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ABSTRACT

Pinniped species undergo uniquely amphibious life histories that make them
valuable subjects for many domains of research. Pinniped research has often
progressed hand-in-hand with technological frontiers of wildlife biology, and
drones represent a leap forward for methods of aerial remote sensing, enabling
data collection, and integration at new scales of biological importance. Drone
methods and data types provide four key opportunities for wildlife surveillance
that are already advancing pinniped research and management: 1) repeat and
on-demand surveillance, 2) high-resolution coverage at large extents, 3) mor-
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phometric photogrammetry, and 4) computer vision and deep learning applica-
tions. Drone methods for pinniped research represent early stages of technological
adoption and can reshape the field as they scale towards the full potential of

their techniques.

INTRODUCTION

Pinnipeds embody a variety of qualities that make many
species interesting and suitable subjects for scientific re-
search. As amphibious marine predators, all pinniped spe-
cies haul out of the water, on land or ice, to breed or
moult (Berta 2018). This characteristic makes pinnipeds
relatively accessible and observable among marine preda-
tors. During these major life history events, many species
exhibit philopatry (returning to their place of birth), gre-
gariousness (gathering in large groups), and general site
fidelity (revisiting sites that have been visited before) to
various degrees; these qualities enable scientists to reliably
access predictable populations and even individuals within
single seasons and across vears and generations (McKnight
& Boyd 2018). Many species occupy terrestrial habitats
that are accessible to humans and topographically open
to on-the-ground or aerial surveillance. Finally, select spe-
cles can be trained and safely housed in human care, so
under appropriate ethical circumstances some pinnipeds
can accommodate uniquely managed behavioural and
physiological studies and assessments. Owing to these dis-
tinctive qualities, pinnipeds are often studied as sentinel
species of their marine ecosystems (Bossart 2011, Fossi &
Panti 2017), as models of marine adaptations in mamimals

{(Hochachka 2000), and for a variety of other scientific
motivations. The equipment and methods that are used
to study pinnipeds often represent the technological fron-
tiers of wildlife science, incorporating the ongoing min-
iaturisation of computers and sensors, faster processing
speeds, and growing quantities of ‘big data’ {Corlett 2017,
Lahoz-Monfort & Magrath 2021). In this vein, the use of
small unoccupied aircraft systems (sUAS), or drones, rep-
resents a major frontier of wildlife technology (Linchant
et al. 2015, Wirsing et al. 2022) that is poised also to
unlock new methods in the study of pinnipeds.

The term ‘drone’ most commonly refers to a variety
of small robotic autonomous aircraft that are used increas-
ingly across a variety of disciplines in environmental sci-
ences (Floreano & Wood 2015, Jiménez Lépez &
Mulero-Pdzmdny 2019, Johnston 2019, Wirsing et al. 2022),
Drones can achieve a variety of in situ environmental
techniques by virtue of their mobility and precise aerial
positioning, including sampling of aerosols (Pirotta
et al. 2017), water, soil, and invertebrates (Robinson
et al. 2022), but most applications for environmental re-
search, and wildlife in particular, use drones as versatile
remote sensing platforms (Chabot & Bird 2015, Johnston
2019, Mo & Bonatakis 2022, Robinson et al. 2022). With
increasingly lightweight sensors and onboard processing
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computers, drones can collect diverse types of sensing data
at a high-throughput (Jiménez Lépez & Mulero-
Pdzmdny 2019), expanding both data collection and post-
processing techniques for analyses that require big data.

Drones have several advantages over occupied aircraft,
including simpler logistical requirements, greater safety,
and lower costs (Jones et al. 2006, Linchant et al. 2015).
Drones can, thereby, conduct operations with on-demand
or repeat schedules and in sites far removed from sup-
porting infrastructure. At the same time, low-altitude flights
can collect imagery at low ground sample distances (GSDs)
with precise navigation and spatially referenced metadata
from global navigation satellite systems (GNSS) to achieve
exhaustive spatial coverage in ultra-high (sub-decimetre)
resolutions (Koh & Wich 2012, Raoult et al. 2020). For
pinnipeds, these specific advantages directly allow research-
ers to safely study pinnipeds in habitats that are otherwise
inaccessible to alternative methods (Christie et al. 2016,
Krause & Hinke 2021). However, beyond site access, the
advantages of drone surveillance also unlock new possibili-
ties for study design and data analysis, potentially trans-
forming downstream research and management capabilities.
We discuss four key opportunities of drone methods that
are already being deployed and developed for the study
of pinnipeds, as well as future potential and limitations
of the technology, demonstrating applications with original
examples created from an open dataset of drone imagery
over pinniped haul-out sites (Larsen et al. 2022a).

REPEAT AND ON-DEMAND DEPLOYMENT

Pinnipeds experience an annual cvcle of physiological
changes and life-history events that determines their ter-
restrial availability to research. The annual cycles of polar
species are often especially coupled to seasonally available
resources, such as habitat or prey (Bowen 2018). The
mechanism of such phenology may be triggered or influ-
enced by relatively predictable environmental attributes,
like photoperiod (Temte & Temte 1993, Temte 1994, Trites
& Antonelis 1994), dvnamic environmental cues, like cli-
mate or sea ice (Hind & Gurney 1998), and intrinsic
factors, like maternal age {Trites 1991, Lunn & Boyd 1993).
Depending on the species, pinniped phenology unfolds
with  different degrees of interannual consistency
{(Bowen 2018), so single scheduled population surveys
might not align with their target event, like maximum
on-land abundance, and additional context is often neces-
sary to estimate where a survey occurs within the annual
cycle. This concern is especially relevant for optical imagery
collected by satellites, whose orbital revisit period is further
limited by cloud cover (LaRue et al. 2011, 2017), and
imagery collected by occupied aircraft, whose flight sched-
ules require advanced planning and are limited to longer
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windows of safe weather {Sweeney et al. 2016). Drones
are less limited by such logistical factors: lower infrastruc-
ture requirements allow operators to deploy drones on a
more flexible and ad hoc schedule; rapid on-demand de-
ployment and recovery can exploit very short weather
windows; low-altitude flights can collect imagery under
cloud cover; and repeat surveillance can obtain data series
at frequencies and temporal ranges not practical or achiev-
able by occupied aircraft or orbiting satellite platforms
(Linchant et al. 2015, Christie et al. 2016).

On-demand deployment over pinnipeds can target ex-
pected phenological events, such as breeding and moulting,
or respond to contextual triggers, such as peak counts
from a local index site. Repeat surveys can establish a
context for temporally dynamic processes, describing trends
before and after a target survey, and can functionally ex-
pand the period of sampling to increase the likelihood
that targeted events are captured within the period (Fig. 1).
High-frequency monitoring may also capture short-term
temporal factors, like within-day effects of tide, weather
and diel cycle, and multi-day occupancy patterns, like
conspecific recruitment to haul-out sites, time-partitioned
occupancy by different age-sex classes (Le Boeuf &
Laws 1994), and the balance of foraging and fasting ac-
tivities among territorial males and lactating females on
the rookery (Champagne et al. 2012). These advantages
of repeat and on-demand drone surveys apply most obvi-
ously to research questions concerning demography, which
often require temporal and phenological context to interpret
counts and surveys, but high-frequency observations can
also reveal the balance and budget of energetically costly
behaviours across aggregated groups of pinnipeds, especially
during reproductive periods (Costa 1991). The spatial
context of repeat drone imagery may still further describe
spatiotemporal processes of on-land behaviour, such as
territoriality, sociality, and eatly behavioural ontogeny as
they unfold across land or ice habitats. Drones can record
these processes with spatial detail and at aggregate scales
not typically achieved by conventional methods at ground
level.

SPATIAL COVERAGE AND RESOLUTION

Drone imagery expands on the legacy of aerial photography
— a long-established tool of wildlife biclogy (Leedy 1948,
Jolly 1969). Occupied aircraft have been used to survey
and estimate pinniped populations since the era of in-
dustrial sealing (Bartlett 1929), exploiting aerial perspectives
to scout large regions of land or ice habitat at a time.
Today, high resolution satellites provide even greater spatial
coverage of pinniped habitats (LaRue et al. 2011, Rodofili
et al. 2022), with advantages that include automated and
relatively passive data collection, once sensors are placed

2 Marrnal Review 54 (2024) 1-12 @ 2023 The Authors. Mammal Review published by Marnmal Society and John Wiley & Sons Ltd

2suRa 1] U0, aAneal;) ajgeatdde oy £q pauranod o sajane wO ‘98N J0 sajnu dof ArRIqET auiEg L3714 0 (SU0RIpu0 0 pue-suLIa) e A e Lreaqrautuo,y sdiy) suonpue ) pue suta | oy 223 [cr0rynT/Ae] uo £mIqr autug Ao fsaimaqr] ANEmAnIn) a¥ng A sper ] WEny] [ 110 [ /0pAn00 AT £regrauruoyy sy Woy papeoao I ] pr07 L06TSHET



G. D. Larsen and D. W. Johnston

Drone advancements in pinniped research

February 22, 2020

March 9, 2020

25 50

i
o
o

-~
wm

N
(&3]

Count of Antarctic fur seals
(8]
o

o

Jan 15 Feb 01 Feb 15

Mar 01 Mar 15

Date (2020)

Fig. 1. Example drone orthomosaics (top) describe changes in abundance and occupancy of Antarctic fur seals (Arctocephalus gazella, orange squares)
on Torgersen Island, Antarctica (64°44'49" S, 64°4'24" W) in summer 2020. Orthomosaics show imagery from February 22 and March 9 with total
counts (bottom) from 11 drone surveys during January—-March 2020. Repeat drone surveys, here, provide temporal context that informs estimates of

both the timing and abundance of seals at this site.

in orbit, and regular coverage that depends on the satel-
lite’s orbit and revisit period, though this is reduced by
coincident cloud cover. Imagery from occupied aircraft
regularly achieves GSDs and quality necessary to distinguish
seals in their ice or land habitats (Johnston et al. 2017)
and, under select circumstances, very high-resolution satel-
lite imagery can enable the same (LaRue et al. 2017).
In this context, the spatial data that drones collect are
distinguished chiefly by their resolution, coverage and
topographic accuracy compared with alternative imagery.
Densely structured flight plans, enabled by GNSS and the
absence of a human occupant, can rapidly achieve exhaus-
tive overhead coverage at nadir or near-nadir camera angles
over an entire habitat, reconstructing complex terrain
(Kyriou et al. 2021) and reducing animal occlusion behind
terrain relief. Additionally, custom flight plans or manual
operations can achieve oblique camera angles to locate
animals inside caves, crevices or overhangs. Such robust
coverage is often impossible from an orbital perspective
(LaRue et al. 2017), and uncommon from occupied

aircraft, which are limited by their higher operating alti-
tudes and lower manoeuvrability. High-resolution sensors
at low altitudes (<400m) document habitat, flora and
fauna at GSDs sufficient for visual and automated inter-
pretation (Fig. 2), and overlap between images within a
survey enables structure-from-motion methods that can
be used to model high-resolution 3D surface models of
habitats and to orthorectify imagery to more accurately
represent locations and spatial relationships among features
of interest (Fig. 3; Nex & Remondino 2014).

The spatial qualities of drone data provide clear benefits
for demographic and abundance surveys by obviating the
potential bias of undercounting in complex terrain, where
animals may be partially or completely hidden from non-
nadir perspectives. Additionally, high-resolution mapping
products and orthorectified positional data can reveal
precise, fine-scale relationships between pinnipeds and
landcover or physical topography that might not resolve
in comparable stereoscopic products from high-altitude
aerial photography or satellite imagery (Larsen et al. 2022b).
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Fig. 2. Near-contemporaneous satellite, drone and ground photography demonstrate differences in resolution and spatial context between imaging
modes. A PlanetScope image (top left) describes Humble Island (64°44'20" S, 64°5'9” W) in 3.125m GSD, here subset from a 25-km swath-width that
can provide regional context. A drone orthomosaic (top right) describes landforms, flora and Antarctic fur seals (orange boxes) in 1.3cm GSD, here
subset from a survey of the entire island. A ground-level photograph, captured on a Samsung Galaxy S9+ smartphone camera, shows Antarctic fur
seals within the landscape at varying distances. Individual seals can be identified with high confidence in both drone imagery and ground imagery
(orange dashed lines) based on their pelage and locations. PlanetScope image ID: 3226192_2009012_2020-03-13_1054.

Such species—habitat relationships can reveal preferences
and limitations of pinniped habitat selection that might
be driven by terrestrial locomotive ability (Beentjes 1990,
Garrett & Fish 2015, Fish 2018) or thermoregulatory be-
haviours (White & Odell 1971, Liwanag et al. 2014,
Montero-Serra et al. 2014, Chaise et al. 2018), linking
individual energetic costs to emergent patterns of terrestrial
occupancy. The higher GSDs of drone imagery additionally
facilitate the location of camouflaged species, morphs, and
age-classes, and discrimination between species and age-
classes that can appear similar at coarser resolutions
(Johnston et al. 2017, Rexer-Huber & Parker 2020). At
highest image quality, drone imagery can even be used
to locate and quantify marine debris entanglements and
interactions with fishing gear (McIntosh et al. 2018), and
depending on animal postures, may enable identification
of individuals based on brands (Sweeney et al. 2016),
scarring, flipper tags (Hodgson et al. 2020), and pelage

characteristics (Fig. 2), or the classification of pups by
moult stage (Johnston et al. 2017, den Heyer et al. 2021).

MORPHOMETRIC PHOTOGRAMMETRY

Photogrammetry — measuring objects from a photograph
— is a technique that predates drones and even digital
photography, but has become more common, accessible
and advanced in their wake (Linder 2009). Simple 2D
measurements can be estimated from a photograph, if the
camera’s focal length and distance-from-object are known,
and drones enable this process from aerial perspectives.
Distance-from-object can be informed by the drone’s po-
sitional data from GNSS, triangulation among images with
shared features, barometric altimetry, a time-linked laser
range-finder, or some combination of these measurements —
all of which provide different degrees of confidence that
can be encoded with imagery and spatial data products

4 Mammal Review 54 (2024) 1-12 © 2023 The Authors. Mammal Review published by Mammal Society and John Wiley & Sons Ltd.

QU0 SUOWIWI0)) ALY d[qedridde o) £q POUIdA0S SIe SAOTE YO $3Sh JO SO[NI 10§ ATRIqIT SUIUQ AS[IA\ UO (SUOTIPUOD-PUB-SULID}/W0d A1 ATRIqujour[uo//:sdiy) SUONIpuo)) pue suLd L, ) 29 “[£20¢/21/Lz] uo Arerqry auruQ Ao[iAy ‘soeIqry ANSIoAtun 9ng 4q 7Eg 1 Wewy [ 11 01/10p/ur0d" Loqiav Areiquoutfuoy/:sdny uroly popeoumod ‘I “+707 ‘LO6TSIET



G. D. Larsen and D. W. Johnston

Drone advancements in pinniped research

Elevation

-6m

.4m

Fig. 3. Unprocessed drone imagery and corrected photogrammetric products illustrate orthorectification at ultra-fine scales. Uncorrected photographs
(top) show visible displacement of seals from their true locations (orange boxes) resulting from the parallax between different camera perspectives.
Insets show the subset location (black square) within the footprint of its source photograph (grey-dashed rectangle). Orthorectified imagery (bottom
left) shows the true relationships among features in Euclidean space. A derived DEM (bottom right) describes the topography of those features.
Imagery is subsetted from a survey of Torgersen Island (64°44'49" S, 64°4'24" W), captured on March 23, 2020.

(Bierlich et al. 2021). When serial imagery is captured
across multiple locations, drones enable yet more complex
photogrammetric analyses from derived products: many
2D measurements can be estimated from orthomosaics
rectified to a known GSD, and 3D volumetry can be es-
timated using structure-from-motion models with a sta-
tionary individual (Postma et al. 2015).
Photogrammetry has been applied to pinnipeds at
ground level under a variety of scenarios for both 2D
and 3D measurements (reviewed in Hodgson et al. 2020),
but drone-specific applications remain few and experi-
mental. First attempts have demonstrated success with
2D measurements from single photographs (Krause
et al. 2017, Alvarado et al. 2020), 2D measurements from
orthomosaics (Fig. 4; Allan et al. 2019, Hodgson et al. 2020,
Infantes et al. 2022), and 3D measurements from

structure-from-motion models (Hodgson et al. 2020, Shero
et al. 2021). Such studies generally require validation against
conventional ground-truth measurements with captured
animals to confirm the veracity of photogrammetric meth-
ods (Krause et al. 2017, Alvarado et al. 2020) — though,
at sufficient sample sizes, UAS-derived measurements have
been validated against archival ground-truth measurements
of a comparable sample (Allan et al. 2019). Critically,
most measurements are sensitive to animal posture and,
depending on the technique and number of photographs
needed, animal activity (Shero et al. 2021), and care is
required when relating 2D indices or 3D volumetry to
mass, body condition, and physiological attributes
(Hodgson et al. 2020, Shero et al. 2021). Within these
provisions, however, drone imagery encodes an abundance
of morphometric information about imaged animals, and
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Fig. 4. Example orthomosaic imagery (top) describes the presence and approximate lengths of southern elephant seals (Mirounga leonina) across
multiple drone surveys of Amsler Island, Antarctica (64°44'16" S, 64°3'55" W) in summer 2020. Orthomosaics allow measurements of seals, here a
coarse snout-tail straight line, based on the known GSD of the imagery. Repeat measurements at the same site reveal potential differences in
occupancy with respect to abundance and age-classes as the region shifted from the peak moulting period of cows and juveniles (late December to
early February) towards the peak moulting period of bulls (early March to late April), as has been described previously for more northerly rookeries.

with increased image quality, refined photogrammetric
modelling algorithms, calibrated relationships among mor-
phometric indices, and dynamic physiological models, drone
photogrammetry may become an increasingly valuable
method of non-invasively canvassing pinniped populations
for both focal and aggregate distributions of size and
condition.

COMPUTER VISION AND DEEP LEARNING

Drone surveys of wildlife produce abundant, high-
resolution image-type data that are conventionally in-
terpreted visually by humans, but computer vision
techniques can ease the burden of image interpretation
(Weinstein 2018), especially where deep learning methods
can capitalise on growing archival collections for training
data. Early computer-aided wildlife surveys exploited
high contrast between select species and their backgrounds
to locate and count animals using a simple thresholding

technique (Bajzak & Piatt 1990). Today, similar thresh-
olding methods can be used with thermal (Beaver
et al. 2020) and multispectral sensors (Colefax et al. 2021)
to overcome the potential lack of contrast in the visible-
light spectrum. This is facilitated by the capacity of
drone platforms to support modular or customisable
payloads. In the absence of suitably high contrast, how-
ever, convolutional neural networks (CNNs) can be
trained to detect focal objects in remotely sensed data
with high success (Zhu et al. 2017), leveraging spatial
context and multiscalar feature representation to extract
and discriminate targets from background and alternative
classes. There are many bespoke examples of CNNs
achieving satisfactory or higher success in tasks of wildlife
detection (reviewed in Kellenberger et al. 2018, Corcoran
et al. 2021), and generalisable workflows are beginning
to emerge for diverse wildlife research scenarios
(Kellenberger et al. 2020, Koger et al. 2023). However,
implementation is often still hindered by a high threshold
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of requisite technological ability and mismatches of scale
between demonstration scenarios and practical applica-
tions {Lyons et al. 2019).

Some current drone applications with pinnipeds lever-
age thermal or multispectral imagery to facilitate detec-
tion by high contrast in drone imagery (Seymour
et al. 2017, Sweeney et al. 2019, Larsen et al. 2022b),
but many more studies rely exclusively on visible-light
photography to detect pinnipeds. With visible-light aerial
imagery, deep learning techniques have already been
applied to estimate aggregate pinniped counts
(Hoekendijk et al. 2021), detect individual pinnipeds
(Dujon et al. 2021), and classify pinnipeds by age class
(Salberg 2015, Infantes et al. 2022), though success and
generalisability vary widely between examples. Upcoming
applications also include deep learning for photogram-
metry, as has already been demonstrated with drone-
based photography of cetaceans (Gray et al. 2019) and
more recently with harbour seals (Infantes et al. 2022),
and deep learning for individual identification, as has
been demonstrated with ground-based photography of
harbour seals (Nepovinnykh et al. 2018, 2022, Birenbaum
et al. 2022). In this early stage of its technological de-
ployment, deep learning for computer vision remains
an experimental technique in pinniped research, and
still few examples characterise its error and generalisability
across large-scale applications. As implementations coa-
lesce around useful software and prioritised research
objectives, researchers will need to establish best practices
to guide data acquisition and curation for model train-
ing, tuning model performance, and accurately estimating
model error. In the absence of such guidance, deep
learning can still enhance accuracy and efficiency
by complementing, rather than replacing, human
interpretation.

FUTURE POTENTIAL

New drone methodologies for pinniped research will un-
doubtedly emerge from these strengths and others vet to
be recognised. Comnsidering this ongoing evolution of the
technology and its applications, a particular strength of
drone methods is that they record a wealth of informa-
tion, often far exceeding a mission’s precise objective.
Spatially referenced images with metadata and flight logs
encode rich contextual information in digital formats that
are often ready for archival or distribution before process-
ing. If preserved, raw data products can be reprocessed
and reanalysed as downstream methods continue to im-
prove. Best practices and standards are still emerging for
collection, storage and distribution of drone data, but even
within local repositories, growing collections of drone
imagery and products can facilitate new analyses across

Drone advancements in pinniped research

spatial and temporal dimensions, satisfying methods that
require large datasets for model training or rigorous sta-
tistical tests.

LIMITATIONS

Amid their promising potential, drones are not appropriate
for all scenarios, and, notably, drone applications often
complement rather than replace conventional and alterna-
tive methodologies. Remote sensing methods, by definition,
collect data at a distance through the spectra and media
that they monitor (Campbell & Wynne 2011), and cannot
replace many in situ methods. Drone methods have re-
cently accomplished scientific interactions with large ani-
mals at short distances, such as tag deployment (Zak
et al. 2022) and blow sampling from whales (Pirotta
et al. 2017); but similar techniques have not been dem-
onstrated for pinnipeds and would likely incur significant
disturbance to target and nearby animals from a drone’s
acoustic and visual profile at close proximity in open air
(Duporge et al. 2021).

The risk of wildlife disturbance represents a major con-
cern in drone applications (Mulero-Pdzmdny et al. 2017);
however, multiple studies have demounstrated drone sur-
veillance over pinnipeds while noting little or no distur-
bance (Aroma et al. 2018, McIntosh et al. 2018).
Experimental exposures suggest that flights above 30m
are unlikely to cause significant disturbance to many spe-
cies (Pomeroy et al. 2015, Mustafa et al. 2018, Krause
et al. 2021, Laborie et al. 2021), and increasingly quiet
drones may further reduce disturbance at closer distances
(Duporge et al. 2021). Ultimately, advisable altitudes de-
pend on the choice of drone and the choice of species,
accounting for the potential sensory and behavioural sen-
sitivity of an individual in its environment and life history
stage (Duporge et al. 2021). In all scenarios, the risk of
disturbance from drones should be weighed against the
risk from alternative possible methodologies (Moreland
et al. 2015, McIntesh et al. 2018, Krause et al. 2021,
Laborie et al. 2021), and aspects of study design can fur-
ther reduce the risk of disturbance from drones (Mo &
Bonatakis 2021).

Beyond potential disturbance, many other factors can
disqualify drones from a study’s design. Battery life limits
the range and duration of drone flights, such that most
cannot achieve the larger range and extent that is com-
monly collected from occupied aircraft (Colefax
et al. 2021). Drones often must be transported to survey
sites or adjacent launch sites by boat or aircraft, poten-
tially incurring costs and disturbance beyond that of the
drone. Where drones are scientifically appropriate, local
regulations may restrict the airspace, pilot qualification,
or choice of aircraft for a study (Floreano & Wood 2015,
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Linchant et al. 2015, Crutsinger et al. 2016, Newman 2017).
Like any complex technology, drones also require training
and expertise for safe operation and maintenance. The
selection of a drone-based methodology should follow
careful consideration of research objectives, available ex-
pertise and resources, regulatory context, and potential
risks to researchers, animals — both focal and non-target
individuals — and the environment.

CONCLUSIONS

Drones constitute a new frontier in wildlife biology that,
like other recent technological advancements, heralds trans-
formative, transdisciplinary opportunities for both methods
and theory in the study of pinnipeds. Though increasingly
common, many drone applications remain at the scale of
‘proofs of concept’ or direct substitution for conventional
research methods, like annual population counts. As prac-
titioners refine and scale drone techniques towards their
logistical and technological limits, pinniped researchers can
begin to fully utilise the advantages of drone systems:
their unique combination of large spatial coverage, ultra-
fine resolution, simple and rapid deployment, and ease
of customisation. Downstream opportunities of drone
imagery include structure-from-motion and orthorectified
spatial products, precise 2D and 3D photogrammetry,
computer vision, and yet-to-be imagined applications for
data with such rich abundance, detail, metadata, and ar-
chival potential. These advancements will complement other
research themes by integrating previously independent data
streams from complementary measurement and monitoring
techniques, pioneering new syntheses and transforming the
field towards further integrated, multiscalar themes of
research and management. Such integration is already tak-
ing place in the adjacent field of cetacean research, where
drone measurements have been calibrated and integrated
alongside biologging and biomechanical models to reveal
new evolutionary and ecological insights (Goldbogen
et al. 2019, Savoca et al. 2021, Cade et al. 2023). As new
methods and standards emerge for the use of drones in
research, scientists must advance applications towards the
scales of management objectives and statistical rigour by
validating potential methods, highlighting current limita-
tions, and testing new applications beyond the current
frontiers of pinniped research.
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