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Abstract

We demonstrate the benefits of using Riemannian geometry in the analysis of multi-site, multi-
pollutant atmospheric monitoring data. Our approach uses covariance matrices to encode spatio-
temporal variability and correlations of multiple pollutants at different sites and times. A key
property of covariance matrices is that they lie on a Riemannian manifold and one can exploit this
property to facilitate dimensionality reduction, outlier detection, and spatial interpolation. Specif-
ically, the transformation of data using Reimannian geometry provides a better data surface for
interpolation and assessment of outliers compared to traditional data analysis tools that assume
Euclidean geometry. We demonstrate the utility of using Riemannian geometry by analyzing a

full year of atmospheric monitoring data collected from 34 monitoring stations in Beijing, China.
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1 Introduction

Air pollution damages human health and impacts the environment (e.g., climate change) [13, 20, 25].
A key factor in developing pollution mitigation policies, technological solutions, and improving pub-
lic awareness is the monitoring and modeling of atmospheric pollutant behavior [33]. Air pollution
is traditionally measured within spatially-distributed monitoring stations. These stations provide
accurate measurements of multiple atmospheric pollutants (e.g., O3, NOy, PM>5) at high temporal
resolution. Historically, air pollution research and policy has focused on the control of individual
pollutants due to the complexities that arise in the analysis, modeling, and interpretation of multi-
pollutant data [7]. However, the need for air quality management tools and methods that integrate
multi-pollutant data has been recognized by government agencies, such as the Environmental Pro-
tection Agency (EPA), as being crucial in estimating health risks and environmental impacts of com-
plex mixtures of air pollutants [7, 40, 9, 19]. Furthermore, dynamic relationships between different
pollutants encoded in multi-pollutant measurement data can provide insight into the chemical and
physical interactions between pollutants. For example, chemical interactions between NOx and O3
can be captured by observing temporal correlations between their atmospheric concentrations. For
instance, a positive correlation between NO, and O3 is commonly present due to the formation of O3
through the photolysis of NO,, whereas a negative correlation suggests the depression of O3 concen-

tration due to NO, titration [26].

A common approach to quantify and study spatio-temporal relationships between pollutants con-
sists of encoding the multivariate time series data as covariance (correlation) matrices [35, 15, 39, 17].
This approach enables the use of powerful multivariate methods (e.g., principal component analysis)
for dimensionality reduction [35, 39], modeling [15, 36, 14], source detection [22], and monitoring
station performance [17]. However, these methods make the blanket assumption that data lies in a
Euclidean space and this assumption can miss geometric structure contained in the data that might
be relevant for analysis [32, 30, 29]. Furthermore, many of these analysis techniques are based on sin-
gle pollutant monitoring or on a single monitoring location; specifically, they do not account for the
dynamic relationships between different pollutants across varying monitoring sites. Our proposed

framework extends these analysis techniques for use in multi-pollutant, multi-site monitoring .
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A key observation that we exploit in our analysis framework is that covariance matrices lie on
a Riemannian manifold [28, 23, 34]. A Riemannian manifold represents a space that is governed by
non-Euclidean geometry, meaning that the space is curved [28]. A simple example of a Riemannian
manifold is the surface of the Earth (i.e., a smooth sphere). For instance, if we were to plan a trip from
antipodal points on the Earth and we ignored the geometry of the Earth’s surface we would end up
passing through the center of the Earth. However, if we apply the concepts of Riemannian geometry
and account for the curvature of the Earth we would construct a path that is constrained to Earth’s
surface. This same concept can be applied in the analysis of covariance matrices derived from atmo-
spheric data. Accounting for the curvature of the Riemannian manifold formed by the data allows us
to compute relationships that respect the data’s high-dimensional structure, rather than (incorrectly)
assuming the data is governed by Euclidean geometry [1, 34]. This has been shown to improve
outcomes of multivariate data analysis methods in tasks such as classification and dimensionality
reduction [28, 2, 23, 18]. Consideration for the geometry of these matrices also prevents results of
data analysis (e.g., spatial interpolation) that could be physically inconsistent by constraining results
to the Riemannian manifold [28, 23]. For example, spatial interpolation through Euclidean geometry
can result in matrices that have no physical meaning and have inflated variance [34]. However, if
Riemannian geometry is assumed, the interpolated result is guaranteed to be a proper covariance

matrix by constraining the interpolation to the matrix manifold.

The analysis of data through Riemannian geometry has been well studied and successfully ap-
plied in a broad range of scientific fields such as statistics, physics, neuroscience, medical image
analysis, engineering, and computer vision, but has been minimally explored in the analysis of at-
mospheric data [2, 23, 8, 10, 18]. These applications demonstrate that analysis tools that assume the
data lies in Euclidean geometry can be drastically improved using Riemannian geometry. The as-
sumption of Euclidean geometry can introduce analysis errors, physically inconsistent results, and
apply constraints to the data that do not reflect the physics and dynamics of the data, all of which
are addressed through a Riemannian geometric approach. Therefore, in this work we provide a
practical introduction to the mathematics of the Riemannian geometry of covariance matrices and
a framework for application in atmospheric data analysis. We also demonstrate the need for the

incorporation of Riemannian geometric approaches to atmospheric data analysis as many of the
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current tools that are based on the assumption of Euclidean geometry can artificially bias analysis
results due to the nature of the constraints created by this assumption. We apply the introduced
methods in an analysis of real, multi-pollutant data taken from 34 air quality monitoring sites in
Beijing, China [12]. The data is made available through the Beijing Municipal Monitoring Center
(bjmemc.com.cn). For each site we record hourly concentrations of six atmospheric pollutants: CO,
NO,, O3, PMy,, PM,5 and SO,. For each of the 34 sites we obtain a stochastic multivariate time
series. We can compute the pairwise covariance between each of the time series and construct a co-
variance matrix for each site. Our analysis is focused on quantifying and understanding the spatial
and temporal behavior of these covariance matrices through dimensionality reduction and spatial
interpolation. We demonstrate the benefits of incorporating Riemannian geometry into the analy-
sis through comparisons with methods that (incorrectly) assume these matrices live in Euclidean
space. All code and data required to reproduce all of the results in this paper can be found in

https://github.com/zavalab/ML/tree/master/Atmospheric_Analysis.

2 Methods

This section will cover necessary definitions and properties of the Riemannian manifold of covari-
ance matrices that are symmetric and positive definite (SPD). A more detailed understanding of these

methods and mathematical background can be found in our previous work [28].

We first provide context for the methods developed in this section. Figure 1 illustrates the data
pre-processing steps that are taken in order to analyze the multi-site, multi-component dataset. Each
measurement site, represented as a red point in the map of Beijing, produces a multivariate time
series which measures the concentration of six air pollutants: CO, NO,, Oz, PM;y, PMy5 and SO;.
These values are recorded in hour intervals for a period of one year. Taken together, this data forms
a multivariate time series that is inherently stochastic. Thus, for a given interval of time, we can
use measurements recorded at each site to construct a covariance matrix representing the temporal
dynamics of six pollutants at each site. Each of the 6 measured variables are represented as a uni-
variate random variable z; where ¢ = 1,2,...,6. We denote the observations of each signal at time
t=1,2,...,mas z;(t) € R™. We center each of the measured signals Z; := z; — % ik, xi(t) and de-

note the collection of centered signals as a multivariate random vector X = (&1, ..., &,) wheren =6 .
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Multivariate Time Series  Covariance Matrices

rrrrrr

Beijing, China m

I-u SPD Matrix Manifold P(n)

Figure 1: Illustration of the computational workflow used in the pre-processing and analysis of at-
mospheric data measured at multiple locations in Beijing, China. Multivariate measurements of six
atmospheric pollutants: CO, NO,, O3,PM;j, PM;5 and SO, are taken over time at each monitoring
site. These multivariate time series can be represented as covariance matrices, which are symmetric,
positive definite (SPD). These matrices form a Riemannian manifold and this manifold can be lever-
aged to provide measures of similarity such as geodesic distances. Geodesic distances (red-solid
lines) are constrained to the geometry of the overall data. Euclidean distances (dashed - black lines)
do not capture this same information.

We then construct the sample covariance matrix for the multi-pollutant data P € P(n) as:

1

Where P(n) represents the set of all n x n covariance matrices. Example covariance matrices are
found in Figure 1. The covariance matrix P of dimension n x n, where n = 6 in this example, quanti-
ties both the variance of a given measured pollutant, and the covariance between each pollutant and
all other pollutants. We can leverage these covariance matrices to quantify the dynamic relationships
between pollutants at each site, and better understand how these dynamics change over time and
space. The matrices X of size n x m contain the m time steps for n pollutants. The length of the time
series m used in the matrices X and P is determined by the time period analyzed. It could be as
short as 24 for the analysis of a single day but would more likely be a full month (720), year (8760)
or more. An important aspect in the analysis of these covariance matrices is that they are symmetric
and positive definite (SPD). A symmetric matrix is a matrix where the transpose of the matrix is exactly
equal to the original matrix P = PT. A positive definite matrix is a matrix where the eigenvalues of

the matrix are all strictly greater than zero P - 0. Matrices that meet these criterion have a special
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geometric structure, known as a Riemannian manifold, which can be exploited to provide improve-

ments in data centric tasks such as dimensionality reduction and spatial interpolation (e.g., Kriging).

The incorporation of Riemannian geometry into the analysis of covariance matrices requires few,
computationally efficient, steps. These steps are outlined in this section, as well as section 2.1 - Tan-
gent Spaces, and section 2.2 - Matrix Means. In summary, these steps allow us to map our covariance
matrix data from the curved Riemannian manifold surface to a flat (Euclidean) vector space. This is
similar to a map that represents a projection of the Earth’s curved surface on a 2-dimensional plane. A
2-dimensional (flat) map of the earth allows us to easily compute angles and distances using common
measurement devices (e.g., rulers, protractors). Similarly, mapping the curved Riemannian manifold
(Earth’s surface) onto a linear vector space (2-dimensional map) allows us to leverage common data

analysis tools (e.g., PCA, Kriging).

We now focus on developing the mathematical notation and concepts needed to understand
the Riemannian geometry of SPD matrices from a practical perspective. We denote the set of all
n X n symmetric matrices as S(n) := {S € M(n),ST = S} where M(n) represents the space of
all square n x n matrices. We then define the set of all n x n symmetric, positive definite matrices
as P(n) := {P € S(n),u’Pu > 0,Vu € R"}. The set P(n) represents our Riemannian manifold of
covariance matrices. An illustrative representation of the P(n) manifold is found in Figure 2. The
manifold P(n) is a curved, conic surface embedded in Euclidean space [38]. We also illustrate several
points P, Py, P3 € P(n), that contain the covariance of the time series for each pollutant, for each
site (P, P2, P3 represent 3 of the 34 sites). Although the figure displays the SPD covariance matrices
(P) in three-dimensional space, they are actually in k-dimensional space where k = n(n + 1)/2 and

n = 6 is the number of pollutants in our measurement matrix X [23].

Figure 2 also demonstrates a simple distance analysis of these covariance matrices through two
different methods: Euclidean and Geodesic. The Euclidean method assumes the matrices do not form
a Riemannian manifold, and that they are governed by Euclidean geometry. We define the Euclidean

distance between two matrices P;, P; € P(n) as:
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SPD Matrix Manifold P(n)

Distance

- - - Euclidean

—— Geodesic

Euclidean Space

Figure 2: An illustration of a Riemannian manifold formed by SPD matrices P(n), with a set of points
P,,Py,P3 € P(n). A comparison of geodesic (red, solid line) and Euclidean distances (dashed,
black line) are shown between P, P, and Py, P3 along with a comparison of a geodesic interpo-
lation P(¢)¢ and Euclidean interpolation P(¢)r between points P;,P3. Geodesics and their dis-
tances/interpolations are constrained to the manifold P(n) and capture the inherent geometry of the
data. Euclidean distances ignore the manifold geometry which can distort the perceived relation-
ships between points on the manifold.
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dp(Pi, Pj) == ||P; — Pjl|p (2.2)

where || - || is the Frobenius norm. The geodesic method computes a geodesic distance. The
geodesic distance is the length of a geodesic between two points on a Riemannian manifold [23]. A
geodesic is the shortest path between two points on a Riemannian manifold that accounts for the
curvature and shape of the manifold P(n) [28]. For SPD covariance matrices a geodesic distance can

be defined as [28, 23]:

da(Pi, Pj) = |[log(P;) — log(P;)||r (2.3)

where log(-) represents the matrix logarithm, commonly used in the analysis of matrix manifolds
[28, 23]. In an analysis of our matrices P, Py, P3 € P(n) through the Euclidean distance we obtain

the following result (illustrated in Figure 2):

dE(Pl,PQ) > dE(Pl,Pg) (24)

Whereas if we perform the analysis using the geodesic distance we obtain the opposite result

(illustrated in Figure 2):

dg(Pl,Pg) > dg(Pl,Pg) (25)

The geodesic distance captures the correct relationship between these matrices because the dis-
tance accounts for the geometry of the manifold P(n), which the Euclidean distance ignores. We
explore the practical importance of incorporating the manifold geometry through examples in dimen-
sionality reduction and spatial interpolation in Section 3. Another property of geodesic distances that
is helpful in the analysis of real world data is congruence invariance. Congruence invariance means

that any n x n invertable matrix X applied to a set of covariance matrices P; € P(n) does not impact

8
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the geodesic distance between the two matrices:

dy,(XTP,X, X"P,;X) = d,(P;, P;) (2.6)

Operations such as scaling and normalization, which can be reformulated as invertable matrices,
have no impact on the geodesic distance between matrices. Thus, the geometry of the geodesic dis-
tance is robust to many issues that arise in real data sets (e.g., scaling of variables). This is further

explored in Section 3.

As mentioned previously, the geodesic distance reflects the length of the shortest path between
two points on a Riemannian manifold [28]. Geodesics are particularly useful in the interpolation and
averaging of covariance matrices, which is often needed in algorithms for spatial interpolation (e.g.
Kriging). An illustrative comparison of a geodesic versus a Euclidean method for interpolation is

shown in Figure 2. Assuming Euclidean geometry, an interpolation is given by:

PE(S) = P1(1 — S) + P3(S) (27)

where s € [0,1] and Pg(0) = Py, Pg(1) = P3. Unfortunately, as seen in Figure 2, this inter-
polation does not follow a geodesic path. This can result in covariance matrices that have inflated
variance and other potential issues [1]. However, if we consider the geometry of the manifold we can

construct an interpolation via the geodesic [28, 23]:

Pg(s) = Pl (P;1/2P3P;1/2) pl/2 (2.8)

where s € [0,1], Pg(0) = Py, Pg(l) = P3, and P; = Pi/QPi/z. Further details around the
derivation of the geodesic can be found in our previous work [28]. Leveraging the geodesic between
matrices P; and P3 ensures that the interpolated matrix P(s) € P(n) is a symmetric, positive defi-

nite covariance matrix [34, 24]. These interpolation methods are the basis for constructing means (e.g.,
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mid-point between multiple matrices). They are also used in spatial interpolation where the behavior
of the pollutants (i.e. the covariance matrix) at a new spatial location is estimated by a weighted aver-
age of the covariance matrices at neighboring locations. In contrast with a linear interpolation of the
measurements themselves, a geodesic interpolation would seek to follow the underlying dynamics
of the system. Thus, developing averages or spatially interpolating values is highly dependent on
the data geometry and is demonstrated through case studies in section 3. We note that the geodesic
distance selected here, based on the matrix logarithm, is one of many approaches to constructing
geodesics on the manifold of SPD matrices. These methods include decompositions of SPD matri-
ces, such as the Cholesky decomposition or the matrix square root, and geometric methods such as
Procrustes analysis; a detailed overview of these methods can be found in the following reference
[8]. The logarithm based metric was chosen for the analysis of atmospheric data due to the ability
of the metric to combat potentially adverse effects in data analysis such as swelling (described in the

supplementary information) and its ease of interpretability [23].

2.1 Tangent Spaces

The analysis of covariance matrices through Riemannian manifolds provides numerous benefits,
however many multivariate methods for tasks such as dimensionality reduction (e.g., principal com-
ponent analysis) require data that lies in a (linear) vector space. The non-linear (curved) nature of the
Riemannian manifold of SPD matrices requires that we map the structure of the manifold to a lin-
ear space. Fortunately, Riemannian manifolds are differentiable manifolds [16]. This means that every
point on the Riemannian manifold P € P(n) has an associated tangent space denoted as Tp P € S(n),
constructed from the tangent vectors of all possible curves passing through the point on the manifold
P € P(n) [4, 28, 16]. We define a curve as a continuous function ¢ : [0,1] — P(n). The tangent
space at any point P € P(n) represents a (linear) vector space that is of the same dimension as the
Riemannian manifold [3]. The tangent space encodes the geometry of the Riemannian manifold and

can be used directly in common multivariate analysis methods.

An illustration of the tangent space 7p, P constructed at a point P; € P(n) is found in Figure
3a. Figure 3a also illustrates two functions that connect the tangent space 7p, P to the Riemannian

manifold. These functions are known as the logarithmic map and the exponential map. For example,

10
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Tangent Space Tp, P Tangent Space TpP
Tp,
-
; T
Tp, Tp, - T -
2 /0/ L3 . 5 -
logp, (P2) f.’1 N y P3 = I T
y . = Py o\l
expp,(Tp,) ‘ | i i
i - ! L - \
P, ~ ‘ 157 - Py \\
Matrix Manifold P(n) Matrix Manifold P(n)
(a) (b)

Figure 3: (a) Illustration of the tangent space 7p, P formed at the point P; € P(n). The tangent
space represents a (linear) vector space that is of the same dimension as the manifold P(n) and in-
tersects the manifold at Py. The logarithmic map logp (P2) — Tp, takes point Py € P(n) to the
point Tp, € 7p,P. The exponential map expp, (Tp,) — P2 does the inverse. The exponential and
logarithmic mappings allow us to map our covariance matrix data from the curved manifold space
P(n) to a vector space Tp,P. (b) Illustration of the geometric mean of a set of covariance matrices
P,,P;,P3,Ps € P(n). The geometric mean is the point P that minimizes the geodesic distance to
all other data points on the manifold P(n). The logarithmic map logp(-) : P(n) — TpP is used to
map the covariance matrices from the curved manifold P(n) to the linear tangent space 7P while
minimizing the potential geometric distortion from the mapping. This mapped data can then be used
directly in common data analysis methods such as principal component analysis.

2

2 in Figure 3a the logarithmic map takes P on the Riemannian manifold and maps it to a point Tp, in

2

s the tangent space 7p, P centered at P. For two points P;, P; € P(n) we define the logarithmic map

4 as|[28,4]:

2

logp, (P;) = P/*log (P, /*P;P; /) P}/ (2.9)
215 The exponential map is the inverse of the logarithmic map. It maps points from a tangent space

216 (T'p, in Figure 3a) back to the Riemannian manifold (P5 in Figure 3a). For points P; € P(n) and

217 Tp, € Tp, P, we define the exponential map as:

expPi(ij) = Pi/Qexp <P._1/2ij P;I/Q) pl/? (2.10)

K3 7

2

8 The exponential and logarithmic map allow for the curved Riemannian manifold of SPD covari-

2

o ance matrices to be mapped directly to a (linear) vector space (i.e., the tangent space). Mapping the

11
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data to the linear (flat) vector space allows us to apply common data analysis techniques while encod-
ing the manifold geometry. Thus, linear methods such as PCA and Kriging applied to this mapped
data will automatically incorporate the geometry of the Riemannian manifold. Benefits of this are
further explored in Section 3. For those readers interested, a detailed derivation of the logarithmic

and exponential mapping can be found in the following references [28, 4].

2.2 Matrix Means

In the analysis of real datasets where there are many matrices being analyzed it is not obvious which
point on the manifold should be chosen as the basis for the tangent space. The basis point is often
chosen to be the geometric mean of the set of all matrices in the dataset P; € P(n). The geometric mean
is the point P € P(n) that minimizes the geodesic distance to all other data points on the Riemannian

manifold [28, 23, 3]:

P := argmin Z ||llog(A) — log(P;)||r (2.11)
A i=1

Once the geometric mean is identified, the set of matrices in the dataset can then be mapped
from the Riemannian manifold to the tangent space through the logarithmic map. An illustration of
this process is found in Figure 3b. Here, the geometric mean P of matrices P, Py, P35, Py € P(n)
is computed. The matrices are then mapped to the tangent space through the logarithmic map
logp(P;) = Tp,. Once completed, the matrices have been mapped to a linear space and can be
used in multivariate analysis methods while minimizing the potential geometric distortion of the

logarithmic mapping [28, 3].

2.3 Spatial Interpolation

Consideration for the Riemannian geometry of covariance matrices is crucial when performing spa-
tial interpolation of covariance matrix values [24]. As shown in Figure 2, interpolation between ma-
trices with an assumption of Euclidean geometry (Equation 2.7) can result in matrices that do not
lie on the covariance matrix manifold P(n). Whereas interpolation through geodesics (Equation 2.8)

provides assurance that the resulting interpolated matrix will lie on the Riemannian manifold [24].
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Euclidean interpolation of covariance matrices can also cause a swelling effect on the interpolated ma-
trices [1, 28]. The swelling effect causes an increase in the generalized variance (i.e., determinant) of
the interpolated covariance matrices. This introduces a spurious increase in the variance of the at-
mospheric pollutant data dynamics creating results that are not physically consistent. An example of
this effect is shown in the supplementary information. This is not the case with geodesic interpolation
which reflects a natural evolution of the generalized variance during interpolation. This problem is
amplified when attempting to perform a spatial interpolation where the matrices at multiple spatial
locations are averaged (in a weighted manner) to predict the matrix values at a new (unmeasured)
spatial location. This will result in spurious increases in (co)variance that would lead to false conclu-

sions about potential sources/dynamics of pollution at these unmeasured locations.

Another aspect of spatial interpolation methods is the modeling of spatial dependence (spatial
autocorrelation) between observed data points. This is often modeled through the use of the empiri-
cal variogram [5]. Given a set of i € Z sample covariance matrices P; € P(n) measured at i spatial
locations s; € R? we compute a Euclidean or geodesic distance between each sample covariance ma-
trix. We also compute the spatial lag distance between each location ||s; — s;||2 € R, where the s;, s;
are latitude and longitude coordinates. The covariance matrix distances are binned over spatial lag
distance and averaged within each bin. This is a simple method for understanding spatial autocorre-
lation between the covariance matrices. For the geodesic distance method we compute the empirical

variogram as:

oy -— 1 . J— .
(Si,S]‘)EN(hﬂ:é)

where h, 6 € R represents the spatial lag bin center and width, N(h £ ) := {(ss, 55) : ||s: — s5]]2 €
h £ 0} which represents pairs of sites (s;, s;) with spatial distance h — ¢ < ||s; — s;|[2 < h + J, and
|IN(h £ 0)| € Z represents number of sites pairs contained in N (h £ §). For the Euclidean distance

method the empirical variogram is given as:
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1
Y(h+0)E = s P, - P, 2.13
(Si,Sj)EN(h:‘:(S)
We compare the performance of variograms constructed using a geodesic distance and a Eu-

clidean distance on the Beijing atmospheric data in Section 3.

3 Application to Multi-Site, Multi-Pollutant Data

This section focuses on the application of Riemannian geometry in the analysis of multi-site, multi-
pollutant time series data collected from 34 sites in Beijing, China [12]. The data is collected at 1-hour
intervals and spans the entire calendar year of 2019. We apply and compare dimensionality reduction
and spatial interpolation methods using Riemannian geometry to those that assume that data lies in

Euclidean space.

3.1 Dimensionality Reduction

Dimensionality reduction helps facilitate both visualization of data and subsequent processing of
data for other data-centric tasks such as classification, regression, and outlier detection [37, 30, 32,
27,31]. A common method in dimensionality reduction for atmospheric data is principal component
analysis (PCA), which will be the focus of this section [35, 39, 17]. Our analysis is based on covariance
matrices constructed from multi-pollutant time series data at each of the 34 sites in Beijing. As dis-
cussed previously, each site measures 6 pollutants: CO, NO,, Oz, PMjy, PM; 5 and SO,. We represent
each of the 6 measured variables as a centered, univariate random variable z; where i = 1,2,...,6
and we denote the collection of signals as a multivariate random vector X = (z1, ..., z,,) where n = 6.
Thus, we obtain multivariate random vectors X; for each site j = 1,2,...,34. We first analyze the
multi-pollutant data collected during weekdays, weekends, and holidays for each of the 34 sites. For
each site, we obtain 3 covariance matrices, one representing dynamics observed during the weekday,
one during the weekend, and a final during holidays for the year. We denote the observations of
each signal at time ¢t = 1,2,...,m as z;(t) € R™. The value of m will change for weekdays m = 6936
(hours), weekends m = 1128 (hours), and holidays m = 696 (hours). The covariance matrix size is

only dependent on the number of measured variables, which in this case is the 6 pollutants. Thus, we
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can directly compare these three timeframes even though they have a varying number of time sam-
ples. We use these measurements to construct the sample covariance matrix for the multi-pollutant

data P; € P(n) for eachsite j = 1,2, ..., 34 as:

P, = ﬁxjxf (3.14)

We first perform PCA without consideration for the Riemannian geometry of our covariance ma-
trices (assuming a Euclidean space). Here, each covariance matrix P; € P(n) can be can be vectorized
P; := vec(P;) € R"’, where n = 6. We can then construct a matrix M = (PP PZT]T € RIx36,
where [ = 34 * 3. The matrix M contains the 3 covariance matrices for each of the 34 sites. Each row
in the matrix M has the 36 values of the 6 x 6 covariance matrix P;, and there is a row for each site
and for each type of day leading to 34 x 3 rows. We then perform a singular value decomposition
of the matrix M and project the data onto the leading eigenvectors. The eigenvectors represent basis
directions in Euclidean space that capture the most variance (information) in the data. We can project
our data onto these eigenvector basis so that we can view a low-dimensional representation of our
data that captures the most information. This is the basis of Principal Component Analysis (PCA).
The results of this analysis for the first two leading eigenvectors (directions) is found in Figure 4.
In this Euclidean approach we perform the same type of analysis but do not project the covariance

matrices to the tangent space at the geometric mean. Thus, we are analyzing the covariance matrices

without any pre-processing. The results of this Euclidean based approach are shown in Figure 4.

We can then perform the proposed Riemannian geometric method for the data. This method
is often referred to as Principal Geodesic Analysis (PGA) and was first introduced in the areas of
shape analysis and medical image analysis [11, 10] . We note that since the introduction of these
methods, there has been a deep exploration of dimensionality reduction methods applied to manifold
data, but this method is chosen for its simplicity and interpretability [18] . To perform our analysis,
we begin by first identifying the geometric mean of the matrices P, and then mapping the data
from the Riemannian manifold P(n) to the tangent space at the geometric mean 7P through the
logarithmic map logs(P;) — Tp,, where Tp; represents our data points that are mapped to the

linear (flat) vector space. With the matrices now in a (linear) vector space they can be analyzed
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Figure 4: Dimensionality reduction for the multi-pollutant covariance matrices derived from holiday;,
weekend, and weekday data assuming Euclidean geometry. (a) Principal component analysis where
the covariance matrices have been assumed to be governed by Euclidean geometry. The Euclidean
PCA method is dominated by outliers, is impacted by the scale of the variables, and does not show
clear separation between the three sample groups. (b) An attempt to normalize the data results in a
structure that no longer captures outliers and also no longer shows clear clustering of the data.

through principal component analysis (PCA). Here, each mapped covariance matrix Tp, € TpP
can be can be vectorized T, := vec(Tp;) € R", where n = 6. We can then construct a matrix
My = [T}gl,ng, ey T]F‘DFJT € R>36 where | = 34 % 3. The matrix M contains the 3 transformed
covariance matrices for each of the 34 sites. We then perform a singular value decomposition of
the matrix M1 and project the data onto the first two leading eigenvectors. Here, the eigenvectors
now represent geodesic directions on the Riemannian SPD manifold. The results of this analysis
for the first two leading eigenvectors (directions) is found in Figure 5. We compare these results to
the previous analysis that assumes the covariance matrices are governed by Euclidean, rather than

Riemannian, geometry (Figure 4).

The output of PCA that considers the Riemannian geometry of the covariance matrices provides a
much clearer result that demonstrates clustering of the behavior of the sites into weekday, weekend,
and holiday groupings (Figure 5a). The Euclidean method does not capture this same information
and is distorted (Figure 4a). One of the reasons for this distortion is the need for normalization or
scaling of the data prior to PCA. This is not a challenge for the Riemannian approach due to the pre-
viously described property of congruence invariance. Operations such as re-scaling and normalization,
which can be represented algebraically as invertable square matrices, have no impact on the geodesic
distance between the matrices [2]. Therefore, there is no need to select specific scaling or normaliza-

tion strategies when applying our geometry based analysis of the data, it is done naturally through
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Figure 5: Dimensionality reduction for the multi-pollutant covariance matrices derived from holiday,
weekend, and weekday data across the 34 sites in Beijing, China. (a) Principal component analysis
of covariance matrices that have been mapped to the tangent space at the geometric mean 75P. We
observe clustering of the data into holiday, weekend, and weekday groups. We also note an outlier in
the data, circled in red. (b,c) A comparison of the outlier point time series data (b) versus data taken
from the same point hours earlier (c). The outlier point shows an abnormal spike in PM; 5 when
compared to normal measurements shown in (c). We note that CO measurements are in mg/ma3.
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the geometry of the manifold. However, this is not true when ignoring the data geometry, making Eu-
clidean methods susceptible to the chosen framework (or lack of) for normalization/scaling (Figure
4). We can attempt to account for the distortion of the data in the Euclidean dimensionality reduction
method by normalizing the data (e.g., constructing correlation matrices). The results of Euclidean
PCA using normalized data is found in Figure 4b. We see that the distortion due to outliers/scaling
has been eliminated, but there is minimal separation of the data into holiday, weekend, and weekday
groups. We also see that a true outlier, identified in Figure 5, is no longer clearly identified. The inher-
ent robustness of the Riemannian geometric methods (e.g., the property of congruence invariance)
allows us to identify true outliers in the data while also capturing the clear clustering and structure

of the data.

We can further explore the results of this dimensionality reduction through an analysis of the
leading principal component eigenvectors. The principal component eigenvectors for the first PC
and second PC are found in Figure 6. The eigenvectors represent basis directions in the Rieman-
nian SPD manifold that capture the most variance (information) in the data. These directions can
help us understand what variance and covariance values are the main causes of clustering for holi-
days, weekends, and weekdays and what causes their differences. For example, we see that holiday,
weekend, and weekday behavior are stratified along the first principal component. The eigenvector
(direction) associated with the first PC has a large positive weighting on the variance of CO (Fig-
ure 6a). This suggests that holidays and weekends result in a higher level of variance in CO when
compared with weekdays, with holidays causing the highest increase. We can confirm this result
by plotting the variance in CO measured during the holidays, weekends, and weekdays, which we
show in Figure 6¢c. The high variance of CO during holidays is probably due to the large difference in
CO emissions between the heating season and the non heating season. The CO emission in non heat-
ing seasons is small, regardless of holidays. During the heating season, there is a significant increase
of indoor heating during holidays. This causes higher CO emissions than non holidays, as shown
in previous work by Hua and co-workers [12]. We can also explore the separation of the data along
the second eigenvector (direction). The second eigenvector is shown in Figure 6b. We can observe
that there is a large negative weighting on the dynamical interactions (covariance) between NO, and

O3, suggesting a difference between weekdays, weekends and holidays based upon the dynamics of
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Figure 6: The first two leading eigenvectors (basis directions) from the geodesic PCA method. The
eigenvectors help understand the clustering and stratification of the data into weekday, weekend,
and holiday clusters (Figure 5a). (a) The first eigenvector (basis direction) accounts for separation on
the x-axis of Figure 5a. (b) The second eigenvector accounts for separation on the y-axis of Figure 5a.
(c) Quantification of changes in CO variance during holiday, weekends, and weekdays. Each point
represents the mean variance value, with the error bars representing a standard deviation from the
mean. CO variance was identified as a factor that changes significantly between holidays, weekends,
and weekdays through the first principal component eigenvector. (d) Quantification of changes in
NO; - Oz covariance during holidays, weekends, and weekdays. Each point represents the mean
covariance value, with the error bars representing a standard deviation from the mean. Changes
in NO; - O3 covariance were identified as changing significantly between holidays, weekends, and
weekdays through the second principal component eigenvector.
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these two pollutants. Figure 6d shows the changes in the NO, and O3 covariance during weekdays,
weekends, and holidays, here we see a much larger inverse correlation between NO; and O3 during
weekdays and weekends in comparison with holidays. These analysis can help identify differences

in the temporal dynamics of multi-component, multi-site air pollutant data.

We illustrate another application of dimensionality reduction in the analysis of multi-site, rather
than multi-pollutant, dynamics. Here, we measure the dynamics of NO; at each site over the entire
year. For a given site we obtain a centered, univariate stochastic time series z; € R, where i =
1,2, ..., 34 representing the 34 sites, and m = 24 x 365 because NO; is measured in hourly intervals
over an entire year. For each site i we split the time series data into subsets 2! € R? where p = 365
and h = 1,2, ..., 24 representing the hours of the day. We take each subset and form a multi-variate
time series matrix X = [zf, 2}, ..., x1§4] for each hour of the day h = 1,2,...,24 (Figure 7a). We can

then construct a covariance matrix from this data as:

P" !

which results in a total of 24 covariance matrices of shape P! ¢ R™, where n = 34 represents
the 34 measurement locations (Figure 7b). Thus, in this analysis we are focused on the dynamics and
relationships between multiple sites, rather than multiple pollutants. To summarize, we now have a
total of 24 covariance matrices representing each hour of the day. These covariance matrices are of

size 34 x 34, representing the measurements of NO, at the 34 different sites.

We then follow the same procedure as the previous example and perform dimensionality reduc-
tion using the PGA method. The results of the Riemannian geometric analysis are found in Figure
7. Using the Riemannian geometric approach, we see a data structure that indicates a clear cyclic
behavior in NO; dynamics throughout the day. We can also understand what sites are impacting
the dynamics of NO, by observing the values of the leading eigenvector associated with the first
principal component (e.g., X-axis in Figure 7c). We visualize this in Figure 7d where we color each
of the 34 sites with the coefficients of the leading eigenvector associated with the variance of each
site (i.e., the values on the diagonal of the covariance matrix). From this analysis we can see which

sites have a larger influence on the behavior of NO, dynamics during the day (positive coefficients -
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Figure 7: (a) Multivariate time series constructed from the measurements of NO; concentration across
all 34 Beijing, China sites during a period of 24 hours. (b) A 34 x 34 covariance matrix constructed
from the multivariate time series in (a). The off-diagonal elements represent dynamic relationships
in NO; between the different sites, and the diagonal values represent the variance of NO, at each
individual site. (c) Illustration of the clearly cyclic behavior of NO, dynamics observed during each
hour of the day across the different Beijing sites. Here, each point represents a projection one of the 24
covariance matrices onto the leading eigenvectors. (d) An analysis of the coefficients of the leading
eigenvector of PCA. We find that certain sites have a large influence on the behavior of NO;, dynamics
during the day (positive coefficients - red color) and sites that have a larger influence during the night

(negative coefficients - blue color)
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red color) and those that have a larger influence during the night (negative coefficients - blue color).
Interestingly, we see that some sites that are spatially close are dominated by NO, dynamics during
different times of the day. This is most likely due to the activities associated with that particular area

such as business/tourism (daytime dynamics) versus residential (nighttime dynamics).

3.2 Spatial Interpolation

As mentioned previously, a critical aspect of spatial interpolation methods is the modeling of spatial
dependence. This is often modeled through the use of the empirical variogram [5]. We compare the
performance of variograms constructed using a geodesic distance and a Euclidean distance defined
in Section 2 by observing the spatial correlation between covariance matrices derived from each site
during weekdays. We again represent each of the 6 measured variables as a univariate random
variable x; where j = 1,2,...,6 and we denote the collection of signals as a multivariate random
vector X = (1, ..., x,) where n = 6. We denote the observations of each signal at time ¢t = 1,2,..,m
as z;(t) € R™. We use this representation to construct the sample covariance matrix for the multi-
pollutant data P; € P(n) at each site i. In this example we analyze measurements on weekdays
during the hours of 8:00 AM to 3:00 PM at each site. Thus, we obtain one covariance matrix P; for
each site i = 1,2,...,34. We can now compute the empirical geodesic variogram 4(h + 0)g and the
Euclidean variogram 4(h =+ 0) g for this set of covariance matrices. These two variograms are found

in Figure 8.

The variogram constructed with the geodesic distance reveals a clear relationship between the
covariance matrix values and the spatial distance between each site, showing a structure that could
be fit with a known variogram model (e.g., Gaussian). The variogram constructed with a Euclidean
distance does not show a clear behavior that fits known variogram models [6]. We note that for the
Euclidean comparison we normalize the data and use the correlation, rather than covariance, matrix
to eliminate large effects from outliers. The incorporation of the Riemannian manifold geometry can
reveal spatial relationships between the covariance matrices that are missed when Euclidean geome-

try is assumed.
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Figure 8: Empirical variograms constructed using geodesic and Euclidean distances during working
hours (8:00 am to 3:00 PM) of weekdays throughout the year. (a) The variogram constructed using
geodesic distances 4(h+J) reveals behavior that could be characterized through a simple variogram
model (e.g., Gaussian model) , whereas the (b) Euclidean variogram shows almost no structure. The
incorporation of the manifold geometry into the analysis of spatial depence can reveal information
that is missed if Euclidean geometry is assumed.

4 Discussion and Conclusions

The analysis of multi-pollutant atmospheric data at multiple sites presents a unique challenge for the
atmospheric sciences community. There is a need for the development of methods that are capable
of handling this complex spatio-temporal data in order to better understand the short and long-term
impacts of atmospheric pollutants on the environment, climate, and human health. We have demon-
strated a set of methods for understanding and quantifying the spatial and temporal dynamics and
relationships in multi-pollutant data through covariance matrices and Riemannian geometry. Covari-
ance matrices form a Riemannian manifold. We leverage the geometry of this manifold in various
data-centric tasks such as dimensionality reduction and spatial interpolation. We also compare these
methods to ones that (incorrectly) assume a Euclidean geometry for the covariance matrices, which
have been employed in previous studies [35, 14, 22]. The Euclidean geometry assumption leads to
degradation in the performance of the proposed data-centric tasks (e.g., dimensionality reduction,
spatial interpolation). This degradation is partly due to the need for normalization and scaling of
the data (which the Riemannian geometric methods do not require) and the introduction of spurious
variations in the data due to effects such as swelling. In future work we aim to study the full impact of

Riemannian geometry on spatial completion algorithms such as Kriging and how Riemannian geom-
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etry might be included in more advanced spatio-temporal analysis methods and for systems where
the data may be non-stationary which has been explored recently [24, 21]. We also note that while we
have focused on SPD covariance matrices the ideas of Riemannian geometry extend to other areas of
statistics (e.g., information geometry), different types of matrices (e.g., matrices of fixed rank), and
data that is known to lie on a Riemannian manifold (e.g., the surface of a sphere) that may arise in

the analysis of atmospheric datasets.
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