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AbstractÐSplit Computing has become a prominent resource-
efficient method to enable machine learning (ML) applications
on user-constrained edge devices, where compute-intensive ML
workloads can be delegated to remote cloud servers for processing.
However, the exposure of data to the cloud service providers
as such raises privacy alarms due to the possible leakage of
sensitive user information. On a relevant note, typical deep neural
network (DNN) design frameworks do not take into account
model splitting and its complications at the early design stages of
DNNs. Thus, a natural question arises on how to bridge this gap
and optimize the DNN design process such that split computing
operations can meet the requirements of accuracy, performance,
and privacy. In this paper, we strive to address this question
through adopting a privacy-by-design approach, where privacy is
characterized either as a constraint or an objective to realize privacy-
aware models tailored for split computing. Using the ϵ-differential
privacy standard for our case study, we conduct intensive empirical
analysis on the relation between architectural parameters and
intrinsic privacy budgets, and propose PrivyNAS ± a privacy-aware
Neural Architecture Search framework for split computing. On
the CIFAR-10 dataset, our approach has demonstrated promising
results in providing DNN architectures that balance the required
design trade-offs.

Index TermsÐInference Privacy, Differential Privacy, Split
Computing, Neural Architecture Search, Edge-Cloud.

I. INTRODUCTION

W Ith the advent of the Internet of Things (IoT) and Big

Data era, Deep Neural Networks (DNNs) have become

recognized standard solutions for numerous IoT applications,

such as image recognition, Natural Language Processing,

and healthcare monitoring, given their impressive capacity

in handling large volumes of data and achieving remarkable

performances [1]±[3]. In order to enable the deployment of

compute intensive DNN models onto resource-constrained user

end devices, recent research works have proposed to adopt a split

computing approach in which DNN computations are divided

between the user’s edge device and a cloud server [4]±[7]. In

this scheme, inference can be offered by a cloud provider as an

online, on-demand remote inference service. Hence, the bulk (if

not all) of the computational workloads from the user’s model

can be relayed for processing on the provider’s cloud, enabling

on-device execution of DNNs from the constrained user devices.
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Nonetheless, the transmission of user’s data to the cloud poses

privacy concerns as users have no control over how the data is

used once it has been made available to the provider. Previous

incidents have already seen providers sharing users’ personal

information with other third parties (e.g., Facebook incident

in 2018 [8]). Another study has demonstrated that aggregate

user data at the cloud which are reused for model training

are liable to model inversion attacks, mainly due to the model

weights leaking users’ sensitive attributes (as was demonstrated

in a model inversion attack recovering images from a facial

recognition system [9]). Even more so in the mobile health

field, the transmission of time series physiological signals (e.g.,

ECG) for cloud processing can reveal user-private behavioral

patterns (e.g., e.g., smoking, stress) sensitive to the user.

Addressing this, researchers have proposed numerous tech-

niques to provide privacy guarantees under such remote infer-

ence model [10]±[13]. Despite their effectiveness, these methods

were applied to models originally targeted for single platform

deployment, that is, models whose design was not optimized

for edge-cloud system operation. As works in [14], [15] have

observed that varying a subset of architectural parameters

can impact privacy guarantees, the inherent privacy-preserving

capabilities of a model can be affected by the choice of

architectural parameters. Hence, an argument can be made that

architectural parameter choices can be optimized to enhance a

DNN model’s privacy preserving capabilities, giving rise to the

following questions from a DNN model designer’s perspective:

• How to assess candidate model architectural designs with

regards to upholding inference privacy guarantees given a

remote inference operational scheme?

• How to model the relationship between architectural design

choices and the inherent privacy-preserving capabilities

given a split computing model of computation?

• How to implement a design framework for non-

monolithic DNN models balancing the underlying accuracy-

performance-privacy trade-offs?

Figure 1 shows how application-level accuracy and hardware

performance (e.g., execution latency) have been the standard

objectives guiding the DNN design process to attain models that

achieve the most balanced trade-offs. In this work, we aim to

study the value of incorporating privacy as a design metric given

a remote inference deployment scheme. To achieve this, a formal

metric needs to be utilized for to quantify privacy as a design

objective such as the rigorous Differential Privacy (DP) standard

[16], [17] with its quantifiable privacy loss budget ϵ. In DP,

noise is added to user’s data for obfuscation and minimizing its
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TABLE I
THE VARIATION OF ϵ WITH ARCHITECTURE AND NOISE INJECTION LAYER.

Layer
DNN Architecture

VGG11 VGG13 VGG16 VGG19

MP C
Bound 0.8 0.775 0.825 0.625
Acc. 21.0 25.7 32.7 47.4
ϵ@b=0.5 3.2 3.1 3.3 2.5

Conv E1
Bound 0.175 0.15 0.15 0.275
Acc. 19.7 19.9 20.6 12
ϵ@b=0.5 0.7 0.6 0.6 1.1

local DNN side of the model, and from the cloud perspective,

its outputs can typically be only traced back to the noisy

intermediate representation a′.

DNN noisy retraining: As noise addition can lead the model’s

utility to deteriorate, retraining on publicly-available noisy data

representations is beneficial. Typically, the cloud-side model

Mr is retrained on perturbed representations of public data

instances to enhance the model’s resilience when dealing with

noisy representations a
′. Meanwhile, local models Ml remain

unaltered [10]. The retraining loss function for Mr can be as:

Ltotal(wr; a, a
′) = λLclean(wr; a)+(1−λ)Lnoisy(wr; a

′) (2)

where wr represent Mr’s weight parameters while λ trades off

the contribution of the clean and noisy representations, taking

values in the range of [0, 1].

It should be noted that there are additional techniques to

further strengthen formal ϵ privacy guarantee, as the data

nullification technique in [10]. However, our analysis in the

following sections is conducted using the basic form of ϵ-DP

remote inference model to analyze in the vanilla form the relation

between a model’s architectural build and privacy budget.

IV. ANALYSIS OF THE RELATION BETWEEN DNN

ARCHITECTURAL PARAMETERS AND ϵ-DP

Through intensive empirical evaluations, we examine how

the ϵ-DP guarantees for remote inference can vary according

to the underlying DNN structure. The work in [15] similarly

investigated such a relation to identify an optimal topology for

Ml that enables cloud-based DNN training while protecting

data privacy. Nonetheless, their work neither targets inference

privacy nor is based on the DP standard. Throughout this paper,

our analysis is established based on the benchmark CIFAR-

10 image dataset for its role as a main evaluation dataset in

numerous relevant DP works [10], [14], [15], [23], [29].

Proposition 1: ϵ variability per layer. Within a model,

the strength of ϵ-DP guarantee varies depending on the

chosen noise injection layer. Across model variants, the

noise injection layer capacity to influence ϵ varies based

on its relative position within the computational graph.

In this experiment, we analyze how the sensitivity bounds and

the ϵ privacy guarantee vary when the position of noise injection

layer changes within and across different model architectures.

This first analysis is performed using pretrained models directly

with no cloud-side retraining after noise injection (we leave that

analysis for the immediate subsequent experiments). Briefly,

the choice of offloading (noise injection) layer influences the

amount of perturbation needed to achieve ϵ-DP guarantee, and

in turn affects the DNN model’s utility. As a motivational study,

We analyze how ϵ would vary across 4 pre-trained variants of the

VGG family of DNNs [19] under two potential injection layers:

MP C, which is the 3rd Max Pooling layer, and Conv E1, the

first Conv layer in the 5th block of the VGG architecture. We

assume additive noise tensors are sampled from a Laplacian

distribution with a scale of b = 0.5 (recall b = ∆f
ϵ

in (1)). As

shown in Table I, we observe that not only do clipping bounds

B differ based on the choice of injection layer but also across

the distinct variants. This implies that ϵ budget computed would

be different under the same b for different layers. For instance,

the privacy guarantee in VGG16 at MP C is ϵ = 3.3 opposed

to ϵ = 0.6 at Conv E1. Also for the same layer across different

VGG variants, a stricter ϵ of 2.5 at MP C can be attained for

VGG19 compared to ϵ values from the other VGG variants.

More interestingly, despite providing ϵ = 2.5 budget at MP C

for VGG19, the model’s utility does not degrade as much as

that for the other variant models with looser ϵ budgets at MP C.

Contrarily, VGG19 model utility with ϵ = 1.1 deteriorates in a

worse fashion compared to other VGG models with tighter ϵ

budgets. These observations show that based on how a model

is structured (VGG variant) and partitioned (injection layer

position), knowledge is maintained discordantly and so is its

intrinsic resilience to noisy representations.

Key Takeaway. The noise injection layer position is to

be optimized alongside the design process of DNN model

architectures supporting ϵ-DP for inference privacy.

Proposition 2: Depth. For the same required ϵ budget,

the likelihood of a model sustaining severe drop in

accuracy decreases as the noise injection layer position

tends towards the model’s deeper layers.

Depth: In this analysis, we assume a tight privacy budget

requirement of ϵ = 2.8 based on results from [10], [29]. We

use two DNNs, VGG11 and VGG16 [19], trained to ∼ 94%
test accuracy on CIFAR-10 using the training hyperparameters

in [38]. These two architectures resemble architectural depth

variation since VGG16 possess one more Conv layer per

each block than VGG11, but they share other architectural

configuration parameters. Then for each layer, we evaluate how

the overall DNN utility would degrade when the layer applies

noise injection. We also retrain the cloud-side DNN on noisy

perturbations in each case, and re-evaluate the overall utility. The

two upper bar plots in Figure 3 demonstrate how the accuracy

is impacted for every potential injection layer for both DNNs.

At a first glance, we can observe that the deeper injection

layers generally offer better overall accuracy under a specific ϵ.

This is comprehensible given how they already deal with more

abstract representations of data. We also notice that the required

perturbation level b (shown in red) to achieve 2.8-DP differs

for each layer depending on the corresponding bounds, which

are estimated using infinity norms’ median at each respective

layer. We also notice that the model’s classification capability
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we define the search’s reward function, R, as:

R = acc(m)× (
Ltarget

L(m)
)ωL × (

ϵtarget

ϵ(m)
)ωϵ (8)

where acc(m), ϵ(m)1 , and L(m) are the respective clean/noisy

test accuracy, privacy budget, and latency achieved by model m.

ϵtarget and Ltarget resemble the desired target privacy budget

and latency by the designer. ωϵ and ωL are configurable design

trade-off parameters. As we are only concerned with resource

efficiency from the edge devices’ perspective, we breakdown

L(m) to its dominant components as follows:

Lm = Lexec + LTx; LTx =
Data Size

Throughput
(9)

where Lexec is the execution latency on the edge device for

the local submodel Ml, while LTx is the data transmission

latency from the edge to the cloud dependent on the experienced

wireless throughput at the edge and the transmissible data size.

VI. EXPERIMENTS

Experimental Settings. We implement our PrivyNAS on top

of ProxylessNAS [21] where we keep their default architectural

search hyperparameter settings with the MobileNetV2 backbone

except for the stride of the first stage blocks which is reduced

from 2 to 1. We keep the same set of candidate operations

{oi}: mobile inverted bottleneck convolutions (MBConv) of

kernel sizes ∈ {3, 5, 7} and expansion ratios ∈ {3, 6} in

addition to the skip operation to control network depth. The

backbone comprises 6 search blocks with a maximum number

of 4 MBConv layers per block, followed by one last block

with a single MBConv layer. This arrangement enables having

21 potential candidate positions for the noise injection layer

following each searchable residual block. We use initial learning

rates of 0.15, 1×10−3, 1×10−3, and 5×10−4 to train w, α, θ,

and γ, respectively. For the main procedure, we set λ= 0.5 and

#epochs=200. For the privacy-accuracy co-search experiment,

we assign 30 Laplacian distributions for each injection layer

uniformly covering the ϵ choices within the range of [0.1,3].

Performance Characterization. We use the Nvidia Jetson

TX2 (TX2) as our target edge hardware platform. The TX2

is capable of 1.33 TFLOPs and a power budget of 15 W. In

order to provide accurate estimation of the models’ performance

during the PrivyNAS search process. We benchmark every

operation from the supernet on the actual hardware device using

the standard caffe framework. Using these measurements, we

construct a lookup table that can be instantiated during the search

in O(1) complexity. Thus, a performance characterization of the

candidate client model designs can be determined conditioned

on the underlying architecture and the chosen split layer.For

the communication model, we set Throughput=10 Mbps and

use int8 format for transmissible data size.

1We slightly abuse the ‘ϵ‘ notation and reuse it for the privacy objective
function in addition to the privacy budget. Purpose can be inferred from context.

TABLE IV
COMPARING MODELS’ ACCURACY (%) AT ϵ=2.8. FOR THE NAS MODELS,

WE SET ωe=0, AND Ltarget = 50MS WHEN ωl ̸= 0. (c) INDICATES

TRAINING USING ONLY CLEAN DATA WHILE (ret.) STANDS FOR RETRAINED.

Model
Total Clean Noisy Total
Train Test Test Test

MobileNetv2 98.9 (c) 92.5 27.9 60.24
MobileNetv2 (ret.) 85.72 88.7 65.1 76.92

ProxylessNAS (ωl = 0) 91.1 (c) 80.35 65.58 72.23
ProxylessNASret (ωl = 0) 85.86 80.05 78.36 79.16

Privacy-aware (ωl = 0) 90.76 80.44 79.22 79.90

Privacy-aware (ωl = 0.05) 88.99 79.36 76.99 78.11

A. Privacy-aware Search Analysis

We first assess the privacy-aware NAS in comparison to a

conventional privacy-agnostic NAS decoupling the architectural

design from privacy considerations. Here, the conventional ap-

proach is emulated through a regular search from ProxylessNAS

[21], followed by a separate independent process to integrate

ϵ-DP inference privacy onto the final model. We also compare

against the MobileNetV2 from section IV since it shares the

same backbone architecture as ProxylessNAS [21]. Note that

performance evaluations for MobileNetv2 and ProxylessNAS

are estimated based on their best accuracy scores by choosing

their optimal splitting layer (the 5th residual block and layer

13, respectively). A privacy budget of ϵ = 2.8 is used for all

implementations. The Reward function R used to update α and

γ is determined here through the validation accuracy of a model

acc(m) (i.e., ωL = 0, ωϵ = 0).

As shown in Table IV, a pretrained MobileNetV2 on clean

data samples achieves the best accuracy on clean test data by

92.5%. However, it fails to do the same for the noisy test data,

degrading the average accuracy to 60.24%. After noisy retraining,

the MobileNetV2 average classification accuracy increases by

∼16% as it generalizes better to noisy samples, where noisy

classification accuracy is improved by 37.2% at the expense of

3.8% degradation in clean test accuracy. The model from the

conventional ProxylessNAS achieves an overall test accuracy of

72.23%, with a 14.8% variance in accuracy between clean and

noisy representations. After noisy retraining for 150 epochs, the

variance in accuracy is reduced to 1.69%, reaching an average

accuracy of 79.16%. Our privacy-aware search renders a model

which outperforms others in terms of average overall accuracy

with 79.9%, indicating the value of the joint training during the

search itself (Section V-B). Also, the variance between the clean

and noisy test accuracies for the privacy-aware search reached

1.22%, indicating how the supernet is trained during the search

to generalize its classification performance to samples perturbed

in proportion to the desired ϵ budget.

B. Injection Parameters γ Analysis

We further analyze the accuracy of both our privacy-aware

and the retrained ProxylessNAS models for each potential

injection layer position to assess the merit of the γ parameters.

In Figure 8, the two DNNs are compared over the 21 potential

injection layer positions from the search space. Note that not

only does the Figure compare optimal noise injection layer

choices, but all potential choices including suboptimal ones.
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TABLE VI
COMPARISON WITH RELEVANT PRIVACY PRESERVING METHODS. ‘◦’ INDICATES PARTIAL CONSIDERATION AS AN ANALYTICAL EXPERIMENT.

PrivyNAS PrivyNet [15] Arden [10] mSieve [44] LATENT [23] Shredder [11] Cloak [12] DPFE [36] C2PI [34]

Inference Privacy ✓ ✓ ✓ ✓ ✓ ✓ ✓

ϵ-Differential Privacy ✓ ✓ ✓ ✓

Context-aware ✓ ✓ ✓ ✓

Encryption-based ✓

Noise layer co-optimize ✓ ✓ ◦ ◦ ◦ ✓

Architecture co-design ✓ ✓

Performance optimize ✓ ◦ ◦ ◦ ◦ ◦ ✓

k, is varied to compare the overall search time overheads in

seconds over the course of the 150 epochs (which are preceded

by 50 clean warmup epochs). For instance, A value of 30 on the

x-axis indicates that we perform one noisy (ub) every 30 epochs,

and the rest incur the overhead of noisy (lb). The reference time

is that of a clean baseline with double the number of samples to

match that of the noisy search. Visibly, as the period of updates

increases, the noisy search timing overhead reverts back at k ≥
20 epochs to values close to that of the reference baseline. In

numbers, Performing an update at k = 1 takes 23.58 × 103

seconds compared to 19.04× 103 seconds at k = 30, whereas

clean reference time takes 18.56× 103 seconds.

For the most part, this timing analysis holds for both the

privacy-aware and co-search classes of search supported by

PrivyNAS. The only difference lies in the added time due to

the distribution parameters ϑ updates in a noisy(ub) epoch. In

our experiments, the cost per epoch in the constraint-aware was

≈0.04 seconds compared to ≈0.16 seconds in the co-search

one. Still, these update costs are relatively negligible compared

to other components since they are only incurred in noisy (ub)

epochs. Ultimately, the extent of the effect of these non-linear

costs on the search times would vary depending on the supernet

structure, the noisy injection layer candidates, and the number

of Laplacian distributions associated with each layer.

G. Comparing Relevant Privacy Works

In Table VI, we compare PrivyNAS against its most relevant

privacy preserving works in terms of the supported features

of interest. Apart from PrivyNet [15] and LATENT [23], all

other works targeted the inference privacy problem setting.

Nonetheless, we include these works as the former considered co-

optimizing privacy and certain architectural parameters, whereas

the latter is another privacy work instance adopting local

differential privacy. As shown in the Table, context-awareness

and encryption are two features that are not provided natively

through PrivyNAS. Still, the integration of additional privacy-

preserving techniques on top of the ϵ-DP guarantee from

PrivyNAS is feasible if stronger measures are needed for the

application. For instance, privacy measures can be maximized

through encrypting transmissible data from a model with

base ϵ-DP guarantees using a Secure Multi-party Computation

(SMC) approach [34]. PrivyNet [15] represents one work

that has considered architectural parameter optimization when

incorporating privacy measures. Their approach is different from

PrivyNAS in that their use-case targets DNN model training

in an edge-cloud setting, and in that they characterize privacy

loss through peak-signal-to-noise ratio of reconstructed images.

Regarding performance optimization, PrivyNAS and C2PI [34]

are two works that actively consider performance optimization

costs when integrating their privacy measures.

VII. DISCUSSION

Key Findings. In our experiments, we found that model

splitting around the middle layers 8-13 achieved the best trade-

offs amongst the accuracy, privacy, and latency objectives. This

means that performance efficiency can roughly be doubled

without drastically influencing other target objectives. Even

so, PrivyNAS practitioners are still able to tune the weight

hyperparameters, ωL and ωϵ, to prioritize one objective over

the other based on their needs. One research direction to soften

the trade-off impacts is to devise new search spaces within

PrivyNAS that are better suited to the edge-cloud deployment

setting with the aim of providing shallower splitting candidates

that improve on existing trade-offs.

Inference Privacy and ϵ-DP Composition. Through this

ϵ-DP inference privacy model of computation leveraging local

differential privacy, the composition property of DP becomes

predominantly associated with the local DNN model. As such,

an adversary with access to the cloud-side DNN outputs would

find it extremely complicated to exploit the DP composition

property. This is due to the low likelihood of encountering a

‘linear-like‘ drop in the privacy budget as the number inference

calls increases. One key reason being that the cloud operates

and is trained directly on the already perturbed ϵ-DP data

representations received from the client and not on the original

inputs. Even if the unlikely scenario of an adversary having

access to the local model is to be considered, ϵ privacy budget

can be characterized according to the composition property from

the early design stage. For instance in PrivyNAS, setting a tight

privacy budget of ϵ
k

would in theory lead to a model design

with at least k inferences before privacy budget becomes ϵ,

ϵ-DP Inference and DL architecture: The consideration

of inference privacy during the architectural design phase of

DL models can be perceived as analogous to building a model

that generalizes well to inputs from a different data distribution.

For ϵ-DP inference, generalization is targeted towards samples

experiencing randomized perturbations according to a formal

measure of noise injection [45]. Subsequently, a privacy-aware

design approach exhibits in essence a behavior similar to

its conventional counterpart. That is, a more complex DNN

architecture would generally lead to a better model utility under

privacy considerations. Still, fine tuning the architectural design
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well-characterization of the desired privacy budget can lead to

a good balance between generalization and overfitting.

Scalability: We have tested our hypothesis to consider ϵ-DP

inference at design time using Convolutional Neural Networks

(CNN) for image classification task. In practice, application

providers in practice are more likely to reuse an existing state-

of-the-art CNN architecture, and augment it with a privacy-

preserving technique for remote inference if only to avoid going

through the model design phase. Nonetheless, new classes of

DNN solutions have been constantly materializing, and the

application of AutoML techniques becomes more relevant in

these early adoption phases. For instance, recent hardware-aware

NAS targeted the design of novel transformer architectures for

Natural Language Processing (NLP) in [46], [47]. It is for these

emerging classes the impact of new concepts, like the inference

privacy-aware design methodologies, can be maximized.

Study Limitations and Future Directions. Our focus in this

paper was to empirically study how model architectural design

can affect inference privacy given a standard dataset and task

(i.e., image classification on CIFAR-10 dataset). The choice of

CIFAR-10 was motivated by both the seminal works in [14] and

PrivyNet [15] whose analysis focused on an image classification

task with CIFAR-10 being their most challenging dataset. Still,

further experimentation and analysis are needed beyond ours

to assess the advantages of PrivyNAS in practical application

settings. One way to achieve this is to scale the inference privacy

problem setting to practical application domains entailing

the edge-cloud architecture. An example is a mobile health

application through which sensitive time-series data can be

processed on the cloud [44]. Another direction is to study

how the quality of a privacy leakage attack (e.g., membership

inference or model inversion) degrades when applied to models

provided by PrivyNAS compared to the baselines [34].

VIII. CONCLUSION

Accounting for inference privacy during the DNN design

phase can be perceived as analogous to building a model that

generalizes well to inputs from a different data distributions.

Through a characterization of the formal ϵ-DP guarantees from

the early design stages, a measure on the degree of indistinguishi-

bility within the neural network itself can be promoted for the

inference privacy use-case. In more realistic settings, knowledge

of an architecture’s inherent privacy-preserving capabilities can

aid in making more informed decisions about which models to

utilize in accordance with the desired privacy budget. Future

research directions can investigate the applicability of privacy-

aware AutoML for various other tasks, larger datasets, and

evaluate the models resilience against known privacy attacks.
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