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Abstract4

We demonstrate the benefits of using Riemannian geometry in the analysis of multi-site, multi-5

pollutant atmospheric monitoring data. Our approach uses covariance matrices to encode spatio-6

temporal variability and correlations of multiple pollutants at different sites and times. A key7

property of covariance matrices is that they lie on a Riemannian manifold and one can exploit this8

property to facilitate dimensionality reduction, outlier detection, and spatial interpolation. Specif-9

ically, the transformation of data using Reimannian geometry provides a better data surface for10

interpolation and assessment of outliers compared to traditional data analysis tools that assume11

Euclidean geometry. We demonstrate the utility of using Riemannian geometry by analyzing a12

full year of atmospheric monitoring data collected from 34 monitoring stations in Beijing, China.13
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1 Introduction17

Air pollution damages human health and impacts the environment (e.g., climate change) [13, 20, 25].18

A key factor in developing pollution mitigation policies, technological solutions, and improving pub-19

lic awareness is the monitoring and modeling of atmospheric pollutant behavior [33]. Air pollution20

is traditionally measured within spatially-distributed monitoring stations. These stations provide21

accurate measurements of multiple atmospheric pollutants (e.g., O3, NOx, PM2.5) at high temporal22

resolution. Historically, air pollution research and policy has focused on the control of individual23

pollutants due to the complexities that arise in the analysis, modeling, and interpretation of multi-24

pollutant data [7]. However, the need for air quality management tools and methods that integrate25

multi-pollutant data has been recognized by government agencies, such as the Environmental Pro-26

tection Agency (EPA), as being crucial in estimating health risks and environmental impacts of com-27

plex mixtures of air pollutants [7, 40, 9, 19]. Furthermore, dynamic relationships between different28

pollutants encoded in multi-pollutant measurement data can provide insight into the chemical and29

physical interactions between pollutants. For example, chemical interactions between NOx and O330

can be captured by observing temporal correlations between their atmospheric concentrations. For31

instance, a positive correlation between NOx and O3 is commonly present due to the formation of O332

through the photolysis of NO2, whereas a negative correlation suggests the depression of O3 concen-33

tration due to NOx titration [26].34

35

A common approach to quantify and study spatio-temporal relationships between pollutants con-36

sists of encoding the multivariate time series data as covariance (correlation) matrices [35, 15, 39, 17].37

This approach enables the use of powerful multivariate methods (e.g., principal component analysis)38

for dimensionality reduction [35, 39], modeling [15, 36, 14], source detection [22], and monitoring39

station performance [17]. However, these methods make the blanket assumption that data lies in a40

Euclidean space and this assumption can miss geometric structure contained in the data that might41

be relevant for analysis [32, 30, 29]. Furthermore, many of these analysis techniques are based on sin-42

gle pollutant monitoring or on a single monitoring location; specifically, they do not account for the43

dynamic relationships between different pollutants across varying monitoring sites. Our proposed44

framework extends these analysis techniques for use in multi-pollutant, multi-site monitoring .45

46
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A key observation that we exploit in our analysis framework is that covariance matrices lie on47

a Riemannian manifold [28, 23, 34]. A Riemannian manifold represents a space that is governed by48

non-Euclidean geometry, meaning that the space is curved [28]. A simple example of a Riemannian49

manifold is the surface of the Earth (i.e., a smooth sphere). For instance, if we were to plan a trip from50

antipodal points on the Earth and we ignored the geometry of the Earth’s surface we would end up51

passing through the center of the Earth. However, if we apply the concepts of Riemannian geometry52

and account for the curvature of the Earth we would construct a path that is constrained to Earth’s53

surface. This same concept can be applied in the analysis of covariance matrices derived from atmo-54

spheric data. Accounting for the curvature of the Riemannian manifold formed by the data allows us55

to compute relationships that respect the data’s high-dimensional structure, rather than (incorrectly)56

assuming the data is governed by Euclidean geometry [1, 34]. This has been shown to improve57

outcomes of multivariate data analysis methods in tasks such as classification and dimensionality58

reduction [28, 2, 23, 18]. Consideration for the geometry of these matrices also prevents results of59

data analysis (e.g., spatial interpolation) that could be physically inconsistent by constraining results60

to the Riemannian manifold [28, 23]. For example, spatial interpolation through Euclidean geometry61

can result in matrices that have no physical meaning and have inflated variance [34]. However, if62

Riemannian geometry is assumed, the interpolated result is guaranteed to be a proper covariance63

matrix by constraining the interpolation to the matrix manifold.64

65

The analysis of data through Riemannian geometry has been well studied and successfully ap-66

plied in a broad range of scientific fields such as statistics, physics, neuroscience, medical image67

analysis, engineering, and computer vision, but has been minimally explored in the analysis of at-68

mospheric data [2, 23, 8, 10, 18]. These applications demonstrate that analysis tools that assume the69

data lies in Euclidean geometry can be drastically improved using Riemannian geometry. The as-70

sumption of Euclidean geometry can introduce analysis errors, physically inconsistent results, and71

apply constraints to the data that do not reflect the physics and dynamics of the data, all of which72

are addressed through a Riemannian geometric approach. Therefore, in this work we provide a73

practical introduction to the mathematics of the Riemannian geometry of covariance matrices and74

a framework for application in atmospheric data analysis. We also demonstrate the need for the75

incorporation of Riemannian geometric approaches to atmospheric data analysis as many of the76
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current tools that are based on the assumption of Euclidean geometry can artificially bias analysis77

results due to the nature of the constraints created by this assumption. We apply the introduced78

methods in an analysis of real, multi-pollutant data taken from 34 air quality monitoring sites in79

Beijing, China [12]. The data is made available through the Beijing Municipal Monitoring Center80

(bjmemc.com.cn). For each site we record hourly concentrations of six atmospheric pollutants: CO,81

NO2, O3, PM10, PM2.5 and SO2. For each of the 34 sites we obtain a stochastic multivariate time82

series. We can compute the pairwise covariance between each of the time series and construct a co-83

variance matrix for each site. Our analysis is focused on quantifying and understanding the spatial84

and temporal behavior of these covariance matrices through dimensionality reduction and spatial85

interpolation. We demonstrate the benefits of incorporating Riemannian geometry into the analy-86

sis through comparisons with methods that (incorrectly) assume these matrices live in Euclidean87

space. All code and data required to reproduce all of the results in this paper can be found in88

https://github.com/zavalab/ML/tree/master/Atmospheric_Analysis.89

2 Methods90

This section will cover necessary definitions and properties of the Riemannian manifold of covari-91

ance matrices that are symmetric and positive definite (SPD). A more detailed understanding of these92

methods and mathematical background can be found in our previous work [28].93

94

We first provide context for the methods developed in this section. Figure 1 illustrates the data95

pre-processing steps that are taken in order to analyze the multi-site, multi-component dataset. Each96

measurement site, represented as a red point in the map of Beijing, produces a multivariate time97

series which measures the concentration of six air pollutants: CO, NO2, O3, PM10, PM2.5 and SO2.98

These values are recorded in hour intervals for a period of one year. Taken together, this data forms99

a multivariate time series that is inherently stochastic. Thus, for a given interval of time, we can100

use measurements recorded at each site to construct a covariance matrix representing the temporal101

dynamics of six pollutants at each site. Each of the 6 measured variables are represented as a uni-102

variate random variable xi where i = 1, 2, ..., 6. We denote the observations of each signal at time103

t = 1, 2, ...,m as xi(t) 2 Rm. We center each of the measured signals x̂i := xi � 1
m

Pm
t=1 xi(t) and de-104

note the collection of centered signals as a multivariate random vector X = (x̂1, ..., x̂n) where n = 6 .105
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Figure 1: Illustration of the computational workflow used in the pre-processing and analysis of at-
mospheric data measured at multiple locations in Beijing, China. Multivariate measurements of six
atmospheric pollutants: CO, NO2, O3,PM10, PM2.5 and SO2 are taken over time at each monitoring
site. These multivariate time series can be represented as covariance matrices, which are symmetric,
positive definite (SPD). These matrices form a Riemannian manifold and this manifold can be lever-
aged to provide measures of similarity such as geodesic distances. Geodesic distances (red-solid
lines) are constrained to the geometry of the overall data. Euclidean distances (dashed - black lines)
do not capture this same information.

We then construct the sample covariance matrix for the multi-pollutant data P 2 P(n) as:106

P :=
1

m� 1
XXT (2.1)

Where P(n) represents the set of all n ⇥ n covariance matrices. Example covariance matrices are107

found in Figure 1. The covariance matrix P of dimension n⇥ n, where n = 6 in this example, quanti-108

fies both the variance of a given measured pollutant, and the covariance between each pollutant and109

all other pollutants. We can leverage these covariance matrices to quantify the dynamic relationships110

between pollutants at each site, and better understand how these dynamics change over time and111

space. The matrices X of size n⇥m contain the m time steps for n pollutants. The length of the time112

series m used in the matrices X and P is determined by the time period analyzed. It could be as113

short as 24 for the analysis of a single day but would more likely be a full month (720), year (8760)114

or more. An important aspect in the analysis of these covariance matrices is that they are symmetric115

and positive definite (SPD). A symmetric matrix is a matrix where the transpose of the matrix is exactly116

equal to the original matrix P = PT . A positive definite matrix is a matrix where the eigenvalues of117

the matrix are all strictly greater than zero P � 0. Matrices that meet these criterion have a special118
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geometric structure, known as a Riemannian manifold, which can be exploited to provide improve-119

ments in data centric tasks such as dimensionality reduction and spatial interpolation (e.g., Kriging).120

121

The incorporation of Riemannian geometry into the analysis of covariance matrices requires few,122

computationally efficient, steps. These steps are outlined in this section, as well as section 2.1 - Tan-123

gent Spaces, and section 2.2 - Matrix Means. In summary, these steps allow us to map our covariance124

matrix data from the curved Riemannian manifold surface to a flat (Euclidean) vector space. This is125

similar to a map that represents a projection of the Earth’s curved surface on a 2-dimensional plane. A126

2-dimensional (flat) map of the earth allows us to easily compute angles and distances using common127

measurement devices (e.g., rulers, protractors). Similarly, mapping the curved Riemannian manifold128

(Earth’s surface) onto a linear vector space (2-dimensional map) allows us to leverage common data129

analysis tools (e.g., PCA, Kriging).130

131

We now focus on developing the mathematical notation and concepts needed to understand132

the Riemannian geometry of SPD matrices from a practical perspective. We denote the set of all133

n ⇥ n symmetric matrices as S(n) := {S 2 M(n), ST = S} where M(n) represents the space of134

all square n ⇥ n matrices. We then define the set of all n ⇥ n symmetric, positive definite matrices135

as P(n) := {P 2 S(n), uTPu > 0, 8u 2 Rn}. The set P(n) represents our Riemannian manifold of136

covariance matrices. An illustrative representation of the P(n) manifold is found in Figure 2. The137

manifold P(n) is a curved, conic surface embedded in Euclidean space [38]. We also illustrate several138

points P1,P2,P3 2 P(n), that contain the covariance of the time series for each pollutant, for each139

site (P1,P2,P3 represent 3 of the 34 sites). Although the figure displays the SPD covariance matrices140

(P) in three-dimensional space, they are actually in k-dimensional space where k = n(n + 1)/2 and141

n = 6 is the number of pollutants in our measurement matrix X [23].142

143

Figure 2 also demonstrates a simple distance analysis of these covariance matrices through two144

different methods: Euclidean and Geodesic. The Euclidean method assumes the matrices do not form145

a Riemannian manifold, and that they are governed by Euclidean geometry. We define the Euclidean146

distance between two matrices Pi,Pj 2 P(n) as:147

6

http://zavalab.engr.wisc.edu


http://zavalab.engr.wisc.edu

Figure 2: An illustration of a Riemannian manifold formed by SPD matrices P(n), with a set of points
P1,P2,P3 2 P(n). A comparison of geodesic (red, solid line) and Euclidean distances (dashed,
black line) are shown between P1,P2 and P1,P3 along with a comparison of a geodesic interpo-
lation P(t)G and Euclidean interpolation P(t)E between points P1,P3. Geodesics and their dis-
tances/interpolations are constrained to the manifold P(n) and capture the inherent geometry of the
data. Euclidean distances ignore the manifold geometry which can distort the perceived relation-
ships between points on the manifold.
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dE(Pi,Pj) := ||Pi �Pj ||F (2.2)

where || · ||F is the Frobenius norm. The geodesic method computes a geodesic distance. The148

geodesic distance is the length of a geodesic between two points on a Riemannian manifold [23]. A149

geodesic is the shortest path between two points on a Riemannian manifold that accounts for the150

curvature and shape of the manifold P(n) [28]. For SPD covariance matrices a geodesic distance can151

be defined as [28, 23]:152

dG(Pi,Pj) := ||log(Pi)� log(Pj)||F (2.3)

where log(·) represents the matrix logarithm, commonly used in the analysis of matrix manifolds153

[28, 23]. In an analysis of our matrices P1,P2,P3 2 P(n) through the Euclidean distance we obtain154

the following result (illustrated in Figure 2):155

dE(P1,P2) > dE(P1,P3) (2.4)

Whereas if we perform the analysis using the geodesic distance we obtain the opposite result156

(illustrated in Figure 2):157

dG(P1,P3) > dG(P1,P2) (2.5)

The geodesic distance captures the correct relationship between these matrices because the dis-158

tance accounts for the geometry of the manifold P(n), which the Euclidean distance ignores. We159

explore the practical importance of incorporating the manifold geometry through examples in dimen-160

sionality reduction and spatial interpolation in Section 3. Another property of geodesic distances that161

is helpful in the analysis of real world data is congruence invariance. Congruence invariance means162

that any n⇥ n invertable matrix X applied to a set of covariance matrices Pi 2 P(n) does not impact163
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the geodesic distance between the two matrices:164

dg(X
TPiX,XTPjX) = dg(Pi,Pj) (2.6)

Operations such as scaling and normalization, which can be reformulated as invertable matrices,165

have no impact on the geodesic distance between matrices. Thus, the geometry of the geodesic dis-166

tance is robust to many issues that arise in real data sets (e.g., scaling of variables). This is further167

explored in Section 3.168

169

As mentioned previously, the geodesic distance reflects the length of the shortest path between170

two points on a Riemannian manifold [28]. Geodesics are particularly useful in the interpolation and171

averaging of covariance matrices, which is often needed in algorithms for spatial interpolation (e.g.172

Kriging). An illustrative comparison of a geodesic versus a Euclidean method for interpolation is173

shown in Figure 2. Assuming Euclidean geometry, an interpolation is given by:174

PE(s) := P1(1� s) +P3(s) (2.7)

where s 2 [0, 1] and PE(0) = P1, PE(1) = P3. Unfortunately, as seen in Figure 2, this inter-175

polation does not follow a geodesic path. This can result in covariance matrices that have inflated176

variance and other potential issues [1]. However, if we consider the geometry of the manifold we can177

construct an interpolation via the geodesic [28, 23]:178

PG(s) := P1/2
1

⇣
P�1/2

1 P3P
�1/2
1

⌘s
P1/2

1 (2.8)

where s 2 [0, 1], PG(0) = P1, PG(1) = P3, and Pi = P1/2
i P1/2

i . Further details around the179

derivation of the geodesic can be found in our previous work [28]. Leveraging the geodesic between180

matrices P1 and P3 ensures that the interpolated matrix PG(s) 2 P(n) is a symmetric, positive defi-181

nite covariance matrix [34, 24]. These interpolation methods are the basis for constructing means (e.g.,182
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mid-point between multiple matrices). They are also used in spatial interpolation where the behavior183

of the pollutants (i.e. the covariance matrix) at a new spatial location is estimated by a weighted aver-184

age of the covariance matrices at neighboring locations. In contrast with a linear interpolation of the185

measurements themselves, a geodesic interpolation would seek to follow the underlying dynamics186

of the system. Thus, developing averages or spatially interpolating values is highly dependent on187

the data geometry and is demonstrated through case studies in section 3. We note that the geodesic188

distance selected here, based on the matrix logarithm, is one of many approaches to constructing189

geodesics on the manifold of SPD matrices. These methods include decompositions of SPD matri-190

ces, such as the Cholesky decomposition or the matrix square root, and geometric methods such as191

Procrustes analysis; a detailed overview of these methods can be found in the following reference192

[8]. The logarithm based metric was chosen for the analysis of atmospheric data due to the ability193

of the metric to combat potentially adverse effects in data analysis such as swelling (described in the194

supplementary information) and its ease of interpretability [23].195

2.1 Tangent Spaces196

The analysis of covariance matrices through Riemannian manifolds provides numerous benefits,197

however many multivariate methods for tasks such as dimensionality reduction (e.g., principal com-198

ponent analysis) require data that lies in a (linear) vector space. The non-linear (curved) nature of the199

Riemannian manifold of SPD matrices requires that we map the structure of the manifold to a lin-200

ear space. Fortunately, Riemannian manifolds are differentiable manifolds [16]. This means that every201

point on the Riemannian manifold P 2 P(n) has an associated tangent space denoted as TPP 2 S(n),202

constructed from the tangent vectors of all possible curves passing through the point on the manifold203

P 2 P(n) [4, 28, 16]. We define a curve as a continuous function � : [0, 1] ! P(n). The tangent204

space at any point P 2 P(n) represents a (linear) vector space that is of the same dimension as the205

Riemannian manifold [3]. The tangent space encodes the geometry of the Riemannian manifold and206

can be used directly in common multivariate analysis methods.207

208

An illustration of the tangent space TP1P constructed at a point P1 2 P(n) is found in Figure209

3a. Figure 3a also illustrates two functions that connect the tangent space TP1P to the Riemannian210

manifold. These functions are known as the logarithmic map and the exponential map. For example,211
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(a) (b)

Figure 3: (a) Illustration of the tangent space TP1P formed at the point P1 2 P(n). The tangent
space represents a (linear) vector space that is of the same dimension as the manifold P(n) and in-
tersects the manifold at P1. The logarithmic map logP1

(P2) ! TP2 takes point P2 2 P(n) to the
point TP2 2 TP1P . The exponential map expP1

(TP2) ! P2 does the inverse. The exponential and
logarithmic mappings allow us to map our covariance matrix data from the curved manifold space
P(n) to a vector space TP1P . (b) Illustration of the geometric mean of a set of covariance matrices
P1,P2,P3,P4 2 P(n). The geometric mean is the point P̄ that minimizes the geodesic distance to
all other data points on the manifold P(n). The logarithmic map logP̄(·) : P(n) ! TP̄P is used to
map the covariance matrices from the curved manifold P(n) to the linear tangent space TP̄P while
minimizing the potential geometric distortion from the mapping. This mapped data can then be used
directly in common data analysis methods such as principal component analysis.

in Figure 3a the logarithmic map takes P2 on the Riemannian manifold and maps it to a point TP2 in212

the tangent space TP1P centered at P1. For two points Pi,Pj 2 P(n) we define the logarithmic map213

as [28, 4]:214

logPi
(Pj) := P1/2

i log
⇣
P�1/2

i PjP
�1/2
i

⌘
P1/2

i (2.9)

The exponential map is the inverse of the logarithmic map. It maps points from a tangent space215

(TP2 in Figure 3a) back to the Riemannian manifold (P2 in Figure 3a). For points Pi 2 P(n) and216

TPj 2 TPiP , we define the exponential map as:217

expPi
(TPj ) := P1/2

i exp
⇣
P�1/2

i TPjP
�1/2
i

⌘
P1/2

i (2.10)

The exponential and logarithmic map allow for the curved Riemannian manifold of SPD covari-218

ance matrices to be mapped directly to a (linear) vector space (i.e., the tangent space). Mapping the219
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data to the linear (flat) vector space allows us to apply common data analysis techniques while encod-220

ing the manifold geometry. Thus, linear methods such as PCA and Kriging applied to this mapped221

data will automatically incorporate the geometry of the Riemannian manifold. Benefits of this are222

further explored in Section 3. For those readers interested, a detailed derivation of the logarithmic223

and exponential mapping can be found in the following references [28, 4].224

2.2 Matrix Means225

In the analysis of real datasets where there are many matrices being analyzed it is not obvious which226

point on the manifold should be chosen as the basis for the tangent space. The basis point is often227

chosen to be the geometric mean of the set of all matrices in the dataset Pi 2 P(n). The geometric mean228

is the point P̄ 2 P(n) that minimizes the geodesic distance to all other data points on the Riemannian229

manifold [28, 23, 3]:230

P̄ := argmin
A

nX

i=1

||log(A)� log(Pi)||F (2.11)

Once the geometric mean is identified, the set of matrices in the dataset can then be mapped231

from the Riemannian manifold to the tangent space through the logarithmic map. An illustration of232

this process is found in Figure 3b. Here, the geometric mean P̄ of matrices P1,P2,P3,P4 2 P(n)233

is computed. The matrices are then mapped to the tangent space through the logarithmic map234

logP̄(Pi) = TPi . Once completed, the matrices have been mapped to a linear space and can be235

used in multivariate analysis methods while minimizing the potential geometric distortion of the236

logarithmic mapping [28, 3].237

2.3 Spatial Interpolation238

Consideration for the Riemannian geometry of covariance matrices is crucial when performing spa-239

tial interpolation of covariance matrix values [24]. As shown in Figure 2, interpolation between ma-240

trices with an assumption of Euclidean geometry (Equation 2.7) can result in matrices that do not241

lie on the covariance matrix manifold P(n). Whereas interpolation through geodesics (Equation 2.8)242

provides assurance that the resulting interpolated matrix will lie on the Riemannian manifold [24].243

12

http://zavalab.engr.wisc.edu


http://zavalab.engr.wisc.edu

Euclidean interpolation of covariance matrices can also cause a swelling effect on the interpolated ma-244

trices [1, 28]. The swelling effect causes an increase in the generalized variance (i.e., determinant) of245

the interpolated covariance matrices. This introduces a spurious increase in the variance of the at-246

mospheric pollutant data dynamics creating results that are not physically consistent. An example of247

this effect is shown in the supplementary information. This is not the case with geodesic interpolation248

which reflects a natural evolution of the generalized variance during interpolation. This problem is249

amplified when attempting to perform a spatial interpolation where the matrices at multiple spatial250

locations are averaged (in a weighted manner) to predict the matrix values at a new (unmeasured)251

spatial location. This will result in spurious increases in (co)variance that would lead to false conclu-252

sions about potential sources/dynamics of pollution at these unmeasured locations.253

254

Another aspect of spatial interpolation methods is the modeling of spatial dependence (spatial255

autocorrelation) between observed data points. This is often modeled through the use of the empiri-256

cal variogram [5]. Given a set of i 2 Z+ sample covariance matrices Pi 2 P(n) measured at i spatial257

locations si 2 R2 we compute a Euclidean or geodesic distance between each sample covariance ma-258

trix. We also compute the spatial lag distance between each location ||si � sj ||2 2 R, where the si, sj259

are latitude and longitude coordinates. The covariance matrix distances are binned over spatial lag260

distance and averaged within each bin. This is a simple method for understanding spatial autocorre-261

lation between the covariance matrices. For the geodesic distance method we compute the empirical262

variogram as:263

�̂(h± �)G :=
1

2|N(h± �)|
X

(si,sj)2N(h±�)

||log(Pi)� log(Pj)||F (2.12)

where h, � 2 R represents the spatial lag bin center and width, N(h± �) := {(si, sj) : ||si � sj ||2 2264

h ± �} which represents pairs of sites (si, sj) with spatial distance h � �  ||si � sj ||2  h + �, and265

|N(h ± �)| 2 Z represents number of sites pairs contained in N(h ± �). For the Euclidean distance266

method the empirical variogram is given as:267
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�̂(h± �)E :=
1

2|N(h± �)|
X

(si,sj)2N(h±�)

||Pi �Pj ||F (2.13)

We compare the performance of variograms constructed using a geodesic distance and a Eu-268

clidean distance on the Beijing atmospheric data in Section 3.269

3 Application to Multi-Site, Multi-Pollutant Data270

This section focuses on the application of Riemannian geometry in the analysis of multi-site, multi-271

pollutant time series data collected from 34 sites in Beijing, China [12]. The data is collected at 1-hour272

intervals and spans the entire calendar year of 2019. We apply and compare dimensionality reduction273

and spatial interpolation methods using Riemannian geometry to those that assume that data lies in274

Euclidean space.275

3.1 Dimensionality Reduction276

Dimensionality reduction helps facilitate both visualization of data and subsequent processing of277

data for other data-centric tasks such as classification, regression, and outlier detection [37, 30, 32,278

27, 31]. A common method in dimensionality reduction for atmospheric data is principal component279

analysis (PCA), which will be the focus of this section [35, 39, 17]. Our analysis is based on covariance280

matrices constructed from multi-pollutant time series data at each of the 34 sites in Beijing. As dis-281

cussed previously, each site measures 6 pollutants: CO, NO2, O3, PM10, PM2.5 and SO2. We represent282

each of the 6 measured variables as a centered, univariate random variable xi where i = 1, 2, ..., 6283

and we denote the collection of signals as a multivariate random vector X = (x1, ..., xn) where n = 6.284

Thus, we obtain multivariate random vectors Xj for each site j = 1, 2, ..., 34. We first analyze the285

multi-pollutant data collected during weekdays, weekends, and holidays for each of the 34 sites. For286

each site, we obtain 3 covariance matrices, one representing dynamics observed during the weekday,287

one during the weekend, and a final during holidays for the year. We denote the observations of288

each signal at time t = 1, 2, ...,m as xi(t) 2 Rm. The value of m will change for weekdays m = 6936289

(hours), weekends m = 1128 (hours), and holidays m = 696 (hours). The covariance matrix size is290

only dependent on the number of measured variables, which in this case is the 6 pollutants. Thus, we291
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can directly compare these three timeframes even though they have a varying number of time sam-292

ples. We use these measurements to construct the sample covariance matrix for the multi-pollutant293

data Pj 2 P(n) for each site j = 1, 2, ..., 34 as:294

Pj :=
1

m� 1
XjX

T
j (3.14)

We first perform PCA without consideration for the Riemannian geometry of our covariance ma-295

trices (assuming a Euclidean space). Here, each covariance matrix Pj 2 P(n) can be can be vectorized296

Pj := vec(Pj) 2 Rn2 , where n = 6. We can then construct a matrix M =
⇥
P T
1 , P T

2 , ..., P T
l

⇤T 2 Rl⇥36,297

where l = 34 ⇤ 3. The matrix M contains the 3 covariance matrices for each of the 34 sites. Each row298

in the matrix M has the 36 values of the 6 ⇥ 6 covariance matrix Pj , and there is a row for each site299

and for each type of day leading to 34 ⇥ 3 rows. We then perform a singular value decomposition300

of the matrix M and project the data onto the leading eigenvectors. The eigenvectors represent basis301

directions in Euclidean space that capture the most variance (information) in the data. We can project302

our data onto these eigenvector basis so that we can view a low-dimensional representation of our303

data that captures the most information. This is the basis of Principal Component Analysis (PCA).304

The results of this analysis for the first two leading eigenvectors (directions) is found in Figure 4.305

In this Euclidean approach we perform the same type of analysis but do not project the covariance306

matrices to the tangent space at the geometric mean. Thus, we are analyzing the covariance matrices307

without any pre-processing. The results of this Euclidean based approach are shown in Figure 4.308

309

We can then perform the proposed Riemannian geometric method for the data. This method310

is often referred to as Principal Geodesic Analysis (PGA) and was first introduced in the areas of311

shape analysis and medical image analysis [11, 10] . We note that since the introduction of these312

methods, there has been a deep exploration of dimensionality reduction methods applied to manifold313

data, but this method is chosen for its simplicity and interpretability [18] . To perform our analysis,314

we begin by first identifying the geometric mean of the matrices P̄, and then mapping the data315

from the Riemannian manifold P(n) to the tangent space at the geometric mean TP̄P through the316

logarithmic map logP̄(Pj) ! TPj , where TPj represents our data points that are mapped to the317

linear (flat) vector space. With the matrices now in a (linear) vector space they can be analyzed318
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(a) Euclidean PCA (b) Normalized Euclidean PCA

Figure 4: Dimensionality reduction for the multi-pollutant covariance matrices derived from holiday,
weekend, and weekday data assuming Euclidean geometry. (a) Principal component analysis where
the covariance matrices have been assumed to be governed by Euclidean geometry. The Euclidean
PCA method is dominated by outliers, is impacted by the scale of the variables, and does not show
clear separation between the three sample groups. (b) An attempt to normalize the data results in a
structure that no longer captures outliers and also no longer shows clear clustering of the data.

through principal component analysis (PCA). Here, each mapped covariance matrix TPj 2 TP̄P319

can be can be vectorized TPj := vec(TPj ) 2 Rn2 , where n = 6. We can then construct a matrix320

MT =
h
T T
P1
, T T

P2
, ..., T T

Pl

iT
2 Rl⇥36, where l = 34 ⇤ 3. The matrix MT contains the 3 transformed321

covariance matrices for each of the 34 sites. We then perform a singular value decomposition of322

the matrix MT and project the data onto the first two leading eigenvectors. Here, the eigenvectors323

now represent geodesic directions on the Riemannian SPD manifold. The results of this analysis324

for the first two leading eigenvectors (directions) is found in Figure 5. We compare these results to325

the previous analysis that assumes the covariance matrices are governed by Euclidean, rather than326

Riemannian, geometry (Figure 4).327

The output of PCA that considers the Riemannian geometry of the covariance matrices provides a328

much clearer result that demonstrates clustering of the behavior of the sites into weekday, weekend,329

and holiday groupings (Figure 5a). The Euclidean method does not capture this same information330

and is distorted (Figure 4a). One of the reasons for this distortion is the need for normalization or331

scaling of the data prior to PCA. This is not a challenge for the Riemannian approach due to the pre-332

viously described property of congruence invariance. Operations such as re-scaling and normalization,333

which can be represented algebraically as invertable square matrices, have no impact on the geodesic334

distance between the matrices [2]. Therefore, there is no need to select specific scaling or normaliza-335

tion strategies when applying our geometry based analysis of the data, it is done naturally through336
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(a) Principal Geodesic Analysis

(b) Outlier Data (c) Normal Data

Figure 5: Dimensionality reduction for the multi-pollutant covariance matrices derived from holiday,
weekend, and weekday data across the 34 sites in Beijing, China. (a) Principal component analysis
of covariance matrices that have been mapped to the tangent space at the geometric mean TP̄P . We
observe clustering of the data into holiday, weekend, and weekday groups. We also note an outlier in
the data, circled in red. (b,c) A comparison of the outlier point time series data (b) versus data taken
from the same point hours earlier (c). The outlier point shows an abnormal spike in PM2.5 when
compared to normal measurements shown in (c). We note that CO measurements are in mg/m3.
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the geometry of the manifold. However, this is not true when ignoring the data geometry, making Eu-337

clidean methods susceptible to the chosen framework (or lack of) for normalization/scaling (Figure338

4). We can attempt to account for the distortion of the data in the Euclidean dimensionality reduction339

method by normalizing the data (e.g., constructing correlation matrices). The results of Euclidean340

PCA using normalized data is found in Figure 4b. We see that the distortion due to outliers/scaling341

has been eliminated, but there is minimal separation of the data into holiday, weekend, and weekday342

groups. We also see that a true outlier, identified in Figure 5, is no longer clearly identified. The inher-343

ent robustness of the Riemannian geometric methods (e.g., the property of congruence invariance)344

allows us to identify true outliers in the data while also capturing the clear clustering and structure345

of the data.346

347

We can further explore the results of this dimensionality reduction through an analysis of the348

leading principal component eigenvectors. The principal component eigenvectors for the first PC349

and second PC are found in Figure 6. The eigenvectors represent basis directions in the Rieman-350

nian SPD manifold that capture the most variance (information) in the data. These directions can351

help us understand what variance and covariance values are the main causes of clustering for holi-352

days, weekends, and weekdays and what causes their differences. For example, we see that holiday,353

weekend, and weekday behavior are stratified along the first principal component. The eigenvector354

(direction) associated with the first PC has a large positive weighting on the variance of CO (Fig-355

ure 6a). This suggests that holidays and weekends result in a higher level of variance in CO when356

compared with weekdays, with holidays causing the highest increase. We can confirm this result357

by plotting the variance in CO measured during the holidays, weekends, and weekdays, which we358

show in Figure 6c. The high variance of CO during holidays is probably due to the large difference in359

CO emissions between the heating season and the non heating season. The CO emission in non heat-360

ing seasons is small, regardless of holidays. During the heating season, there is a significant increase361

of indoor heating during holidays. This causes higher CO emissions than non holidays, as shown362

in previous work by Hua and co-workers [12]. We can also explore the separation of the data along363

the second eigenvector (direction). The second eigenvector is shown in Figure 6b. We can observe364

that there is a large negative weighting on the dynamical interactions (covariance) between NO2 and365

O3, suggesting a difference between weekdays, weekends and holidays based upon the dynamics of366
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(a) Principal Component 1 Eigenvector (b) Principal Component 2 Eigenvector

(c) CO Variance Analysis (d) NO2 - O3 Covariance Analysis

Figure 6: The first two leading eigenvectors (basis directions) from the geodesic PCA method. The
eigenvectors help understand the clustering and stratification of the data into weekday, weekend,
and holiday clusters (Figure 5a). (a) The first eigenvector (basis direction) accounts for separation on
the x-axis of Figure 5a. (b) The second eigenvector accounts for separation on the y-axis of Figure 5a.
(c) Quantification of changes in CO variance during holiday, weekends, and weekdays. Each point
represents the mean variance value, with the error bars representing a standard deviation from the
mean. CO variance was identified as a factor that changes significantly between holidays, weekends,
and weekdays through the first principal component eigenvector. (d) Quantification of changes in
NO2 - O3 covariance during holidays, weekends, and weekdays. Each point represents the mean
covariance value, with the error bars representing a standard deviation from the mean. Changes
in NO2 - O3 covariance were identified as changing significantly between holidays, weekends, and
weekdays through the second principal component eigenvector.
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these two pollutants. Figure 6d shows the changes in the NO2 and O3 covariance during weekdays,367

weekends, and holidays, here we see a much larger inverse correlation between NO2 and O3 during368

weekdays and weekends in comparison with holidays. These analysis can help identify differences369

in the temporal dynamics of multi-component, multi-site air pollutant data.370

371

We illustrate another application of dimensionality reduction in the analysis of multi-site, rather372

than multi-pollutant, dynamics. Here, we measure the dynamics of NO2 at each site over the entire373

year. For a given site we obtain a centered, univariate stochastic time series xi 2 Rm, where i =374

1, 2, ..., 34 representing the 34 sites, and m = 24 ⇤ 365 because NO2 is measured in hourly intervals375

over an entire year. For each site i we split the time series data into subsets xhi 2 Rp where p = 365376

and h = 1, 2, ..., 24 representing the hours of the day. We take each subset and form a multi-variate377

time series matrix X = [xh1 , x
h
2 , ..., x

h
34] for each hour of the day h = 1, 2, ..., 24 (Figure 7a). We can378

then construct a covariance matrix from this data as:379

Ph :=
1

365� 1
XXT . (3.15)

which results in a total of 24 covariance matrices of shape Ph
i 2 Rn2 , where n = 34 represents380

the 34 measurement locations (Figure 7b). Thus, in this analysis we are focused on the dynamics and381

relationships between multiple sites, rather than multiple pollutants. To summarize, we now have a382

total of 24 covariance matrices representing each hour of the day. These covariance matrices are of383

size 34⇥ 34, representing the measurements of NO2 at the 34 different sites.384

385

We then follow the same procedure as the previous example and perform dimensionality reduc-386

tion using the PGA method. The results of the Riemannian geometric analysis are found in Figure387

7. Using the Riemannian geometric approach, we see a data structure that indicates a clear cyclic388

behavior in NO2 dynamics throughout the day. We can also understand what sites are impacting389

the dynamics of NO2 by observing the values of the leading eigenvector associated with the first390

principal component (e.g., X-axis in Figure 7c). We visualize this in Figure 7d where we color each391

of the 34 sites with the coefficients of the leading eigenvector associated with the variance of each392

site (i.e., the values on the diagonal of the covariance matrix). From this analysis we can see which393

sites have a larger influence on the behavior of NO2 dynamics during the day (positive coefficients -394
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(a) NO2 Measurements (b) NO2 Covariance matrix

(c) Geodesic PCA (d) Coefficients of the leading eigenvector

Figure 7: (a) Multivariate time series constructed from the measurements of NO2 concentration across
all 34 Beijing, China sites during a period of 24 hours. (b) A 34 ⇥ 34 covariance matrix constructed
from the multivariate time series in (a). The off-diagonal elements represent dynamic relationships
in NO2 between the different sites, and the diagonal values represent the variance of NO2 at each
individual site. (c) Illustration of the clearly cyclic behavior of NO2 dynamics observed during each
hour of the day across the different Beijing sites. Here, each point represents a projection one of the 24
covariance matrices onto the leading eigenvectors. (d) An analysis of the coefficients of the leading
eigenvector of PCA. We find that certain sites have a large influence on the behavior of NO2 dynamics
during the day (positive coefficients - red color) and sites that have a larger influence during the night
(negative coefficients - blue color)
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red color) and those that have a larger influence during the night (negative coefficients - blue color).395

Interestingly, we see that some sites that are spatially close are dominated by NO2 dynamics during396

different times of the day. This is most likely due to the activities associated with that particular area397

such as business/tourism (daytime dynamics) versus residential (nighttime dynamics).398

399

3.2 Spatial Interpolation400

As mentioned previously, a critical aspect of spatial interpolation methods is the modeling of spatial401

dependence. This is often modeled through the use of the empirical variogram [5]. We compare the402

performance of variograms constructed using a geodesic distance and a Euclidean distance defined403

in Section 2 by observing the spatial correlation between covariance matrices derived from each site404

during weekdays. We again represent each of the 6 measured variables as a univariate random405

variable xj where j = 1, 2, ..., 6 and we denote the collection of signals as a multivariate random406

vector X = (x1, ..., xn) where n = 6. We denote the observations of each signal at time t = 1, 2, ..,m407

as xj(t) 2 Rm. We use this representation to construct the sample covariance matrix for the multi-408

pollutant data Pi 2 P(n) at each site i. In this example we analyze measurements on weekdays409

during the hours of 8:00 AM to 3:00 PM at each site. Thus, we obtain one covariance matrix Pi for410

each site i = 1, 2, ..., 34. We can now compute the empirical geodesic variogram �̂(h ± �)G and the411

Euclidean variogram �̂(h ± �)E for this set of covariance matrices. These two variograms are found412

in Figure 8.413

The variogram constructed with the geodesic distance reveals a clear relationship between the414

covariance matrix values and the spatial distance between each site, showing a structure that could415

be fit with a known variogram model (e.g., Gaussian). The variogram constructed with a Euclidean416

distance does not show a clear behavior that fits known variogram models [6]. We note that for the417

Euclidean comparison we normalize the data and use the correlation, rather than covariance, matrix418

to eliminate large effects from outliers. The incorporation of the Riemannian manifold geometry can419

reveal spatial relationships between the covariance matrices that are missed when Euclidean geome-420

try is assumed.421

422
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(a) (b)

Figure 8: Empirical variograms constructed using geodesic and Euclidean distances during working
hours (8:00 am to 3:00 PM) of weekdays throughout the year. (a) The variogram constructed using
geodesic distances �̂(h±�)G reveals behavior that could be characterized through a simple variogram
model (e.g., Gaussian model) , whereas the (b) Euclidean variogram shows almost no structure. The
incorporation of the manifold geometry into the analysis of spatial depence can reveal information
that is missed if Euclidean geometry is assumed.

4 Discussion and Conclusions423

The analysis of multi-pollutant atmospheric data at multiple sites presents a unique challenge for the424

atmospheric sciences community. There is a need for the development of methods that are capable425

of handling this complex spatio-temporal data in order to better understand the short and long-term426

impacts of atmospheric pollutants on the environment, climate, and human health. We have demon-427

strated a set of methods for understanding and quantifying the spatial and temporal dynamics and428

relationships in multi-pollutant data through covariance matrices and Riemannian geometry. Covari-429

ance matrices form a Riemannian manifold. We leverage the geometry of this manifold in various430

data-centric tasks such as dimensionality reduction and spatial interpolation. We also compare these431

methods to ones that (incorrectly) assume a Euclidean geometry for the covariance matrices, which432

have been employed in previous studies [35, 14, 22]. The Euclidean geometry assumption leads to433

degradation in the performance of the proposed data-centric tasks (e.g., dimensionality reduction,434

spatial interpolation). This degradation is partly due to the need for normalization and scaling of435

the data (which the Riemannian geometric methods do not require) and the introduction of spurious436

variations in the data due to effects such as swelling. In future work we aim to study the full impact of437

Riemannian geometry on spatial completion algorithms such as Kriging and how Riemannian geom-438
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etry might be included in more advanced spatio-temporal analysis methods and for systems where439

the data may be non-stationary which has been explored recently [24, 21]. We also note that while we440

have focused on SPD covariance matrices the ideas of Riemannian geometry extend to other areas of441

statistics (e.g., information geometry), different types of matrices (e.g., matrices of fixed rank), and442

data that is known to lie on a Riemannian manifold (e.g., the surface of a sphere) that may arise in443

the analysis of atmospheric datasets.444
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