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An MDP-based Method for Dynamic Workforce
Allocation in Bernoulli Serial Production Lines

Jiachen Tu and Liang Zhang

Abstract—With the development of Industry 4.0 in manufac-
turing, new technologies such as big data analytics, artificial
intelligence, and cloud computing, have been widely deployed
to production practice for performance evaluation and anal-
ysis. These technologies enabled fast and accurate production
decision-making on the factory floor. To further support these
activities, it’s essential to develop real-time automated decision-
making mechanisms backed by rigorous control and optimiza-
tion analytics. The focus of this paper is on enhancing the
throughput of production processes through the control and
optimization of the floating workforce resources on the factory
floor. Specifically, we consider serial production lines with finite
buffers and machines characterized by the Bernoulli reliability
model. Additionally, we assume that multiple shared workforce
units can be allocated dynamically during production via real-
time production bottleneck identification and mitigation in
order to improve steady-state throughput. This paper addresses
this problem for three and four-machine line cases, where
two shared workforce units are dynamically allocated among
the machines. An optimal control policy is derived based
on the Markov decision process (MDP) approach. Numerical
experiments are carried out to demonstrate the efficacy of the
proposed method.

I. INTRODUCTION

With the rapid development of Industry 4.0, some smart
manufacturing technologies ( for example, real-time sensing,
big data, cloud computing) have been widely applied to the
production system [1], [2]. Vast amount of data from the
production process can be collected, transmitted, and ana-
lyzed. This facilitates the improvement of decision making,
management, and production control for manufacturers. In
a production system, bottleneck is typically defined as the
operation that has the strongest effect on system performance
[3]. In traditional production systems research, bottleneck are
commonly considered as a static characteristic with respect
to the system’s steady state performance (see, for instance,
[4]-[7]). However, this steady state-based approach forces
the identification and mitigation of production bottlenecks
into a relatively low-frequency activity. On the other hand,
it is more desirable to be able to react timely to different
production conditions and states and identify those impactful
operations on-the-fly by taking advantage of the real-time
data made available through the Industry 4.0 technologies. To
achieve this goal, the notion of real-time bottleneck (RTBN)
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is introduced in [8]. Based on this study, the location of
RTBN may be dynamically shifting among workstations as
the system state evolves over time and RTBN is the one,
whose improvement should be prioritized over all other ma-
chines under the current system state. Clearly, identification
of RTBN is essentially a dynamic control problems and the
goal is to obtain an optimal control policy that maximizes
the efficiency of the production system. A similar study on
machine switch-on/off control for energy efficient production
is reported in [9].

In production systems research, Markov process models
are commonly used to characterize the parts flow in a
manufacturing process and have been successfully applied
to numerous practical case studies (see, for instance, [3],
[10], [11]). Under these Markovian models, the dynamic
control problem in production systems can be viewed as
decision-making optimization in Markov process, which is
known as Markov decision process (MDP). Indeed, MDP
has been widely applied in manufacturing and production
analysis and control [12]-[14]. Traditionally, MDP is solved
via dynamic programming (DP), which evaluates the value
function of the control policy through the knowledge of the
underlying system model. Based on the value function, the
optimal policy is searched for by solving the sub-problems
contained in Bellman equation. On the other hand, DP
requires exact knowledge of the state transition probabilities
of the system, which may face several challenges itself. First
of all, the accuracy of the transition probabilities are highly
dependent upon the system mathematical model and the
identified parameters, which, in some practical applications,
may be subject to various sources of uncertainties such
as uncertainty of customer demands, operation uncertainty,
production lead time uncertainty, quality uncertainty, machine
reliability, etc. (see [15]-[17]). Moreover, even if a high-
fidelity mathematical model is constructed, handling the full-
scale mathematical model with all transition probabilities
considered could be a computationally intractable for system
with a large number of states (see [18], [19]). To tackle these
challenges in traditional MDP problems, the reinforcement
learning (RL) method has been developed, aiming at learning
an optimal policy through an agent moving in an environment
(see [20]-[22]). The common feature in RL scenarios is that
the states of the system are determined by the RL control
policies or actions. Once the policy is defined, as well as
the current state, the next system state is fixed. As a result,
during the computation of RL algorithms, knowing transition
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probability is unnecessary and the policy dictates the state
transitions directly.

In this paper, we study the Bernoulli serial line production
system model, which is characterized by a Markov chain
and model the dynamic workforce allocation problem using
the MDP approach. The remaining of the paper is organized
as follows: Section II introduces the mathematical model of
the production systems considered and defines the problem
addressed. Section III describes the solution to the problem
for three- and four-machine lines with two shared helpers
through an MDP policy iteration algorithm. Numerical exper-
iments are carried out in Section IV to verify the performance
of the proposed method. Finally, conclusions and future work
are provided in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. Modeling

Consider a serial production line model shown in Figure
1 defined by the following assumptions:
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Fig. 1. Serial production line with Bernoulli machines and shared helpers

(i) The serial line has a total of M machines (indicated
by the circles in Figure 1), mq,...,my, and M — 1
buffers (indicated by the rectangles), by,...,bar—1.

(i) The buffer b;, ¢ = 1,..., M — 1, has finite capacity N;,
i.e., it can accommodate at most N; jobs.

(ii1) The cycle times of all machines are identical and equal
to 7. The system operates in discrete time slots. The
duration of each time slot is 7.

The machines are unreliable and subject to random
failures according to the Bernoulli reliability model.
Specifically, during each time slot, the status of the ma-
chines, {1 = up, 0 = down}, are independent Bernoulli
random variables. For machine m;, ¢ = 1,..., M, it
is up in a time slot with probability p; and down with
probability 1—p;. Bernoulli parameter p; is also referred
to as the efficiency of machine m;.

A machine is starved if it is up and its upstream buffer
is empty at the beginning of this time slot. Machine m;
is never starved for raw material.

(iv)

)

(vi) A machine is blocked if it is up, its downstream buffer is
full at the beginning of this time slot, and its immediate
downstream machine is either down or blocked during
this time slot. Machine mj; is never blocked.

If machine m; is up and neither blocked nor starved,
then it processes one job during this time slot, i.e., it
picks up the job from its upstream buffer at the begin-
ning of the time slot and places it in the downstream
buffer at the end of the time slot.

A total of n shared helpers, 11, ... ,n,, are available to
be allocated to any machine during system operations.
We assume that n < M and that during one cycle
time, each machine can only get one helper. In addition,
assume that if helper 7; is allocated to machine m;
during a time slot, then during this time slot, machine
m;’s efficiency is (temporarily) elevated to p; + Ap;.
The efficiency of the machines not receiving a helper
during this time slot stays at their original values. At
the end of the time slot, the helpers leave the machines
that they were allocated to, reset the machines efficiency
back to p;’s, and await the new allocation for the next
time slot. Moreover, it is assumed that

(vii)

(viii)

max p; + max Ap; < 1. (1)
i J

Remarks: In this paper, we assume that switching a
helper from one machine to another occurs instantaneously
in between cycles. Moreover, it is assumed that the efficiency
elevation resulted from a given helper is fixed (i.e., operation-
independent). More complicated scenarios will be studied in
future work.

B. Problem formulation

A Bernoulli serial line defined by assumptions (i)-(vii)
(i.e., without shared helpers) is characterized by a Markov
chain with the states being the occupancy of the buffers.
Let h;, i = 1,...,M — 1, denote the number of jobs
in buffer b, and let h = [hy,...,hpr—1] represent the
state of the underlying Markov chain. Clearly, h; € H; =
{0,1,..., N;} and the set of all states of this Markov chain
is H= H{ x Hy x --- x Hp;_1. Therefore, a state-based
control policy of helpers allocation for systems defined by
assumptions (i)-(viii) can be expressed as a mapping from
Hto {[i1,2,...,6,]|5; =1,...,M,j=1,...,n}, where i,
indicates the allocated machine of helper 7;:

7r:H—>{[i17i2,...,in]|ij:1,...,M,j:1,...,n}.

)

Let the control objective of the system considered be
the maximization of steady state throughput (i.e., long term
productivity). In the framework of the system model at hand,
this amounts to the production rate, PR, of the system
(expected number of jobs produced by mj; per time slot
in steady state). Among all control policies 7 defined in
(2), let * denote the optimal control that leads to the
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maximal PR. Then, a machine is referred to as the real-time
bottleneck (RTBN) under system state h, h € H, if a helper
is allocated to this machine under 7™ for state h. Moreover,
the machine receiving the largest efficiency elevation from
the 7*-allocated helper under state h is referred to as the
primary RTBN under state h.

Note that Bernoulli serial lines with only one shared helper
in the system (and thus only one RTBN for each state), i.e.,
n = 1, have been studied in our previous work [8] and [23]).
Specifically, the study in [8] shows that the threshold-based
policy is optimal for the two-machine case and develops
a procedure based on a set of heuristic rules to search
for the optimal control policy in three-machine lines. Then,
using the three-machine line result as a building block, a
heuristic method for control policy optimization in longer
production lines is derived in [8], which decomposes and
represents the system into a group of virtual three-machine
lines and determines the optimal control policy for each
individual three-machine lines. Finally, the control policies
for the individual virtual lines are combined to form the
one for the overall system via a voting mechanism. In [23],
an aggregation-based analytical algorithm is developed to
calculate the transient and steady state performance met-
rics of the Bernoulli production system with one RTBN
and develops a particle swarm optimization (PSO)-inspired
approach for control policy optimization. However, due to
the dramatic increase of the control policy space, production
lines with multiple helpers are much more complicated and
the approach for single-helper system cannot be directly
applied. Therefore, the goal of this paper is to develop a
new method for control policy optimization for in Bernoulli
lines with multiple shared helpers. In particular, an MDP-
based policy iteration algorithm is developed for Bernoulli
lines with two shared helpers. Extension of the results to
larger-sized systems will be conducted in future work.

III. MDP MODEL AND ALGORITHM FOR ALLOCATION
OF SHARED HELPERS IN BERNOULLI SERIAL LINES

In this paper, we consider the cases of Bernoulli lines
with two shared helpers. That is, during each time slot,
two machines in the system will be identified as RTBNs
and allocated with the helpers 7; and 7. Note that for
two machine lines with two shared helpers, it is possible to
convert the problem to the single-helper problem addressed
in [8]. For example, consider a two-machine Bernoulli line
with parameters p; = 0.7, p, = 0.8, N7 = 5, and Ap; = 0.1,
Aps = 0.15. Clearly, during any cycle time, each machine
will get one helper and have its efficiency elevated by at
least 0.1. The primary RTBN among the two will be allocated
with Aps = 0.15 leading to an addition improvement of 0.05
in machine efficiency. Thus, we can view the system being
equivalent to a two-machine line with p; = 0.8, po = 0.9 and
a single helper with Ap = 0.05. Therefore, in this paper, we
directly consider the Bernoulli lines with M > 2 machines.

In the case of an M -machine Bernoulli serial line, the
total number of system states are Hf‘i;l(Nz + 1). For

each system state, the number of possible allocation of n
shared helpers is equal to the number of the n-permutations
of M machines (assuming the helpers are different), i.e.,
M!/(M — n)!. Clearly, with the growth of M and n, the
dimension of the solution space increases exponentially and
it will become computationally intractable for traditional
discrete optimization method to solve the problem with such
a large solution space. Therefore, in this paper, we adopt the
approach of MDP to conduct the optimization of the control
policy for the underlying Markov system. Specifically, a
policy iteration algorithm is developed that searches for the
globally optimized control policy, leading to improved steady
state PR. Details of the optimization problem formulation
and the implementation of the algorithm for the systems
considered are described below.

A. Mathematical model

In this subsection, we formulate the Markov decision pro-
cess (MDP) model for the shared helper allocation problem in
Bernoulli serial line production systems. Specifically, define
4-tuple, (H, A, P,,R,) to represent the Markov process
model. Each term is illustrated below:

o H: System state space. As discussed in Section II-B, the
system state is defined as the number of jobs in each
buffer.

o A: Action space. For the problem addressed in this
paper, the control action is the allocation of the shared
helpers 71, ...,n,. The state-based decision-making of
the control action is defined as control policy = ex-
pressed in equation (2). For convenience, let 71';: ) denote
the index of the machine that helper n; is allocated to
under system state h.

o P,(h,h’): The transition probability from system state
h to A’ under action a.

e R, (h,h’): Immediate reward after system transitioning
from state h to h’ under action a. Since the goal of
the problem is to maximize the steady state PR under
the control policy, we define the reward as the expected
production from the control action, i.e.,

P+ A, if by > 0and M =70,
Py if hag_y >0 and M # =) Vj,
0, if har_1 = 0.

Ru(h,h') =

3)

The optimization objective is to maximize the cumulative
reward expressed as

E

o0
> VRa,(hs, ht+1)1 : )
t=0
where ~v is the discount factor satisfying 0 < v < 1, ay is
the control action at time ¢, and h; denotes the system state
(buffers occupancy) at time t.
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B. MDP solution algorithm

The general approach to solving MDP problem is using
dynamic programming (DP). Define V(h) as the value
function of current state h, which is the discounted sum of
the rewards by following the control policy. Then, the DP
algorithm can expressed using the following two equations:

V(h) =) Pr,(h,h)[Ra, (h 1) + 4V (R)], 5)
o

mp = argmax ¥ Pr, (h,h')[Re, (R, ) + 9V (R)].

hl
(6)

By iterating these two equations for all system states, the
control policy will eventually converge to the optimal policy
[24]. This method is called policy iteration. It is an iterative
algorithm that alternates between policy evaluation and policy
improvement until it converges to the optimal policy. The
algorithm typically starts with a random or predefined initial
policy. Then, at each iteration, the algorithm evaluates the
policy using equation (5) and updates the optimal policy
based on equation (6). It repeats these two steps until the
policy converges. Detailed steps of the algorithm is given in
the pseudo code below.

Algorithm 1 MDP control optimization by policy iteration
Initialization: Set V(h) = 0, V'(h) = V(h), wp =
[1,2,...n], and 7'y, = [n,n — 1,...,1] for all h, where
n is the number of shared helpers, and set A; = Ay =1
while A; > 10710 do

Policy Evaluation:
while Ay, > 10719 do
for each h € H do
V() = Y Pry (o) [ R, (B, 1) + 7V ()]
end for
Ao = /S, (VI (R) — V(R))?
V'(h) =V(h)
end while
Policy Improvement:
for each h € H do

Tp = argmaxg y. s Pr,(h,h')[Ry, (h,h') +
W (R
end for
A= /3 (7'h — h)?
7' =T
end while

C. Illustrative example

To illustrate the algorithm and the behavior of the control
policy, an example is given below. Consider a three-machine
Bernoulli serial line with parameters p; = 0.8, ¢ = 1,2, 3,
N1 = N2 = 5, and Apl = O.].,Apg = 0.15. The MDP
policy iteration algorithm described above is used to find
the optimal policy. Note that the discount rate y shows
the degree, to which the agent cares about the rewards in

the distant future. Therefore, in an infinite Markov chain
problem, to evaluate the steady state performance metrics,
~ should be selected close to 1. On the other hand, if v
is selected very close to 1, the iteration time needed to
achieve convergence tends to be infinite. Here, we choose the
discount rate v as 0.999 and 0.9999 to illustrate the efficacy
of the algorithm. The resulting control policies are shown in
Fig. 2 for v = 0.999 and in Fig. 3 for v = 0.9999. Note that
the color shading and the numbers in the blocks represent the
indices of machines ( for machine 1, for machine 2,
and for machine 3) that is allocated with helper 7; or 7
under system state (hi, he) by the control policy obtained.

hy hy
5(1(3(3|32]2 5222233
41111 13|3(2]2 41212121233
31111211 3(2(2(2(313]3
2112|311 21221133
1222|331 1111|121 )1(1(3
012]|3]13|3|3]3 o|1|1|1|1j1]1
01 2 3 4 5 0 1 2 3 4 5

h2 h2
Allocation of 14 Allocation of 17,
Fig. 2. Optimal control policy under v = 0.999

hq hq
511133332 512122223
41111(3|3])2]|2 41212|12(2]|3]|3
311)1(112(1(1 312122333
211112311 21212(1(1|3(3
121212331 1111|1113
01233333 oj1(1]1]1]1(1
01 2 3 4 5 0 1 2 3 4 5

h, hy

Allocation of 1, Allocation of 15

Fig. 3. Optimal control policy under v = 0.9999

For this example, since Apy > Ap;, the machine receiving
Apo is viewed as the primary RTBN, which has the most
impact on the long-term system performance at the current
state. From Fig. 2 and Fig. 3, we can also see that when
the second buffer is empty (ho = 0), with the increasing
of the number of jobs in by, the primary RTBN (the one
allocated with 79) will switched to my and relieve the load
of buffer b;. Similarly, with the increasing of the number
of jobs in by, machine m3 tends to be the primary RTBN to
alleviate the burden of by. Comparing the optimization results
summarized in these two figures, we can see that the control
policies obtained under v = 0.999 and vy = 0.9999 are quite
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similar: They have the exact same helpers allocation for all
system states except one. For the state that the allocation
does differ (h = [5,4]), the two control policies still agree
on the combination of machines to be allocated with helpers,
with the only discrepancy being which particular machine
receives 1; and which receives 72. Under these two control
policies, the system’s steady state production rates (evaluated
using simulation) are PR = 0.8796 (for v = 0.999) and
PR =0.8797 (for v = 0.9999), respectively.

The steady state probability distributions of the buffers
occupancy for the system are illustrated by the heat maps
in Fig. 4 for both v = 0.999 and v = 0.9999 and also for
the case where no shared helper is present. In the figure, the
numbers in each block indicates the steady state probability
of the corresponding buffer occupancy pair. As one can see,
when no helper is present (Fig. 4(a)) the system spends
significant amount of time (41.7%) in states where starvation
and/or blockage are occurring. These states are the ones in
the outer ring of the state maps, i.e., those with h; = 0
or 5, ¢+ = 1,2. However, under the optimal control policies
obtained, the system only spends about 9% of time in those
states and, instead, spend over 50% of time in safer states
(those with h; = 2 or 3). This also explains the efficacy of
the control policies obtained.

It should be noted that, with the increase of discount
factor « towards 1, the computing time of the policy iteration
algorithm increases drastically (from about 10s to 70s on a
PC with Intel® Core™ i7-10875H 2.3GHz processor and
16GB RAM with the algorithm implemented in C++). Thus,
from the perspective of both system performance (i.e., PR)
and computational time, it is not of essential importance to
obtain the optimal policy for every single state system, as
long as high quality control actions are obtained for the most
frequently visited states.

IV. NUMERICAL EXPERIMENT

To understand the efficacy of the MDP approach for solv-
ing the helpers allocation problem, numerical experiments are
carried out. Moreover, two heuristic-based policies are used
to compare with the proposed MDP approach:

o Upstream-first approach (UPF): Sort Ap;’s in descend-
ing order. Allocate the helper with the largest Ap to the
furthest upstream machine as long as its downstream
buffer is not full at the begining of the present time
slot, and repeat this until all helpers are allocated.

o Downstream-first approach (DNF): Sort Ap;’s in de-
scending order. Allocate the helper with the largest Ap
to the furthest downstream machine with a non-empty
buffer immediately in front of it, and repeat this until
all helpers are allocated.

In this experiment, a total of 2,000 Bernoulli serial lines
are random selected, with 1,000 for each M € {3,4}.

0.16
510.025 | 0.071 | 0.049 | 0.039 | 0.035 | 0.034 014
410.009 | 0.055 | 0.048 | 0.040 | 0.035 | 0.033 0.12
31{0.007 | 0.042 | 0.041 | 0.036 | 0.032 | 0.030 01
< 0.08
2{0.007 | 0.037 | 0.036 | 0.032 | 0.028 | 0.025 0.06
110.007 | 0.035 | 0.033 | 0.030 | 0.025 | 0.017 0.04
0.02
0] 0.001 | 0.007 | 0.007 | 0.006 | 0.005 | 0.003
— 0
0 1 2 3 4 5
lll/l
(a) With no shared helper
0.16
5/ 0.002 | 0.016 | 0.012 | 0.010 | 0.004 | 0.001 0.14
410.001 | 0.032 | 0.068 | 0.047 | 0.020 | 0.004 0.12
0.1
3/ 0.001 | 0.028 0.040 | 0.009
£ 0.08
2/0.001 | 0.014 0.057 | 0.011 0.06
1/0.000 | 0.006 | 0.017 | 0.033 | 0.028 | 0.010 0.04
0.02
0| 0.000 | 0.000 | 0.001 | 0.001 | 0.001 | 0.001
— 0
0 1 2 3 4 5
h,l
(b) Under optimal control policy for v = 0.999
0.16
510.002 | 0.016 | 0.011 | 0.009 | 0.004 | 0.002 014
410.001 | 0.032 | 0.067 | 0.047 | 0.022 | 0.006 0.12
0.1
3/ 0.001 | 0.029 0.041 | 0.010
= 0.08
2/0.001 | 0.014 0.058 | 0.011 0.06
110.000 | 0.007 | 0.017 | 0.032 | 0.028 | 0.010 0.04
0.02
0| 0.000 | 0.000 | 0.001 | 0.001 | 0.001 | 0.001
— 0
0 1 2 3 4 5

h,l
(c) Under optimal control policy for v = 0.9999
Fig. 4. Steady state probability distributions of the buffers occupancy

The parameters of each line are randomly and uniformly
generated from:

pi €(0.7,0.9), N; €{2,3,4,5},

Ap; € (0.1,1 — maxp;). )

The steady state production rate PR is calculated by a
C++ simulation program based on the corresponding control
policy. In particular, for each line, the simulation program
runs for 20 replications with the first 40,000 cycle times
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in each replication being the warm-up time and the next
400,000 cycle times being the results collection time. Then,
the mean values of the 20 replications are computed to obtain
the steady state values of PR.

To quantify the efficacy of our method, the DNF method
is used as the baseline for comparison and we define

PRmethod _ PRDNF
PRDNF (8)

where method € {M DP,UPF'}. The results are shown in
Table 1.

-100%,

€method =

TABLE I
AVERAGE IMPROVEMENT OF METHODS OVER DNF

[ MDP UPF
M =3 10.96% 3.04%
M=1 13.57% 5.68%

As one can see, the MDP-based approach performs sig-
nificantly better than other two methods. The control policy
resulted from the MDP approach can improve the steady state
PR by over 10% compared with the DNP heuristic.

V. CONCLUSION

This paper studies the control policy of the allocation
of multiple workforce units in Bernoulli serial lines. By
using the Markov decision process approach and an policy
iteration algorithm, we can obtain the optimal control policy
for allocating the shared helpers in real time. The results
of numerical experiments and examples of both three and
four-machine cases indicate that this approach provides high
quality control policies compared with two heuristic methods.

However, it should be noted that the computational com-
plexity of the MDP policy iteration algorithm grows expo-
nentially as the system size increases and it may become
very time-consuming or even practically infeasible for even a
moderate-sized system. Thus, our immediate future work is to
develop alternative methods to extend the research to systems
with more machines and shared workforce units (helpers). In
addition, while the research of this paper focuses on steady
state performance of production systems, we also intend to
extend the results to systems operating in transients (e.g.,
systems with finite production runs).
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