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Abstract

Chemoresponsive liquid crystals (LCs) can be engineered to generate information-rich optical responses
upon exposure to gas contaminants. We investigate the use of topological descriptors to extract
information from these complex responses and with this facilitate sensor design and understand physical
phenomena that govern responses. We provide a holistic view of topological descriptors using Minkowski
functionals and fractal analysis and show how descriptors can be used for unsupervised (clustering,
visualization) and supervised (regression, classification) machine learning (ML) tasks. Specifically, by using
high-throughput, experimental data for LC films exposed to diverse contaminants, we show that topological
descriptors can be used to effectively detect outliers and predict contaminant concentrations using simple
ML models. Notably, these models achieve comparable accuracies to those of powerful convolutional
neural networks, but with much lower computational times (from hours to seconds) and using less
sophisticated computing hardware. This scalability enables high-resolution, space-time data analysis.
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Chemoresponsive liquid crystals (LCs) provide a versatile platform for designing affordable and lightweight
gas (analyte) sensors!. Specifically, LCs can be functionalized to change their orientational ordering and
optical birefringence when exposed to a target chemical environment?. For example, LC sensors can be
designed by supporting a micrometer-thick LC film on a chemically functionalized solid surface. The
molecules constituting the LC (mesogens) have functional groups that bind to the solid surface to cause a
well-defined orientation (e.g., perpendicular to the surface) of the LCY. The gas analyte diffuses through the
LC film after exposure, binds or reacts with the solid surface, and triggers a change in the LC orientation
(e.g., homeotropic to planar)®. The LC reorientation alters the polarization of light traveling through the
film, resulting in an observable optical response (see Fig. 1 for an illustration).

The optical response of an LC system comprises a complex space-time evolution of color and brightness
patterns that result from the multiple physical processes taking place in the LC film (e.g., diffusion of the
analyte through the film and binding/reaction events occurring at the surface). The optical response is
influenced by the system design (nature of the supporting surface and of the LC film)* as such, responses
encode significant information that can be used to guide sensor design and to gain insights into mechanistic
behavior occurring at different spatial and temporal scales.
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Fig. 1: Optical response of a functionalized LC film to gaseous analytes. (a) Schematic of the LC film design used for
detection of gaseous analytes. The LC molecules are initially aligned perpendicularly (homeotropic) to a chemically
functionalized surface (e.g., a metal salt-decorated surface); as such, the incident polarized light passing through the
LC film from the bottom cannot pass through the top polarizer. The gas analyte diffuses through the LC film and
eventually reaches the surface to perturb the binding of the LC to the surface. This perturbation triggers a change in
LC orientation (homeotropic to planar) and alters the polarized light passing through the top polarizer, resulting in a
complex space-time optical pattern (b).

Machine learning (ML) techniques have recently been used to extract information from LC optical
responses to enable prediction of analyte species and concentrations. Cao et. Al. used an off-the-shelf
convolutional neural network (CNN), known as AlexNet, to extract features of LCs that were exposed to
dimethyl methylphosphonate (DMMP)®; the feature information was obtained by applying convolution
operations on LC optical micrographs (in the form of grayscale images) and captured spatial brightness
patterns that developed in the LC when exposed to DMMP. The authors found that this information
correlates strongly with the gas analyte type and this thus provides an approach for detecting DMMP (a
simulant of nerve gas agents). Smith et. Al. analyzed response features for this same dataset (in the form
of color images) by using a simpler CNN architecture called VGG-16°. By analyzing feature information from
targeted convolutional layers, the authors found that color patterns of the LC response encode information
that correlates strongly to the presence of DMMP. Bao et. Al. recently developed and trained a powerful,
three-dimensional (3D) CNN to extract information from space-time responses of LCs (in the form of
colored videos) that are exposed to a gaseous mixture containing ozone (Os) and chlorine (Cl,)’. Their
analysis shows that the space-time features extracted using convolution operations accurately predict the
concentration of the O3/Cl, mixture and reveal LC response features that are characteristic of Oz and Cls.

While neural net architectures provide powerful capabilities that can automatically extract information
from highly complex space-time LC responses, they also have some important drawbacks. Specifically, due
to the “black box” nature of these models, it is difficult to gain insight into the specific features that they
are searching for and their physical origin. Attempts have been made to “explain” CNN predictions using
saliency maps®, but these methods also provide limited interpretability. CNNs (particularly in 3D) also
involve many parameters (hundreds of thousands to millions); as a result, they can be computationally
expensive to train (particularly for images/videos with high spatial or temporal resolutions) and are prone
to overfitting; in addition, CNNs can be sensitive to noise and rotations that commonly appear in real
datasets.



Topological data analysis (TDA) has recently emerged as a powerful mathematical framework that provides
tools for characterizing data objects. For instance, TDA has been employed to quantify the similarity of pore
structures in nanoporous materials, facilitating the identification of materials with comparable pore
geometries and the screening of materials similar to top-performing structures®. TDA has also gained
prominence in brain research, elucidating the dynamic organization of whole-brain activity’®, and
uncovering the principles governing transitions in resting-state brain activity!!. In medical science, TDA has
proven useful for identifying candidate cancer-associated genes and revealing previously undiscovered
cancer-related alterations'?. Furthermore, it has been instrumental in uncovering patterns, interactions,
and predictors in brain and spinal cord injuries'®. Among all TDA techniques, topological descriptors are
particularly straightforward to implement and have strong connections to physical properties, resulting in
their extensive application across numerous fields. The Euler characteristic (EC) is a key topological
descriptor that characterizes random fields'* and encodes statistical information such as means, variances,
and characteristic length-scales’®® and has been recently used to characterize images. The fractal
dimension (FD) is another topological descriptor that quantifies the scaling factor of a pattern contained
within a data object’. FD has been widely used to analyze and monitor morphological changes on material
surfaces®®. Topological descriptors are capable of extracting information from multidimensional data and
are tolerant to noise'®; in addition, topological descriptors can provide natural connections with physical
phenomena that drives behavior. For instance, the EC has been widely used to characterize topological
defects in LCs 2°27. These defects have profound effects on the physical properties of the LC 2% for
instance, the total topological charge is correlated to the EC of the surface via the Gauss-Poincaré theorem
(sum of all charges on a closed surface is equal to the EC of the surface)®°. In this work, we use topology to
characterize the optical responses of nematic LC systems, which contain defects as well as many other
structural features.

Several studies have characterized the topology of optical responses of different nematic LC systems using
the FD. Garbovskiy et al. explored the electro-optical properties of high-resistivity nematic LCs that are
sandwiched between ferroelectric polymer films®!; the authors measured the FD of ferroelectric films to
indicate the roughness of the boundaries between adjacent domains. The FD has also been used to study
aggregation of inclusions in bulk LCs or at LC interfaces. Lavrentovich et al. studied the dynamics of
anisotropic aggregation of spherical colloidal particles dispersed in a nematic LC 32; they used FD to describe
the geometry of the aggregated colloidal clusters and understand the aggregation dynamics. Abbott et al
used FD to characterize the aggregation of peptides at interfaces of LCs*3. Goncharuk et al. used the FD to
characterize the aggregation, percolation, and phase transition for a nematic LC doped with carbon
nanotubes®*. Turner et al. used the FD to explore the aggregation and optical properties of a thermotropic
nematic LC doped with graphene oxide®. These studies have shown how topology is a common factor that
correlates to emergent properties. While the FD has been widely used to characterize nematic LCs, other
topological descriptors have rarely been used. For example, Smith et al. recently used the EC to characterize
simulated random fields that contain features that are similar to those of chemoresponsive nematic LC
films®®. Solis et al. used persistent homology and a derived structural heterogeneity to track the structural
changes in an LC nanocomposite and revealed the effect of confined geometry on the nematic-isotropic
and isotropic-nematic phase transition®®.

In this work, we study the use of different topological descriptors (EC, FD, and lacunarity) to extract
information from spatio-temporal optical responses of chemoresponsive nematic LCs. We present a
unifying view of these descriptors through the lens of Minkowski functionals (MFs) and fractal analysis,
which describe different geometric and topological properties such as shape, convexity, and connectivity
that characterize a given topological space®. This unified view allows us to understand what specific feature
information different descriptors are capturing. MFs have been previously proposed for comparing and



evaluating material properties; for example, Slotte et al. used MFs to predict the resistivity and permeability
of porous media®’. Additionally, MFs have been studied in a variety of other fields such as geological
sciences®® and medical imaging®. MFs have been traditionally applied to binary fields (e.g., two-phase
materials) because a binary field can be characterized using a simple (scalar) descriptor. However, the
optical responses that we analyze here are space-time continuous fields; to characterize these fields, we
use a technique known as filtration®°. The filtration approach enables the extraction of richer topological
information because it keeps track of how topological features emerge at different scales. We also show
that different color representations reveal different topological features.

Our work aims to demonstrate that the use of topological descriptors provides a computationally scalable
and flexible approach for extracting information from complex optical responses of chemoresponsive LCs.
We use these capabilities to analyze real, high-throughput experimental data for LC systems that respond
to the presence of sulfur dioxide (SO,) and relative humidity (RH), and for LC systems that respond to
gaseous mixtures containing Os and Cl,. Our results reveal that the topological descriptors encode
significant and complementary information that can be used for diverse machine learning tasks. Specifically,
we demonstrate that the descriptor information can be used for unsupervised learning tasks (such as
principal component analysis) to facilitate the identification of experimental outliers and the visualization
of response dynamics in low-dimensional spaces. We also show that the topological descriptors can be
used in supervised learning tasks to build simple ML models (such as support vector machines) that can
achieve comparable prediction accuracies to sophisticated CNNs, but with a computational cost that is 2 to
4 orders of magnitude lower and using less sophisticated computing hardware (CPUs instead of GPUs). This
desirable scalability enables the processing of space-time data at high resolutions that might not be
accessible to CNNs. All scripts and data needed to reproduce the results are provided as open-source code.

Results

We present different case studies using real, high-throughput experimental data of LC optical responses;
the experimental procedures and datasets analyzed are reported in previous work®>”#¥*2 |n a typical
experiment, several hundred LC domains supported on a chemically functionalized surface are imaged in
parallel. This enables rapid acquisition of LC optical response data. This approach is also amenable to
massively parallel data acquisition via simultaneous imaging of tens of thousands to millions of LC domains.
Here, we use LC optical response data to highlight how topological information can be used to conduct
different unsupervised ML tasks (visualization, clustering) and supervised ML tasks (regression and
classification). Our goal is also to demonstrate that these tasks can be conducted in a computationally
scalable manner; as such, we provide comparisons with state-of-the-art CNNs. Finally, we demonstrate
how these tools can facilitate understanding of underlying phenomena taking place in LC films.

LC Response to SO; and H,0

Topological Descriptor Visualization and Analysis. As illustrated in Fig. 2c-d, different SO,
concentrations generate response times that are distinguishable based on large increases in the average
image intensity alone; however, changes in RH are not straightforward to distinguish via response times.
As a result, the response time cannot accurately reveal changes in gas composition; this motivates our
analysis of the spatial topology of endpoint images. Fig. 2a-b highlight the differences in spatial topology
associated with various SO, concentrations and RH; we can see that the endpoint image topology is a more



informative predictor of SO, concentrations and RH (compared to response time). In Fig. 2a-b, we also show
the main principal components of the grayscale EC curves (details on principal component analysis are
shown in Section S3.4). A clear cluster separation can be observed between the points representing 2 ppm
SO, and the points representing the rest of the SO, concentrations; the points representing 20% RH are
also far apart from the points representing the rest of RHs. We thus expect that concentration prediction
is straightforward for 2 ppm SO, and 20% RH (due to inherent cluster separation); the overlap of points at
other concentrations poses a challenge for ML classification. This highlights how topological information
can be used to quickly analyze experimental data and to begin identifying different families of morphologies
observed in the responses.

In Fig. 2c-d, we show the average grayscale image EC, FD, and LA curves of the LC system exposed to
different SO, concentrations and RH. The difference in curve shape and peak height and location indicates
that the RH has a perceptible effect on the endpoint topology. We also obtained six additional single-
channel images to examine the effect of color representations (R, G, B, L*, A*, and B*). Given that each
color channel reveals distinct topological features, we proceeded to investigate if combining all the
different topologies results in an accurate classification of morphologies (and associate gas analyte
concentrations).

Concentration Prediction and Scalability Analysis. We compared the concentration prediction results
using AR, BL, EC, FD, and LA as well as the combined descriptors for grayscale images. For each topological
descriptor curve, we had a vector of size 100, while the size of the combined vector was 500. To prevent
the influence induced by varying vector sizes, we reduced/compressed the feature vector dimension to 100
using principal component analysis (PCA). All subsequent results were derived following PCA dimensionality
reduction. Fig. 3a and 3c demonstrate that the combination of topological descriptors on grayscale images
outperforms the use of each individual descriptor in terms of classification accuracy and regression RMSE
for both SO, concentration and RH prediction. Specifically, the SO, RMSE for the combined descriptors
(1.21 ppm) is 9% lower than the best single descriptor AR result (1.33 ppm); the SO, accuracy for the
combined descriptor (0.813) is 8% higher than the best single descriptor LA result (0.750). Similarly, the RH
RMSE for the combined descriptors (15.7%) is 10% lower than the best single descriptor EC result (17.5%);
the RH accuracy for the combined descriptor (0.785) is 8% higher than the best single descriptor EC result
(0.729). This indicates that the topological information contained in each descriptor is complementary
(non-redundant).

Because each color channel carries different information, we investigated the effect of combining them.
For each color channel, we had a vector of topological descriptors of size 500 (including AR, BL, EC, FD, and
LA), while the size of the entire combined descriptor vector was 3500. Following the same procedure as for
grayscale images, the input vector size to the SVM used in TDA was reduced to 100 using PCA. In Fig. 3b
and 3d, we demonstrate that the combination of topological information from color channels outperforms
each color channel. Specifically, the SO, RMSE for the combined color channels (0.990 ppm) is 11% lower
than the best blue channel result (1.114 ppm); the SO, accuracy for the combined color channels (0.875) is
7% higher than the best green channel result (0.816). Similarly, the RH RMSE for the combined channels
(14.0%) is 10% lower than the best single blue channel result (15.6%); the RH accuracy for the combined
channels (0.854) is 4% higher than the best single blue channel result (0.820). This indicates that the
topological information contained in the color channels is complementary.
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Fig. 2: Results for SO,/RH mixture dataset. Principal component analysis of the endpoint EC curves of LC systems
exposed to mixtures of (a) 0.5, 1, 2, and 5 ppm SO, and 40% RH and (b) 20%, 40%, 60%, 80% RH and 2 ppm SO,. The
green and pink interference colors are caused by the parallel orientation of the LC. We can observe perceptible
differences between the responses, but these differences are difficult to quantify due to the presence of
heterogeneity. By visualizing the main principal components (PCs), we can see that there is a clear separation of the
morphology for the response to 2 ppm SO, and 20% RH from the rest. The points corresponding to other
concentrations have substantial overlap. (c) The average intensity curve of the response video and the average EC,
FD, and LA curves from the endpoint grayscale image for different SO, concentrations. The response time (when the
intensity starts to increase) varies significantly with SO, concentration, but there is still considerable overlap between
2 ppm and 1 ppm samples. Without using the entire video, the topological descriptor curves of the endpoints show a
noticeable separation, especially for LA (different peak intensities). (d) The average intensity curve and the average
EC, FD, and LA curves for different RH. Since the response time does not vary with respect to relative humidity, it is
unfeasible to predict RH using the response time. Even though different RHs lead to similar response times, they have
distinct average EC curves (different shapes and peak intensity). EC and other topological descriptors provide an
efficient data representation that can predict SO, concentration and RH.



We compared the prediction results using a 2D CNN to a SVM model that uses topological descriptor
information. For the input to the SVM, we used a size 100 vector from PCA containing all topological
descriptors and color channels. A parity plot is used to compare the regression results (Fig. 3f-g). The dots
represent the average predicted values, while the error bars represent the standard deviations. We found
that both the CNN and TDA approaches have average prediction values that are close to the diagonal
(representing a perfect prediction). Specifically, the RMSE of CNN for SO, is 0.945 ppm, which is 5% lower
than the RMSE of TDA (0.990 ppm). Similarly, for RH, the RMSE of CNN is 12.6%, which is 10% lower than
the RMSE of TDA (14.0%). In Fig. 3h-k, we present the classification results in a confusion matrix, with
diagonal entries representing the rate of correct classification and off-diagonal entries representing the
rate of misclassification. Specifically, the accuracy of CNN for SO, is 0.951, which is 9% higher than the
accuracy of TDA (0.875). Similarly, the accuracy of CNN for RH is 0.868, which is 2% higher than the accuracy
of TDA (0.854). TDA is comparable to CNN methods in both regression and classification. However, we note
that the number of parameters in CNN was close to 17,000, which is 170 times the number of parameters
used in the SVM model (100). As such, the TDA approach uses a much simpler learning model. Additionally,
CNN requires rotational data augmentation to ensure that the prediction is rotation-invariant. The
topological descriptors, on the other hand, are globally invariant, which means they are not affected by
rotation, bending, or translation. It is also important to highlight that the CNN extracts feature information
using repetitive convolution operations (at each iteration in the training procedure), while the TDA
approach extracts information using filtration operations that are only conducted once. All of these
observations have implications on computational scalability.

To compare computational scalability, we compared the training time required for TDA and CNN (Fig. 3e).
The average time required for the TDA approach was 14.04 seconds, while the average time required to
train a CNN was 154 seconds. The differences observed in CNN training time between SO, and RH is due to
early stopping®, which is a technique for stopping training when the validation loss converges. The TDA
training time includes the calculation of all the topological descriptors (13.28 seconds) and the SVM training
time (0.76 seconds). Considering seven color channels, the total number of images processed for the
computation of the topological descriptors was 3,528. The average computational time to obtain the
topological descriptors from a single image is less than 4 milliseconds, indicating that the computation of
all topological descriptors is fast (we also note that these computations only need to be performed once).
This contrasts with the CNN approach, in which convolutions are performed repetitively with different
operators that the model is learning. Overall, we see that TDA provides a significant reduction in computing
time over CNN; moreover, TDA only requires a CPU to conduct computations, while CNN requires the use
of a GPU (more sophisticated architecture). Details on computational hardware used for obtaining these
results can be found in the SI.
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Fig. 3: SO,/RH concentration prediction results. (a, ¢) Prediction results for SO, and RH based on different topological
descriptors of grayscale images. A combination of topological descriptors outperforms the use of single descriptors
with higher classification accuracy and lower regression RMSE, showing that the topological information contained in
each descriptor is complementary. The asterisk (*) indicates the best-performing descriptor set. (b, d) Prediction
results for SO, and RH based on different color channels, respectively. The combined color channel descriptors exhibit
better prediction accuracy than the single color channel descriptors, indicating that the topological information
contained in each color channel is also complementary. (e) Comparison of computation time of TDA and the 2D CNN.
The 2D CNN requires 200 times the training time of TDA. Even accounting for the time required to prepare topological
data, the total computation time of the CNN is 11 times that of TDA. (f-g) Regression parity plot based on SVM with
TDA and 2D CNN for predicting SO, concentration and RH, respectively. The error bars represent the standard
deviation of the prediction. (h-i) Classification confusion matrix for the prediction of SO, concentration based on TDA
and 2D CNN, respectively. (j-k) Classification confusion matrix for the prediction of RH based on TDA and 2D CNN,
respectively. In general, TDA delivers comparable prediction accuracy than the 2D CNN, but at a lower computing
cost, with fewer overfitting problems, and without the need for rotational data augmentation.



LC Response to Oz and Cl;

Topological Descriptor Visualization and Analysis. In this study, we investigated four levels of Os
concentration (i.e., 1.5, 5, 100, and 650 ppm) and 4 levels of Cl, concentration (0, 1, 2, and 5 ppm). From
our previous study, the concentration of the mixture cannot be accurately predicted if only the endpoint
image is considered’, therefore we studied the space-time topology of the video. Fig. 4c illustrates the
differences in the space-time topology of the two LC systems exposed to different concentrations of
analytes. The A* channel exhibits a recurring color transition from red to green, indicating a changing tilt
angle. Fig. 4d depicts the space-time filtration for a grayscale video; the space-time topology varies
considerably at different thresholds.

The dataset included 800 responses from LC systems (50 responses per gas mixture concentration). Similar
to the SO,/RH study, we began with a grayscale video and normalized it with a zero mean and unit variance.
Direct space-time filtration on the video (Fig. 4d) yielded six topological descriptor curves, which are VL, AR,
BL, EC, FD, and LA. In Fig. 4e, we plotted the first two principal components of space-time EC curves from
the videos in Fig. 4a (pure O3) and Fig. 4b (O3/Cl, mixture). One can detect a distinct distinction between
pure Os (black dots) and the Os/Cl, mixture (red dots). The considerable difference between the average
EC curves of pure O3 and 03/Cl, mixture suggests that space-time EC can effectively capture the difference
in topology. The presence of outliers implies that response videos from the same batch of experiments still
exhibit variations (e.g. caused by imperfect sample preparation, including the presence of scratches and
other features on the chemically functionalized surfaces that locally disrupt LC anchoring). Fig. 4f
demonstrates how different topological descriptors can result in distinct clustering, indicating that they are
complementary. Similar to the SO,/RH case study, we examined the effect of topological descriptors and
color channels on the accuracy of concentration prediction; a comparison with the 3D CNN model was also
performed.

To confirm that space-time topology information was essential for accurate predictions, we also studied
the use of spatial topological descriptors of endpoint images. Response curves (time evolution of the mean
brightness), which are often considered in LC studies, were also used to predict the mixture concentrations.
For video and image filtration, each input vector to SVM is reduced to a size of 100 using PCA.

Concentration Prediction and Scalability Analysis. We compared the concentration prediction results
using VL, AR, BL, EC, FD, and LA as well as the combined descriptors for grayscale videos. For each
topological descriptor, we had a vector of size 100, while the size of the combined vector was 600. We
reduced the vector size to 100 using PCA. As shown in Fig. 5a and ¢, we find that in general, the combination
of topological descriptors outperforms each descriptor in terms of classification accuracy and regression
RMSE for both O3 and Cl; concentration prediction. Specifically, the Os RMSE for the combined descriptors
(115 ppm) is 8% lower than the best single descriptor AR result (125 ppm); the Os accuracy for the
combined descriptor (0.938) is 2% higher than the best single descriptor AR result (0.921). However, the
Cl, RMSE for the combined descriptors (1.52 ppm) is 3% higher than the best single descriptor LA result
(1.48 ppm); the Cl, accuracy for the combined descriptor (0.606) is 5% lower than the best single descriptor
LA result (0.635). This means that LA (space-time hole size distribution) contains key information for
predicting Cl, concentration. In general, combining topological descriptors still improves the accuracy of
the prediction.
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Fig. 4: Os/Cl, mixture dataset. Experimental TEM grids capturing multiple LC responses (endpoint images) when
exposed to (a) pure 5 ppm Cl; and (b) a mixture of 5 ppm Cl, and 5 ppm Os. (c) Visualization of the space-time A*
topology when exposed to two concentrations. (d) Space-time filtration of a grayscale video. (e) Principal component
analysis of EC curves obtained by space-time filtration of grayscale videos in (a) and (b). Each point represents the
main principal components associated with one of the grid videos. A clear separation of black dots (pure Os) and red
dots (03/Cl, mixtures) can be observed. The significant difference between the average EC curves of pure O; and
0s/Cl, mixtures indicates that space-time EC can effectively capture the difference in topology caused by different
analytes. The blue and purple boxes represent outliers, revealing that response videos from the same batch of
experiments exhibit variations. (f) Principal component analysis of EC, FD, and LA curves for mixtures of 1.5, 5, 100,
and 650 ppm O3 and 5 ppm Cls. Different topological descriptor curves generate distinct clustering patterns.

In Fig. 5b and d, we demonstrate that the combination of color channels outperforms each color channel.
Specifically, the O3 RMSE for the combined color channels (76.9 ppm) is 18% lower than the best red
channel result (94.0 ppm); the O3 accuracy for the combined color channels (0.986) is 5% higher than the
best red channel result (0.941). Similarly, the Cl, RMSE for the combined channels (1.15 ppm) is 22% lower
than the best single red channel result (1.48 ppm); the Cl, accuracy for the combined channels (0.786) is
22% higher than the best single blue channel result (0.646). The significant accuracy improvement using
combined color channels shows that the topological information contained in each color channel is
complementary.

We compared the prediction results using 3D CNN and SVM with TDA. Fig. 5f and g show the regression
parity plots. Both the CNN and TDA methods have average prediction values that are close to the diagonal.
Specifically, the RMSE of CNN for Os is 43.2 ppm, which is 44% lower than the RMSE of TDA (76.9 ppm).
Similarly, for Cly, the RMSE of CNN is 1.01 ppm, which is 12% lower than the RMSE of TDA (1.15 ppm). The
remarkable RMSE difference for O3 may be due to the lack of sufficient data points between 100 and 650
ppm. However, the coefficient of determination (R?) of the O3 concentration regression for CNN is 0.973
and for TDA is 0.971, which is very close.
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In Fig. 5h-k, we present the classification results in a confusion matrix. Specifically, the accuracy of the CNN
for O3 is 0.991, which is 0.5% higher than the accuracy of TDA (0.986). Similarly, the accuracy of the CNN
for Cly is 0.711, which is 10% lower than the accuracy of TDA (0.786). TDA is comparable to the CNN in
terms of O3/Cl, concentration prediction. The number of parameters in the CNN is at least 43,000, which is
430 times higher than the number of parameters used in the SVM (total of 100). In addition, we compared
the training time required for TDA and CNN in Fig. 5e. The average time required for TDA was 274.8 seconds,
while the average time required to train a CNN was 9,000 seconds (2.5 hours). The TDA time includes both
the computation of all the topological descriptors (271.51 seconds) and the SVM training time (3.29
seconds). Considering seven color channels, the total number of videos processed for the topological
descriptor was 5,600, and the size of each video is 150 X 50 X 50. The average time required to extract
topological descriptors from a single video is less than 50 milliseconds, indicating again the scalability of
the TDA approach. Details of the resources for this case study can be found in the SI. We emphasize that
3D CNNs have limitations in handling large videos (resulting from long experiment duration and high space-
time resolutions) without sacrificing resolution or sampling rate, but the extraction of topological
descriptors for large videos is feasible and scalable. Our computational results thus suggest that topology
can enable processing of space-time data at resolutions that are not accessible to CNNs.

LC State Monitoring. Traditionally, the evolution of the average intensity has been used to visualize the
state of the LC system. In this type of analysis, there are a couple of important times of interest, the
response time and the steady-state (settling) time. The response time is when the average intensity
increases from the initial state, while the steady-state time is when the intensity settles (i.e., response
saturates). The steady-state time is important in determining when an experiment can be stopped. For
example, in Fig. S12, the response time for the LC system exposed to 5 ppm Os and 5 ppm Cl is at 8 seconds,
while the settling time is at 25 seconds. The increase in intensity is smooth between 8 and 25 seconds. To
explore how topological descriptors can be used to visualize the dynamics of the system, we obtained the
topological descriptor curve for each snapshot in the video and calculated the first two principal
components associated with the curve for each time point. Fig. S12 shows the temporal evolution of the
principal components. The results indicate that, even when the average intensity reaches a steady-state,
there are clear topological changes still occuring in the LC film (e.g., EC, FD, and LA have large variations
after 25 seconds). As such, if we use only the average intensity to characterize the LC system, important
behavior might be neglected. We also observe that, between 8 and 25 seconds, although the increase in
average intensity is smooth, all topological descriptors show that the evolution of the topological pattern
is not smooth and complex. For example, the second principal component of LA shows that, between 10
and 15 seconds, the variation in the hole size distribution is not monotonic. Examining the time evolution
of the topological descriptor curves in Fig. S13 also reveals that some topological changes continue beyond
the steady-state time of the average intensity. For instance, the position and shape of EC curve peaks vary
significantly, indicating that the system has not reached a steady-state. Compared to the average intensity,
time topology provides a more informative description of the LC state.
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Fig. 5: O3/Cl, concentration prediction results. (a-c)Prediction results for Oz and Cl, based on different topological
descriptors of grayscale images, respectively. For Os concentration prediction, the combined topological descriptors
outperform any single descriptors with higher classification accuracy and lower regression RMSE. For Cl,
concentration prediction, LA has the highest accuracy, demonstrating that the fractal topology provides important
information that can be used to identify Cl, concentration. The combination of topological descriptors maintains a
relatively high level of prediction precision. The asterisk (*) indicates the best-performing instance. (b)(d) Prediction
results for Oz and Cl, based on different color channels, respectively. The combined color channel descriptors provide
more accurate predictions than the individual color channel descriptors, demonstrating that the topological
information included in each color channel is also complementary. (e) Comparison of computation time of SVM with
TDA and 3D CNN. 3D CNN requires more than 2,700 times the training time of SYM with TDA. Even accounting for the
time required to prepare topological data, the total computation time of 3D CNN is 33 times that of TDA. (f-g)
Regression parity plot based on SVM with TDA and 3D CNN for predicting Os; and Cl, concentrations, respectively. The
error bars represent the standard deviation of the prediction. (h-i) Classification confusion matrix for the prediction
of O3 concentration based on SVM with TDA and 3D CNN, respectively. (j-k) Classification confusion matrix for the
prediction of Cl, concentration based on SVM with TDA and 3D CNN, respectively. Similar to the SO,/RH case study,
SVM with TDA provides comparable or higher prediction accuracy than state-of-the-art 3D CNN at a lower
computational cost, with fewer overfitting issues, and without the requirement for rotational data augmentation.
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Discussion

We presented topological descriptors for characterizing the space-time optical responses of
chemoresponsive LCs exposed to gaseous analytes. We show that topological descriptors provide a scalable
and flexible approach for extracting information from complex image and video data and are competitive
with state-of-the-art convolutional neural networks. Specifically, we show that topological descriptors
enable the construction of simple machine learning models that achieve comparable accuracy to state-of-
the-art convolutional neural networks but with a much lower computational cost. This indicates that
topological descriptors can be potentially used to create new and powerful machine learning architectures
that more effectively capture topological features. Specifically, one could envision the creation of hybrid
architectures that extract information using convolution and topological operations. In addition, the
evolution of topological descriptors provides a more informative approach to monitoring the state of LC
systems than intensity-based timescales (e.g., response time and steady state time). Our future research
will focus on studying such architectures and on using molecular dynamics to understand how liquid crystal
properties affect observed topologies.

Methods

The optical response data analyzed in this work appears in the form of color images and videos. A grayscale
image is represented as a matrix, where each entry contains the pixel light intensity. Images can be
considered as a union X = UM, A4; of compact and convex subsets 4; in the 2D Euclidean space R?. The
restriction of convexity is reasonable because a pixel can be considered as a compact and convex set. In
this regard, functionals can be defined to describe the geometric and topological properties of images
(which are composed of a finite union of pixels).

A grayscale video is a sequence of images and can be represented as a tensor; here, the tensor can be seen
as a union of voxels (3D version of a 2D pixel) in R3. Color images and videos are the superposition of
matrices or tensors, where each matrix or tensor captures a specific color channel. For instance, a color
image is typically represented as the superposition of three matrices (red, blue, and green channels).

In the following discussion, we focus on the analysis of images; the analysis of videos is a natural (but
important) extension of the discussion. In Fig. 6, we provide an overview of information extraction
techniques from images and videos using topological descriptors for the characterization of space, time,
and space-time topology. Here, we highlight how descriptors such as the Euler Characteristic (EC), fractal
dimension (FD), and lacunarity (LA) embed information that can help visualize topological features and can
be used to construct predictive models.
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Fig. 6: Overview of information extraction approaches using topological descriptors. We collect high-throughput liquid
crystal response data for different analytes (e.g., pure Os, pure Cl;, and O3/Cl, mixtures). The analytes trigger different
space-time responses. We convert these RGB data to different color representations; here, we illustrate a grayscale
representation as an example (but others such as LAB are possible). Using the selected color representation, we can
extract spatial topology information from endpoint images using a variety of descriptors, such as the Euler
characteristic (EC), fractal dimension (FD), and lacunarity (LA). Topological descriptor can then be used to perform
unsupervised learning tasks (e.g., principal component analysis) to separate/cluster different responses or to build
supervised learning models (e.g., classification and regression) to predict/classify responses. It is also possible to
visualize the time evolution of the spatial topology by monitoring the descriptors at each time step; this can be used,
for instance, to identify critical times and/or determine when the system has reached a topological steady-state. By
treating the video data as a 3D tensor, we can also directly examine the topology of the associated space-time field
and we can use the descriptors to conduct unsupervised/supervised learning tasks.

Regular Geometry

Integral geometry provides a set of descriptors, known as Minkowski functionals (MFs), to describe the
geometric and topological properties of a binary lattice X. The pixels of a binary lattice are either O (black)
or 1 (white). In the case of a spatial field, the lattice is a binary matrix; in the case of a space-time field, the
lattice is a binary tensor. It is important to emphasize that Minkowski functionals can be used to represent
spatial and space-time lattices (and even higher dimensional lattices). A binary lattice can be obtained from
an image or video (a continuous field) by applying a thresholding/filtration operation, as we describe later.

In general, in a n-dimensional Euclidean space R", there are n + 1 Minkowski functionals that describe the
compact domain of a binary space**. These are defined by integrals of curvatures using differential
geometry of smooth surfaces®. In a 2D case, three functionals My, M;, M, are used to characterize X. If 0X
is the regular boundary of X and R is the principal radius of the curvature, the three functionals are:
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Anillustration of these definitions and more details on Minkowski functionals can be found in the SI (Section
S1.1and S1.2). In simple terms, My, is the covered area A, which we will refer to as AR; M; is the boundary
length U (up to a factor), which we will refer to as BL; M, is the Euler characteristic y (up to a factor), which
we will refer to as EC. The EC is a dimensionless descriptor that captures connectivity and is thus
fundamentally different from AR and BL. The EC can be expressed as y = By — B1, where [, is the number
of connected components and B, is the number of holes'®. For a binary spatial lattice, S, is the number of
connected (white) components and f8; is the number of connected (black) components. For a binary space-
time lattice, the ECis y = By — 1 + B2, where B, is the number of voids.

To understand the relevance of Minkowski functionals, it is important to discuss Hadwiger’s Theorem?®.
This result states that any additive, motion-invariant, and continuous functional F of X € R™ can be
expressed as a linear combination of n + 1 Minkowski functionals M,,:

n

FOO =) cuMy(X). 2

v=0

Here, the coefficients ¢, € R are independent of X. This result is key because it highlights that different
Minkowski functionals encode unique information (although some functionals might not be particularly
informative). Note also that the functional F(X) can be used to represent an individual MF M,,(X) by
setting the coefficients of the other MFs to zero.

The additivity, motion invariance, and continuity properties of the functional F have key practical
consequences, which we summarize as follows:

1. Additivity: The functional of the union of domains X U X’ can be writtenas F(X U X') = F(X) +
F(X') —F(X nX"). Additivity is important because it implies that a complicated domain X can be
partitioned and one can compute the functional separately in each partition. Techniques to
compute MFs, such as the marching square algorithm**, exploit this property and enable the use
of parallel computing. A detailed procedure for the calculation of the MFs for a binary lattice using
the marching square algorithm is provided in the SI (Section $1.2). We highlight that these
procedures are behind powerful software used for computing topological descriptors.

2. Motion invariance: The functional is independent of its position and orientation. If G is a
combination of the translational and rotational group and g € G, then F(gX) = F(X). The
motion-invariance property is critical because it states that the functional is invariant to rotations
and translations of the object X. This property is not satisfied by other data processing techniques
such as convolutions (used in CNNs); as such, CNNs need to deal with translation and rotation using
ad-hoc procedures that affect their computational scalability.
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3. Continuity: If a sequence X,, = X converges as n = oo, then F(X,,) = F(X) also converges. This
result is important because it indicates that the functional of the true field X can be approximated
by an approximating sequence X, (e.g., obtained from digital imaging). In other words, an
approximation X,, of X will yield similar functional values; this has implications in dealing with
objects of different spatial or temporal resolutions. Specifically, there is a guarantee that increasing
resolution will lead to eventual convergence to the true functional.

Fractal Geometry

Minkowski functionals are defined on regular geometry, whereas many structures found in scientific
research and nature are not regular (such as fractal structures). Fractals are specific examples of self-
similarity, where a structure or dynamic pattern (sometimes random) is repeated across multiple spatial or
temporal scales and have a fine structure on arbitrarily small scales*’. Well-known fractal structures appear
in Brownian motion®®, polymer networks*, aggregate growth phenomena®®, and porous media®. Fractal
structures have also been studied in LCs*’. Methods of classical geometry are not suitable for studying
fractals; to study fractal geometry, it is necessary to introduce new forms of dimensioning.

The notion of dimension is central to characterizing fractal patterns. Traditional geometry involves the
topological dimension (or Lebesgue covering dimension). The first, second, and third topological
dimensions are length, area, and volume; however, topological dimensions are not sufficient to describe
fractals. For example, from measure theory, the path of a 2D Brownian motion only makes sense as a 2D
object (almost space-filling) because it can be arbitrarily large while still having zero area®?.

The limitations of topological dimensions lead to the emergence of fractal dimensions. A well-known fractal
dimension is the Hausdorff dimension, which has the advantage of being defined for any set. A fractal
always has a Hausdorff dimension that is greater than or equal to its topological dimension®3. The formal
definition of the Hausdorff dimension and measure can be found in the Sl (Section 51.3).

Unfortunately, the Hausdorff fractal dimension is difficult to compute and thus the so-called box-counting
FD is used to approximate it (a detailed discussion is provided in the SI). In each step of the box-counting
scheme, the lattice X containing fractals is covered by a grid of squares with side length €, and the number
of squares N(€) intercepted by the object is recorded. One can derive a log-log relation as follows:

1
log N(e)~D logz +logA,

| ! 3)
- £-0 &
D =limlogN(¢e) /log (—)

where D is the fractal dimension (FD) and A is the lacunarity (LA). Expressed simply, the LA describes the
space occupied by the fractal, while the FD describes the heterogeneity of the fractal®®. The FD is also
commonly referred to as the box-counting dimension or Minkowski dimension. The LA is also commonly
referred to as Minkowski content and is computed using box-counting techniques. We refer to the FD and
LA as fractal Minkowski descriptors. A fractal with higher FD has more "roughness", while a fractal with
higher LA has a more inhomogeneous hole distribution. The exact definitions of these topological
descriptors are provided in the Sl (Section S1.3 and S1.4).>. Lacunarity is the (complementary) counterpart
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of the fractal dimension. It is possible that the FD and LA are correlated (do not provide complementary
information); however, this is not generally the case. It is also important to highlight FD and LA can be
defined for 3D lattices (e.g., arising from space-time objects); we emphasize this because these descriptors
have been typically used only to characterize 2D lattices (e.g., arising from spatial objects).

Understanding the scaling properties of Minkowski functionals is important because they can help
distinguish fractal and regular geometry. For a 2D lattice containing a regular geometry, we have M;(1X) =
A27IM; (X)), that is

Mg ~1,M; ~2"1L, M, ~ 172, (4)

For instance, shrinking X by half, in the same area, we get 4 replicates of half M;. Based on the additivity
of Minkowski functionals, we obtain the new M; = 2Mj;. For fractals, the scaling is different; the second
Hausdorff measure of the fractal in R?, which is the covered area A under the Lebesgue measure, scales
to a non-integer value My~LP~2, with fractal dimension D € (1,2) instead of d = 2 for the scaling of
regular geometry. One can find similar scaling behavior for M; and M, of fractals®®. It is important to
emphasize that the FD and LA are descriptors that capture fundamentally different features than AR, BL,
and EC. However, as we show in our computational results, all these descriptors can provide valuable
information when characterizing complex space-time patterns.

Extracting Topological Information using Filtration

Minkowski functionals and fractal properties discussed previously are defined for binary lattices. Grayscale
images, however, are continuous fields; in other words, pixels that can take continuous values between the
minimum of 0 (black) and the maximum of 1 (white). A lattice representation of an image can be obtained
by defining a threshold v between 0 and 1 and setting all pixels with lower intensity level than the threshold
to 0 (and all other pixels to 1). Once the image has been binarized, we can compute the corresponding
Minkowski functionals. However, this approach requires pre-selecting a threshold value; to avoid this
limitation, we apply a filtration procedure. Here, the idea is to propose a sequence of threshold values that
is used to binarize the grayscale image at different intensity levels, and then compute Minkowski
functionals at each level. This allows us to keep track of how topological features emerge at different scales.

To explain how the filtration process extracts rich topological information, note that a 2D image X can be
seen as a 3D topography that can be decomposed into multiple binary images X (also known as isoheight
planes)*. The filtration process is also known as a “watershed” in image processing. Importantly, this
approach can be applied to high-dimensional objects such as videos; in such a case, the 3D video X can be
seen as a 4D topography that is decomposed into multiple binary videos X. As shown in Fig. 7, we can
obtain the topological descriptors (AR, BL, EC, FD, and LA) of each binary image and summarize this
information in topological descriptor curves.
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Fig. 7: Filtration process of a grayscale image. The LC optical response is captured as a grayscale image; this image can
be represented as a 2D matrix, where the pixel intensity is the value of each matrix entry. The matrix representation
reveals the topological features of the grayscale image (which can be visualized as a 3D morphology); this reveals
peaks (large values) and valleys (small values) of intensity. To facilitate the next step of the filtration process, the
matrix is normalized to have a zero mean and unit variance. Filtration decomposes the matrix into a series of binary
matrices with certain thresholds (i.e. matrix values greater than the threshold are set to 1, otherwise they are set to
0). Topological descriptors collected at each threshold v are summerized in descriptor curves that capture various
aspects of the topology. The filtration process can also be applied to higher-dimensional objects, such as videos, using
space-time filtration.

Topological descriptor curves are effective tools for summarizing and visualizing image topology. In Fig. 8,
we illustrate how EC curves can be used to highlight differences in the topology of LC optical responses to
various analytes. Each image represents the endpoint optical response of the sensor, which corresponds
to the optical response after a fixed time after exposure to the analyte and after the optical response stops
evolving in time (i.e., average intensity is at steady state) (also see Fig. 6). Specifically, different analyte
types and concentrations will result in different LC surface orientations and corresponding morphologies.
For example, a mixture of 2 ppm SO, and 20% relative humidity (RH) produces a rough response with small
domains (Fig. 8d), whereas a mixture of 2 ppm SO, and 80% RH produces a smooth response with a large
domain (Fig. 8e). The differences in topology are revealed by the EC curves. In Fig. 8g, we see that the EC
peak at 20% RH is higher than that at 80% RH. Other topological descriptor curves can also capture different
types of variations, as shown in Sl (Section S2.1 and S2.2). In Fig. 8, the LC responses to pure Os; and the
0s/Cl, mixture’, pure Cl,®, SO,/RH*, and DMMP*! are obtained from previous studies.
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Fig. 8: EC curves of LC optical responses to various gas analytes. Endpoint LC optical responses to (a) 5 ppm 037, (b) 5
ppm Cl3, (c) a mixture of 5 ppm O3 and 5 ppm Cl,’ (d) a mixture of 2 ppm SO, and 20% RH*, (e) a mixture of 2 ppm
S0, and 80% RH*? and (f) 10 ppm DMMP*! and their corresponding 3D morphologies. (g) Normalized EC curves for
different analytes; the EC curve shapes reveal differences in the topology of the optical responses.

Extracting Topological Information from Color Images

The optical response of LCs is frequently analyzed using grayscale images. As shown in Fig. 9a, however, we
can capture the response as a color image and decompose the image into red, green, and blue (RGB)
channels and analyze the topology of each channel. The color image in Fig. 9a was obtained after the
average intensity had reached a steady state. Similar to the RGB color space, the LAB color space is also
widely used in color decomposition, where the L* channel describes the brightness, the A* channel
describes the red/green level, and the B* channel describes the blue/yellow level. Fig. 9a shows how
different color spaces highlight different topological features of a response. In this example, the repeated
transition from red to green in the A* image is particularly noticeable, indicating different orders of
interference fringes (consistent with a continuous LC anchoring transition)’. This information can thus be
used to characterize spatial patterns of LC orientations that are not revealed in other color channels. There
is no definitive advantage or disadvantage of using RGB or LAB; different color channels, in general, carry
distinct information. This is illustrated in Fig. 9b, which shows that the EC highlights topological differences
between the color channels. The presence of complementary information from the color channels
illustrates that they can all be useful in characterizing responses. This has been previously observed in the
analysis of LC responses using CNNs’ (which conduct convolution operations in different color channels to
extract different types of pattern and texture information). These observations are important because, as
is done in CNNs via convolution, we can extract information from different color channels using topological
analysis. As we will show, this provides a flexible and general approach to constructing models that
correlate topological information to emergent properties of interest and that are competitive with CNNs.
Specifically, we will see that these models are computationally more scalable than CNNs, can achieve similar
accuracies, and require more modest computational hardware.

19



,_.
=]
T

0.5

| . . | . .
. . m E _1 0 I I
Threshold v

Fig. 9: Extracting topological information color images. (a) Optical response of LC exposed to Cl; at a concentration of
5 ppm. The RGB image is typically decomposed into (b) red, (c) green, and (d) blue channels. The image can also be
decomposed into (e) an L* channel that specifies brightness, (f) an A* channel specifies the red or green level of the
color, and (g) a B* channel specifies the blue or yellow level of the color. The corresponding 3D morphology is next to
each single-channel image. The A* channel reveals a repeated red-to-green transition, indicating different orders of
interference fringes (consistent with a continuous LC anchoring transition). The other channels do not highlight this
topology clearly. (h) Normalized EC curves for different color channels; differences in EC curves show that different
color channels encode different topological information.

Extracting Topological Information from Space-Time Responses

Topological descriptors can be used to characterize objects in high dimensions and in a scalable manner.
This provides a powerful approach to visualizing, quantifying, and summarizing complex space-time
responses. In Fig. 10, we visualize the characterization of a space-time topology of a LC optical response
using different descriptors. In Fig. 10b, the repeated transition from green to red in the space-time topology
of the A* channel reveals the continuous evolution of the tilt angle of the LCs (indicated by different orders
of interference fringes).

Similar to the 2D case (images), the lattice representation of a video is obtained by defining a filtration
threshold v and assigning all pixels with intensity levels below the threshold to 0 and all other pixels to 1.
Once the video has been binarized, the Minkowski functionals and fractal Minkowski descriptors can be
computed. The 3D Minkowski functionals have an additional component, volume (VL), and the EC now also
captures void spaces in the space-time field. In Fig. 10d, we illustrate six different topological descriptor
curves used to characterize a space-time topology. We can see how the EC reveals the complex dynamics
of the tilt angles.

The extraction of topological information for space-time fields can be combined with different color
representations to provide a scalable and flexible framework to conduct diverse unsupervised and
supervised ML tasks. For instance, as we show in the next section, we can construct ML models that achieve
similar accuracies to those obtained with powerful 3D CNNs. We also highlight that it is possible to
characterize the evolution of 2D spatial topologies (as opposed to characterizing the topology of the entire
3D space-time field); this is illustrated in one of our case studies. This approach is expected to lose
information, as it assumes that spatial topologies are not correlated in time (which might not be the case);
however, this approach can provide interesting insights on how topological features appear and disappear
in time, can help identify critical times at which features appear or disappear, and can help identify when
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the system topology has settled (achieved a topological steady-state). All these capabilities can be useful in

facilitating the visualization of complex optical responses and in gaining insight.
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Fig. 10: Space-time topology and filtration. (a) Space-time topology of a grayscale video (1.5 ppm Os and 2 ppm
Cly). The video object has three dimensions, x, y, and time. The duration of the video is 75 seconds. The dark volume
at the beginning of the response indicates that no optical response has been observed. (b) Space-time topology of
the same video in A* color space. The recurring transition from green to red is indicative of the continuous tilt angle
change of liquid crystals. The topological patterns of the A* video are notably different from the pattern of the
grayscale video, demonstrating that the different color channels carry distinct information. (c) Space-time filtration
of a grayscale video, with pixel values normalized with zero mean and unit variance. We show different space-time
topologies at four thresholds. For example, when the threshold value is 0, a discontinuity of intensity over time can
be observed (shown in a red box). (d) The space-time filtration results in four Minkowski functional curves and two
fractal Minkowski curves. We have an additional curve to describe the occupied volume compared to the 2D case.
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Dataset: LC Response to SO; and H,0

High-throughput video data was used to analyze the LC response to different concentrations of SO, and
relative humidity (RH) in a mixed gaseous environment*’. LC samples are made of 0.005 mol% 4'-
cyanobiphenyl-4-carboxylic acid (CBCA) in 4-cyano-4'-pentylbiphenyl (5CB) and are hosted within the slots
of transmission electron microscopy (TEM) grids supported on the TiO,-decorated surfaces. We split the
TEM grid into multiple squares; each square represents a chemoresponsive LC system. For each square, we
capture an image of the endpoint response (134 X 134) which can be represented as a 2D matrix; in other
words, here we only analyze the spatial topology of the response at the end of the responses. Each grid
square generates a 3-channel (RGB) object. We investigated 4 levels of SO, concentration (i.e., 0.5, 1, 2,
and 5 ppm) with 40% RH, and 4 levels of RH (i.e., 20%, 40%, 60%, and 80%) with 2 ppm SO,. The dataset
studied contains 504 LC responses (72 responses for every gaseous mixture concentration). We begin by
analyzing the (single channel) grayscale images; after standardizing the image with a zero mean and unit
variance, we performed 2D filtration and obtained five topological descriptor curves (AR, BL, EC, FD, and
LA). Each of the curves is a vector with 100 entries (100 different threshold values were used).

Dataset: LC Response to O3 and Cl;

Similar to the experimental setup for the SO,/RH study, video was used to record the LC responses to
various concentrations of ozone (0s) and chlorine (Cl;) gas mixtures’. LC samples were prepared and
embedded in a TEM grid supported on a Mn(ClQ,), decorated surface (Fig. 4a,b). The analysis conducted
in this case study focused on characterizing the space-time topology of the responses. Each response
snapshot is a matrix of dimension 50 X 50; we took 150 snapshots and stacked them chronologically to
create a space-time data object (a tensor) of dimension 150 X 50 X 50. A snapshot is taken every 0.5
seconds and the total collected video has a length of 75 seconds. Each square in the TEM grid generates a
3-channel 3D tensor because of the RGB data format.

Concentration Prediction of SO, and H,0

The topological descriptor curves obtained from the responses were fed into a support vector machine
(SVM) with a radial basis function (RBF) kernel, which is used to regress and classify the SO, concentrations
and RH. We refer to this approach as topological data analysis (TDA). Predictions of SO, concentration and
RH were performed separately. We performed 5-fold cross-validation (CV) to tune the hyperparameters of
the SVM. The dataset is split into 5 components; training occurs 5 times, each time leaving out a different
part of the dataset for testing. A subset of each training set is chosen as the validation set to tune the
hyperparameters of the SVM. We average the error on 5 test sets; for each fold, we use stratified random
splitting to divide the 288 responses into 184 training samples (64%), 46 validation samples (16%), and 58
test samples (20%). For the detailed implementation of the SVM and of CV and hyperparameter tuning,
please see Sl (Section S3). To determine prediction performance, we evaluated regression with root mean
square error (RMSE) and classification with accuracy scores.

To compare the effectiveness of using topological information to predict gas concentrations, we compared
performance against CNNs’. The CNN accepts as input a 3-channel matrix (RGB image) with a dimension of
134 X 134 and conducts repetitive convolution operations to extract feature information. We evaluated
the performance of the CNN using the same five-fold CV for the SVM, with the same training, validation,
and test samples. The hyperparameters we tuned for the CNN included the learning rate, the batch size,
and the number of filters. The detailed structure and training procedure of the CNN can be seen in SI
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(Section S3.2). While the architecture of the CNN is predetermined, the parameter values for the
convolutional layers and fully-connected layers are learned from training and validation data. The CNN is
trained and validated using a set of input tensors drawn from the training set and their corresponding
output labels. The CNN will then attempt to predict the concentration from extracted features and compare
it to the true concentration. The difference between predicted and true values is referred to as the error.
The CNN will then adjust its parameters to reduce the magnitude of the error (by minimizing a loss/error
function). The loss function for classification is cross entropy, while the loss function for regression is mean
squared error. More details on the CNN architecture used can be found in the Sl (Section S3.2).

Concentration Prediction of O3 and Cl,

The same SVM setup was used to both regress and classify the Oz and Cl, concentrations. Predictions of Os
and Cl; concentrations were performed separately. The same 5-fold cross-validation is used to tune the
hyperparameters. Each fold has 512 training samples (64%), 128 validation samples (16%), and 160 test
samples (20%). The detailed implementation of CV and hyperparameter tuning can be seen in SI. The 3D
CNN accepts as input a 3-channel tensor (RGB image) with a dimension of 150 X 50 X 50. We followed
the same procedure for training and tuning hyperparameters as the 2D CNN used in the SO,/RH study.

Data availability

The data for this work is available at https://github.com/zavalab/ML/tree/master/LC TDA

Code availability

The source code of this study is publicly available at https://github.com/zavalab/ML/tree/master/LC TDA
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