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Abstract— This paper considers the problem of learning
models to be used for controller design. Using a simple example,
it argues that in this scenario the objective should reflect the
closed-loop, rather than open-loop distance between the learned
model and the actual plant, a task that can be accomplished
by using a gap metric motivated approach. This is particularly
important when identifying open-loop unstable plants, since
typically in this case the open-loop distance is unbounded.
In this context, the paper proposes a convex optimization
approach to learn its coprime factors. This approach has a
dual advantage: (1) it can easily handle open-loop unstable
plants, since the coprime factors are stable, and (2) it is “self
certified”, since a simple norm computation on the learned
factors indicates whether or not a controller designed based on
these factors will stabilize the actual (unknown) plant. If this
test fails, it indicates that further learning is needed.

I. INTRODUCTION

Control-oriented learning is a form of biasing the typical
learning process (system identification) towards the ultimate
goal of achieving certain closed-loop behavior. Jointly con-
sidering both the nominal model and a concrete uncertainty
description, allows for trading off an accurate but high order
model for a lower order one with larger (but well-understood)
uncertainty. Doing so can significantly simplify the control
design process, reduce costs, and improve reliability.

Unlike the probabilistic approach to describing the un-
certainty ( [1], [2]), the deterministic approach involves
norm-bounding the disturbances leading to a set-membership
identification approach [3]. This approach leads to interpola-
tory algorithms that parameterize the entire class of stable
models satisfying the prior information and the available
data [4]. Thus, when they fail to find a solution, they serve
as a certificate of inconsistency between the data and the
priors. Further, as shown in [5]–[8] these algorithms can
be extended to handle mixed-domain data, and to impose
minimal McMillan degree. The approach presented in this
paper is based on the set-membership approach, where the
control-orientation is incorporated by using a ν-gap metric
motivated objective. To motivate this approach, consider the
systems shown in Fig. 1. Even though the open-loop distance
between G1 and G2 is infinite, yet, as shown there, the closed
loops obtained using the controller C = 1 have virtually
indistinguishable performance. This is due to the fact that
the ν-gap between the two systems is 10−3 implying that
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Fig. 1. The open-loop distance between the plants G1, G2 is ∞,
yet the closed-loop responses are indistinguishable.

a controller that stabilizes the easier plant G1 would also
stabilize G2. Thus, if the goal is to design controllers, the
easier to identify plant G1 can be used as a proxy for G2.

Identification of coprime factors has been considered since
the early 1990s [9]–[12], but mostly in closed-loop settings;
the knowledge of the controller is used in the factorization
scheme. However, finding such a controller may not be trivial
for unknown plants. The algorithm described in [13] works
in open-loop. However, it leads to a bilinear formulation and
requires an iterative approach that alternates between opti-
mizing the fit and solving an H∞ optimization. Furthermore,
none of these approaches handles time-domain data.

Our approach directly identifies coprime factors for plants
that are not necessarily strongly stabilizable. It does not
need the knowledge of any controllers and yields normalized
coprime factors (NCFs) directly based on the priors imposing
the uncertainty bounds in the time- and frequency domains.

II. PRELIMINARIES

A. Notation

ℓ1 denotes the space of absolutely summable sequences.
G(z) is the z-transform of the sequence g ∈ ℓ1. G(z)

.
=∑∞

i=0 giz
i; G(z) is analytic inside the unit disk D. H∞,ρ de-

notes the space of functions analytic inside the disk of radius
ρ > 1, equipped with the norm ∥G(z)∥∞,ρ

.
= sup|z|<ρ|G(z)|.

HK
∞,ρ denotes the K-ball in H∞,ρ. We will denote H∞,1

as simply H∞. Given a transfer matrix G(z), G(z)̃
.
=

GT ( 1z ). Lower-case letters (e.g., u, y, w) represent time-
domain signals, upper-case letters represent their discrete
Fourier transforms (U, Y,W ), and bold case letters with size
subscript, e.g., xN represent a vector of N measurements
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of the corresponding signal “x”. The symbol “⊛” represents
the convolution operator, TxN

represents the Toeplitz matrix
of an N -long vector x. By a slight abuse of notation, given a
transfer function G, we will denote by Tg the Toeplitz matrix
associated with its impulse response sequence.

B. Normalized Coprime Factorizations and νgap metric

Consider a minimal transfer matrix G(z). It is well known
[14] that G(z) can be factored as G(z) = N(z)M(z)−1

where N,M ∈ H∞ and such that N˜N +M˜M = I . NCFs
arise in the context of robust stabilization. In particular, we
will exploit the connection between NCFs and the ability of
a controller to stabilize two plants G1, G2, based on their
distance measured in terms of the νgap metric. Given P1 =
N1M

−1
1 , P2 = N2M

−1
2 , where Ni,Mi are a NCF pair, the

gap between P1, P2 is defined as (see Chapter 17 of [14]):

νgap(P1, P2) =

{
∥−N2̃ M1 +M2̃ N1∥∞ wno(Θ) = 0

1 otherwise

where Θ = N2̃ N1 + M2̃ M1 and wno denotes winding
number. Further, if the winding number condition holds,
then, for the case of SISO plants:

νgap(P1, P2) = max
z=ejω

|P1(z)− P2(z)|√
1 + |P1(z)|2

√
1 + |P2(z)|2

(1)

The advantage of this expression is that it can be calculated
directly from the frequency response data.

Given a controller C that stabilizes P1, define

bp1
= ∥

[
C
I

]
(I + P1C)−1

[
I P1

]
∥−1
∞

Then, if bp1
> νgap(P1, P2) the controller C also stabilizes

P2 (Theorem 17.8 in [14]). We will exploit this result to
ascertain whether or not a controller designed using the
identified model is guaranteed to stabilize the actual plant.

C. Generalized Interpolation

The generalized interpolation framework [5], [15] estab-
lishes conditions for the existence of a stable function that in-
terpolates given time- and frequency-domain measurements.
Briefly, an interpolant G(z) exists if and only if a certain
Hermitian matrix Z(W,g,K) is positive semidefinite, where
g denotes the impulse response vector for G(z) ∈ HK

∞,ρ,
and W its frequency response. If Z is rank deficient, then
the interpolant is unique. When Z ≻ 0, the solution is not
unique and all the interpolants can be written as LFT of a
free parameter Q(z) ∈ H∞ as follows:

F (z) =
T11(z)Q(z) + T12(z)

T21(z)Q(z) + T22(z)
(2)

where the transfer matrices Ti,j depend only on the problem
data (an explicit expression for these matrices can be found
for instance in [6]). In particular, if the free parameter Q(z)
is chosen as a constant, then the model order is less than or
equal to the total number of measurements (counting both
the time and frequency response samples). Using Q(z) = 0
yields the so-called central interpolant.

III. PROBLEM FORMULATION

We consider the problem of identifying a coprime factor-
ization NM−1 of a SISO transfer function G using noisy
measurements of its time, and/or frequency domain response.
Suppose we have collected Nt time-domain samples of
input/output data (u(t), y(t)) and Nf frequency response
samples Y (ejω) = G(ejω)U(ejω).

Time domain

Output signal: ỹNt = (ỹ(1), . . . , ỹ(Nt))
T

Input signal: uNt
= (u(1), . . . , u(Nt))

T

Frequency domain

Output signal: ỸNf
= (Ỹ (ejω1), Ỹ (ejω2), . . . , Ỹ (ejωNf ))T

Input signal: UNf
= (U(ejω1), U(ejω2), . . . , U(ejωNf ))T

where ỹ(t) = y(t) + ηt(t), Ỹ (ejω) = Y (ejω) + ηf (e
jω),

and ηt(t), ηf (e
jω) represent the measurement noises. If the

system is unstable, the data could have been collected in a
closed-loop with a stabilizing controller (but measured across
the plant only), or come from suitably designed open-loop
experiments that keep the responses from growing too large.
The identified factors must satisfy two conditions:

• Be consistent with the measurements. We need to ensure
that the identified model G(z) = N(z)M(z)−1 belongs
to the consistency set defined by the bounds on the
noises (or measurement precision).

• Satisfy the prior knowledge regarding the nature of the
system. For the coprime factors, the prior related to the
nature of N(z) and M(z). In particular, we impose
conditions on the stability radius of N and M .

The identification problem can be stated as follows:
Problem 1: Given

(1) frequency–response measurements (UNf
ỸNf

) and
time–domain data points {uNt , ỹNt}

(2) apriori bounds ρ > 1, ϵt, ϵf
find the right coprime factors:
N(z) ∈ HKN∞,ρ

.
= n1 + n2z + ...nNt

zNt + .., and
M(z) ∈ HKM∞,ρ

.
= m1 +m2z + ...mNt

zNt + ..
of a rational transfer function G(z)

.
= N(z)M(z)−1 = g1 +

g2z + ...gNt
zNt + .., such that

|ỹ(t)− g(t)⊛ u(t)| ≤ ϵt(t), t = 1, . . . , Nt

|Ỹ (ω)−G(ω)U(ω)| ≤ ϵf (ω), ω ∈ (ω1, . . . , ωNf
)

where g(t) is the system impulse response. The H∞,ρ

norm bounds KN ,KM can be treated as prior knowledge.
Alternatively, they can be minimized leading to the problem
statement: Given ρ and the noise bounds, what is the smallest
possible value of ∥

[
N(z) M(z)

]
∥∞,ρ for a system G(z)

consistent with the measurements?.

IV. SOLUTION

The general idea behind the proposed solution is as follows:
1) Find stable N(z), M(z), not necessarily coprime, such

that G(z) = N(z)M(z)−1. Here, the zeros of M(z)
supply the unstable poles of G(z) while the zeros of
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N(z) supply the NMP zeros of G(z). As we show in
the sequel, this step can be accomplished using convex
optimization, by exploiting ideas from generalized
interpolation theory. This can further be combined with
minimum McMillan degree requirement to yield low
order realizations of N(z) and M(z) [8].

2) A normalization step N → N̂ , M → M̂ where
Gid(z) = N̂(z)M̂(z)−1 and (N̂ , M̂) is a NCF, e.g.,
N̂˜N̂ +M̂˜M̂ = 1. This step will be accomplished via
a spectral factorization.

3) A (optional) certification step where bp, the perfor-
mance of an optimal H∞ controller based on the
identified plant, is compared against the estimated
νgap(G,Gid) between the actual and the identified
plants, G and Gid, respectively. If bp ≥ νgap(G,Gid),
then the optimal H∞ controller synthesized using the
identified plant is guaranteed to stabilize the actual one.

The top row of Figure 2 shows the block diagram cor-
responding to Step 1, where w(t) serves as the internal
signal connecting N(z) and M(z)−1. Note that our goal
is to identify M(z), which maps the “input” y(t) to the
signal w(t). Coupling N and M only through w requires
imposing that M is proper but not strictly proper, in order
for G = NM−1 to be proper. This can be accomplished by
simply adding the interpolation constraint M(0) = 1.

y
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Fig. 2. Coprime factor identification setup. Internal signal w(t) connects
the factors N and M . The measurement noise η is handled by “walking it
back” across the M−1 block.

A. Finding Stable N,M via Generalized Interpolation

LMI based generalized interpolation feasibility conditions
are presented in [5]. We exploit these conditions for de-
scribing the feasibility of the u → w, and the y → w
stable dynamics. First, we generalize the conditions to the
case where signal Fourier transforms U(ejω), Y (ejω) are
provided for a certain u → y dynamics, rather than the
measurement of the frequency response G(ejω).

Lemma 1: Given Nf frequency domain points
{zi, Ui, Yi}, i = 1, . . . , Nf , and Nt time-domain

samples yt of the output to an input ut, there exists
G ∈ HK

∞,ρ that interpolates the frequency and time
domain data (that is, G(zi)Ui = Yi and y = g ⊛ u, with
G(z) = g1 + g2z + . . .+ gNt

zNt−1 + . . .) if and only if

MR
.
= ΓH

u M0Γu −
1

K2
ΓH
y M0Γy ⪰ 0 (3)

where

Γu =

[
Uf 0
0 INt×Nt

]
(4)

Γy =

[
Yf 0
0 T−1

uNt
TyNt

]
(5)

M0 =

[
Q S0R

−2

R−2SH
0 R−2

]
(6)

R = diag(1, ρ, . . . , ρNt−1) (7)

Q =
[

ρ2

ρ2−zizj

]
ij
, i, j = 1, 2, . . . , Nf (8)

S0 =

[
zj−1
i

]
ij

, i = 1, . . . , Nf , j = 1, . . . , Nt (9)

Uf = diag(U(1), U(2), . . . , U(Nf )) (10)
Yf = diag(Y (1), Y (2), . . . , Y (Nf )) (11)

Proof: Follows from Theorems 2 and in [5] by replac-
ing Wf with Y/U and factorizing to fetch the desired form.

Corollary 1: The consistency condition (3) is equivalent
to:

Z(U, Y,u,y,K)
.
=

[
M−1

0
1
KΓy

1
KΓH

y ΓH
u M0Γu

]
⪰ 0 (12)

where Γu, Γy , and M0 are defined in (4)–(6).

1) The noiseless case: In the sequel, we will assume the
following apriori information: N and M have a stability
radius ρ−1, for some known ρ > 1. Equivalently, all unstable
poles of G are outside the disk |z|≥ ρ > 1. Under this
assumption, in the ideal case of noiseless data, a necessary
and sufficient condition for the existence of N,M ∈ H∞,ρ

such that G = N/M interpolates the input/output data is
given by:

Proposition 1: In the noiseless case, a necessary and
sufficient condition for the existence of N ∈ HKN∞,ρ and
M ∈ HKM∞,ρ such that G = N/M interpolates the input
output data is the existence of scalar KN ,KM , Nt scalars
wi, i = 0 . . . Nt−1 and Nf complex numbers W (zi), i =
1 . . . Nf such that the following set of LMIs is feasible:

Z(U,WNf
,uNt

,wNt
,KN ) ⪰ 0 (13)

Z(Y,WNf
,yNt

,wNt
,KM ) ⪰ 0 (14)

Proof: Feasibility of (13) and (14) are sufficient for
the existence of N ∈ HKN∞,ρ and M ∈ HKM∞,ρ such that
W (zi) = N(zi)U(zi), w = Tnu, W (zi) = M(zi)Y (zi),
w = Tmy. Hence N(zi)U(zi) = M(zi)Y (zi) and G

.
=

N/M satisfies Y (zi) = G(zi)U(zi). Similarly, Tnu = Tmy.
Thus, y = T−1

m Tnu = Tgu. Conversely, assume that a
factorization G = No/Mo with No ∈ HKN∞,ρ and Mo ∈ HKM∞,ρ
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exists. Then, W = No(zi) and w = Tnu satisfy the LMIs.

Once W and w have been found, the interpolants N and
M can be obtained using the formulas in [6]. Thus, in the
ideal, noiseless case, finding N and M reduces to a convex
semi-definite program.

2) The noisy case: Next, we consider the more realistic
case where the measured output is corrupted by ℓ∞ bounded
noise. In principle, this can be addressed using Proposition
1, by searching for KN ,KM ,W (zi),w and signals Y (zi),
yt such that the following inequalities hold:

Z(Y,WNf
,yNt

,wNt
,KM ) ⪰ 0 (15)

Z(U,WNf
,uNt

,wNt
,KN ) ⪰ 0 (16)

|Ỹ (zi)− Y (zi)|≤ ϵf and |ỹt − yt|≤ ϵt (17)

Note that while (16)-(17) are still LMIs, (15) is a Bilinear
Matrix Inequality (BMI), due to terms of the form ΓH

y M0Γŷ .
Given the challenges in solving BMIs, in this paper we will
pursue a convex relaxation, based on using an equivalent,
fictitious noise (η̂f , η̂t) affecting the variable w (Fig. 2).

Proposition 2: A necessary condition for the existence of
N ∈ HKN∞,ρ and M ∈ HKM∞,ρ such that G .

= N/M satisfies
|Ỹ (zi)−G(zi)U(zi)|≤ ϵf and |ỹt−(g⊛u)t|≤ ϵt is feasibility
of the following set of LMIs:

Z(Ỹ , W̃Nf
, ỹNt

, w̃Nt
,KM ) ⪰ 0 (18)

Z(U,WNf
,uNt

,wNt
,KN ) ⪰ 0 (19)

|W̃ (zi)−W (zi)|≤ KM ϵf (20)

|w̃t − wt|≤
KMρ

1− ρ
ϵt (21)

Proof: If there exists M ∈ HKM∞,ρ such that w =

M(y+η) then |η̂(zi)|
.
= |w(zi)−M(zi)Ỹ (zi)|≤ ∥M∥∞ϵf ≤

KM ϵf . Similarly, |ηt|
.
= |wt−(M⊛ỹ)t|≤ ∥M∥1ϵt ≤ KMρ

1−ρ ϵt.

Remark 1: While the conditions above are only neces-
sary, consistent numerical experience shows that using these
conditions to identify N,M works well in practice, leading
to systems that indeed interpolate the data within (or close
to) the desired noise level. Conservatism can be reduced by
minimizing KM to minimize the fictitious noise level. In
case that the interpolation error is still too high after this
minimization, a heuristic is to reduce the bounds ϵt, ϵf until
the desired error is achieved.

3) Identification Algorithm: Proposition 2 leads to the
following optimization problem:

minimize K subject to
KM ≤ K, KN ≤ K

Z(Ỹ , W̃Nf
, ỹNt , ŵNt ,KM ) ⪰ 0

Z(U,WNf
,uNt ,wNt ,KN ) ⪰ 0

|Ŵ (zi)−W (zi)|≤ KM ϵf

|ŵt − wt|≤
KMρ

1− ρ
ϵt

(22)

This convex minimization problem seeks to minimize
max{KN ,KM} subject to the interpolation constraints. Min-
imizing KM leads to tighter bounds on the equivalent
noise. In addition, as we discuss in Section IV-C, mini-
mizing ∥

[
N M

]
∥∞, an upper bound to the Hankel norm

∥
[
N M

]
∥Hankel, leads to larger stability margins and hence

an increased chance that a controller synthesized using the
identified plant will indeed stabilize the actual one.

4) Practical Considerations: Problem (22) can be solved
efficiently using CVX [16]. However, the Q matrix is typ-
ically ill-conditioned unless ρ − 1 ≈ 0 and the frequency
samples span the entire Nyquist range. Conditioning is
further worsened by the need to compute M−1

0 . We have
incorporated two changes to improve conditioning:

1) Domain mapping: Map the available frequency domain
sampling points z = ejωi , i = 1, . . . , Nf using bilinear
mapping q(z) = (z+β)/(βz+1) so that the points are
maximally “spread out” (see [17]). The parameter β is
chosen such that the distance between the endpoints in
original domain is maximized through the transforma-
tion q(z), that is, β = argmaxβ |q(ejω1)− q(ejωNf )|.
The data sample time gets scaled by the factor (1 −
β)/(1 + β) in the q-domain.

2) LMI replacement using the Schur complement: Re-
place Equation (12) with an equivalent form:

Ẑ(Uf , Yf ,g,K)
.
=

[
INf+Nt

1
K M̂0Γy

1
KΓH

y M̂H
0 ΓH

u M0Γu

]
(23)

where M̂0 is the Cholesky factor of M0.
Solving the minimization problem (22) can be be viewed
as a denoising exercise wherein we remove bounded noise
sequences from the measurements such that the existence
of N(z), and M(z) becomes feasible. From the solutions
for WNf

,mNt ,nNt , N(z) and M(z) can be realized as the
central interpolants. Alternatively, the ideas in [8] can be
used to directly seek for low order interpolants. However,
this is beyond the scope of the present paper.

B. Normalizing N and M

Since N and M are SISO, common zeros can be elimi-
nated by inspection. Let P = N˜N + M˜M . Note that by
construction, P (z) is proper (not strictly proper) since M is
proper. Further, if P has a zero (pole) at zi, then it also
has a zero (pole) at 1/zi. Thus, P (z) can be written as
P (z) = ϕ(z)̃ ϕ(z) where ϕ(z) is stable, minimum phase.
It follows that Nr

.
= N/ϕ(z) and Mr

.
= M/ϕ(z) is a NCF

of G that satisfies the interpolation conditions.

C. Certifying Closed-Loop Stability

As mentioned in Section II-B, stabilization of the actual
plant G when using a controller designed using the identified
one Gid can be certified if bGid

> νgap(G,Gid). Note that the
optimal bGid

can be calculated directly from the identified
N,M using the expression ( [14], Chapter 16)

boptGid
=

√
1− ∥

[
N M

]
∥2Hankel
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This expression gives an additional justification for the
minimization of ∥

[
N M

]
∥∞ in Algorithm (22), since the

H∞ norm is an upper bound of the Hankel norm.
Certifying stability requires estimating νgap(G,Gid). This

can be accomplished as follows: Let Ψ(z) = −N2̃ M1 +
M2̃ N1. Since (N2,M2) and (N1,M1) are analytic inside
the disk |z|≤ ρ, from Cauchy’s integral it can be shown that
|dΨ(z)

dz |z=ejω≤ (ρ− 1)−1. Linearizing Ψ(ejw) yields:

|Ψ(ejw)|≤ |Ψ(ejwi)|+ |w − wi|
(ρ− 1)

(24)

The first term can be obtained directly from (1), by noting
that |G−Gid|≤ 2ϵf . Thus, if the frequency domain samples
are sufficiently dense:

νgap(G,Gid) ⪅ max
i

2ϵf√
1 +

(|Ỹ (zi)|−ϵf )2

|U(zi)|2
√
1 + |N(zi)

M(zi)
|2

+ (ρ− 1)−1∆w (25)

If the condition boptGid
> νgap(G,Gid) fails, the existing

experiments are insufficient to design a guaranteed stabilizing
controller, and a further identification effort is required.

V. NUMERICAL EXAMPLE: SISO UNSTABLE PLANT

Consider the plant G = 0.1(z − 1.1)/(z − 0.95)(z − 1.2).
This plant has an NMP zero, and an unstable pole. It is not
strongly stabilizable. Using NCFs is desirable here since a
robustly stabilizing controller can be computed easily. The
data is collected by simulating the plant in open-loop. The
input profiles are chosen (after some trials) so as not to
induce exponential growth in the output “too soon”. The
plant responses to two such inputs, one a filtered white
noise and the other a filtered chirp signal, are collected.
The measured responses are corrupted by additive noise.
One dataset is used to perform an empirical estimation
of the frequency response with Hann window (see etfe
in MATLAB® System Identification ToolboxTM [18]). The
resulting FRF contains 33 frequency samples. 50 samples
of the second response are used to impose time-domain
constraints. The data is shown in Figure 3. ϵt ≤ 0.5,
ϵf ≤ 0.15, ρ = 1.01 are used as priors.

The identification approach was applied to this data in
variables KM , W , W̃ , m, and n. KM = KN = 20
were determined to be feasible gain bounds. To reduce
conservatism associated with the error bounds in equations
(20),(21), the bounds were scaled heuristically to the values
ϵf ← ϵf/2, ϵt ← ϵt/1300. The identified signals were
used to extract parametric forms transfer functions N(z),
and M(z) as the central interpolants, followed by H2 order
reduction (fitting a lower order models to the frequency
responses of N(z) and M(z)). These values were finally
normalized using the procedure described in section IV-B.
The obtained values were:

Nr(z) =
0.077(z − 1.093)

(z − 0.943)(z − 0.823)

Mr(z) =
0.826(z − 0.955)(z − 1.192)

(z − 0.943)(z − 0.823)

Fig. 3. Frequency and time-domain data for the example. The bounds
imposed for identification are shown by black dotted lines.

The resulting impulse, and frequency responses of the
NCFs Nr(z),Mr(z) are shown in Figures 4 and 5.

The estimated model G(z) = Nr(z)Mr(z)
−1 is compared

to the original (true) system in Fig. 6.
Computing νgap(G,Gid) and bGid

yields bGid
= 0.064 >

νgap(G,Gid) = 0.041. Hence an optimal H∞ controller syn-
thesized using the identified plant is guaranteed to stabilize
the actual (unknown) one. Further, as shown in Fig. 7, the
closed-loop responses of the plants are indeed close.

VI. CONCLUSIONS

This paper considers the problem of control-oriented learn-
ing. As illustrated with a simple example, in this scenario
the objective of the identification should reflect the closed-
loop, rather than open-loop distance between the learned
model and the actual plant. This can be accomplished by
considering a ν-gap motivated approach that seeks to identify
a coprime factorization of the plant. The main result of
the paper shows that these coprime factors can be identi-
fied via tractable convex optimization, by exploiting results
from generalized interpolation theory. Contrary to previous
approaches for identification of coprime factors, the proposed
technique does not necessitate knowledge of a stabilizing
controller and can handle both frequency and time domain
constraints. Further, it is “self certified”, since a simple norm
computation on the learned factors indicates whether or not
a controller designed based on these factors will stabilize the
actual (unknown) system. If this test fails, it indicates that
further learning is needed.
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Fig. 4. Frequency responses of NCFs Nr(z),Mr(z).

Fig. 5. Impulse responses of NCFs Nr(z),Mr(z).

Fig. 6. Overall Identified Model G(z) = Nr(z)Mr(z)−1.

Fig. 7. Comparison of step responses obtained with a controller designed
using the identified plant.
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