,x) = Lyv(t, o) + g wefelt, ) - Voot z), (11)
and the Lie derivative constraint in (10c) is,

Lsv(t,xz) <0 V(t,z,w) € [0,T] x X x W. (12)
Convex duality may be used to decompose Equation
(11) from a nonnegativity constraint over (¢,z,w) into
a constraint that no longer depends on w (reducing the
maximum size of the Gram matrices in the SOS programs).
This theory is based on the robust optimization work of
(Ben-Tal et al., 2015), and work applying duality to control
constraints includes (Cheng et al., 2015; Dai and Sznaier,
2018).

If the Lie constraint (11) holds, then there does not exist
a point (t,z,w) such that L . .,)v(t, ) takes on positive
values. The following program is therefore infeasible, where
w lies in the polytope W = {w | Aw < b} from (3):

find (¢, 2,w) € [0,T] x X x RF (13a)
Lv(t,z) >0 (13b)
—Aw > —b (13c)

This program may be decomposed through convex alterna-
tives. There is a single strict inequality is Eq. (13b) with
Lsv(t,xz) > 0, and each linear constraint — ), Agjwy >
—b; in (13c) is a non-strict inequality. Define nonnegative
(possibly discontinuous) dual variables (;(t,x) for each
linear constraint j = 1,...,m in (13c¢). A Lagrangian
Z(w; ¢, t,x) for problem (13) with a given auxiliary func-
tion v(t, ) is:
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L =Lt x)+ ()T (b — Aw) (14a)
= Lyo(t,x) +b7¢(L, x) (14b)

+ 0w (fo- Vovltia) = T A (ko)

The dual function g({,t,z;v) = sup,epe -Z(w; ¢, t, ) of
this Lagrangian takes on values,
{Lfov FOTC YL fy Vou(te) = YT Al

15
o0 else (15)

Problem (13) is infeasible if the dual function g(¢,¢,x) is
nonpositive for every (¢,x) by the proof in Section 5.8 of
(Boyd et al., 2004) The dual problem of finding a ((¢, x)
that infimizes £ (w;(, ¢, x) is,

find ¢; >0 vj  (16a)
Liv+b"¢(t,z) <0 (16b)
Z;nzl Aj@Cj (t7 JJ) = fé(tv l‘) : va(ta .I‘) vl (160)

The nonnegative multiplier functions ¢;(¢,z) are constant
in the input wy for each £ = 1,..., L. The pair of programs
(13) and (16) are strong alternatives because the function
Lyvu(t,z) is affine (convex) in w, the set W is nonempty
(feasible point w € W), and the constraints in Aw < b
are convex in w. Feasibility of (11) and (16) are therefore
equivalent for a given v(¢,x), and (16) no longer involves
w. The multipliers (; (¢, ) may be chosen to be continuous
when [0, 7] x X x W is compact (¢;(t,z) € C([0,T] x X))
as proven in Appendix A of the Arxiv paper

4. POLYHEDRAL UNCERTAINTY PEAK PROBLEM

This section will present peak estimation programs where
the Lie constraint (10c) is decomposed into (16).

4.1 Polytopic Decomposition (Function Program,)

The polytopic-decomposed peak program only changes the
Lie derivative constraint (10c), forming the program,

dr = rvnei]gfy (17a)

v > v(0,x) Vo € Xo (17Db)
Lt ) +b¢(t,z) <0 Y(t,z) € [0,T] x X

(17¢)

(AT)C(t,x) = fo-Vpu(t,x) YL=1,...,L (17d)
v(t,z) > p(x) V(t,z) € [0,T] x X

(17e)

v(t,x) € CY([0,T] x X) (17f)

Gi(t,x) € CL([0,T] x X) Vi=1,...,m (17g)
The slacks (;(t,z) for j = 1,...,m are concatenated into
the vector of nonnegative functions ((t, ). The expression
(AT)¢(t,z) may be read as > e Ajeg(t, x) for each
j=1,...,L.
Theorem 1. The objectives d* between programs (10) and
(17) are equal when A1-5 hold.

Proof. Tightness is assured by application of the Theo-
rem of Alternatives in (16). The Lie constraint (10c) is
replaced by constraints (17¢)-(17d). The functions ¢ may
be restricted to be continuous as per Appendix A of the
Arxiv version (Miller and Sznaier, 2021b).

Theorem 2. The objectives from (17) and (1) are equal
when assumptions A1-5 are satisfied.

Proof. Problems (1) and (10) have equal objectives under
assumptions A1-A5 by Theorem 2.1 of (Lewis and Vinter,
1980). It is therefore proven that P* = d* from problems
(17) and (1) by application of Theorem 1.

4.2 Polytopic Decomposition (SOS Program,)

Problem (17) may be approximated through SOS pro-
gramming. Assume that the functions {f/}_, and p(x)
are each polynomial, the time horizon T is finite, and that
X, Xy are Archimedean basic semialgebraic sets with the
following descriptions,

Xo={z|g)(x) Vk=1,...,N2}
X ={z|gr(x) VE=1,...,N.}.

(18)
(19)

The shorthand notations Vj and V¢ may be expanded into
Vi=1,...,mand ¥/ =1,..., L in the following program.
In addition, the expression c(z) € X[X]<2q will denote
that the degree < 2d polynomial ¢(z) has an appropriately
degree < 2d Putinar certificate of nonnegativity (6) over
the Archimedian domain X in (19). Define the dynamics
degree d’' as d' = max,[deg(f¢)/2] + d — 1. The degree-d
SOS tightening of program (17) forms the SDP,

d; = inf (20a

~ER
v — ’U(O,.’L‘) S Z[Xo]ggd
— Lyv(t,z) —b7¢(t,z) € 2[[0,T] x X]<2ar (20c
(

)

(20Db)

)

v(t,z) — p(x) € Z[[0,T] x X]<aq 20d)
)

)

)

VO (AT C(t x) = fo(t,z) - Veo(t, ) (20e
v(t,z) € R[t, z]<2q (20f
V] : Cj(t) S EHO,T] X X]§2d’ (20g
Constraints (20b)-(20e) are linear equality constraints in-
volving coefficient vectors of v, ( and elements of the Gram
matrices of each multiplier ¢ in the Putinar expressions
(6). The degree-d SOS tightening of programs (10) and
(17) each involve a polynomial auxiliary function v(¢, z) of
degree 2d.

Theorem 3. The objective of (20) will approach (17) as
the degree increases with limg.od) = d* when Xj is
nonempty, assuming that [0,7] x X x W is Archimedean.

Proof. The proof of this theorem using Stone-Weierstrass
approximations is contained in Appendix B of the Arxiv
version (Miller and Sznaier, 2021b).

5. DATA-DRIVEN SETTING

An unknown ground truth ODE system & = F(¢,z) is
observed by a noisy measurement process. The corrupted
measurement model with bounded noise term 7 satisfying
||77||oo <e is jjobserved =y= F(t,.’I}) +n.

Figure 2 plots 40 noisy observations of the Flow system
in the disk with center (1.5,0) and radius 0.4. The blue

arrows of each plot are the true noiseless system dynamics,
and the orange arrows are noise-corrupted estimates of the
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Noisy Observations with €=0.0,0.5,

= Ground Truth|\
— = Noisy Data_ |\
\ \\

Fig. 2. Observed data of Flow system (8) within a circle

derivatives &. These records only possess € = 0.5 noise in
the x5 coordinate and have perfect knowledge of 1 = 5.

Let & = f(t,z;w) = fo(t,x)JrZL,L:l wy fe(t, z) be a contin-
uous ODE depending affinely on a set of parameters w €
R%. The function fy encodes prior knowledge about system
dynamics, and the basis functions f, are a dictionary to
describe unknown dynamics. Let D be a set of tuples
Di = (tk,xk,yx) for & = 1,..., N, noisy observations,
which may arise from multiple time sequences and traces
of the same system. The set of system parameters w that
agree with the data D forms a set,

W= {we RE ¥k yx— (o w)leo <€} (21)
The Lo term in W’s constraint associated with a single
data record Dy = (tg, g, yx) is,

k= f (b, @1 W) oo = Ny —fo(tr, Tr) =S 0y wéfé(tkyq(/'lzc%goo

The L, norm constraint in (22) can be broken up into n
absolute value constraints in the states x;,

L
[yir — fio(ti, i) — Doy wefie(te, Tx)| < e (23)
The absolute value constraint can be decomposed into its
positive and negative sides:

Yik — fio(te, Tx) — Z@L=1 we fie(te, xx) < € (24a)

L
Vit — fio(trs k) — D pq wefie(t, xp) > —€. (24b)
With further reformulation by taking the wy terms to the
left side, the constraints are,

— S0 wefie(te, o) < € — yi + fio(te, Tx) (25a)
EeLzl we fie(tr, 1) < €+ yir — fio(te, Tr)- (25b)
New terms that are constant in wy can be defined,
Zike = [— fie(te, 1) fie(tr, z)] (26a)
€ — Yir + fio(tr, zr)
I . 2
i [6 + ik — fio(te, x) (26b)

The polytope W for use in the peak estimation program
(1) is the set, (refined from Equation (25)),

W= {w € RL’ 25:1 ZikoeWe < dik} . (27)

Remark 2. Assumption A4 is satisfied when each corrupt-
ing noise term 7 is Lo,-norm bounded and sufficiently
many samples (tx, Tk, yx) are taken.

Data driven peak estimation involves solving the SOS
program (20) with respect to the set W in (27). The
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set W is described by m = 2nN, affine constraints, and
in practice, many of these representing constraints are
redundant. Elimination of redundant constraints (such as
through the LP method of Caron et al. (1989)). reduces
the dimensionality of the multiplier term ((¢, x).

6. DATA-DRIVEN PEAK EXAMPLE

Code for peak estimation under polytopic uncertainty
(SOS program (20)) are available in https://github.
com/Jarmill/data_driven_occ. All routines were writ-
ten in MATLAB 2021a, and dependencies include YALMIP
(Lotberg, 2004) and MOSEK (ApS, 2020) (or a YALMIP-
compatible SDP solver). Redundant constraints in W were
identified through the LP method of Caron et al. (1989).

The 25 subsystem of the Flow dynamics (8) is modeled by
a cubic polynomial in all possible monomials of (z1,x2),

& = [zg, cubic(zy,x2)]. (28)
The polynomial model cubic(z1,z2) has L = (2'53) =10
free parameters, and the x; dynamics of #; = x5 are

perfectly known. The parameters of Table 1 originate from
this Flow peak estimation problem. The N = 40 observed
data points sampled from the circle {x | (z1 — 1.5)? +
23 < 0.4%} are shown in Figure 2, yielding 2N = 80
affine constraints. This L = 10-dimensional consistency
polytope ©®p = W has has 33 faces and 7534 vertices
(80 — 33 = 47 redundant affine constraints) with an e of
0.5 in the coordinate x5. A time horizon of T = 5 and a
valid region of X = {z | ||x||3 < 8} is considered in these
Flow examples.

Trajectories of the flow system start at the point X
(1.5,0) in Figure 3a. The first 4 SOS bounds of Program
(20) to maximize p(z) = —xq starting at the point X are

T = [2.828,2.448,1.018,0.8407]. Trajectories in Figure
(3b) begin in the disk with radius 0.4 and center (1.5,0).
The first four SOS bounds starting from this circular X
are df., = [2.828,2.557,1.245,0.894].

7. CONCLUSION

This paper formulates and applies a polytopic facial de-
composition in order to simplify the computational com-
plexity of peak estimation approximation programs. The
Lie derivative constraint L¢(t,z,w) < 0 may be decom-
posed in a peak estimation setting by applying a theorem
of alternatives with respect to a facial description of the
polytope W. The peak estimation problem may be approx-
imated by a tractable sequence of semidefinite programs
arising from SOS relaxations. The data-driven setting with
L, bounded noise is a specific instance in which facial
decompositions may be applied. Other applications of the
polytopic face-decomposition for continuous-time input-
affine dynamical systems include optimal control (Majum-
dar et al., 2014), distance-to-unsafe-set estimation (Miller
and Sznaier, 2021a), and reachable set approximation
(Henrion and Korda, 2013).

Future work includes exploiting network and sparsity
structures, finding an alternatives-based decomposed for-
mulation that will work for discrete-time data-driven tra-
jectory analysis, and developing a streaming algorithm
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Fig. 3. Minimizing x5 on Flow system (8) at degree-4 SOS
tightening

with warm starts that will allow for iterative refinement of
peak estimates after acquisition of new data.
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