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Abstract 
 
Chemoresponsive liquid crystals (LCs) can be engineered to generate information-rich optical responses 
upon exposure to gas contaminants. We investigate the use of topological descriptors to extract 
information from these complex responses and with this facilitate sensor design and understand physical 
phenomena that govern responses. We provide a holistic view of topological descriptors using Minkowski 
functionals and fractal analysis and show how descriptors can be used for unsupervised (clustering, 
visualization) and supervised (regression, classification) machine learning (ML) tasks. Specifically, by using 
high-throughput, experimental data for LC films exposed to diverse contaminants, we show that topological 
descriptors can be used to effectively detect outliers and predict contaminant concentrations using simple 
ML models. Notably, these models achieve comparable accuracies to those of powerful convolutional 
neural networks, but with much lower computational times (from hours to seconds) and using less 
sophisticated computing hardware. This scalability enables high-resolution, space-time data analysis. 
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Chemoresponsive liquid crystals (LCs) provide a versatile platform for designing affordable and lightweight 
gas (analyte) sensors1. Specifically, LCs can be functionalized to change their orientational ordering and 
optical birefringence when exposed to a target chemical environment2. For example, LC sensors can be 
designed by supporting a micrometer-thick LC film on a chemically functionalized solid surface. The 
molecules constituting the LC (mesogens) have functional groups that bind to the solid surface to cause a 
well-defined orientation (e.g., perpendicular to the surface) of the LC1. The gas analyte diffuses through the 
LC film after exposure, binds or reacts with the solid surface, and triggers a change in the LC orientation 
(e.g., homeotropic to planar)3. The LC reorientation alters the polarization of light traveling through the 
film, resulting in an observable optical response (see Fig. 1 for an illustration). 
 
The optical response of an LC system comprises a complex space-time evolution of color and brightness 
patterns that result from the multiple physical processes taking place in the LC film (e.g., diffusion of the 
analyte through the film and binding/reaction events occurring at the surface). The optical response is 
influenced by the system design (nature of the supporting surface and of the LC film)4; as such, responses 
encode significant information that can be used to guide sensor design and to gain insights into mechanistic 
behavior occurring at different spatial and temporal scales.  
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Fig. 1: Optical response of a functionalized LC film to gaseous analytes. (a) Schematic of the LC film design used for 
detection of gaseous analytes. The LC molecules are initially aligned perpendicularly (homeotropic) to a chemically 
functionalized surface (e.g., a metal salt-decorated surface); as such, the incident polarized light passing through the 
LC film from the bottom cannot pass through the top polarizer. The gas analyte diffuses through the LC film and 
eventually reaches the surface to perturb the binding of the LC to the surface. This perturbation triggers a change in 
LC orientation (homeotropic to planar) and alters the polarized light passing through the top polarizer, resulting in a 
complex space-time optical pattern (b). 
 
Machine learning (ML) techniques have recently been used to extract information from LC optical 
responses to enable prediction of analyte species and concentrations. Cao et. Al. used an off-the-shelf 
convolutional neural network (CNN), known as AlexNet, to extract features of LCs that were exposed to 
dimethyl methylphosphonate (DMMP)5; the feature information was obtained by applying convolution 
operations on LC optical micrographs (in the form of grayscale images) and captured spatial brightness 
patterns that developed in the LC when exposed to DMMP. The authors found that this information 
correlates strongly with the gas analyte type and this thus provides an approach for detecting DMMP (a 
simulant of nerve gas agents). Smith et. Al. analyzed response features for this same dataset (in the form 
of color images) by using a simpler CNN architecture called VGG-166. By analyzing feature information from 
targeted convolutional layers, the authors found that color patterns of the LC response encode information 
that correlates strongly to the presence of DMMP. Bao et. Al. recently developed and trained a powerful, 
three-dimensional (3D) CNN to extract information from space-time responses of LCs (in the form of 
colored videos) that are exposed to a gaseous mixture containing ozone (O3) and chlorine (Cl2)7. Their 
analysis shows that the space-time features extracted using convolution operations accurately predict the 
concentration of the O3/Cl2 mixture and reveal LC response features that are characteristic of O3 and Cl2.  
 
While neural net architectures provide powerful capabilities that can automatically extract information 
from highly complex space-time LC responses, they also have some important drawbacks. Specifically, due 
to the “black box” nature of these models, it is difficult to gain insight into the specific features that they 
are searching for and their physical origin. Attempts have been made to “explain” CNN predictions using 
saliency maps8, but these methods also provide limited interpretability. CNNs (particularly in 3D) also 
involve many parameters (hundreds of thousands to millions); as a result, they can be computationally 
expensive to train (particularly for images/videos with high spatial or temporal resolutions) and are prone 
to overfitting; in addition, CNNs can be sensitive to noise and rotations that commonly appear in real 
datasets.  
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Topological data analysis (TDA) has recently emerged as a powerful mathematical framework that provides 
tools for characterizing data objects. For instance, TDA has been employed to quantify the similarity of pore 
structures in nanoporous materials, facilitating the identification of materials with comparable pore 
geometries and the screening of materials similar to top-performing structures9. TDA has also gained 
prominence in brain research, elucidating the dynamic organization of whole-brain activity10, and 
uncovering the principles governing transitions in resting-state brain activity11. In medical science, TDA has 
proven useful for identifying candidate cancer-associated genes and revealing previously undiscovered 
cancer-related alterations12. Furthermore, it has been instrumental in uncovering patterns, interactions, 
and predictors in brain and spinal cord injuries13. Among all TDA techniques, topological descriptors are 
particularly straightforward to implement and have strong connections to physical properties, resulting in 
their extensive application across numerous fields. The Euler characteristic (EC) is a key topological 
descriptor that characterizes random fields14 and encodes statistical information such as means, variances, 
and characteristic length-scales15,16 and has been recently used to characterize images. The fractal 
dimension (FD) is another topological descriptor that quantifies the scaling factor of a pattern contained 
within a data object17. FD has been widely used to analyze and monitor morphological changes on material 
surfaces18. Topological descriptors are capable of extracting information from multidimensional data and 
are tolerant to noise19; in addition, topological descriptors can provide natural connections with physical 
phenomena that drives behavior. For instance, the EC has been widely used to characterize topological 
defects in LCs 20–27. These defects have profound effects on the physical properties of the LC 28,29; for 
instance, the total topological charge is correlated to the EC of the surface via the Gauss-Poincaré theorem 
(sum of all charges on a closed surface is equal to the EC of the surface)30. In this work, we use topology to 
characterize the optical responses of nematic LC systems, which contain defects as well as many other 
structural features.  
 
Several studies have characterized the topology of optical responses of different nematic LC systems using 
the FD. Garbovskiy et al. explored the electro-optical properties of high-resistivity nematic LCs that are 
sandwiched between ferroelectric polymer films31; the authors measured the FD of ferroelectric films to 
indicate the roughness of the boundaries between adjacent domains. The FD has also been used to study 
aggregation of inclusions in bulk LCs or at LC interfaces. Lavrentovich et al. studied the dynamics of 
anisotropic aggregation of spherical colloidal particles dispersed in a nematic LC 32; they used FD to describe 
the geometry of the aggregated colloidal clusters and understand the aggregation dynamics. Abbott et al 
used FD to characterize the aggregation of peptides at interfaces of LCs33. Goncharuk et al. used the FD to 
characterize the aggregation, percolation, and phase transition for a nematic LC doped with carbon 
nanotubes34. Turner et al. used the FD to explore the aggregation and optical properties of a thermotropic 
nematic LC doped with graphene oxide35. These studies have shown how topology is a common factor that 
correlates to emergent properties. While the FD has been widely used to characterize nematic LCs, other 
topological descriptors have rarely been used. For example, Smith et al. recently used the EC to characterize 
simulated random fields that contain features that are similar to those of chemoresponsive nematic LC 
films19. Solis et al. used persistent homology and a derived structural heterogeneity to track the structural 
changes in an LC nanocomposite and revealed the effect of confined geometry on the nematic-isotropic 
and isotropic-nematic phase transition36.  
 
In this work, we study the use of different topological descriptors (EC, FD, and lacunarity) to extract 
information from spatio-temporal optical responses of chemoresponsive nematic LCs. We present a 
unifying view of these descriptors through the lens of Minkowski functionals (MFs) and fractal analysis, 
which describe different geometric and topological properties such as shape, convexity, and connectivity 
that characterize a given topological space15. This unified view allows us to understand what specific feature 
information different descriptors are capturing. MFs have been previously proposed for comparing and 
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evaluating material properties; for example, Slotte et al. used MFs to predict the resistivity and permeability 
of porous media37. Additionally, MFs have been studied in a variety of other fields such as geological 
sciences38 and medical imaging39. MFs have been traditionally applied to binary fields (e.g., two-phase 
materials) because a binary field can be characterized using a simple (scalar) descriptor. However, the 
optical responses that we analyze here are space-time continuous fields; to characterize these fields, we 
use a technique known as filtration40. The filtration approach enables the extraction of richer topological 
information because it keeps track of how topological features emerge at different scales. We also show 
that different color representations reveal different topological features.  
 
Our work aims to demonstrate that the use of topological descriptors provides a computationally scalable 
and flexible approach for extracting information from complex optical responses of chemoresponsive LCs. 
We use these capabilities to analyze real, high-throughput experimental data for LC systems that respond 
to the presence of sulfur dioxide (SO2) and relative humidity (RH), and for LC systems that respond to 
gaseous mixtures containing O3 and Cl2. Our results reveal that the topological descriptors encode 
significant and complementary information that can be used for diverse machine learning tasks. Specifically, 
we demonstrate that the descriptor information can be used for unsupervised learning tasks (such as 
principal component analysis) to facilitate the identification of experimental outliers and the visualization 
of response dynamics in low-dimensional spaces. We also show that the topological descriptors can be 
used in supervised learning tasks to build simple ML models (such as support vector machines) that can 
achieve comparable prediction accuracies to sophisticated CNNs, but with a computational cost that is 2 to 
4 orders of magnitude lower and using less sophisticated computing hardware (CPUs instead of GPUs). This 
desirable scalability enables the processing of space-time data at high resolutions that might not be 
accessible to CNNs. All scripts and data needed to reproduce the results are provided as open-source code.  
 
 

Results 
 
We present different case studies using real, high-throughput experimental data of LC optical responses; 
the experimental procedures and datasets analyzed are reported in previous work3,7,41,42. In a typical 
experiment, several hundred LC domains supported on a chemically functionalized surface are imaged in 
parallel. This enables rapid acquisition of LC optical response data. This approach is also amenable to 
massively parallel data acquisition via simultaneous imaging of tens of thousands to millions of LC domains. 
Here, we use LC optical response data to highlight how topological information can be used to conduct 
different unsupervised ML tasks (visualization, clustering) and supervised ML tasks (regression and 
classification). Our goal is also to demonstrate that these tasks can be conducted in a computationally 
scalable manner; as such, we provide comparisons with state-of-the-art CNNs. Finally, we demonstrate 
how these tools can facilitate understanding of underlying phenomena taking place in LC films.  

 
LC Response to SO2 and H2O 
 
Topological Descriptor Visualization and Analysis. As illustrated in Fig. 2c-d, different SO2 

concentrations generate response times that are distinguishable based on large increases in the average 
image intensity alone; however, changes in RH are not straightforward to distinguish via response times. 
As a result, the response time cannot accurately reveal changes in gas composition; this motivates our 
analysis of the spatial topology of endpoint images. Fig. 2a-b highlight the differences in spatial topology 
associated with various SO2 concentrations and RH; we can see that the endpoint image topology is a more 
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informative predictor of SO2 concentrations and RH (compared to response time). In Fig. 2a-b, we also show 
the main principal components of the grayscale EC curves (details on principal component analysis are 
shown in Section S3.4). A clear cluster separation can be observed between the points representing 2 ppm 
SO2 and the points representing the rest of the SO2 concentrations; the points representing 20% RH are 
also far apart from the points representing the rest of RHs. We thus expect that concentration prediction 
is straightforward for 2 ppm SO2 and 20% RH (due to inherent cluster separation); the overlap of points at 
other concentrations poses a challenge for ML classification. This highlights how topological information 
can be used to quickly analyze experimental data and to begin identifying different families of morphologies 
observed in the responses.  
 
In Fig. 2c-d, we show the average grayscale image EC, FD, and LA curves of the LC system exposed to 
different SO2 concentrations and RH. The difference in curve shape and peak height and location indicates 
that the RH has a perceptible effect on the endpoint topology. We also obtained six additional single-
channel images to examine the effect of color representations (R, G, B, L*, A*, and B*). Given that each 
color channel reveals distinct topological features, we proceeded to investigate if combining all the 
different topologies results in an accurate classification of morphologies (and associate gas analyte 
concentrations). 
 
Concentration Prediction and Scalability Analysis. We compared the concentration prediction results 
using AR, BL, EC, FD, and LA as well as the combined descriptors for grayscale images. For each topological 
descriptor curve, we had a vector of size 100, while the size of the combined vector was 500. To prevent 
the influence induced by varying vector sizes, we reduced/compressed the feature vector dimension to 100 
using principal component analysis (PCA). All subsequent results were derived following PCA dimensionality 
reduction. Fig. 3a and 3c demonstrate that the combination of topological descriptors on grayscale images 
outperforms the use of each individual descriptor in terms of classification accuracy and regression RMSE 
for both SO2 concentration and RH prediction. Specifically, the SO2 RMSE for the combined descriptors 
(1.21 ppm) is 9% lower than the best single descriptor AR result (1.33 ppm); the SO2 accuracy for the 
combined descriptor (0.813) is 8% higher than the best single descriptor LA result (0.750). Similarly, the RH 
RMSE for the combined descriptors (15.7%) is 10% lower than the best single descriptor EC result (17.5%); 
the RH accuracy for the combined descriptor (0.785) is 8% higher than the best single descriptor EC result 
(0.729). This indicates that the topological information contained in each descriptor is complementary 
(non-redundant). 
 
Because each color channel carries different information, we investigated the effect of combining them. 
For each color channel, we had a vector of topological descriptors of size 500 (including AR, BL, EC, FD, and 
LA), while the size of the entire combined descriptor vector was 3500. Following the same procedure as for 
grayscale images, the input vector size to the SVM used in TDA was reduced to 100 using PCA. In Fig. 3b 
and 3d, we demonstrate that the combination of topological information from color channels outperforms 
each color channel. Specifically, the SO2 RMSE for the combined color channels (0.990 ppm) is 11% lower 
than the best blue channel result (1.114 ppm); the SO2 accuracy for the combined color channels (0.875) is 
7% higher than the best green channel result (0.816). Similarly, the RH RMSE for the combined channels 
(14.0%) is 10% lower than the best single blue channel result (15.6%); the RH accuracy for the combined 
channels (0.854) is 4% higher than the best single blue channel result (0.820). This indicates that the 
topological information contained in the color channels is complementary. 



 6 

 
Fig. 2: Results for SO2/RH mixture dataset. Principal component analysis of the endpoint EC curves of LC systems 
exposed to mixtures of (a) 0.5, 1, 2, and 5 ppm SO2 and 40% RH and (b) 20%, 40%, 60%, 80% RH and 2 ppm SO2. The 
green and pink interference colors are caused by the parallel orientation of the LC. We can observe perceptible 
differences between the responses, but these differences are difficult to quantify due to the presence of 
heterogeneity. By visualizing the main principal components (PCs), we can see that there is a clear separation of the 
morphology for the response to 2 ppm SO2 and 20% RH from the rest. The points corresponding to other 
concentrations have substantial overlap. (c) The average intensity curve of the response video and the average EC, 
FD, and LA curves from the endpoint grayscale image for different SO2 concentrations. The response time (when the 
intensity starts to increase) varies significantly with SO2 concentration, but there is still considerable overlap between 
2 ppm and 1 ppm samples. Without using the entire video, the topological descriptor curves of the endpoints show a 
noticeable separation, especially for LA (different peak intensities). (d) The average intensity curve and the average 
EC, FD, and LA curves for different RH. Since the response time does not vary with respect to relative humidity, it is 
unfeasible to predict RH using the response time. Even though different RHs lead to similar response times, they have 
distinct average EC curves (different shapes and peak intensity). EC and other topological descriptors provide an 
efficient data representation that can predict SO2 concentration and RH. 
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We compared the prediction results using a 2D CNN to a SVM model that uses topological descriptor 
information. For the input to the SVM, we used a size 100 vector from PCA containing all topological 
descriptors and color channels. A parity plot is used to compare the regression results (Fig. 3f-g). The dots 
represent the average predicted values, while the error bars represent the standard deviations. We found 
that both the CNN and TDA approaches have average prediction values that are close to the diagonal 
(representing a perfect prediction). Specifically, the RMSE of CNN for SO2 is 0.945 ppm, which is 5% lower 
than the RMSE of TDA (0.990 ppm). Similarly, for RH, the RMSE of CNN is 12.6%, which is 10% lower than 
the RMSE of TDA (14.0%). In Fig. 3h-k, we present the classification results in a confusion matrix, with 
diagonal entries representing the rate of correct classification and off-diagonal entries representing the 
rate of misclassification. Specifically, the accuracy of CNN for SO2 is 0.951, which is 9% higher than the 
accuracy of TDA (0.875). Similarly, the accuracy of CNN for RH is 0.868, which is 2% higher than the accuracy 
of TDA (0.854). TDA is comparable to CNN methods in both regression and classification. However, we note 
that the number of parameters in CNN was close to 17,000, which is 170 times the number of parameters 
used in the SVM model (100). As such, the TDA approach uses a much simpler learning model. Additionally, 
CNN requires rotational data augmentation to ensure that the prediction is rotation-invariant. The 
topological descriptors, on the other hand, are globally invariant, which means they are not affected by 
rotation, bending, or translation. It is also important to highlight that the CNN extracts feature information 
using repetitive convolution operations (at each iteration in the training procedure), while the TDA 
approach extracts information using filtration operations that are only conducted once. All of these 
observations have implications on computational scalability.  
 
To compare computational scalability, we compared the training time required for TDA and CNN (Fig. 3e). 
The average time required for the TDA approach was 14.04 seconds, while the average time required to 
train a CNN was 154 seconds. The differences observed in CNN training time between SO2 and RH is due to 
early stopping43, which is a technique for stopping training when the validation loss converges. The TDA 
training time includes the calculation of all the topological descriptors (13.28 seconds) and the SVM training 
time (0.76 seconds). Considering seven color channels, the total number of images processed for the 
computation of the topological descriptors was 3,528. The average computational time to obtain the 
topological descriptors from a single image is less than 4 milliseconds, indicating that the computation of 
all topological descriptors is fast (we also note that these computations only need to be performed once). 
This contrasts with the CNN approach, in which convolutions are performed repetitively with different 
operators that the model is learning. Overall, we see that TDA provides a significant reduction in computing 
time over CNN; moreover, TDA only requires a CPU to conduct computations, while CNN requires the use 
of a GPU (more sophisticated architecture). Details on computational hardware used for obtaining these 
results can be found in the SI.  
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Fig. 3: SO2/RH concentration prediction results. (a, c) Prediction results for SO2 and RH based on different topological 
descriptors of grayscale images. A combination of topological descriptors outperforms the use of single descriptors 
with higher classification accuracy and lower regression RMSE, showing that the topological information contained in 
each descriptor is complementary. The asterisk (*) indicates the best-performing descriptor set. (b, d) Prediction 
results for SO2 and RH based on different color channels, respectively. The combined color channel descriptors exhibit 
better prediction accuracy than the single color channel descriptors, indicating that the topological information 
contained in each color channel is also complementary. (e) Comparison of computation time of TDA and the 2D CNN. 
The 2D CNN requires 200 times the training time of TDA. Even accounting for the time required to prepare topological 
data, the total computation time of the CNN is 11 times that of TDA. (f-g) Regression parity plot based on SVM with 
TDA and 2D CNN for predicting SO2 concentration and RH, respectively. The error bars represent the standard 
deviation of the prediction. (h-i) Classification confusion matrix for the prediction of SO2 concentration based on TDA 
and 2D CNN, respectively. (j-k) Classification confusion matrix for the prediction of RH based on TDA and 2D CNN, 
respectively. In general, TDA delivers comparable prediction accuracy than the 2D CNN, but at a lower computing 
cost, with fewer overfitting problems, and without the need for rotational data augmentation. 
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LC Response to O3 and Cl2 
 
Topological Descriptor Visualization and Analysis. In this study, we investigated four levels of O3 
concentration (i.e., 1.5, 5, 100, and 650 ppm) and 4 levels of Cl2 concentration (0, 1, 2, and 5 ppm). From 
our previous study, the concentration of the mixture cannot be accurately predicted if only the endpoint 
image is considered7, therefore we studied the space-time topology of the video. Fig. 4c illustrates the 
differences in the space-time topology of the two LC systems exposed to different concentrations of 
analytes. The A* channel exhibits a recurring color transition from red to green, indicating a changing tilt 
angle. Fig. 4d depicts the space-time filtration for a grayscale video; the space-time topology varies 
considerably at different thresholds. 
 
The dataset included 800 responses from LC systems (50 responses per gas mixture concentration). Similar 
to the SO2/RH study, we began with a grayscale video and normalized it with a zero mean and unit variance. 
Direct space-time filtration on the video (Fig. 4d) yielded six topological descriptor curves, which are VL, AR, 
BL, EC, FD, and LA. In Fig. 4e, we plotted the first two principal components of space-time EC curves from 
the videos in Fig. 4a (pure O3) and Fig. 4b (O3/Cl2 mixture). One can detect a distinct distinction between 
pure O3 (black dots) and the O3/Cl2 mixture (red dots). The considerable difference between the average 
EC curves of pure O3 and O3/Cl2 mixture suggests that space-time EC can effectively capture the difference 
in topology. The presence of outliers implies that response videos from the same batch of experiments still 
exhibit variations (e.g. caused by imperfect sample preparation, including the presence of scratches and 
other features on the chemically functionalized surfaces that locally disrupt LC anchoring). Fig. 4f 
demonstrates how different topological descriptors can result in distinct clustering, indicating that they are 
complementary. Similar to the SO2/RH case study, we examined the effect of topological descriptors and 
color channels on the accuracy of concentration prediction; a comparison with the 3D CNN model was also 
performed.  
 
To confirm that space-time topology information was essential for accurate predictions, we also studied 
the use of spatial topological descriptors of endpoint images. Response curves (time evolution of the mean 
brightness), which are often considered in LC studies, were also used to predict the mixture concentrations. 
For video and image filtration, each input vector to SVM is reduced to a size of 100 using PCA.  
 
Concentration Prediction and Scalability Analysis. We compared the concentration prediction results 
using VL, AR, BL, EC, FD, and LA as well as the combined descriptors for grayscale videos. For each 
topological descriptor, we had a vector of size 100, while the size of the combined vector was 600. We 
reduced the vector size to 100 using PCA. As shown in Fig. 5a and c, we find that in general, the combination 
of topological descriptors outperforms each descriptor in terms of classification accuracy and regression 
RMSE for both O3 and Cl2 concentration prediction. Specifically, the O3 RMSE for the combined descriptors 
(115 ppm) is 8% lower than the best single descriptor AR result (125 ppm); the O3 accuracy for the 
combined descriptor (0.938) is 2% higher than the best single descriptor AR result (0.921). However, the 
Cl2 RMSE for the combined descriptors (1.52 ppm) is 3% higher than the best single descriptor LA result 
(1.48 ppm); the Cl2 accuracy for the combined descriptor (0.606) is 5% lower than the best single descriptor 
LA result (0.635). This means that LA (space-time hole size distribution) contains key information for 
predicting Cl2 concentration. In general, combining topological descriptors still improves the accuracy of 
the prediction. 
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Fig. 4: O3/Cl2 mixture dataset. Experimental TEM grids capturing multiple LC responses (endpoint images) when 
exposed to (a) pure 5 ppm Cl2 and (b) a mixture of 5 ppm Cl2 and 5 ppm O3. (c) Visualization of the space-time A* 
topology when exposed to two concentrations. (d) Space-time filtration of a grayscale video. (e) Principal component 
analysis of EC curves obtained by space-time filtration of grayscale videos in (a) and (b). Each point represents the 
main principal components associated with one of the grid videos. A clear separation of black dots (pure O3) and red 
dots (O3/Cl2 mixtures) can be observed. The significant difference between the average EC curves of pure O3 and 
O3/Cl2 mixtures indicates that space-time EC can effectively capture the difference in topology caused by different 
analytes. The blue and purple boxes represent outliers, revealing that response videos from the same batch of 
experiments exhibit variations. (f) Principal component analysis of EC, FD, and LA curves for mixtures of 1.5, 5, 100, 
and 650 ppm O3 and 5 ppm Cl2. Different topological descriptor curves generate distinct clustering patterns. 
 
 
In Fig. 5b and d, we demonstrate that the combination of color channels outperforms each color channel. 
Specifically, the O3 RMSE for the combined color channels (76.9 ppm) is 18% lower than the best red 
channel result (94.0 ppm); the O3 accuracy for the combined color channels (0.986) is 5% higher than the 
best red channel result (0.941). Similarly, the Cl2 RMSE for the combined channels (1.15 ppm) is 22% lower 
than the best single red channel result (1.48 ppm); the Cl2 accuracy for the combined channels (0.786) is 
22% higher than the best single blue channel result (0.646). The significant accuracy improvement using 
combined color channels shows that the topological information contained in each color channel is 
complementary. 
 
We compared the prediction results using 3D CNN and SVM with TDA. Fig. 5f and g show the regression 
parity plots. Both the CNN and TDA methods have average prediction values that are close to the diagonal. 
Specifically, the RMSE of CNN for O3 is 43.2 ppm, which is 44% lower than the RMSE of TDA (76.9 ppm). 
Similarly, for Cl2, the RMSE of CNN is 1.01 ppm, which is 12% lower than the RMSE of TDA (1.15 ppm). The 
remarkable RMSE difference for O3 may be due to the lack of sufficient data points between 100 and 650 
ppm. However, the coefficient of determination (R2) of the O3 concentration regression for CNN is 0.973 
and for TDA is 0.971, which is very close. 
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In Fig. 5h-k, we present the classification results in a confusion matrix. Specifically, the accuracy of the CNN 
for O3 is 0.991, which is 0.5% higher than the accuracy of TDA (0.986). Similarly, the accuracy of the CNN 
for Cl2 is 0.711, which is 10% lower than the accuracy of TDA (0.786). TDA is comparable to the CNN in 
terms of O3/Cl2 concentration prediction. The number of parameters in the CNN is at least 43,000, which is 
430 times higher than the number of parameters used in the SVM (total of 100). In addition, we compared 
the training time required for TDA and CNN in Fig. 5e. The average time required for TDA was 274.8 seconds, 
while the average time required to train a CNN was 9,000 seconds (2.5 hours). The TDA time includes both 
the computation of all the topological descriptors (271.51 seconds) and the SVM training time (3.29 
seconds). Considering seven color channels, the total number of videos processed for the topological 
descriptor was 5,600, and the size of each video is 150 × 50 × 50. The average time required to extract 
topological descriptors from a single video is less than 50 milliseconds, indicating again the scalability of 
the TDA approach. Details of the resources for this case study can be found in the SI. We emphasize that 
3D CNNs have limitations in handling large videos (resulting from long experiment duration and high space-
time resolutions) without sacrificing resolution or sampling rate, but the extraction of topological 
descriptors for large videos is feasible and scalable. Our computational results thus suggest that topology 
can enable processing of space-time data at resolutions that are not accessible to CNNs.  
 
LC State Monitoring. Traditionally, the evolution of the average intensity has been used to visualize the 
state of the LC system. In this type of analysis, there are a couple of important times of interest, the 
response time and the steady-state (settling) time. The response time is when the average intensity 
increases from the initial state, while the steady-state time is when the intensity settles (i.e., response 
saturates). The steady-state time is important in determining when an experiment can be stopped. For 
example, in Fig. S12, the response time for the LC system exposed to 5 ppm O3 and 5 ppm Cl2 is at 8 seconds, 
while the settling time is at 25 seconds. The increase in intensity is smooth between 8 and 25 seconds. To 
explore how topological descriptors can be used to visualize the dynamics of the system, we obtained the 
topological descriptor curve for each snapshot in the video and calculated the first two principal 
components associated with the curve for each time point. Fig. S12 shows the temporal evolution of the 
principal components. The results indicate that, even when the average intensity reaches a steady-state, 
there are clear topological changes still occuring in the LC film (e.g., EC, FD, and LA have large variations 
after 25 seconds). As such, if we use only the average intensity to characterize the LC system, important 
behavior might be neglected. We also observe that, between 8 and 25 seconds, although the increase in 
average intensity is smooth, all topological descriptors show that the evolution of the topological pattern 
is not smooth and complex. For example, the second principal component of LA shows that, between 10 
and 15 seconds, the variation in the hole size distribution is not monotonic. Examining the time evolution 
of the topological descriptor curves in Fig. S13 also reveals that some topological changes continue beyond 
the steady-state time of the average intensity. For instance, the position and shape of EC curve peaks vary 
significantly, indicating that the system has not reached a steady-state. Compared to the average intensity, 
time topology provides a more informative description of the LC state. 
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Fig. 5: O3/Cl2 concentration prediction results. (a-c)Prediction results for O3 and Cl2 based on different topological 
descriptors of grayscale images, respectively. For O3 concentration prediction, the combined topological descriptors 
outperform any single descriptors with higher classification accuracy and lower regression RMSE. For Cl2 
concentration prediction, LA has the highest accuracy, demonstrating that the fractal topology provides important 
information that can be used to identify Cl2 concentration. The combination of topological descriptors maintains a 
relatively high level of prediction precision. The asterisk (*) indicates the best-performing instance. (b)(d) Prediction 
results for O3 and Cl2 based on different color channels, respectively. The combined color channel descriptors provide 
more accurate predictions than the individual color channel descriptors, demonstrating that the topological 
information included in each color channel is also complementary. (e) Comparison of computation time of SVM with 
TDA and 3D CNN. 3D CNN requires more than 2,700 times the training time of SVM with TDA. Even accounting for the 
time required to prepare topological data, the total computation time of 3D CNN is 33 times that of TDA. (f-g) 
Regression parity plot based on SVM with TDA and 3D CNN for predicting O3 and Cl2 concentrations, respectively. The 
error bars represent the standard deviation of the prediction. (h-i) Classification confusion matrix for the prediction 
of O3 concentration based on SVM with TDA and 3D CNN, respectively. (j-k) Classification confusion matrix for the 
prediction of Cl2 concentration based on SVM with TDA and 3D CNN, respectively. Similar to the SO2/RH case study, 
SVM with TDA provides comparable or higher prediction accuracy than state-of-the-art 3D CNN at a lower 
computational cost, with fewer overfitting issues, and without the requirement for rotational data augmentation. 
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Discussion 
 
We presented topological descriptors for characterizing the space-time optical responses of 
chemoresponsive LCs exposed to gaseous analytes. We show that topological descriptors provide a scalable 
and flexible approach for extracting information from complex image and video data and are competitive 
with state-of-the-art convolutional neural networks. Specifically, we show that topological descriptors 
enable the construction of simple machine learning models that achieve comparable accuracy to state-of-
the-art convolutional neural networks but with a much lower computational cost. This indicates that 
topological descriptors can be potentially used to create new and powerful machine learning architectures 
that more effectively capture topological features. Specifically, one could envision the creation of hybrid 
architectures that extract information using convolution and topological operations. In addition, the 
evolution of topological descriptors provides a more informative approach to monitoring the state of LC 
systems than intensity-based timescales (e.g., response time and steady state time). Our future research 
will focus on studying such architectures and on using molecular dynamics to understand how liquid crystal 
properties affect observed topologies.  

 
Methods 
 
The optical response data analyzed in this work appears in the form of color images and videos. A grayscale 
image is represented as a matrix, where each entry contains the pixel light intensity. Images can be 
considered as a union % = ⋃ (!

"
!#$  of compact and convex subsets (!  in the 2D Euclidean space ℝ%. The 

restriction of convexity is reasonable because a pixel can be considered as a compact and convex set. In 
this regard, functionals can be defined to describe the geometric and topological properties of images 
(which are composed of a finite union of pixels).  
 
A grayscale video is a sequence of images and can be represented as a tensor; here, the tensor can be seen 
as a union of voxels (3D version of a 2D pixel) in ℝ&. Color images and videos are the superposition of 
matrices or tensors, where each matrix or tensor captures a specific color channel. For instance, a color 
image is typically represented as the superposition of three matrices (red, blue, and green channels).  
 
In the following discussion, we focus on the analysis of images; the analysis of videos is a natural (but 
important) extension of the discussion. In Fig. 6, we provide an overview of information extraction 
techniques from images and videos using topological descriptors for the characterization of space, time, 
and space-time topology. Here, we highlight how descriptors such as the Euler Characteristic (EC), fractal 
dimension (FD), and lacunarity (LA) embed information that can help visualize topological features and can 
be used to construct predictive models.  
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Fig. 6: Overview of information extraction approaches using topological descriptors. We collect high-throughput liquid 
crystal response data for different analytes (e.g., pure O3, pure Cl2, and O3/Cl2 mixtures). The analytes trigger different 
space-time responses. We convert these RGB data to different color representations; here, we illustrate a grayscale 
representation as an example (but others such as LAB are possible). Using the selected color representation, we can 
extract spatial topology information from endpoint images using a variety of descriptors, such as the Euler 
characteristic (EC), fractal dimension (FD), and lacunarity (LA). Topological descriptor can then be used to perform 
unsupervised learning tasks (e.g., principal component analysis) to separate/cluster different responses or to build 
supervised learning models (e.g., classification and regression) to predict/classify responses. It is also possible to 
visualize the time evolution of the spatial topology by monitoring the descriptors at each time step; this can be used, 
for instance, to identify critical times and/or determine when the system has reached a topological steady-state. By 
treating the video data as a 3D tensor, we can also directly examine the topology of the associated space-time field 
and we can use the descriptors to conduct unsupervised/supervised learning tasks.  

 
Regular Geometry 
 
Integral geometry provides a set of descriptors, known as Minkowski functionals (MFs), to describe the 
geometric and topological properties of a binary lattice %. The pixels of a binary lattice are either 0 (black) 
or 1 (white). In the case of a spatial field, the lattice is a binary matrix; in the case of a space-time field, the 
lattice is a binary tensor. It is important to emphasize that Minkowski functionals can be used to represent 
spatial and space-time lattices (and even higher dimensional lattices). A binary lattice can be obtained from 
an image or video (a continuous field) by applying a thresholding/filtration operation, as we describe later.  
 
In general, in a *-dimensional Euclidean space ℝ', there are * + 1 Minkowski functionals that describe the 
compact domain of a binary space44. These are defined by integrals of curvatures using differential 
geometry of smooth surfaces45. In a 2D case, three functionals ,(, ,$, ,% are used to characterize %. If .% 
is the regular boundary of % and / is the principal radius of the curvature, the three functionals are: 
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An illustration of these definitions and more details on Minkowski functionals can be found in the SI (Section 
S1.1 and S1.2). In simple terms, ,( is the covered area (, which we will refer to as AR; ,$ is the boundary 
length 8 (up to a factor), which we will refer to as BL; ,% is the Euler characteristic 9 (up to a factor), which 
we will refer to as EC. The EC is a dimensionless descriptor that captures connectivity and is thus 
fundamentally different from AR and BL. The EC can be expressed as 9 = :( − :$, where :( is the number 
of connected components and :$ is the number of holes16. For a binary spatial lattice, :( is the number of 
connected (white) components and :$ is the number of connected (black) components. For a binary space-
time lattice, the EC is 9 = :( − :$ + :%, where :% is the number of voids.  
 
To understand the relevance of Minkowski functionals, it is important to discuss Hadwiger’s Theorem46. 
This result states that any additive, motion-invariant, and continuous functional ℱ  of % ⊂ ℝ'  can be 
expressed as a linear combination of * + 1 Minkowski functionals ,+: 
 

 
ℱ(%) = >?+,+(%)

'

+#(
. (2) 

 
Here, the coefficients ?+ ∈ ℝ are independent of %. This result is key because it highlights that different 
Minkowski functionals encode unique information (although some functionals might not be particularly 
informative). Note also that the functional ℱ(%) can be used to represent an individual MF ,+(%) by 
setting the coefficients of the other MFs to zero. 
 
The additivity, motion invariance, and continuity properties of the functional ℱ  have key practical 
consequences, which we summarize as follows: 
 

1. Additivity: The functional of the union of domains % ∪ %′ can be written as ℱ(% ∪ %,) = ℱ(%) +
ℱ(%,) − ℱ(% ∩ %,). Additivity is important because it implies that a complicated domain % can be 
partitioned and one can compute the functional separately in each partition. Techniques to 
compute MFs, such as the marching square algorithm44, exploit this property and enable the use 
of parallel computing. A detailed procedure for the calculation of the MFs for a binary lattice using 
the marching square algorithm is provided in the SI (Section S1.2). We highlight that these 
procedures are behind powerful software used for computing topological descriptors. 
 

2. Motion invariance: The functional is independent of its position and orientation. If E  is a 
combination of the translational and rotational group and F ∈ E , then ℱ(F%) = ℱ(%) . The 
motion-invariance property is critical because it states that the functional is invariant to rotations 
and translations of the object %. This property is not satisfied by other data processing techniques 
such as convolutions (used in CNNs); as such, CNNs need to deal with translation and rotation using 
ad-hoc procedures that affect their computational scalability.  
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3. Continuity: If a sequence %' → % converges as * → ∞, then ℱ(%') → ℱ(%) also converges. This 

result is important because it indicates that the functional of the true field % can be approximated 
by an approximating sequence %'  (e.g., obtained from digital imaging). In other words, an 
approximation %'  of %  will yield similar functional values; this has implications in dealing with 
objects of different spatial or temporal resolutions. Specifically, there is a guarantee that increasing 
resolution will lead to eventual convergence to the true functional. 

 
 
Fractal Geometry 
 
Minkowski functionals are defined on regular geometry, whereas many structures found in scientific 
research and nature are not regular (such as fractal structures). Fractals are specific examples of self-
similarity, where a structure or dynamic pattern (sometimes random) is repeated across multiple spatial or 
temporal scales and have a fine structure on arbitrarily small scales47. Well-known fractal structures appear 
in Brownian motion48, polymer networks49, aggregate growth phenomena50, and porous media51. Fractal 
structures have also been studied in LCs47. Methods of classical geometry are not suitable for studying 
fractals; to study fractal geometry, it is necessary to introduce new forms of dimensioning. 
 
The notion of dimension is central to characterizing fractal patterns. Traditional geometry involves the 
topological dimension (or Lebesgue covering dimension). The first, second, and third topological 
dimensions are length, area, and volume; however, topological dimensions are not sufficient to describe 
fractals. For example, from measure theory, the path of a 2D Brownian motion only makes sense as a 2D 
object (almost space-filling) because it can be arbitrarily large while still having zero area52.  
 
The limitations of topological dimensions lead to the emergence of fractal dimensions. A well-known fractal 
dimension is the Hausdorff dimension, which has the advantage of being defined for any set. A fractal 
always has a Hausdorff dimension that is greater than or equal to its topological dimension53. The formal 
definition of the Hausdorff dimension and measure can be found in the SI (Section S1.3). 
 
Unfortunately, the Hausdorff fractal dimension is difficult to compute and thus the so-called box-counting 
FD is used to approximate it (a detailed discussion is provided in the SI). In each step of the box-counting 
scheme, the lattice % containing fractals is covered by a grid of squares with side length I, and the number 
of squares J(I) intercepted by the object is recorded. One can derive a log-log relation as follows:  
 

 
logJ(I)~O log

1
I
+ log Λ , 

	

O = lim
-→(

logJ(S) / log U
1
S
V	 

 

(3) 

where O is the fractal dimension (FD) and Λ is the lacunarity (LA). Expressed simply, the LA describes the 
space occupied by the fractal, while the FD describes the heterogeneity of the fractal54. The FD is also 
commonly referred to as the box-counting dimension or Minkowski dimension. The LA is also commonly 
referred to as Minkowski content and is computed using box-counting techniques. We refer to the FD and 
LA as fractal Minkowski descriptors. A fractal with higher FD has more "roughness", while a fractal with 
higher LA has a more inhomogeneous hole distribution. The exact definitions of these topological 
descriptors are provided in the SI (Section S1.3 and S1.4).55. Lacunarity is the (complementary) counterpart 
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of the fractal dimension. It is possible that the FD and LA are correlated (do not provide complementary 
information); however, this is not generally the case. It is also important to highlight FD and LA can be 
defined for 3D lattices (e.g., arising from space-time objects); we emphasize this because these descriptors 
have been typically used only to characterize 2D lattices (e.g., arising from spatial objects). 
 
Understanding the scaling properties of Minkowski functionals is important because they can help 
distinguish fractal and regular geometry. For a 2D lattice containing a regular geometry, we have ,!(W%) =
W%/!,!(%), that is 

 ,( ∼ 1,,$ ∼ W/$, ,% ∼ W/%. (4) 
 
For instance, shrinking % by half, in the same area, we get 4 replicates of half ,$. Based on the additivity 
of Minkowski functionals, we obtain the new ,$

, = 2,$. For fractals, the scaling is different; the second 
Hausdorff measure of the fractal in ℝ%, which is the covered area ( under the Lebesgue measure, scales 
to a non-integer value ,(~Y0/% , with fractal dimension O ∈ (1,2) instead of 3 = 2 for the scaling of 
regular geometry. One can find similar scaling behavior for ,$  and ,%  of fractals56. It is important to 
emphasize that the FD and LA are descriptors that capture fundamentally different features than AR, BL, 
and EC. However, as we show in our computational results, all these descriptors can provide valuable 
information when characterizing complex space-time patterns. 
 
 
 
Extracting Topological Information using Filtration 
 
Minkowski functionals and fractal properties discussed previously are defined for binary lattices. Grayscale 
images, however, are continuous fields; in other words, pixels that can take continuous values between the 
minimum of 0 (black) and the maximum of 1 (white). A lattice representation of an image can be obtained 
by defining a threshold Z between 0 and 1 and setting all pixels with lower intensity level than the threshold 
to 0 (and all other pixels to 1). Once the image has been binarized, we can compute the corresponding 
Minkowski functionals. However, this approach requires pre-selecting a threshold value; to avoid this 
limitation, we apply a filtration procedure. Here, the idea is to propose a sequence of threshold values that 
is used to binarize the grayscale image at different intensity levels, and then compute Minkowski 
functionals at each level. This allows us to keep track of how topological features emerge at different scales.  
 
To explain how the filtration process extracts rich topological information, note that a 2D image [ can be 
seen as a 3D topography that can be decomposed into multiple binary images % (also known as isoheight 
planes)44. The filtration process is also known as a “watershed” in image processing. Importantly, this 
approach can be applied to high-dimensional objects such as videos; in such a case, the 3D video [ can be 
seen as a 4D topography that is decomposed into multiple binary videos %. As shown in Fig. 7, we can 
obtain the topological descriptors (AR, BL, EC, FD, and LA) of each binary image and summarize this 
information in topological descriptor curves.  
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Fig. 7: Filtration process of a grayscale image. The LC optical response is captured as a grayscale image; this image can 
be represented as a 2D matrix, where the pixel intensity is the value of each matrix entry. The matrix representation 
reveals the topological features of the grayscale image (which can be visualized as a 3D morphology); this reveals 
peaks (large values) and valleys (small values) of intensity. To facilitate the next step of the filtration process, the 
matrix is normalized to have a zero mean and unit variance. Filtration decomposes the matrix into a series of binary 
matrices with certain thresholds (i.e. matrix values greater than the threshold are set to 1, otherwise they are set to 
0). Topological descriptors collected at each threshold ! are summerized in descriptor curves that capture various 
aspects of the topology. The filtration process can also be applied to higher-dimensional objects, such as videos, using 
space-time filtration.  
 
 
Topological descriptor curves are effective tools for summarizing and visualizing image topology. In Fig. 8, 
we illustrate how EC curves can be used to highlight differences in the topology of LC optical responses to 
various analytes. Each image represents the endpoint optical response of the sensor, which corresponds 
to the optical response after a fixed time after exposure to the analyte and after the optical response stops 
evolving in time (i.e., average intensity is at steady state) (also see Fig. 6). Specifically, different analyte 
types and concentrations will result in different LC surface orientations and corresponding morphologies. 
For example, a mixture of 2 ppm SO2 and 20% relative humidity (RH) produces a rough response with small 
domains (Fig. 8d), whereas a mixture of 2 ppm SO2 and 80% RH produces a smooth response with a large 
domain (Fig. 8e). The differences in topology are revealed by the EC curves. In Fig. 8g, we see that the EC 
peak at 20% RH is higher than that at 80% RH. Other topological descriptor curves can also capture different 
types of variations, as shown in SI (Section S2.1 and S2.2). In Fig. 8, the LC responses to pure O3 and the 
O3/Cl2 mixture7, pure Cl23, SO2/RH42, and DMMP41 are obtained from previous studies.  
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Fig. 8: EC curves of LC optical responses to various gas analytes. Endpoint LC optical responses to (a) 5 ppm O3

7, (b) 5 
ppm Cl23, (c) a mixture of 5 ppm O3 and 5 ppm Cl27

 (d) a mixture of 2 ppm SO2 and 20% RH42, (e) a mixture of 2 ppm 
SO2 and 80% RH42 and (f) 10 ppm DMMP41

 and their corresponding 3D morphologies. (g) Normalized EC curves for 
different analytes; the EC curve shapes reveal differences in the topology of the optical responses. 
 
 
 

Extracting Topological Information from Color Images 
 
The optical response of LCs is frequently analyzed using grayscale images. As shown in Fig. 9a, however, we 
can capture the response as a color image and decompose the image into red, green, and blue (RGB) 
channels and analyze the topology of each channel. The color image in Fig. 9a was obtained after the 
average intensity had reached a steady state. Similar to the RGB color space, the LAB color space is also 
widely used in color decomposition, where the L* channel describes the brightness, the A* channel 
describes the red/green level, and the B* channel describes the blue/yellow level. Fig. 9a shows how 
different color spaces highlight different topological features of a response. In this example, the repeated 
transition from red to green in the A* image is particularly noticeable, indicating different orders of 
interference fringes (consistent with a continuous LC anchoring transition)7. This information can thus be 
used to characterize spatial patterns of LC orientations that are not revealed in other color channels. There 
is no definitive advantage or disadvantage of using RGB or LAB; different color channels, in general, carry 
distinct information. This is illustrated in Fig. 9b, which shows that the EC highlights topological differences 
between the color channels. The presence of complementary information from the color channels 
illustrates that they can all be useful in characterizing responses. This has been previously observed in the 
analysis of LC responses using CNNs7 (which conduct convolution operations in different color channels to 
extract different types of pattern and texture information). These observations are important because, as 
is done in CNNs via convolution, we can extract information from different color channels using topological 
analysis. As we will show, this provides a flexible and general approach to constructing models that 
correlate topological information to emergent properties of interest and that are competitive with CNNs. 
Specifically, we will see that these models are computationally more scalable than CNNs, can achieve similar 
accuracies, and require more modest computational hardware. 
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Fig. 9: Extracting topological information color images. (a) Optical response of LC exposed to Cl2 at a concentration of 
5 ppm. The RGB image is typically decomposed into (b) red, (c) green, and (d) blue channels. The image can also be 
decomposed into (e) an L* channel that specifies brightness, (f) an A* channel specifies the red or green level of the 
color, and (g) a B* channel specifies the blue or yellow level of the color. The corresponding 3D morphology is next to 
each single-channel image. The A* channel reveals a repeated red-to-green transition, indicating different orders of 
interference fringes (consistent with a continuous LC anchoring transition). The other channels do not highlight this 
topology clearly. (h) Normalized EC curves for different color channels; differences in EC curves show that different 
color channels encode different topological information. 
 
 

Extracting Topological Information from Space-Time Responses 
 
Topological descriptors can be used to characterize objects in high dimensions and in a scalable manner. 
This provides a powerful approach to visualizing, quantifying, and summarizing complex space-time 
responses. In Fig. 10, we visualize the characterization of a space-time topology of a LC optical response 
using different descriptors. In Fig. 10b, the repeated transition from green to red in the space-time topology 
of the A* channel reveals the continuous evolution of the tilt angle of the LCs (indicated by different orders 
of interference fringes).  
 
Similar to the 2D case (images), the lattice representation of a video is obtained by defining a filtration 
threshold Z and assigning all pixels with intensity levels below the threshold to 0 and all other pixels to 1. 
Once the video has been binarized, the Minkowski functionals and fractal Minkowski descriptors can be 
computed. The 3D Minkowski functionals have an additional component, volume (VL), and the EC now also 
captures void spaces in the space-time field. In Fig. 10d, we illustrate six different topological descriptor 
curves used to characterize a space-time topology. We can see how the EC reveals the complex dynamics 
of the tilt angles.  
 
The extraction of topological information for space-time fields can be combined with different color 
representations to provide a scalable and flexible framework to conduct diverse unsupervised and 
supervised ML tasks. For instance, as we show in the next section, we can construct ML models that achieve 
similar accuracies to those obtained with powerful 3D CNNs. We also highlight that it is possible to 
characterize the evolution of 2D spatial topologies (as opposed to characterizing the topology of the entire 
3D space-time field); this is illustrated in one of our case studies. This approach is expected to lose 
information, as it assumes that spatial topologies are not correlated in time (which might not be the case); 
however, this approach can provide interesting insights on how topological features appear and disappear 
in time, can help identify critical times at which features appear or disappear, and can help identify when 
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the system topology has settled (achieved a topological steady-state). All these capabilities can be useful in 
facilitating the visualization of complex optical responses and in gaining insight.  

 

 
 
Fig. 10: Space-time topology and filtration. (a) Space-time topology of a grayscale video (1.5 ppm O3 and 2 ppm 
Cl2). The video object has three dimensions, x, y, and time. The duration of the video is 75 seconds. The dark volume 
at the beginning of the response indicates that no optical response has been observed. (b) Space-time topology of 
the same video in A* color space. The recurring transition from green to red is indicative of the continuous tilt angle 
change of liquid crystals. The topological patterns of the A* video are notably different from the pattern of the 
grayscale video, demonstrating that the different color channels carry distinct information. (c) Space-time filtration 
of a grayscale video, with pixel values normalized with zero mean and unit variance. We show different space-time 
topologies at four thresholds. For example, when the threshold value is 0, a discontinuity of intensity over time can 
be observed (shown in a red box). (d) The space-time filtration results in four Minkowski functional curves and two 
fractal Minkowski curves. We have an additional curve to describe the occupied volume compared to the 2D case. 
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Dataset: LC Response to SO2 and H2O 
 
High-throughput video data was used to analyze the LC response to different concentrations of SO2 and 
relative humidity (RH) in a mixed gaseous environment42. LC samples are made of 0.005 mol% 4 ′ -
cyanobiphenyl-4-carboxylic acid (CBCA) in 4-cyano-4'-pentylbiphenyl (5CB) and are hosted within the slots 
of transmission electron microscopy (TEM) grids supported on the TiO2-decorated surfaces. We split the 
TEM grid into multiple squares; each square represents a chemoresponsive LC system. For each square, we 
capture an image of the endpoint response (134 × 134) which can be represented as a 2D matrix; in other 
words, here we only analyze the spatial topology of the response at the end of the responses. Each grid 
square generates a 3-channel (RGB) object. We investigated 4 levels of SO2 concentration (i.e., 0.5, 1, 2, 
and 5 ppm) with 40% RH, and 4 levels of RH (i.e., 20%, 40%, 60%, and 80%) with 2 ppm SO2. The dataset 
studied contains 504 LC responses (72 responses for every gaseous mixture concentration). We begin by 
analyzing the (single channel) grayscale images; after standardizing the image with a zero mean and unit 
variance, we performed 2D filtration and obtained five topological descriptor curves (AR, BL, EC, FD, and 
LA). Each of the curves is a vector with 100 entries (100 different threshold values were used).  
 
Dataset: LC Response to O3 and Cl2 
 
Similar to the experimental setup for the SO2/RH study, video was used to record the LC responses to 
various concentrations of ozone (O3) and chlorine (Cl2) gas mixtures7. LC samples were prepared and 
embedded in a TEM grid supported on a Mn(ClO4)2 decorated surface (Fig. 4a,b). The analysis conducted 
in this case study focused on characterizing the space-time topology of the responses. Each response 
snapshot is a matrix of dimension 50 × 50; we took 150 snapshots and stacked them chronologically to 
create a space-time data object (a tensor) of dimension 150 × 50 × 50. A snapshot is taken every 0.5 
seconds and the total collected video has a length of 75 seconds. Each square in the TEM grid generates a 
3-channel 3D tensor because of the RGB data format. 
 
Concentration Prediction of SO2 and H2O 
 
The topological descriptor curves obtained from the responses were fed into a support vector machine 
(SVM) with a radial basis function (RBF) kernel, which is used to regress and classify the SO2 concentrations 
and RH. We refer to this approach as topological data analysis (TDA). Predictions of SO2 concentration and 
RH were performed separately. We performed 5-fold cross-validation (CV) to tune the hyperparameters of 
the SVM. The dataset is split into 5 components; training occurs 5 times, each time leaving out a different 
part of the dataset for testing. A subset of each training set is chosen as the validation set to tune the 
hyperparameters of the SVM. We average the error on 5 test sets; for each fold, we use stratified random 
splitting to divide the 288 responses into 184 training samples (64%), 46 validation samples (16%), and 58 
test samples (20%). For the detailed implementation of the SVM and of CV and hyperparameter tuning, 
please see SI (Section S3). To determine prediction performance, we evaluated regression with root mean 
square error (RMSE) and classification with accuracy scores. 
 
To compare the effectiveness of using topological information to predict gas concentrations, we compared 
performance against CNNs7. The CNN accepts as input a 3-channel matrix (RGB image) with a dimension of 
134 × 134 and conducts repetitive convolution operations to extract feature information. We evaluated 
the performance of the CNN using the same five-fold CV for the SVM, with the same training, validation, 
and test samples. The hyperparameters we tuned for the CNN included the learning rate, the batch size, 
and the number of filters. The detailed structure and training procedure of the CNN can be seen in SI 
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(Section S3.2). While the architecture of the CNN is predetermined, the parameter values for the 
convolutional layers and fully-connected layers are learned from training and validation data. The CNN is 
trained and validated using a set of input tensors drawn from the training set and their corresponding 
output labels. The CNN will then attempt to predict the concentration from extracted features and compare 
it to the true concentration. The difference between predicted and true values is referred to as the error. 
The CNN will then adjust its parameters to reduce the magnitude of the error (by minimizing a loss/error 
function). The loss function for classification is cross entropy, while the loss function for regression is mean 
squared error. More details on the CNN architecture used can be found in the SI (Section S3.2). 
 
Concentration Prediction of O3 and Cl2 
 
The same SVM setup was used to both regress and classify the O3 and Cl2 concentrations. Predictions of O3 
and Cl2 concentrations were performed separately. The same 5-fold cross-validation is used to tune the 
hyperparameters. Each fold has 512 training samples (64%), 128 validation samples (16%), and 160 test 
samples (20%). The detailed implementation of CV and hyperparameter tuning can be seen in SI. The 3D 
CNN accepts as input a 3-channel tensor (RGB image) with a dimension of 150 × 50 × 50. We followed 
the same procedure for training and tuning hyperparameters as the 2D CNN used in the SO2/RH study. 
 

Data availability 
 
The data for this work is available at https://github.com/zavalab/ML/tree/master/LC_TDA  
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