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Abstract 12 

To recycle the mixed plastic waste (MPW), it is important to obtain the compositional information 13 

online in real-time. We present a sensing platform based on a convolutional neural network (CNN) 14 

and mid-infrared spectroscopy (MIR) for the rapid and accurate characterization of MPW. The 15 

MPW samples are placed on a moving platform to mimic the industrial environment. The MIR 16 

spectra are collected at the rate of 100Hz and the proposed CNN architecture can reach an overall 17 

prediction accuracy close to 100%. Therefore, the proposed method paves the way towards the 18 

online MPW characterization in industrial applications where high throughput is needed. 19 

Synopsis Statement 20 

Combining convolutional neural network framework and mid-infrared spectroscopy for online 21 

characterization of mixed plastic waste with 100% accuracy. 22 

Keywords 23 
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1. Introduction 26 

Plastics are inexpensive and durable materials that can be easily molded into a variety of products 27 

for a wide range of applications, such as food packaging, construction, and electronics. Along with 28 
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the rapid growth of plastic production, the growth rate of plastic recycling is worrying. According 1 

to the U.S. Environmental Protection Agency (EPA) report in 2018[1], 75.6% of the plastic wastes 2 

were landfilled, 15.8% were combusted, while only 8.7% were recycled. Moreover, there is a trend 3 

of decreasing recycling rate[2], which imposes severe ecological and environmental concerns. To 4 

address the challenges, new recycling methods (pyrolysis[3], plastic alloying[4], etc.) are being 5 

investigated, but these solutions require an understanding of the composition of MPW in order to 6 

determine the process parameters and to remove potential contaminants[5]. 7 

 Non-destructive methods such as infrared (IR) spectroscopy, X-ray diffraction, laser-8 

induced breakdown spectroscopy (LIB) and other techniques have been successfully used for the 9 

identification of a single plastic component[6-11]. Among these methods, near-infrared spectroscopy 10 

(NIR) has become the predominant technology in industry for sorting MPW. However, NIR suffers 11 

from low accuracy, partly because it cannot detect black plastics[12-13]. A promising alternative to 12 

NIR is mid-infrared spectroscopy (MIR), in which photons are transformed from the IR spectral 13 

range into the near infrared spectral range and fast silicon detectors can be used[14]. MIR 14 

spectroscopy combines the high accuracy of the infrared spectral range with the high speed of NIR. 15 

More importantly, MIR spectroscopy is capable of detecting black plastics, which can improve the 16 

accuracy of MPW characterization[15-16].  17 

 In order to automize the MPW characterization process towards the industrial applications, 18 

machine learning (ML) has been widely used to analyze various spectroscopic data of plastics and 19 

the results were very promising[17-20]. However, the spectra were often the average of multiple 20 

spectroscopic scans during the data collection to reduce the intrinsic noise and to improve the ML 21 

prediction accuracy, which would slow the data collection speed. Moreover, in a typical industrial 22 

application, the MPW pellets are moved rapidly on a conveyor belt, which lowers the signal-to-23 
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noise ratio (SNR) due to the vibration and disturbance of the moving platform. Therefore, a 1 

production ready MPW sorting system needs fast data collection (which we call online) equipment 2 

and an efficient identification algorithm to process the low SNR data.  3 

In this work, we combined CNN and MIR to classify MPW on a moving platform to mimic 4 

the industrial application. The MIR spectra were collected at 100 Hz without averaging. The linear 5 

speed of the moving plastics was 0.1 m/s. We demonstrate that the CNN framework (which we 6 

call PlasticNet) can achieve 100% overall classification accuracy for MPW. The CNN framework 7 

also has a fast prediction rate (~36,000 Hz), which allows the future upgrade of the MIR 8 

spectrometer with even faster data collection speed. We believe the proposed method is a 9 

promising solution towards a real-time online MPW classification system and will help MPW 10 

recycling and reclamation. 11 

 12 

2. Experimental Data Collection and Preparation 13 

2.1 MIR Measuring System 14 

The schematic experimental setup is shown in Figure 1. The IR source (a 1000 °C Silicon 15 

Nitride, Si3N4, light source, 4.5 mm in diameter and 17 mm long and is heated by 70 W electric 16 

power, Hawkeye Technologies model IR-Si311) was placed at the focus of an aluminum elliptical 17 

reflector which focused the light at 200 mm from the front surface of the reflector, projecting the 18 

light on a gold diffuser, generating a circular area with around 10 mm diameter. Some of the 19 

reflected light from the plastic surface was collected by a 1-inch parabolic gold-coated aluminum 20 

mirror (with a focal length of 200 mm) that collimated light from the diffuser, after which a 40 21 

mm CaF2 lens focused the light into a 200 µm core indium fluoride (InF3) fiber that was connected 22 

to the MIR spectrometer (NLIR S2050, Denmark).  23 
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The details of the MIR spectrometer can be found in our previous work[15]. Briefly, the 1 

MIR spectrometer (NLIR S2050) is based on sum-frequency generation in a χ(2)-nonlinear 2 

LiNbO3 crystal that upconverts mid-infrared light from the band 2.0 µm – 5.0 µm to the near-3 

visible region 695 nm – 877 nm[21-24]. The advantages of the upconversion spectrometer are that 4 

most thermal noise is not upconverted[25-26] and that Silicon-based CMOS-array detectors have 5 

much higher detectivities than the traditional MIR detectors such as HgCdTe (MCT) or PbSe array 6 

detectors. The CMOS detector has 2048 pixels, and the spectral resolution is < 6 cm-1. 7 

 8 

 The MPW samples were placed on the moving platform to mimic the conveyor belt in the 9 

industrial application. The platform was driven by a 12V DC motor. The angular velocity was set 10 

to 2.5 rad/s and the focal point of the MIR source was 40 mm away from the center of the platform, 11 

which corresponded to the sample linear speed of 100 m/s. The platform surface was Urethane 12 

which was a typical conveyor belt material used in industry.  13 

 14 

Figure 1. Experimental setup. The MPW samples are placed on a moving platform to mimic 

the industrial application. 
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2.2 Data Collection 1 

In this work we considered 4 commercially available plastic materials commonly found in the 2 

MPW, including light blue color polystyrene (PS), black color polyethylene (PE), deep blue color 3 

polypropylene (PP), and white color polyvinyl chloride (PVC). All plastic samples were 1 mm 4 

thick sheets purchased from ePlastics (San Diego, California, United States). In addition, the 5 

Urethane platform surface was also considered, and it is called the background (BK) in the 6 

following context. 7 

 The spectra were collected by placing the plastic samples on the moving platform. For the 8 

ML training/validation/testing, pure plastic sheets were cut to the same size as the platform, as 9 

shown in Figure 2a. 500 spectra of each plastic sample were collected at the measurement rate of 10 

100 Hz. Therefore, a total of 2,500 spectra were used for the ML training/validation/testing. For 11 

the ML prediction, binary and quaternary mixed plastic samples were measured as unseen data. 12 

The binary mixed plastic samples were measured by covering approximately half of the platform 13 

surface with one plastic and the other half with another plastic, as shown in Figure 2b. The reason 14 

of designing such binary mix was to generate the spectra dataset in which each component 15 

contributes approximately half the number of the spectra. For example, the binary mix of BK/PS 16 

dataset should have ~50% BK spectrum and ~50% of PVC spectrum. Therefore, the binary mixes 17 

can be used as the unseen data to effectively validate the accuracy of the proposed ML model. For 18 

the prediction of quaternary mixed plastic samples, the plastic sheets were cut into small flakes 19 

with sizes approximately 20 ×20 mm2 to 25×25 mm2, then different types of plastic samples were 20 

placed on the moving platform to mimic MPW on a conveyor belt, as shown in Figure 2c. 4 binary 21 

combinations (BK/PS, BK/PVC, PE/PVC, PS/PP) and 1 quaternary combination (BK/PVC/PP/PS) 22 

were used, and 500 spectra of each combination were collected for the ML prediction. 23 
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 1 

2.2 Data Processing 2 

Each spectrum had 975 data points ranging from wavenumber 2000 to 3500 cm-1 (encoded in a 3 

vector of ℝ!"#), with each point representing the intensity of a given wavenumber. To increase 4 

classification accuracy, we investigated data preprocessing methods such as smoothing and 5 

detrending.  A rolling average with a window size of 30 was used for smoothing. Detrending is 6 

accomplished by removing the linear trend (background) from the spectra. All spectra were 7 

normalized to the range of [0, 1] to facilitate ML analysis 8 

$% = $ −min($)
max($) − min($) 9 

where $ ∈ ℝ!"# was the original spectrum and  $% ∈ ℝ!"# was the normalized spectrum. Figure 3 10 

shows the PE spectra measured at 100 Hz with various preprocessing methods. The spectra of the 11 

other 5 samples are shown in Figure S1-4. There was significant noise in the raw data as shown 12 

in Figure 3(a) which was due to the intrinsic electronics noise at high measurement rate 13 

(systematic noise) and the extrinsic noise due to the vibration of the moving platform. We explored 14 

the effectiveness of various preprocessing methods on the ML prediction accuracy and provided 15 

the best practices for preprocessing of the high noise MIR data. 16 

Figure 2. Data collection methods for single, binary, and quaternary MPW samples. (a) The 
platform is covered by a single plastic sheet; (b) Half of the platform is covered by one 
plastic component, and the other half is covered by another component; (c) 3 plastic flakes 
are placed on the platform. 
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 1 

2.3 Data Splitting 2 

The spectra of pure plastic samples as well as the Urethane platform surface (BK) were randomly 3 

divided into a training set and a test set. A training set was used to fit the parameters of the ML 4 

model during the learning process. An independent test set was used to evaluate the performance 5 

(accuracy) of the ML model. A total of 30% of the spectra in the training set were randomly chosen 6 

as the validation set for tuning the ML architecture. We employed a 5-fold cross-validation method 7 

to assess the robustness and generalizability of the ML model. Specifically, the training dataset 8 

was randomly split into five subsets of equal size. One of these five subsets was retained for the 9 

cross-validation, while the other four were used for the training. The cross-validation was repeated 10 

five times, with each subset serving as test data exactly once. Prior to data splitting, the data were 11 

partitioned into homogeneous subsets using stratification. In other words, for each fold, each 12 

plastic type contributed the same proportion of data (20%) to the training and test sets. The final 13 

reported accuracy was the average of all five-fold accuracies. The model was robust and 14 

Figure 3. PE spectra measured at 100 Hz with various preprocessing methods. (a) shows the 
raw spectra; (b) show the smooth preprocessing; (c) shows the detrend preprocessing; (d) 
shows both the smooth and detrend preprocessing. 
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generalizable if the accuracy of the test set for each fold was comparable. The spectra of the binary 1 

and quaternary plastic combinations are regarded as unseen dataset to demonstrate the MPW 2 

classification ability of the proposed ML models. For predicting the composition of mixtures, the 3 

five-fold cross validation model with the highest test set accuracy is utilized. 4 

2.4 Computational Framework 5 

The proposed framework includes a CNN architecture that we refer to as PlasticNet. PlasticNet 6 

functions as a 1D CNN since its architecture converts IR spectra to vectors (1D data items). The 7 

architecture of the proposed 1D CNN is shown in Figure 4. 1D CNNs extract features from IR 8 

spectra using convolution and pooling. In our architecture, every convolutional filter is a three-9 

dimensional vector. A convolved signal of a filter is a scalar value indicating the presence (high 10 

value) or absence (low value) of the pattern the filter is attempting to identify. A convolution 11 

operation transforms a given vector to another vector of the same dimension after a nonlinear 12 

transformation (e.g., rectified linear units). These filters are referred to as the convolutional layers. 13 

The convolution operation significantly increases the amount of information that must be 14 

processed; therefore, it is necessary to summarize this information. We reduce the dimension using 15 

a max-pooling operation, which takes a subset of a given vector (in this case, a portion of size 2) 16 

and reduces it to a single value by extracting the maximum value. This greatly reduces the number 17 

of dimensions of the vector from the convolutional layer and condenses the key information. 18 
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 1 

A 975-dimensional IR vector was fed directly into the PlasticNet. Four convolutional layers, 2 

two max-pooling layers, and three fully connected layers were included in the model. Each 3 

convolutional layer contained 64 filters of size 3, whereas the max-pooling layer consists of filter 4 

of size 2. Each fully connected layer contained 64 nodes. We used rectified linear units (ReLUs) 5 

between layers as activation functions. We added a dropout ratio of 0.2 between each of two fully 6 

connected layers to prevent overfitting. The activation function of the output layer was SoftMax, 7 

and the loss function was categorical cross-entropy. The output vector had a dimension of 5, which 8 

corresponded to the probability that the IR spectra originated from a particular type of plastic. 9 

Convolutional layers and max-pooling layers were organized recursively in the PlasticNet to 10 

extract information at both the local and global scales. In addition, it enabled the condensing of 11 

information for the classification and prediction of the corresponding plastic type. 12 

 13 

3. Results and Discussion 14 

3.1 ML Training with Various Preprocessing Methods 15 

 16 

Figure 4. Architecture of PlasticNet. The plastic network inputs a 975 vector and outputs 
the predicted plastic type. It contains 4 1D convolutional layers (each with 64 filters of dim 
3), 2 1D max-pooling layers (each with a window size of 2), a flatten layer, and 3 fully 
connected layers (each with 64 nodes and a dropout ratio of 0.2). The activation function 
between the layers is ReLU. The final output activation function is SoftMax. 
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The performance of the ML models with the test dataset is shown in Table 1. The results revealed 1 

that all preprocessing methods can achieve close to 100% classification for the single plastic 2 

component samples.  3 

Table 1. Overall Classification Accuracies Found with Different Data Processing Methods. 4 
 Raw Smooth Detrend Both smooth and detrend 

Accuracy 100% 99.8% 100% 100% 
 5 

Using the confusion matrix, we gained a deeper understanding of the classification 6 

precision of various plastic types. The PlasticNet confusion matrix of the dataset with both 7 

smoothing and detrending as preprocessing is shown in Figure 5. Each row of the confusion matrix 8 

represents instances of the predicted class, and each column represents instances of the true class. 9 

Instances correctly classified are in the entries along the diagonal line.  10 

 11 

We performed additional principal component analysis (PCA) to determine if the data 12 

possessed any inherent clustering based on the type of plastic. Figure 6 shows the first and second 13 

Figure 5. Confusion matrix of PlasticNet with both smooth and detrend preprocessing. The 
overall accuracy is 100%. 
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principal components of the MIR spectra, it is evident that clusters are formed according to plastic 1 

types. This inherent data clustering facilitated classification. 2 

 3 

3.2 Binary Mixed Plastic Prediction 4 

We used the best of five-fold cross-validation models of various preprocessing methods to predict 5 

the composition of the binary/quaternary mixed plastics. Among all the models, the one with both 6 

smooth and detrend obtained the best results as shown in Figure 7. The prediction results of the 7 

models trained with other preprocessing methods (shown in Figure S5-7) were not accurate 8 

enough, indicating the smooth and detrend preprocessing was beneficial for ML feature extraction. 9 

For the binary mixed samples BK/PS, BK/PVC, PE/PVC and PS/PP, our model predicted 10 

approximately 50% of each component. The results were consistent with our experimental design, 11 

in which the two halves of the moving platform were covered by two different plastic sheets 12 

Figure 6. Scatter plots of the first and second principal components of (a) raw IR spectra, 
spectra (b) after smooth preprocessing, (c) after detrend preprocessing, and (d) after both 
smooth and detrend preprocessing. The distinct clusters of the various plastic types facilitate 
classification. 
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respectively. The percentages were not exactly 50% because during the spectra measurements, it 1 

was difficult to cover the platform surface perfectly 50%.  2 

 3 

In addition to the correctly predicted components, we also observed prediction errors in the 4 

binary mixes, for example, 0.6% in PE/PVC and 0.4% in PS/PP. The errors were mainly from the 5 

spectra that were scanned across the boundaries of the binary mixes. In our experiments, the 6 

moving platform angular velocity was 2.5 rad/s. At 100 Hz spectra collection rate, there were 251 7 

spectra collected per revolution, in which 2 spectra were collected across the boundaries, 8 

corresponding to 0.8% boundary spectra in each binary dataset. The boundary spectra were 9 

distorted because it contained the information from both components, and depending on the level 10 

of the distortion, the ML model may make incorrect predictions. Therefore, the maximum possible 11 

error due to the boundaries should be 0.8%, and all the errors from the binary mixes were less, 12 

indicating our ML model can make correct prediction even with some of the distorted boundary 13 

spectra. Based on the results of the binary mixes, we were confident that our PlasticNet can predict 14 

mixed plastic samples on a moving platform with high accuracy.  15 

Figure 7. Composition prediction of (a) the binary and (b) quaternary mixed plastic samples 
with the data using both smooth and detrend preprocessing. 
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Finally, we challenged our PlasticNet with the quaternary mix, which mimicked PVC, PP 1 

and PS flakes moving on a Urethane (BK) conveyor belt. 3 plastic flakes were placed on the 2 

moving platform, each flake was approximately 20×20 mm2 to 25×25 mm2. The results are shown 3 

in Figure 8. The predictions were consistent with the sizes of the flakes, more importantly, there 4 

were only 0.2% of the spectra that were incorrectly classified, showing that our ML model can 5 

make accurate predictions on MPW on a moving platform. 6 

 7 

4. Conclusions 8 

We developed a convolutional neural network (CNN) framework to classify the MIR spectrum 9 

of MPW on a moving platform. The experimental setup mimicked MPW on a conveyor belt. The 10 

results showed that our ML model can predict the MPW components with overall accuracy close 11 

to 100%, providing a promising solution towards the real-time online characterization of MPW for 12 

industrial applications where high throughput and accuracy are required. 13 
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Figure 8. Composition prediction of quaternary mixed plastic samples. The prediction 
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