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Abstract— The foundation of any quantitative analysis and
optimization for a production system is a high-fidelity mathe-
matical model of the physical process. To construct a stochastic
process model more efficiently, a new approach to production
system modeling has recently been proposed that uses sys-
tem performance metrics (e.g., throughput, work-in-process)
derived from the parts flow data to reversely compute the model
parameters. This paper extends this modeling approach to two-
machine non-exponential production lines. Since no analytical
expressions of performance metrics are available for non-
exponential systems, we use neural network-based surrogate
models as a means to calculate those performance metrics
as functions in terms of the system parameters. Then, based
on the constructed surrogate models and given performance
metrics, the machine parameters are estimated by solving a
constrained optimization problem using a multi-start particle
swarm optimization algorithm. The results indicate that differ-
ent combinations of machine parameters can lead to practically
the same system performance metrics and a linear relationship
of the reliability parameters from these obtained estimations is
observed. Numerical experiments are implemented to justify the
robustness of the different combinations of machine parameters.

I. INTRODUCTION

Production systems research studies the behavior and
properties of job flow in manufacturing processes and investi-
gates methods for its improvement, control, and optimization.
To conduct such studies, a production system is typically
modeled as a stochastic process, where the operations of
the workstations (machines) are characterized by randomly
distributed uptimes, downtimes, and cycle times [1]–[3].
Based on these theoretical models, researchers can develop
algorithms and numerical tools for performance analysis,
bottleneck identification, resource allocation, and control of
production systems described by different types of stochastic
models (for instance, [4]–[7]). On the other hand, the issues
of how to construct such mathematical models of a manu-
facturing process are not trivial [3]. Indeed, without a valid
mathematical model of the production system, none of the
above-mentioned model-based analyses can be implemented.

In the conventional approach of creating a mathematical
model of a production system, one usually collects the
operating status data (i.e., up- and downtimes) from each
individual workstation and designs customized procedures
to calculate the parametric model for the overall system.
Examples of this modeling process are illustrated in the case
studies of [8]–[11]. The main challenges and limitations of
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this approach lie in the complexity, quality, and even unavail-
ability of equipment status data, as discussed in [12]–[17].
To overcome these drawbacks, a new modeling approach
for production systems is proposed in [12]–[15] and applied
to an industrial case study in [16] and [17]. For the new
approach, instead of collecting equipment operation status
data, we measure the parts flow, i.e., the entrances/exits of
parts to/from the buffer and the number of parts in the buffers
in each time slot, which are all based on part counting. Then,
we reversely compute the parameters of a production system
model based on the system performance metrics derived
from the parts flow data. In the existing studies of the new
modeling approach, the machine parameter identification
problem has been solved for Bernoulli (in [12]) and exponen-
tial (in [15]–[17]) production line models via an analytical
expression-based method. Specifically, based on the close-
formed expression of the performance metrics as functions
of system parameters, the parameter identification problems
are as formulated as optimization problems to minimize the
sum of squared errors of the resulting performance metrics
under the estimated parameters compared with the true ones.

It should be noted that both Bernoulli and exponential
reliability models imply that the resulting production system
models are characterized by Markov chains, which makes
it possible to derive analytical expressions for calculating
system performance metrics (throughput, work-in-process,
etc.). Unfortunately, in practice, the machines often have
up- and downtime distributed non-exponentially, and few
results about the analytical calculation of performance met-
rics for production systems with non-exponential machines
are available at this point. Among a limited number of
studies, it is observed in [3] that the steady-state throughput
of non-exponential serial lines is approximately a linear
function of the average coefficients of variation (CV) of the
machine up- and downtimes (given that all other system
parameters remain fixed). Similar results are reported in
[18] for assembly systems with non-exponential machines.
However, other performance metrics and the joint effects
of the mean and CV’s of machine up- and downtimes are
not discussed. Another study on non-exponential production
lines is conducted in [19], which investigates the transient
behavior of such production systems with machines having
gamma reliability models. However, it only discusses the
cases that all the machines have identical parameters.

The goal of this paper is to extend the parts flow
data-based production system modeling approach to non-
exponential serial line models and investigate the properties
of the machine parameters and performance metrics. Due to20
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the complexity of non-exponential serial line models, only
the case of two-machine lines is discussed in this paper. The
study of multiple-machine non-exponential serial lines will
be carried out in future work.

The rest of the paper is organized as follows: The system
model and problem addressed are described in Section II.
The method of model parameter estimation is developed in
Section III. Section IV provides the numerical experiment
results and illustrations. Finally, the conclusions and future
work are summarized in Section V.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

A. System Model

In this paper, we consider the synchronous two-machine
production line model as shown in Fig.1. This production
line model operates according to the following assumptions:

Fig. 1. Synchronous serial line with two non-exponential machines

1) Both machines have identical and constant cycle times.
The model operates in continuous time and the time is
measured in units of cycle time.

2) Machine mi, i = 1, 2, are unreliable and subject to ran-
dom failures, i.e., the uptime and downtime of machine
mi are random variables following distributions fup,i
and fdown,i, respectively. The means and CVs of the
up- and downtime of mi are denoted as Tup,i, CVup,i

and Tdown,i, CVdown,i, respectively. The states (up and
down) of the machines are independent. Using machine
parameters Tup,i and Tdown,i, the efficiency of machine
mi, ei, can be defined as

ei =
Tup,i

Tup,i + Tdown,i
, i = 1, 2. (1)

3) Buffer b has capacity N , i.e., it can store up to N parts.
4) Machine m2 is starved if it is up, buffer b is empty and

machine m1 is down. Machine m1 is never starved.
5) Machine m1 is blocked if it is up, buffer b is full, and

machine m2 is down. Machine m2 is never blocked.
6) If machine mi is up and neither starved nor blocked, it

processes parts with deterministic cycle time.
For convenience, in this paper, we assume that the up- and

downtimes of all machines follow the gamma distribution
and use the continuous flow model [3].

B. Problem Description

In this study, each machine in the model above is defined
by 4 independent parameters: Tup,i, Tdown,i, CVup,i and
CVdown,i. Since ei can be obtained by Tup,i and Tdown,i

as (1), equivalently, a machine is defined by independent
parameters ei, Tdown,i, CVup,i and CVdown,i. Either way,
to identify the values of these parameters (a total of 8), at
least 8 uncorrelated measurements are needed. As argued in

[12]–[17], it may face various challenges to collect the direct
measurements of operation up- and downtime in practice and
an alternative approach of using system performance metrics
derived from the parts flow data is recommended. Under
system model assumptions 1)-6), we define the following
five system performance metrics:

• Production rate, PR: the average number of parts
produced by m2 per cycle time during steady state.

• Work-in-process, WIP : the average number of parts
contained in buffer b during steady state.

• Probability that buffer b is empty, P0: the fraction of
time that no part is in b during steady state.

• Probability that buffer b is full, PN : the fraction of time
that N parts are in buffer b during steady state.

• Probability of unchanged buffer state, B0: the probabil-
ity that the number of parts in buffer b is not changed
compared with the last cycle time.

In addition, we define four levels of buffer occupancy:

Buffer occupancy level 1: 0 (not including 0) to 25% of N ;

Buffer occupancy level 2: 25% of N to 50% of N ;

Buffer occupancy level 3: 50% of N to 75% of N ;

Buffer occupancy level 4: 75% of N to N (not including N );

and then, we define
• Probability of buffer occupancy level k, PLk: the frac-

tion of time that the occupancy of buffer b is at level k,
k = 1, 2, 3, 4, during steady state.

It follows immediately that P0+PL1+PL12+PL3+PL4+
PN = 1. This implies that these six probabilities only have
the degree-of-freedom equal to five.

Note that these performance metrics can be all measured
by monitoring the parts flow in the system. While it is
possible to define and use other parts flow-based performance
metrics, in this paper, we consider to use PR⇤, WIP ⇤,
P ⇤
0 , P ⇤

N , P ⇤
L1, P ⇤

L2, P ⇤
L3 and B⇤

0 , where ·⇤ represents the
true system performance metrics at hand. Then, the problem
addressed in this paper is:

Problem 1: For a serial line defined by assumptions 1)-

6) with buffer capacity N , estimate machine parameters ei,
Tdown,i, CVup,i, and CVdown,i, i = 1, 2 for given PR⇤

,

WIP ⇤
, P ⇤

0 , P ⇤
N , P ⇤

L1, P ⇤
L2, P ⇤

L3, and B⇤
0 .

III. MODEL PARAMETER ESTIMATION

A. Neural network surrogate models of performance metrics

To solve Problem 1, we first need to derive the quan-
titative relationships between the system parameters and
performance metrics under the non-exponential reliability
model assumption. In this paper, we propose to develop
a surrogate model for calculating each performance metric
as close-formed functions in terms of system parameters,
FY (ei, Tdown,i, CVup,i, CVdown,i, N), where Y represents
the performance metrics defined in Section II-B. In this study,
the surrogate models are constructed using neural networks
(NNs). The construction of the NN for the surrogate model
of each performance metric is shown in Fig. 2.
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Fig. 2. Construction of the neural network for the surrogate model of each
performance metric

The NN model for each performance metric consists of an
input layer, two hidden layers, and an output layer following
the activation function and the final fully connected layer. In
the input layer, the number of nodes is set to the number
of predictors plus one bias node. The number of neurons
in the hidden layers depends on the complexity of the task
and the amount of training data. In the hidden layers, each
neuron is connected to all neurons in the preceding layer
by an associated numerical weight. The weight connecting
two neurons regulates the magnitude of the signal that is
transmitted between them. Finally, all neurons pass onto the
ReLU activation function and the final fully connected layer,
and then, a single node exports from the output layer, which
is the numerical response, the performance metric Y under
consideration (e.g., PR, WIP ). To train the NN models,
we use limited-memory Broyden-Fletcher-Goldfarb-Shanno
(LBFGS) quasi-Newton algorithm [20] as optimizer. Since
8 different performance metrics are considered in this study,
8 independent NN models are developed. The numbers of
neurons in hidden layers are selected as (64, 32) for all NNs.

B. Algorithm for parameter estimation

Based on the surrogate models of the performance metrics
considered in Problem 1, we define the error function F as

F(x, N) = [f1(x, N), ..., f8(x, N)]T

=

2

66666666666664

FPR(ei, Tdown,i, CVup,i, CVdown,i, N)� PR⇤

FWIP (ei, Tdown,i, CVup,i, CVdown,i, N)/N �WIP ⇤/N

FP0 (ei, Tdown,i, CVup,i, CVdown,i, N)� P ⇤
0

FPN
(ei, Tdown,i, CVup,i, CVdown,i, N)� P ⇤

N

FPL1
(ei, Tdown,i, CVup,i, CVdown,i, N)� P ⇤

L1

FPL2
(ei, Tdown,i, CVup,i, CVdown,i, N)� P ⇤

L2

FPL3
(ei, Tdown,i, CVup,i, CVdown,i, N)� P ⇤

L3

FB0 (ei, Tdown,i, CVup,i, CVdown,i, N)�B⇤
0

3

77777777777775

,

(2)
where x = (ei, Tdown,i, CVup,i, CVdown,i), i = 1, 2. Then,
Problem 1 can be reformulated as the following constrained
optimization problem:

Problem 2: Find machine parameters x that minimizes the

2-norm of error function F over a certain box-constraint set

X = {x 2 R8|Li < xi < Ui, i = 1, ..., 8}, i.e.,

min
x

f(x, N) = ||F(x, N)||2,

s.t. x 2 X,
(3)

where Li’s, Ui’s are the lower- and upper bounds for the

machine parameters.

To solve this constrained optimization problem, a particle
swarm optimization (PSO) algorithm based on [21] and [22]
is applied (see the pseudo-code of Algorithm 1 below).

Algorithm 1 Multi-start Particle Swarm Optimization Algo-
rithm (M-PSO)

for n = 1, . . . , D do
Initialization: Randomly create Kp particles with the initial
particle position x(0)

(k) 2 X and initial velocity v(0)
(k) 2 V,

where V = {v 2 R8|Li �Ui  vi  Ui �Li, i = 1, . . . , 8}.
Set the stall counter c = 0, and iteration step j = 0.
Evaluation: Find the best position d(0) among x(0)

(k) i.e.,
d(0) = argmin

x
(0)
(k)

f(x, N), and let p(k) = d(0), k = 1, . . . ,Kp.

while j < Jmax do
for k = 1, ...,Kp do

Randomly create neighborhood subset S of Kn particles
other than x(j)

(k) and find the best position g(k) among S;
Update the velocity: v(j+1)

(k) = Wv(j)
(k) + y1u1 � (p(k) �

x(j)
(k)) + y2u2 � (g(k) � x(j)

(k)), where u1 and u2 are
randomly picked in (0, 1);
Update the position: x(j+1)

(k) = x(j)
(k) + v(j+1)

(k) ;
for i = 1, ..., 8 do

if xi /2 Xi then
xi = argmin

b
|b� xi|, b = {Ui, Li};

if vi /2 Vi then
vi = 0;

end if
end if

end for
if f(x(j+1)

(k) , N) < f(p(k), N) then
p(k) = x(j+1)

(k) ;
end if

end for
Update d(j+1) and f (j+1)

best = f(d(j+1), N);
if f (j)

best � f (j+1)
best > 0 then

c = max(0, c� 1);
if c < 2 then

W = min(2W,Uw);
end if
if c > 5 then

W = max(W/2, Lw);
end if

else
c = c+ 1 and Kn = min(Kn +K(0)

n ,Kp);
end if
if |f (j)

best � f (j+1)
best | � ✏f and T < Tmax then

j = j + 1;
else

Break;
end if

end while
x̂n = d(j).

end for
Return x̂1, x̂2, ..., x̂D .

Note that, since multiple (non-unique) optimal solutions
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may exist, we start the algorithm with D different sets of
random initial points so that the distribution of optimized
solutions can be further investigated. In addition, in Algo-
rithm 1, we denote the number of particles as Kp, and the
neighborhood size as Kn. The other hyperparameters include
the initial inertia W 2 [Lw, Uw], self-adjustment weight
y1 2 (0,+1) and social adjustment weight y2 2 (0,+1).
Besides, we set the maximum number of iteration steps as
Jmax, and, if the running time (denoted as T ) of solving
a problem exceeds Tmax, or the best value of the objective
function cannot decrease ✏f , then the algorithm is terminated.

IV. NUMERICAL EXPERIMENTS AND ILLUSTRATION

For the numerical experiments, a simulation program
of the serial production line with gamma reliability ma-
chines is created that runs with the first 10,000 cycle times
as warm-up time and with the next 300,000 cycle times
being the time period to statistically evaluate the perfor-
mance metrics. Then, 20,000 different two-machine lines
are randomly generated. The system parameters are ran-
domly selected from the following ranges: ei 2 [0.7, 0.95],
Tdown,i 2 [3, 20], CVup,i, CVdown,i 2 [0.25, 1] and N 2
[max{Tdown,1, Tdown,2}, 3 · max{Tdown,1, Tdown,2}]. For
each line, 15 replications of the simulation program are
executed and the average performance metrics from these
runs are computed using the parts flow data collected from
the buffer. All the computations are conducted in MATLAB
on a Dell Inspiron 3671 workstation with Intel(R) Core(TM)
i7-9700 CPU 3.00GHz processor and 16 GB of RAM.

A. Accuracy of surrogate models

Among the 20,000 two-machine lines generated above,
we randomly select 15,000 as the training dataset and the
remaining 5,000 as the testing dataset. From the training data,
we train the NN model for each performance metric, i.e., with
one of the performance metrics being the response and the
system parameters (ei’s, Tdown,i’s, CVup,i’s, CVdown,i’s and
N , i = 1, 2) being the predictors. Then, we can obtain the
NN surrogate model-based expression of each performance
metric as a function of the system parameters, FY (x, N),
where Y 2 {PR,WIP, P0, PN , PL1, PL2, PL3, B0}. With
the NN surrogate models and given system parameters, we
compute the performance metrics and evaluate the errors
compared with the true ones using

✏PR =
|dPR� PR⇤|

PR⇤ · 100%, ✏P0 = | bP0 � P ⇤
0 |,

✏WIP =
|\WIP �WIP ⇤|

N
· 100%, ✏PN = | bPN � P ⇤

N |,

✏B0 =
|cB0 �B⇤

0 |
B⇤

0

· 100%, ✏PLk = | bPLk � P ⇤
Lk|, k = 1, 2, 3.

(4)
where b· denotes the estimated performance metrics.

Table I shows the estimation errors of performance metrics
for two-machine gamma serial lines using our NN based-
surrogate models. As one can see, given the system param-
eters, all performance metrics can be estimated with high
accuracy using our surrogate models. This implies, our NN

surrogate models are sufficiently accurate for performance
metrics calculation in such systems.

TABLE I
ESTIMATION ERRORS OF NN SURROGATE MODELS

✏PR (%) ✏WIP (%) ✏P0 ✏PN

Training data 0.0837 0.1932 0.0017 0.0016
Testing data 0.0901 0.2753 0.0021 0.0020

✏B0 (%) ✏PL1 ✏PL2 ✏PL3

Training data 0.1095 0.0018 0.0017 0.0017
Testing data 0.1276 0.0023 0.0022 0.0021

B. Accuracy of performance metrics resulting from estimated

machine parameters

In this experiment, we randomly select 2,000 two-machine
gamma lines from the testing dataset above. Given the true
performance metrics as input, we search for the machine
parameters using the M-PSO algorithm described in Sec-
tion III-B and the NN surrogate models to calculate the
performance metrics for each iterative solution found in the
optimization process. For each line, we obtain D = 200
optimized solutions from M-PSO with Kp = 100 particles.
For other hyperparameters of this algorithm, we set K(0)

n =
25, W = Uw = 1.1, Lw = 0.1, y1 = y2 = 1.5, ✏f = 10�7,
Jmax = 10000, and Tmax = 300s.

Note that, while we obtain 200 different solutions of
estimated machine parameters from M-PSO for each line,
not all of them are necessarily valid. Here, we define
valid solutions x̂ as those satisfying f(x̂, N) < 10�4 and
x̂ 2 X. On average, for each line we studied, about 171
out of 200 solutions found by M-PSO are valid. Table II
shows the average errors of performance metrics under the
valid M-PSO-estimated machine parameters. The errors are
evaluated based on (4) using both the NN surrogate model
and simulation as the baseline. As one can see, the machine
parameters obtained can indeed provide an almost perfect
match to the observed performance metrics under true system
parameters.

TABLE II
AVERAGE OF PERFORMANCE METRICS ESTIMATION ERRORS

NN-based Err. Simulation-based Err.
PR 0.0489% 0.1287%
WIP 0.0497% 0.3081%
P0 0.0005 0.0031
PN 0.0004 0.0030
PLk (k = 1, 2, 3) 0.0005 0.0027
B0 0.0582% 0.1951%
f(x̂, N) 5.88⇥ 10�6 8.64⇥ 10�5

C. Distribution of estimated machine parameters

Although the valid solutions of estimated machine pa-
rameters found by M-PSO can fit the system performance
metrics with very high accuracy, the underlying machine
parameters may be (quite) different from the true parameters
that we intend to identify. Indeed, for all valid solutions
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Fig. 3. Illustration of linear relationship between Tdown,i and CVavg,i

of estimated machine parameters, the estimated machine
efficiencies are typically very close to the true ones with
the average estimation errors of ê1 and ê2 being 0.2850%
and 0.2874%, respectively. However, M-PSO estimated pa-
rameters T̂down,i, dCV up,i, and dCV down,i may distribute all
over their feasible ranges defined in formulation (3). This
phenomenon is illustrated in Fig. 3 for three cases with
N = 20, e = [0.8, 0.9], Tdown = [8, 12] and the CV ’s are
set as different values. In this figure, CVavg,i =

1
2 (CVup,i +

CVdown,i), i = 1, 2, and the true system parameters are
marked by the asterisks. It is interesting to observe that the
valid estimated machine parameters (from the perspective
of matching system performance metrics) exhibit a negative
linear pattern between CVavg and Tdown. To evaluate the
linear relationships, for each case, we create the linear regres-
sion models Fi(Tdown,i) : CVavg,i = b0,i + b1,iTdown,i and
then, compute the p-value of coefficient b1,i and correlation
coefficient R2 of these models. For the 2,000 cases in this
experiment, we find significant linear relationships (p-value<
0.05) between Tdown and CVavg in 92.8% cases (1,856 out
of 2,000), and on average, R2 = 0.76. This observation leads
to the following

Numerical Fact 1. For a two-machine gamma production

line, given ei’s, N , and the fitted functions Fi(Tdown,i) :
CVavg,i = b0,i + b1,iTdown,i, if we randomly select a set of

parameters of m1 (Tdown,1, CVup,1, CVdown,1) that satisfies

function F1, then we can find at least a set of parameters

of m2 (Tdown,2, CVup,2, CVdown,2) satisfying F2 that lead

to practically the same performance metrics (with errors

f(x̂, N) < 10�4
). The same result also holds for m2.

Justification: To justify this numerical fact, 200 two-machine
gamma lines out of the 2,000 lines are randomly selected.
The valid estimated machine parameters have been iden-
tified in Subsection IV-B. Since the machine efficiencies
are already estimated with high accuracy, for each case,
we directly use the average values of ê1 and ê2 of the
valid solutions as the estimated machine efficiency. Next,
we randomly select Tdown,1 for m1 and calculate the
corresponding CVavg,1 based on F1(Tdown,1). CVup,1 and
CVdown,1 are randomly chosen to match the average value
CVavg,1. During this process, all parameters must be en-
sured in their respective feasible ranges. With the selected
parameters of m1, we search for the best combination of m2

parameters along linear function F2(Tdown,2) that minimizes
the performance metrics estimation error function f(x̂, N)
defined in (3). The same process is then performed by
randomly selecting the parameters of m2 on linear function
F2(Tdown,2) and searching for the best combination of m1

parameters along linear function F1(Tdown,1). For each case,
this experiment is conducted 10 times to obtain a total of
20 combinations of machines parameters (10 from fixing
m1 parameters and searching for m2’s and 10 from fixing
m2 parameters and searching for m1’s), all of which satisfy
linear functions F1(Tdown,1) and F2(Tdown,2). As a result,
all 20 ⇥ 200 = 4, 000 machine parameter combinations
obtained above satisfy f(x̂, N) < 10�4. In other words,
for each line, the system performance metrics under all 20
combinations of machine parameters studied are practically
indistinguishable.

To further understand the linear relationship of Tdown vs.
CVavg and illustrate Numerical Fact 1, we take Case 1 and
Case 3 used in Fig. 3 as examples to implement the numerical
experiment described in the justification of Numerical Fact
1 and randomly pick 4 combinations (out of 20) into Table
III. Under these estimated machine parameters, we compute

TABLE III
SELECTED ESTIMATIONS OF CASES 1 AND 3

T̂down
dCVup

dCVdown

Case 1

Est. 1 [5.00, 12.53] [0.60, 0.42] [0.80, 0.53]
Est. 2 [9.00, 12.91] [0.45, 0.38] [0.45, 0.52]
Est. 3 [6.61, 10.00] [0.85, 0.75] [0.25, 0.40]
Est. 4 [5.21, 13.00] [0.76, 0.30] [0.72, 0.50]

Case 3

Est. 1 [7.00, 13.74] [0.95, 0.72] [0.88, 0.97]
Est. 2 [10.00, 11.10] [0.70, 1.00] [0.85, 0.92]
Est. 3 [7.14, 12.00] [1.00, 0.85] [0.95, 0.95]
Est. 4 [7.83, 15.00] [0.81, 0.60] [0.91, 0.95]

the system performance metrics using simulation and the
resulting PR and WIP are plotted in Fig. 4. Although
the estimated machine parameters are quite different from
the true ones of the system, the performance metrics under
these parameters are all very close to the ones under the
true parameters, for not only the original buffer capacity but
also varied ones. This observation further verifies Numerical
Fact 1 and implies that such property could be useful in
designing machine operating regimes in production systems
analysis and control.
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Fig. 4. Estimated PR and WIP resulting from different parameter estimations under N expansion

V. CONCLUSION

In this paper, we apply the parts flow performance metrics-
based approach to estimate the parameters of synchronous
two-machine non-exponential production line models. The
system performance metrics used include production rate,
work-in-process, the probability distribution of buffer oc-
cupancy, etc, all of which can be derived from the parts
flow data collected from the buffer. To accomplish this,
we first build neural network-based surrogate models as a
means to perform the analytical expressions-based calcula-
tion of system performance metrics (instead of using time-
consuming simulations). Then, we formulate a constrained
optimization problem to find the optimized combinations of
machine parameters that can fit the given system performance
metrics. To solve this optimization problem, a multi-start
particle swarm optimization (M-PSO) algorithm is applied.
Numerical experiments show that although the estimated
machine parameters obtained using the M-PSO algorithm
may be quite different from the true ones, they can still
lead to almost exactly the same system performance metrics
compared to those observed under true machine parameters.
Moreover, the negative linear patterns of machine parameters
leading to the same system performance metrics are further
analyzed and illustrated. In future work, we will extend
this study to multiple-machine production line models and
systems with asynchronous machines.
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