

1 Embedded, micro-interdigitated flow fields in
2 high areal-loading intercalation electrodes towards
3 seawater desalination and beyond
4

5
6
7
8 Vu Q. Do,^a Erik R. Reale,^a Irwin Loud IV,^a Paul G. Rozzi,^a Haosen Tan,^b
9 David A. Willis,^b and Kyle C. Smith^{a,c,d,e,*}
10
11
12
13

14 a. Department of Mechanical Science and Engineering,
15 University of Illinois at Urbana-Champaign, Urbana, IL, USA
16

17 b. Department of Mechanical Engineering,
18 Southern Methodist University, Dallas, TX, 75275
19

20 c. Department of Materials Science and Engineering,
21 University of Illinois at Urbana-Champaign, Urbana, IL, USA
22

23 d. Computational Science and Engineering Program,
24 University of Illinois at Urbana-Champaign, Urbana, IL, USA
25

26 e. Beckman Institute for Advanced Science and Technology,
27 University of Illinois at Urbana-Champaign, Urbana, IL, USA
28

29
30 *corresponding author: kcsmith@illinois.edu

31 **Abstract**

32 Faradaic deionization (FDI) is a promising technology for energy-efficient water
33 desalination using porous electrodes containing redox-active materials. Herein, we
34 demonstrate for the first time the capability of a symmetric FDI flow cell to produce
35 freshwater (<17.1mM NaCl) from concentrated brackish water (118mM), to produce
36 effluent near freshwater salinity (19.1 mM) from influent with seawater-level salinity (496
37 mM), and to reduce the salinity of hypersaline brine from 781 mM to 227 mM. These
38 remarkable salt-removal levels were enabled by using flow-through electrodes with high
39 areal-loading of nickel hexacyanoferrate (NiHCF) Prussian Blue analogue intercalation
40 material. The pumping energy consumption due to flow-through electrodes was
41 mitigated by embedding an interdigitated array of <100 μm wide channels in the
42 electrodes using laser micromachining. The micron-scale dimensions of the resulting
43 embedded, micro-interdigitated flow fields (e μ -IDFFs) facilitate flow-through electrodes
44 with high apparent permeability while minimizing active-material loss. Our modeling
45 shows that these e μ -IDFFs are more suitable for our intercalation electrodes because
46 they have >100X lower permeability compared to common redox-flow battery
47 electrodes, for which millimetric flow-channel widths were used exclusively in the past.
48 Total desalination thermodynamic energy efficiency (TEE) was improved by more than
49 ten-fold relative to unpatterned electrodes: 40.0% TEE for brackish water, 11.7% TEE
50 for hypersaline brine, and 7.4% TEE for seawater-salinity feeds. Water transport
51 between diluate and brine streams and charge efficiency losses resulting from
52 (electro)chemical effects are implicated as limiting energy efficiency and water recovery,
53 motivating their investigation for enhancing future FDI performance.

54 **Broader Context**

55 During the past decade, the field of electrochemical separations has experienced
56 a surge of research activity stimulated by the introduction of redox-active electrode
57 materials, as motivated by their potential to increase salt removal, energy efficiency,
58 and selectivity toward applications that support global sustainability, including
59 desalination, CO₂ capture, environmental remediation, and nutrient/resource recovery.
60 However, past experimental desalination studies with substantial salt removal have
61 been limited to brackish water feeds when flow cells were used, despite our early
62 modeling [Smith and Dmello, *J. Electrochem. Soc.*, **163**, A530 (2016)] that predicted
63 seawater desalination using cells comprised of symmetric cation intercalation
64 electrodes, separated by cation-blocking membranes. This work is the first to
65 demonstrate experimental salt removal approaching seawater salinity by using high
66 areal-loading flow-through intercalation electrodes that are engraved with interdigitated
67 microchannel networks to minimize electrical and pumping energy consumption. This
68 new paradigm for the structuring of porous electrodes motivates the further
69 development of embedded microfluidic networks and their use in various
70 electrochemical processes with liquid or gaseous feeds, including flow batteries for
71 energy storage, fuel cells for energy conversion, and electrochemical CO₂ conversion.

72

73

74

75

76

77 **Introduction**

78 With the global human population growing at an ever increasing rate and
79 demanding more water for domestic, agricultural, and industrial purposes, desalination
80 of brackish water and seawater is considered an alternative to freshwater resources and
81 is expected to produce more than 200 million m³ per day in 2030.¹ Reverse osmosis
82 (RO) presently contributes nearly 70% of global desalination capacity, followed by
83 thermal-based processes with ~25%.^{2,3} However, thermal distillation is energy
84 intensive⁴ due to the heat of vaporization of water. While RO is energy efficient,⁵ its
85 water recovery is mechanically limited by the pressure necessary to overcome osmosis
86 into highly concentrated saltwater.⁶ Further, both such processes result in the
87 indiscriminate removal of salt, thus requiring remineralization.^{7,8} In addition, RO plants
88 require large capital investment, substantial maintenance, and present environmental
89 impacts caused by pretreatment chemicals and membrane cleaning.⁹

90 Desalination that uses electric fields to transport ions, rather than using pressure
91 to transport water molecules as in RO, promises reduced brine volume and
92 environmental impact. Hybrid RO systems that employ electrodialysis to increase water
93 recovery have been analyzed^{10,11} and demonstrated,^{12,13} but electroosmosis through
94 electrodialysis stacks was shown to limit the degree of brine concentration.¹⁰ Further,
95 the use of gas-evolution electrodes in electrodialysis stacks with only a few membrane
96 pairs results in large energy consumption due to the large difference in electrode
97 potentials (~1 V when using H₂ and O₂ evolution). Alternatively, capacitive deionization
98 (CDI) using ion adsorption in electric double layers (EDLs) has achieved better energy
99 efficiency than RO at brackish salt concentrations (<10 g L⁻¹ or 171mM NaCl)¹⁴ with

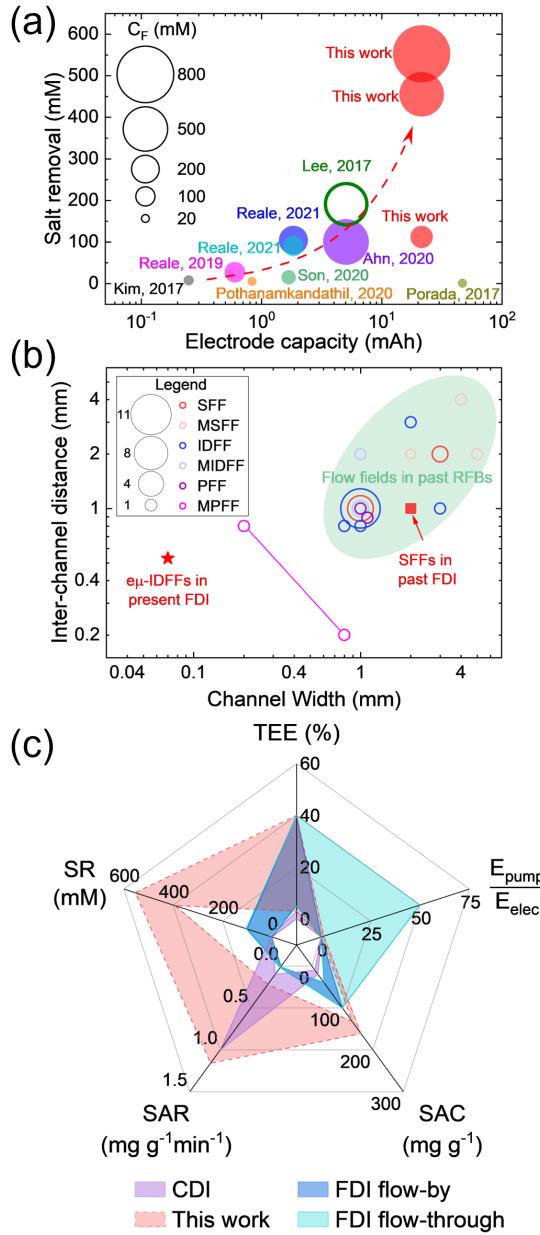
100 much research focused on developing high-capacity, high-rate electrode materials.^{15,16}
101 Even with advanced materials, salt adsorption capacity (SAC) using EDLs rarely
102 exceeds 15 mg per gram of active material,¹⁷ and thermodynamic energy efficiency
103 (TEE) remains below 10%.^{18,19} This is after modifications to CDI process design that
104 have yielded greater improvements in SAC and TEE, demonstrating the importance of
105 system optimization.¹⁸ For example, using ion-exchange membranes in CDI can
106 improve TEE by one order of magnitude,¹⁹ and flow-electrode CDI can improve SAC by
107 >50%.^{20,21} Despite these advances, CDI using EDL charge storage has been relegated
108 to brackish water desalination, mainly due to its low capacity.

109 In contrast, redox-active intercalation materials used in Faradaic deionization
110 (FDI) promise seawater desalination on the basis of experiments with non-flowing
111 cells^{22,23} and earlier modeling with flowing cells.^{24,25} This can be attributed to their high
112 ion-storage concentrations (>4 mol L⁻¹ in Ref. 26) and large SACs (as large as ~100 mg
113 g⁻¹ in Ref. 27). Despite this, the desalination of seawater salinity in a practical FDI flow
114 cell using intercalation electrodes remains to be demonstrated experimentally. Past FDI
115 studies^{23,26,28–33} have used porous electrodes incorporating Prussian blue analogue
116 (PBA) intercalation material at PBA mass loadings under 10 mg cm⁻² to remove less
117 than 20% of the salt from feeds with seawater salinity. However, the salt removal from
118 these studies shows a positive correlation between electrode capacity and salt removal
119 (Fig. 1a). This observation suggests scaling up charge capacity as a means to approach
120 seawater desalination, as we demonstrate subsequently by upsizing electrodes.

121 Aspects of device architecture other than capacity have significant impacts on
122 SAC, salt adsorption rate (SAR), and TEE.^{19,34} Among existing flow-cell configurations,

123 symmetric FDI cells^{24,25,35} have outperformed hybrid CDI, dual-ion desalination, and the
124 desalination battery.^{19,34} In addition, flow-through electrodes^{25,26,28,30,36} have been
125 shown to outperform flow-by electrodes.^{25,30,36} The enhanced performance of flow-
126 through electrodes is a result of the intimate contact of flowing salt solution with
127 intercalation material that enables salt-depleted solution within electrodes to be
128 evacuated and replaced efficiently with new salt-rich solution (see SI and Fig. S1).
129 Therefore, flow-through configurations remove salt faster while yielding higher utilization
130 of active material capacity. However, the fine porosity of electrodes containing
131 intercalation nanoparticles (e.g., PBAs) produces large pumping losses in flow-through
132 configuration because (1) pumping energy E_{pump} scales with the square of pressure
133 drop Δp for a desired volumetric flow rate Q under creeping-flow conditions ($E_{pump} \propto$
134 $Q\Delta p \propto \Delta p^2$)²⁸ and (2) Δp scales inversely with electrode hydraulic permeability k_h that
135 scales with the square of pore size. While past FDI studies have neglected pumping
136 losses,³⁷ we have shown recently that pumping losses can exceed electrical energy
137 input by 50-fold in flow-through FDI.²⁶ Large-area electrodes also result in increased
138 pumping pressure due to increased flow path length, further suppressing desalination
139 energy efficiency and further necessitating a means of its mitigation to make flow-
140 through FDI viable.

141 In this work, we report symmetric FDI with flow-through nickel hexacyanoferrate
142 (NiHCF) electrodes approaching the removal of seawater salinity levels, while achieving
143 pumping losses at parity with or lower than electrical losses for the first time (Fig. 1c).
144 These salt removal levels were achieved with high areal-loading electrodes having
145 NiHCF loadings greater than 19 mg cm⁻², together with an automated valve-switching


146 system to recirculate feed water so as to minimize state-of-charge gradients caused by
147 streamwise polarization induced by salt concentration gradients.^{26,36} Pumping losses
148 were reduced by more than ten-fold by increasing hydraulic permeation through
149 intercalation electrodes by embedding interdigitated microchannels within them via laser
150 micromachining, resulting in novel embedded, micro-interdigitated flow fields (eμ-
151 IDFFs). Past CDI studies using through-plane flow-through electrodes have avoided
152 excessive pumping energy by using electrode materials with large macropores³⁸ and
153 laser-perforated macrochannels.³⁹ However, such approaches are incompatible with
154 FDI where an impermeable membrane is used to separate electrodes,^{26,28,30} thus
155 requiring in-plane fluid distribution.

156 For in-plane distribution of fluid through electrodes in redox-flow batteries^{40,41}
157 (RFBs) and fuel cells, various flow fields including interdigitated ones (IDFFs) have
158 been used.⁴² With one exception,⁴⁰ the past use of in-plane flow fields has embedded
159 them in ~1 cm thick bipolar plates that compress monolithic carbon electrodes, whereas
160 we presently embed them within intercalation electrodes that are cast on a ~100 μm
161 graphite foil, thus yielding a low-profile design that minimizes the cost and mass of
162 inactive cell components. Further, the apparent hydraulic permeability k_h^{app} produced
163 by embedding IDFF channels of width w scales as $k_h^{app} \sim w^{-2}$ (see SI) when fixing the
164 ratio of channel width to inter-channel spacing s , motivating IDFF miniaturization
165 presently. Despite this, Fig. 1b shows that channel widths and inter-channel spacings of
166 past IDFFs and other flow fields used for RFBs are ten-fold larger than the present eμ-
167 IDFFs that we introduce and demonstrate for the first time. The eμ-IDFFs introduced
168 here are shown to produce transverse flow between interdigitated microchannels less

169 than 100 μm wide with as much as 100-fold enhanced permeability when embedded in
170 intercalation electrodes, despite producing parallel flow and less than four-fold
171 enhanced permeability when embedded in carbon-felt electrodes used in RFBs.

172 In what follows we first introduce rational design criteria for ep-IDFFs using
173 physics-based modeling of flow-through porous electrodes patterned with macro- and
174 micro-porosity, identifying a key dimensionless parameter that justifies the use of
175 microchannels despite the exclusive use of millimetric channels in earlier IDFFs for
176 RFBs. Subsequently, the results of ep-IDFF fabrication by laser micromachining are
177 presented, where the imbibing of electrodes with water before laser micromachining is
178 shown to minimize heat affected zones and improve channel quality. Next, we report
179 results of desalination experiments using a symmetric FDI cell using ep-IDFFs with
180 feed-water recirculation. The pair of electrodes having the highest loading achieved
181 93.5%, 96% and 70.9% salt removal from brackish water (118 mM NaCl), seawater-
182 salinity (496 mM), and hypersaline (781 mM) feeds, respectively. Because pumping
183 energy was reduced significantly using ep-IDFFs , TEE approached 40% for brackish
184 water desalination and \sim 10% for seawater and hypersaline brine desalination.
185 Desalination experiments using unpatterned electrodes were also conducted, showing
186 23% lower specific capacity compared to that of patterned electrodes, indicating that ep-
187 IDFFs help to minimize dead volumes within dense electrodes. Water recovery in
188 excess of 50% is reported with water transport and charge efficiency loss mechanisms
189 identified as future means of enhancement of desalination performance.

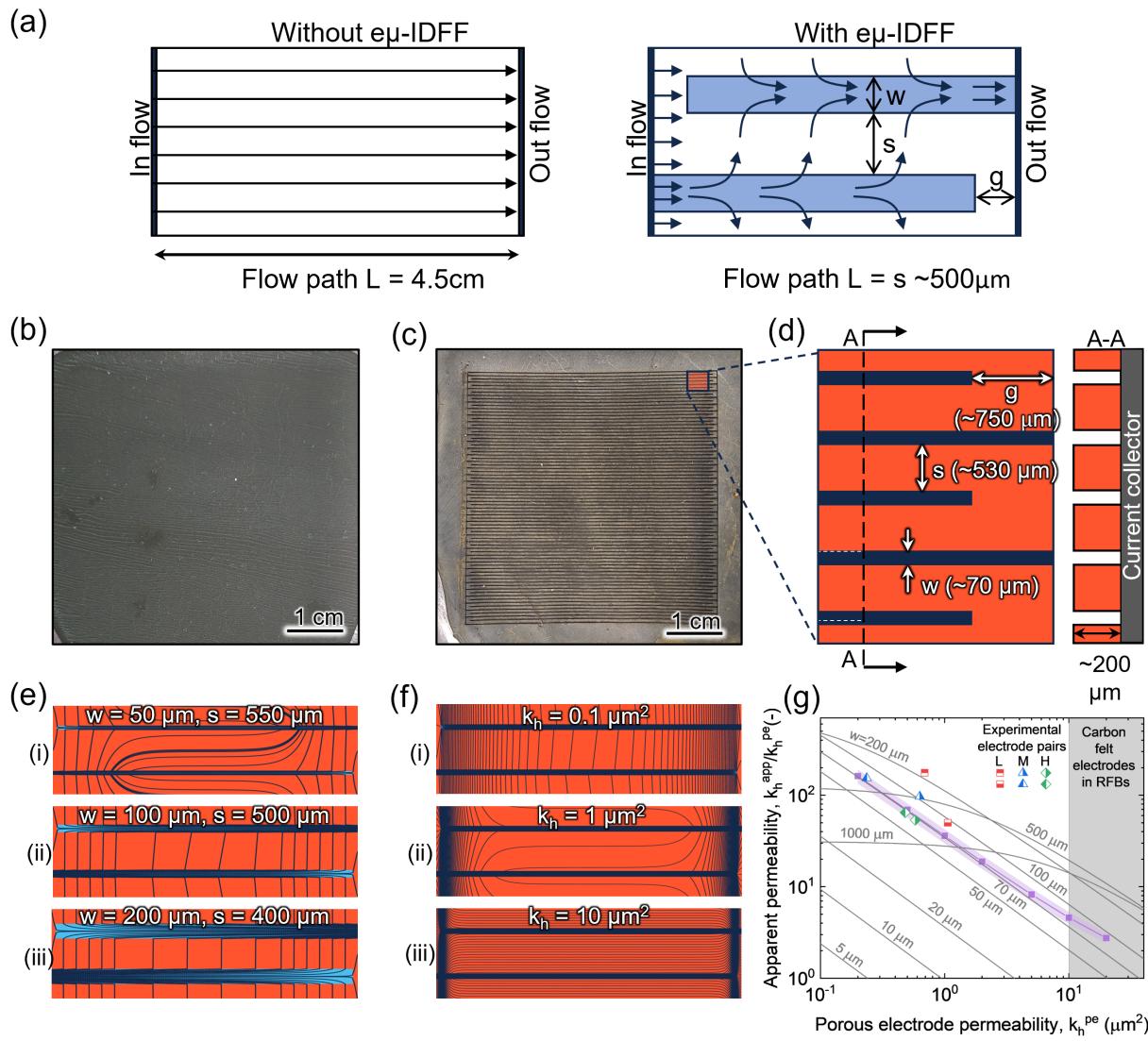
190

191
192
193
194
195
196
197
198
199
200
201
202
203

Figure 1. (a) Salt removal achieved presently compared to previous work using flow cells with NiHCF electrodes (Table S1). Area of a bubble is proportional to the feed concentration C_F used in the work it represented. (b) Inter-channel distance and channel width for interdigitated (IDFFs), serpentine (SFFs), and parallel (PFFs) flow fields and modified versions thereof (MFFs) used presently and used previously in RFBs^{43,44,53–62,45,63–67,46–52} and FDI⁶⁸ (Table S2). The area of a given bubble is proportional to the number of flow fields using such dimensions. The dumbbell symbol is for a corrugated MPFF having channel sections of alternating width and spacing.⁶⁹ (c) Radar plot comparing desalination metrics of the present work with those of past FDI and CDI work (Table S3).^{17,19,23,26,28–33}

204 **Results and Discussion**205 **Design and Fabrication of μ -IDFFs**

206 We fabricated three pairs of electrodes with different nickel hexacyanoferrate
 207 (NiHCF) loading levels to embed them with μ -IDFFs and to subsequently characterize
 208 their desalination performance in a symmetric FDI flow cell. After drying, all electrodes
 209 were found to be crack free (Fig. 2b) with thicknesses between 400 and 450 μm , and
 210 each was subsequently calendered down to \sim 200 μm (excluding the graphite foil which
 211 is \sim 100 μm thick). Next, laser micromachining was used to engrave μ -IDFFs into these
 212 electrodes using the design shown in Fig. 2d. Properties of the six electrodes from
 213 these three pairs are shown in Table 1, where L, M, and H denote electrode pairs with
 214 lowest (\sim 15 mg cm^{-2}), medium (\sim 19 mg cm^{-2}), and highest (\sim 21 mg cm^{-2}) NiHCF
 215 loading.


216 **Table 1.** Properties of electrodes after calendaring. The apparent permeabilities k_h^{app}
 217 were measured after electrodes were engraved with μ -IDFFs.

Pair ID	Electrode ID	NiHCF loading (mg cm^{-2})	Porosity, ε (%) (uncalendared)	Porosity, ε (%) (calendared)	Permeability, k_h^{pe} (μm^2)	Apparent permeability, k_h^{app} (μm^2)
L	1	15.3	64.3	46.5	0.69	121.46
	2	15.3	64.3	46.5	1.06	52.99
M	3	19	62.0	42.2	0.63	60.98
	4	18.6	60.0	43.5	0.236	36.4
H	5	21.5	57.0	39.8	0.58	31.04
	6	21.3	57.4	40.4	0.48	31

218

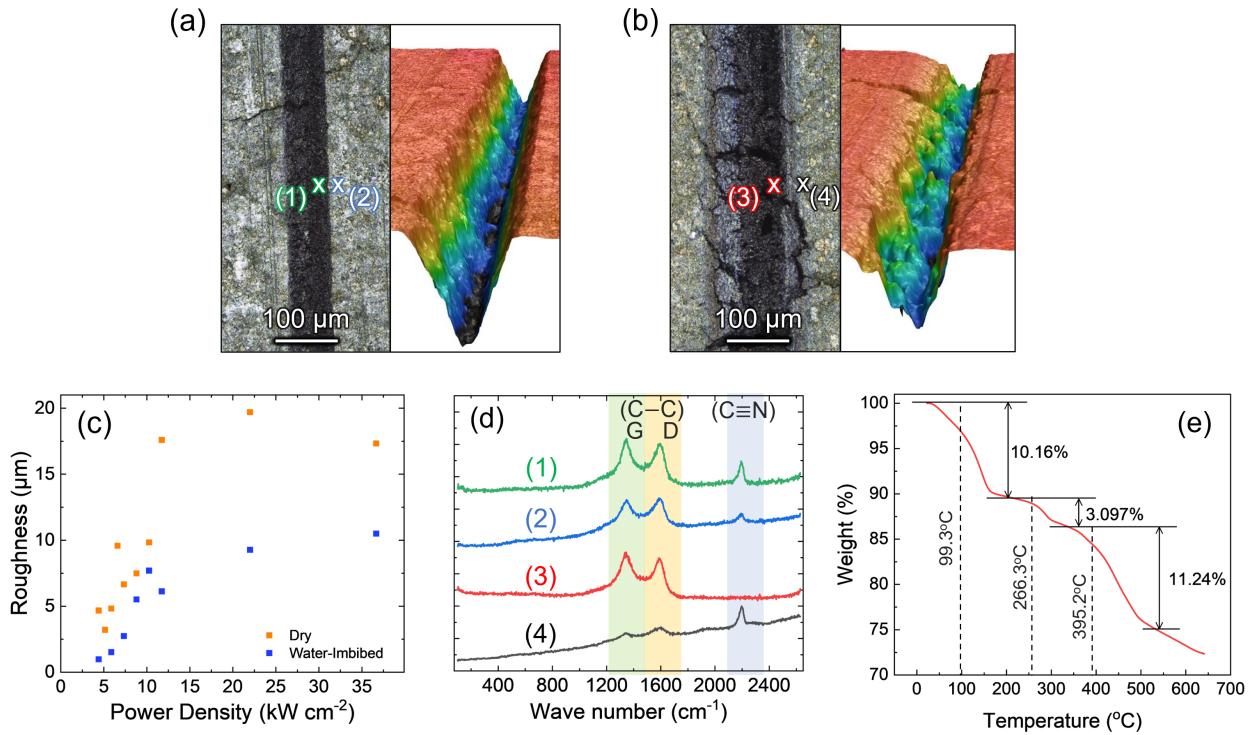
219 The μ -IDFFs that we have embedded in intercalation electrodes increase
 220 apparent hydraulic permeability by 30- to 120-fold (Table 1) by reducing the flow path
 221 length through electrodes by \sim 100-fold from 4.5 cm down to 500 μm (Fig. 2a). As we
 222 subsequently show, the width of microchannels must be sufficiently large to achieve
 223 uniform flow through porous-electrode regions while also being sufficiently small to

224 minimize material loss due to the embedding of μ -IDFFs. The former attribute is critical
 225 to ensure that salt-rich solution is supplied everywhere within the electrode to maximize
 226 intercalation-material utilization, whereas the latter is essential to maintain high charge
 227 capacity post-engraving.

228
 229 **Figure 2.** (a) Schematics comparing the flow path of electrodes with and without ep-
 230 IDFFs. Photos of electrodes (b) after drying and (c) after being calendared and
 231 engraved with an ep-IDFF. (d) Dimensions of the chosen ep-IDFF design with a cross-
 232 section shown through the A-A plane. (e) Calculated streamlines for three cases with
 233 different channel width w and inter-channel distance s . The gap g and electrode
 234 permeability k_h^{pe} were kept constant at 750 μm and $0.28\mu\text{m}^2$. (f) Calculated streamlines
 235 for three cases with the same channel dimensions shown in (d) but with electrode
 236 permeability varying. (g) Predicted and experimental ratios between the apparent

237 permeability of each patterned electrode k_h^{app} to porous-electrode permeability k_h^{pe} .
238 Purple symbols indicate data obtained from the numerical model using the channel
239 dimensions shown in (d). Gray lines indicate data obtained using the quasi-1D analytical
240 model for various channel widths with a fixed ratio of channel width to inter-channel
241 distance equal to 70/530. The shaded region represents the typical range of
242 permeability of carbon felt electrodes in RFBs.⁷⁰⁻⁷²
243

244 To rationalize these tradeoffs, we predicted the spatial variation of superficial
245 velocity \vec{u}_s by solving Darcy's law subject to volume conservation: $\vec{u}_s = -(k_h/\mu)\nabla p$ and
246 $\nabla \cdot \vec{u}_s = 0$, where p and μ are pressure and dynamic viscosity, respectively. Here,
247 hydraulic permeability k_h depends on the phase associated with a given position: (1)
248 micro-porous intercalating regions use the hydraulic permeability of unpatterned porous
249 electrode material k_h^{pe} , whereas (2) macro-porous ep-IDFF regions use a hydraulic
250 permeability k_h^{ch} that reproduces the axial-pressure/mean-velocity relationship resultant
251 from Poiseuille flow through a given channel's cross-section. Our approach is an
252 extension of Darcy-Darcy formulations that are routinely used to model flow through
253 fractured, micro-porous rock.⁷³


254 Channel width w , inter-channel distance s , and the gap between each channel's
255 tip and the electrode's edge g were varied to study their effects on the uniformity of the
256 streamlines produced by a given ep-IDFF design. Assuming $k_h^{pe} \approx 0.3 \mu\text{m}^2$, streamlines
257 approach a perpendicular orientation to channel surfaces (i.e., transverse flow) for
258 microchannels wider than 50 μm . Further, the model predicts more uniform flow
259 through the porous electrode region between two adjacent microchannels with
260 increasing w and decreasing s (Fig. 2e). Also, g that is too large results in dead zones
261 near channel tips, whereas g that is too small suppresses transverse flow through the
262 porous electrode (see SI and Figs. S3, S4). To understand the impact of the

263 experimental variations of k_h^{pe} (see Table 1) with various k_h^{pe} , we simulated the
264 streamlines of the ep-IDFF design sought later experimentally ($w = 70 \mu\text{m}$, $s = 530 \mu\text{m}$,
265 and $g = 750 \mu\text{m}$) that limits active material loss to approximately 11%. While low
266 enough k_h^{pe} values produce transverse flow, flow parallel to channels results from
267 increasing k_h^{pe} to values that are too large. The resulting apparent permeability values
268 predicted among the different electrode samples agree well with experimental values as
269 shown in Fig. 2g.

270 A simplified quasi-1D analytical model (see SI) also reveals that the transitions
271 observed when varying channel width and when varying k_h^{pe} are captured by a critical
272 value of a common dimensionless parameter $\Xi = k_h^{pe} L^2 / (w^3 s)$ that represents the
273 characteristic ratio of channel hydraulic resistance to porous-electrode hydraulic
274 resistance. Designs with $\Xi < 1$ assure that streamlines are routed between channels
275 within porous electrode regions, rather than parallel to them, because of the finite
276 transverse velocity produced across a given channel's entire length (Fig. S6a). This
277 criterion explains why microchannel ep-IDFFs produce effective flow-through
278 intercalation electrodes, though microchannel ep-IDFFs produce parallel flow for the
279 high-permeability electrodes used commonly in RFBs. To produce the same Ξ value,
280 an RFB electrode with $10 \mu\text{m}^2$ permeability must have three-fold larger channel width
281 than an FDI electrode with $0.3 \mu\text{m}^2$ permeability (assuming a common electrode length
282 L and inter-channel distance s), since $w_{FDI}/w_{RFB} = (k_{h,FDI}^{pe}/k_{h,RFB}^{pe})^{1/3}$ is satisfied for FDI
283 and RFB designs subject to such conditions. Thus, the use of microchannel ep-IDFFs
284 is not a simple extension of the past use of IDFFs in RFBs, and their ability to facilitate
285 transverse flow is enabled by the patently low permeability of the porous material in

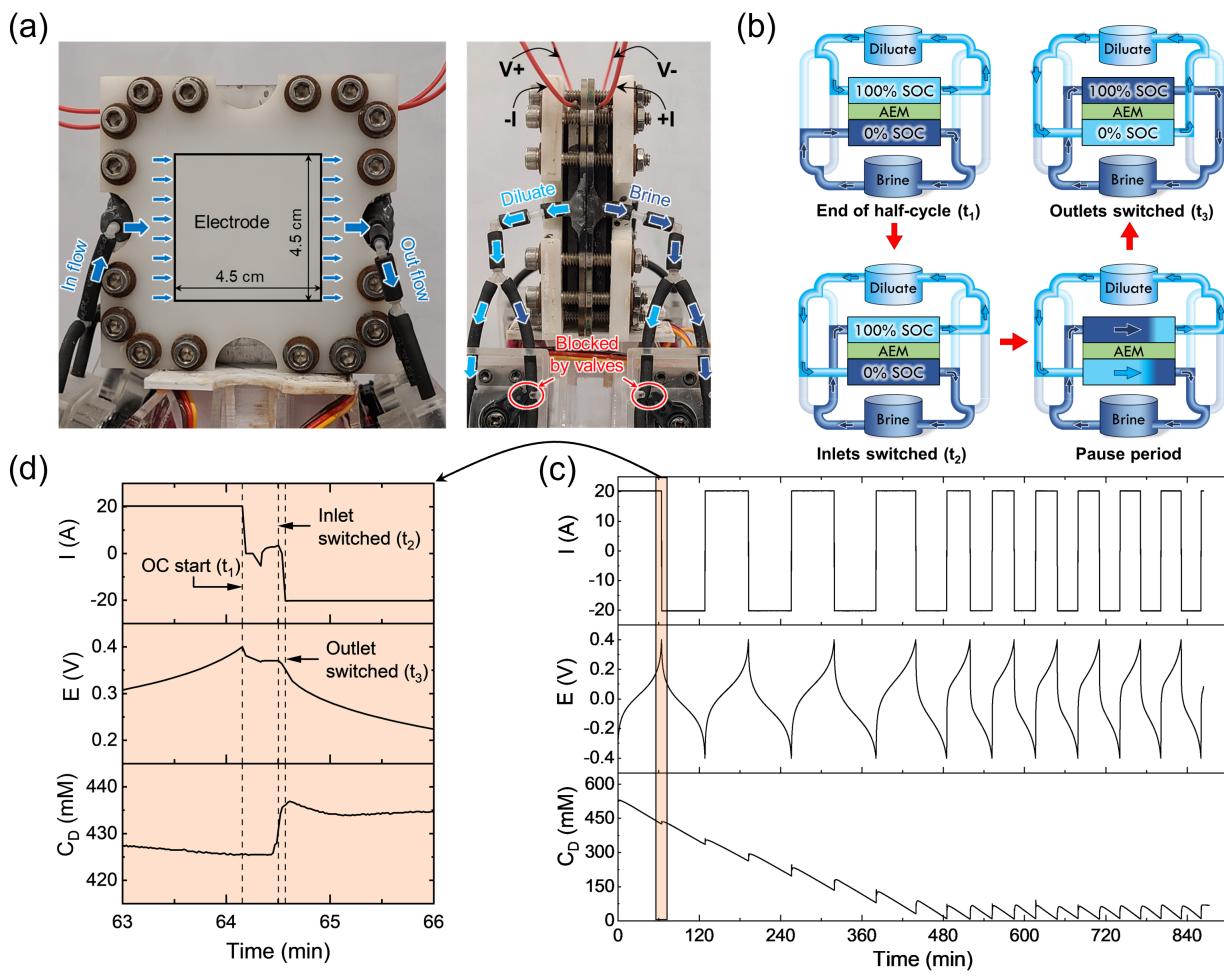
286 which they are embedded. We also used the quasi-1D model to find a closed-form
287 expression for $\text{e}\mu\text{-IDFF}$ apparent permeability (see SI), which is in good agreement with
288 our numerical results using a channel width of 70 μm (Fig. 2g). By using the quasi-1D
289 model, Fig. 2g also shows that to produce a normalized apparent permeability
290 exceeding unity microchannels must exceed a certain critical width w_{cr} that decreases
291 with decreasing porous electrode permeability (Fig. S6c).

292 Understanding of laser/electrode interactions is critical to fabricate $\text{e}\mu\text{-IDFFs}$ that
293 approach felicitous designs and that maintain the integrity of the underlying electrode
294 material. We characterized the microstructure and composition of electrode material
295 and the morphology of microchannels by engraving separate microchannels at various
296 laser powers. At high laser power density we observed heat-affected zones (HAZs) that
297 extend away from channel edges. Within such regions electrode material shows a
298 permanent change in color from dark green to black (Fig. 3b) that is attributed to the
299 structural decomposition of NiHCF, as evidenced by the disappearance of the $\text{C}\equiv\text{N}$
300 peak at $\sim 2160 \text{ cm}^{-1}$ in local Raman spectra at channel walls (Fig. 3d). Such changes
301 suggest that the temperature at the laser-irradiated surface exceeds the onset of the
302 NiHCF decomposition event at 395°C , as observed from thermogravimetric analysis
303 (Fig. 3e). Further, the coarsening of electrode material in HAZs is likely due to the
304 melting of PVDF at approximately 160°C .⁷⁴

305
306 **Figure 3.** Optical and 3D profilometry images of microchannels engraved using (a) a
307 water-imbibed electrode and (b) a dry electrode. (c) The root-mean-square (RMS)
308 surface roughness of the channels made on dry and water-imbibed electrodes at
309 different power densities. (d) Raman spectra measured inside and outside of channels
310 made by water-imbibed engraving [(1) and (2) in (a)] and dry engraving [(3) and (4) in
311 (b)]. Peaks at 1350 cm⁻¹, 1580 cm⁻¹, and 2300 cm⁻¹ are signatures of the D- and G-
312 bands of C-C vibration and of C≡N bonds. (e) Thermogravimetric analysis of a
313 calendered electrode showing water evaporation below 300°C and the decomposition of
314 NiHCF at 395°C.

315
316 To mitigate these effects, we also performed laser micromachining on electrodes
317 imbibed with water, inspired by water-assisted laser micromachining of non-porous
318 materials.^{75,76} Not only did water-imbibed engraving minimize HAZs (Fig. 3a), it also
319 created smoother channels that are evidenced by smaller root-mean-square surface
320 roughness within channels (Figs. 3c). These effects result from the ability of water to
321 absorb some of the heat and mitigate the temperature rise in the electrode material
322 surrounding the irradiated region and to prevent PVDF coarsening at 160°C and NiHCF
323 decomposition at 395°C. The smaller thermal diffusivity⁷⁷ α of liquid water (0.15 mm²/s)

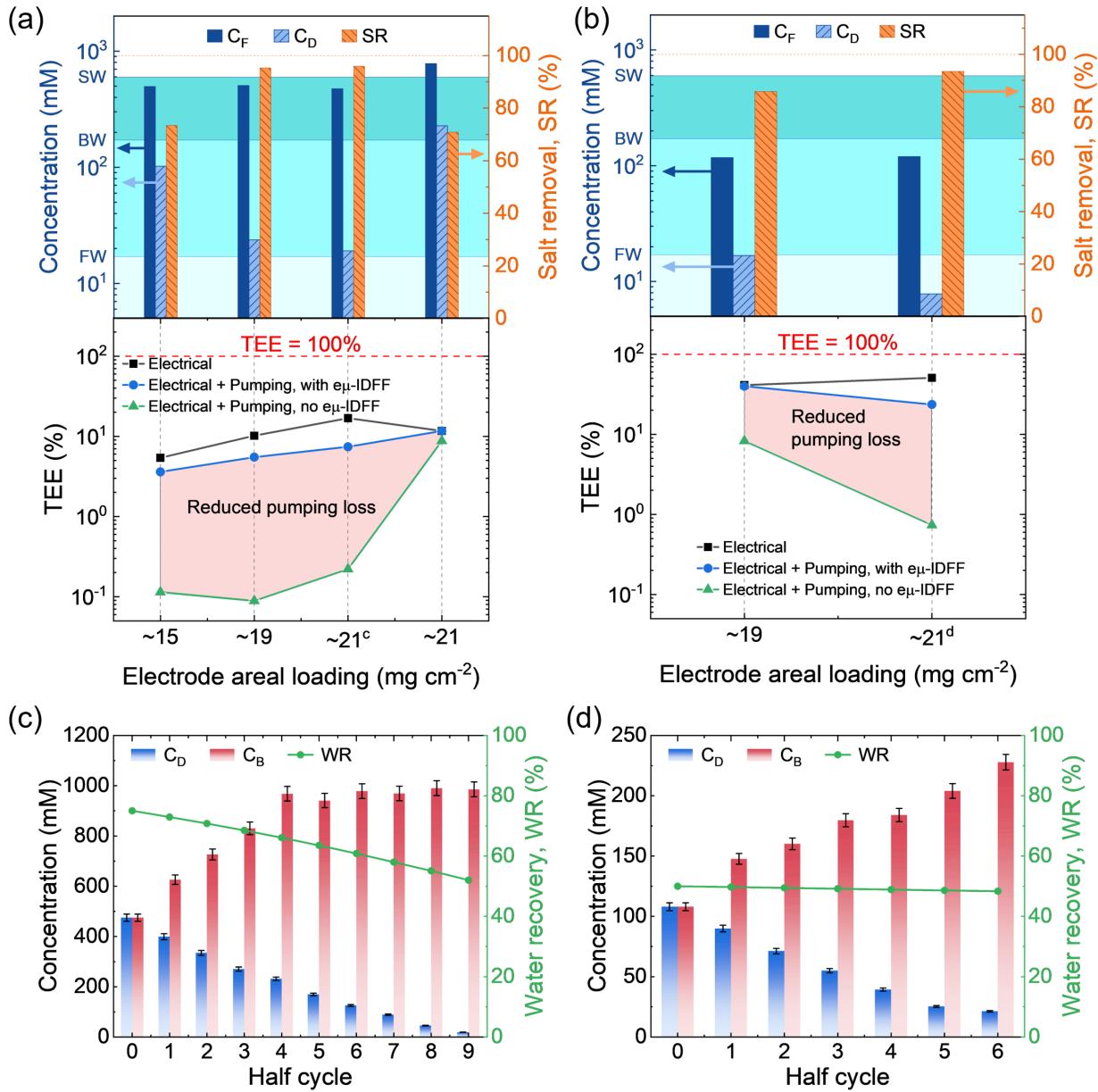
324 relative to air ($20 \text{ mm}^2/\text{s}$) suggests ten-fold smaller penetration depth δ_P into HAZs when
325 using water-imbibed engraving ($\delta_P \sim \sqrt{\alpha\tau}$ over time-scale τ), in addition to the potential
326 for thermal protection of HAZs due to the enthalpy of water vaporization.[†] Using these
327 results, we determined specific laser settings to achieve the desired ep-IDFF
328 dimensions while minimizing HAZs (see SI). While the targeted ep-IDFF design had
329 microchannels with a 70 μm wide by 200 μm deep rectangular cross-section (Fig. 2d),
330 their fabrication proved challenging due to the laser beam's tendency to engrave side
331 walls that deviate from vertical orientation (Figs. 3a,b), likely as a result of its Gaussian
332 intensity distribution. Therefore, we engraved microchannels with similar cross-sectional
333 area to the felicitous design ($14,000 \mu\text{m}^2$) to produce similar hydraulic resistance, the
334 dimensional characterization of which is included in the SI.


335 **Desalination Experiments using ep-IDFFs**

336 We performed desalination experiments using electrodes fabricated with ep-
337 IDFFs in a symmetric FDI flow cell (Fig. 4a and Fig. S13). During each desalination half-
338 cycle one electrode captures cations to produce desalinated water while the other
339 releases intercalated cations to produce brine. At the end of each half-cycle the former
340 electrode approaches 100% state-of-charge (SOC) while the latter approaches 0%
341 SOC. The applied current is then switched off and the FDI cell enters an open-circuit
342 (OC) mode at t_1 . To enable continuous desalination via the switching of electrical
343 current we used a tubing system with four fluidic valves to switch inlet and outlet
344 streams,²⁶ the effect of which is illustrated in Fig. 4b. A pause period ($\Delta t_{\text{pause}} = t_3 - t_2$)

[†]At the ~ 100 ns time-scale for laser irradiation, water evaporation occurs at higher temperatures and pressures than at equilibrium,⁷⁸ thus requiring further investigation to quantify the relative impacts of water's sensible and latent heating on HAZs during water-imbibed engraving.

345 is then used between the time instants at which inlet (t_2) and outlet (t_3) switching events
 346 occur to allow diluate and brine within the FDI cell to evacuate into their respective
 347 reservoirs. This pause period minimizes effluent intermixing but cannot eliminate it
 348 completely. Typical real-time variations of cell potential, current, and diluate
 349 concentration during a desalination experiment are shown in Fig. 4c. During a given
 350 half-cycle, cell potential increases to 0.4 V or decreases to -0.4 V depending on the
 351 direction of the applied current.


352
 353 **Figure 4.** (a) Photos of the FDI flow cell with flow directions and applied current/voltage
 354 annotated, (b) schematic of the flow cell with fluid recirculation system during valve
 355 switching, with electrodes having disparate SOC. A half-cycle ends at t_1 and the applied
 356 current is terminated to produce open-circuit conditions, during which potential-
 357 controlled electrochemical impedance spectroscopy is performed. At t_2 the two inlet
 358 valves are switched. A pausing time Δt_{pause} is used to let diluate and brine within the

359 FDI cell evacuate into the correct reservoir. After Δt_{pause} the outlet valves are switched
360 at t_3 . A similar sequence is used to switch the system back to its original state (i.e., the
361 state at t_1) after cycling with oppositely signed current. (c) Time variation of FDI cell
362 potential, applied current, and diluate-reservoir concentration from a desalination
363 experiment using H-pair electrodes (21 mg cm^{-2}) with 1 mA cm^{-2} applied current density.
364 The shaded region is zoomed in and shown in (d).

365

366 The salt concentration in the diluate reservoir decreases continuously during each half-
367 cycle (Fig. 4c) and rapidly increases for a short period of time after valve switching at
368 the end of each half-cycle (Fig. 4d) due to effluent intermixing.²⁶ As a result such jumps
369 in diluate-reservoir concentration become more pronounced as the difference in salt
370 concentration between reservoirs becomes larger. The salt-concentration increase that
371 results from such mixing eventually becomes large enough to match the salt removal
372 obtained due to the applied current, thus limiting overall salt removal of the multi-cycle
373 desalination process.

374 For feed water having salt concentration C_F near seawater salinity, desalination
375 experiments were conducted at 5 mL min^{-1} flow rate with 1 mA cm^{-2} current density. As
376 shown in Fig. 5a, salt removal increases with increasing NiHCF loading from nearly
377 90% for L-pair electrodes (15 mg cm^{-2}) to 95% for M-pair electrodes (19 mg m^{-2}) to 96%
378 for H-pair electrodes (21 mg cm^{-2}). Diluate feed concentration also decreased from 496
379 mM NaCl respectively to 102 mM, 23.7 mM, and 19.1 mM as a result of desalination
380 using these electrode pairs. These results confirm our hypothesis that scaled-up FDI
381 cells with high-capacity electrodes increase salt removal: increasing NiHCF loading by
382 40% from 15 mg cm^{-2} to 21 mg cm^{-2} reduced effluent concentration from brackish water
383 salinity (102 mM) to near-potable salinity (19.1 mM), which is also the lowest salinity
384 produced from such high-salinity feeds using CDI or FDI to our knowledge.

385
386 **Figure 5.** (a) Desalination of feed water with near seawater level salinity (SW, ~35 g L⁻¹
387 or 599 mM NaCl) down to brackish water level salinity (BW, <10 g L⁻¹ or 171 mM NaCl)
388 and freshwater level salinity (FW, ~1 g L⁻¹ or 17 mM NaCl) and their corresponding
389 thermodynamic energy efficiencies (TEEs). (b) Desalination of brackish water down to
390 freshwater level salinity using different electrode loading levels and the resulting TEEs.
391 The cycle dependence of diluate and brine reservoir concentrations for brackish and
392 seawater experiments are shown in (c) and (d), respectively. The following symbols are
393 used throughout: C_F for feed concentration, C_D for diluate concentration, C_B for brine
394 concentration, SR for salt removal, and WR for water recovery. Cyclic-specific data for
395 all six experiments is provided in the SI (Fig. S14, S15).
396

397 Figures 5a,b show the corresponding thermodynamic energy efficiency (TEE) of
398 these experiments considering (i) measured electrical input alone, (ii) measured
399 electrical input and pumping energy calculated using the measured apparent
400 permeability (with μ -IDFF), and (iii) electrical input and pumping energy calculated
401 using porous-electrode permeability (no μ -IDFF). Using such dense and highly loaded
402 electrodes without μ -IDFFs is accompanied by infeasibly large pumping energy that
403 decreases overall TEE. When considering only electrical energy input, the respective
404 TEEs for L-, M-, and H-pair electrodes were 5.4%, 10.2%, and 17.0%. However, these
405 respective TEEs diminished dramatically to 0.11%, 0.09%, and 0.22% when taking into
406 account pumping energy without μ -IDFFs. By engraving μ -IDFFs into these
407 electrodes, TEE was improved to 3.6%, 5.5%, and 7.4% due to 30- to 120-fold
408 increases in their apparent permeabilities. These TEEs are at parity with past FDI
409 experiments using intercalation materials, despite feed water salinity in such work being
410 limited to 25 mM or less.¹⁹ The pumping-energy saved by using μ -IDFFs (shaded
411 regions in Fig. 5a) indicates the essential role that μ -IDFFs provide in enhancing FDI
412 TEE using flow-through electrodes.

413 We also carried out desalination experiments on hypersaline brine using 21 mg
414 cm^{-2} H-pair electrodes. These experiments were able to use decreased flow rate (1 mL
415 min^{-1}) and increased current density (8.5 mA cm^{-2}), owing to the decreased SOC
416 gradients and ohmic resistance expected for such brines. We observed a dilute
417 concentration decrease of 71% from 781 mM initially to 227 mM as a result (Fig. 5a),
418 demonstrating for the first time the potential of FDI using cation intercalation electrodes
419 to treat concentrated brines. Furthermore, this level of salt removal was achieved with

420 11.7% TEE irrespective of whether pumping energy was included or not. The
421 insignificance of pumping energy in this context can be understood in the following
422 manner. E_{pump} is the product of hydraulic resistance R_h , the square of volumetric
423 flowrate Q , and desalination batch time Δt : $E_{pump} = R_h Q^2 \Delta t$, where R_h is proportional to
424 overall electrode length L and is inversely proportional to the apparent hydraulic
425 permeability k_h^{app} according to Darcy's law ($R_h = \mu L / (k_h^{app} A)$, where A is the area of the
426 electrode's inlet plane). Therefore, pumping energy at higher current density decreases
427 as desalination batch time shortens, and consequently its contribution to TEE losses
428 becomes less significant in that limit. This finding suggests that using electrodes
429 tailored to operate at high current density and low flow rate could further decrease
430 pumping energy and improve overall TEE.

431 For brackish water desalination, the use of ep-IDFFs results in exceptional TEE.
432 Two experiments were conducted in which M-pair (19 mg cm^{-2}) and H-pair (21 mg cm^{-2})
433 electrodes were used to desalinate feed water with $\sim 100 \text{ mM NaCl}$ at 1 mA cm^{-2} . As
434 shown in Fig. 5b, salt concentration decreased from 118 mM to 16.7 mM for M-pair and
435 to 7.8 mM for H-pair, both of which are below the salinity of fresh water (17 mM). With
436 ep-IDFFs the TEE for M-pair electrodes increased from 8.3% to 40.0% and that of H-
437 pair electrodes increased from 0.7% to 23.6%. The higher TEE of the former case is
438 due to the use of a smaller flowrate (1 mL min^{-1} compared to 5 mL min^{-1} in the latter
439 case). These TEEs approach that of a single stage RO system without energy recovery,
440 according to recent analysis.⁷⁹

441 We also find that ep-IDFFs increase TEE not only by improving electrode
442 hydraulic permeability but also by maximizing active-material capacity utilization. Figure

443 S16 shows the specific capacity versus cycle number obtained from desalination
444 experiments using the L-, M-, and H-pair electrodes with ep-IDFFs, along with that of an
445 unpatterned electrode pair. In all cases a seawater-salinity feed was used. The
446 electrodes with ep-IDFFs consistently show specific capacities greater than 55 mAh g⁻¹,
447 whereas the unpatterned electrodes show a maximum specific capacity of 47 mAh g⁻¹
448 only for the first half-cycle and subsequently show steadily decreasing capacity. This
449 effect may be a result of dead volume within porous electrodes that is formed during
450 calendering, where an initially interconnected porous network (~60% porosity) is
451 compressed into a dense microstructure having approximately 40% porosity. As the
452 porous network collapses, the solid constituents fill micropores to form isolated pockets
453 to which fluid delivery is impeded during desalination experiments, potentially causing
454 insufficient salt delivery to intercalation material and thus reducing capacity. Engraving
455 electrodes with ep-IDFFs likely opens such isolated pores to enable intercalation
456 material to access fresh salt solution.

457 Water recovery (WR), defined as desalinated water volume divided by total feed-
458 water volume, was determined at the end of each desalination half-cycle. While
459 terminal WR exceeded 50% for all experiments (Figs. 5c,d), seawater and hypersaline
460 brine feeds showed gradually decreasing WR with increasing salt removal (Fig. 5c),
461 thus requiring compensation by using increased initial diluate volume to achieve 50%
462 terminal WR. From this data we determined water transport rates between diluate and
463 brine as high as 0.16 L m⁻² h⁻¹ (Table S5). Following past theoretical analysis for
464 osmosis/electroosmosis through ion-exchange membranes (IEMs),⁸⁰⁻⁸² we predict a
465 maximum water transport rate through Neosepta AMX as 0.20 and 0.25 L m⁻² h⁻¹ when

466 using respective salt concentrations of 496 mM and 781 mM and assuming 40 vol.%
467 water therein. These values are consistent with previous measurements on
468 commercially available membranes,⁸³ ED stacks,⁸⁴ and RFBs⁸⁵ (0.24 – 2.46 L m⁻² h⁻¹),
469 making water flux through IEMs a probable mechanism of WR loss among other factors.

470 Despite the promising TEEs achieved in comparison with prior CDI and FDI
471 literature, our results indicate significant room for improvement relative to the
472 thermodynamic limit of energy consumption, especially for high-salinity feeds. For this
473 reason we analyzed process charge efficiency⁸⁶ (CE), defined as the ratio of cationic
474 charge desalinated to electrical charge transferred. In general, CE was shown to
475 decrease with increasing feedwater salinity. Despite brackish feeds with less than 100
476 mM NaCl exhibiting nearly ideal CE (Fig. S15), we observed a decrease of CE to ~50%
477 when using seawater salinity feeds (Fig. S14). To isolate CE losses due to effluent
478 intermixing (a type of ‘flow efficiency’ loss mechanism^{87,88}) we performed separate
479 desalination experiments for a single half-cycle (i.e., experiments without valve or
480 current switching) that used H-pair electrodes (21 mg cm⁻²) with various feed
481 concentrations. These experiments showed CE dropping linearly from 91.7% to around
482 50% as feed concentration increased from 38 mM to more than 500 mM (Fig. S17a).
483 Since our electrodes exhibited excellent cyclability with no decrease in specific capacity
484 after 90 cycles (Fig. S17b), this concentration-dependent CE likely results from
485 mechanisms other than electrode degradation, such as gas-evolution/-consumption
486 reactions or the loss of membrane permselectivity. Further, Fig. 2f shows that, even
487 though the chosen μ -IDFF generates streamlines that are perpendicular to
488 microchannels, streamlines are concentrated near electrodes edges, exhibiting a

489 degree of non-uniformity in fluid distribution. In addition, dead zones could exist within
490 the electrode microstructure as a result of its heterogeneous nature, and side reactions
491 occurring because of salt depletion within dead zones would lead to lower CE. On the
492 other hand, selectivity losses are ubiquitous in membrane processes such as
493 electrodialysis and ion concentration polarization.⁸⁹ When the counter-ion concentration
494 around an IEM exceeds the concentration of the fixed-charge groups within the IEM, co-
495 ions can penetrate into the IEM to cause co-ion leakage that acts against
496 deionization.^{89,90} Hence, IEM permselectivity likely contributes to the CE losses
497 observed for high-salinity feeds.

498

499 **Conclusions**

500 In this work we fabricated three pairs of high areal-loading electrodes (L: 15 mg
501 cm², M: 19 mg cm², and H: 21 mg cm²) that were embedded with interdigitated
502 microchannels, and we desalinated water using them in a symmetric FDI flow cell with
503 feed water recirculation. These electrodes are shown to reduce salt concentration from
504 seawater salinity (496 mM NaCl) down to brackish water salinity (102 mM for L-pair),
505 and to near freshwater salinity (23.7mM for M-pair and 19.1 mM for H-pair). The overall
506 TEEs of these three experiments were 3.6%, 5.5%, and 7.4%, respectively, which are
507 similar to past FDI studies that used brackish water feeds. H-pair electrodes were also
508 used to treat hypersaline influent with 781 mM NaCl and were able to produce effluent
509 of 227 mM at 11.7% TEE. This demonstrates for the first time the potential of symmetric
510 FDI to treat concentrated brines. For brackish water influent of 118 mM NaCl, M- and H-
511 pair electrodes comfortably produced effluents with freshwater salinities (16.7 mM and

512 7.8 mM) at TEEs of 40.0% and 23.6%, respectively. Moreover, these electrodes
513 exhibited outstanding cyclability with unnoticeable drops in specific capacity after 90
514 cycles. Despite this, mild yellowing of the AEM was observed after such experiments,
515 the effect of which we postulate as mild dehydrochlorination caused by weak Faradaic
516 side reactions at the electrode/AEM interface (see SI, Fig. S18). This study thus
517 demonstrates experimentally for the first time that FDI using scaled-up, high-capacity
518 electrodes can desalinate seawater-level salinity to near freshwater salinity, and it can
519 substantially decrease the salinity of hypersaline brines by resolving the issue of
520 pumping pressure/energy that is inherent to flow-through electrodes.

521 Factors contributing to energy efficiency losses are also identified. First, water
522 transport between diluate and brine was observed as high as $0.15 \text{ L m}^{-2} \text{ h}^{-1}$, but water
523 recovery exceeding 50% was still obtained by using excess water initially in the diluate
524 reservoir. Second, the charge efficiency in the first half-cycle of desalination
525 experiments decreased from 91.7% to around 50% when feed concentration was varied
526 from 38 mM to greater than 500 mM. Chemical, physical, and electrochemical
527 interactions between porous electrode material, membrane material, and feed/effluent
528 solution therefore require further investigation to increase process efficiency, water
529 recovery, and water productivity.

530 We have demonstrated that minimizing the longitudinal hydraulic resistance within
531 microchannels relative to the transverse hydraulic resistance through intervening
532 porous-electrode material is critical to the effective use of ep-IDFFs, thus demonstrating
533 the importance of flow-field co-design with the porous electrodes in which they are
534 embedded. Because electrode permeability scales with the square of particle size, ep-

535 IDFFs are therefore likely to have broad impact on flow-through electrodes that
536 incorporate fine-scale particles. Therefore, μ -IDFFs could also find use in flow
537 batteries, fuel cells, and CO_2 conversion electrodes that have employed nanomaterial
538 catalysts^{91–94} or conductive additives,⁹² in addition to selective electrochemical removal
539 and recovery processes. Water imbibition can also be used to protect other porous
540 electrode materials during laser micromachining for Li-ion batteries⁹⁵ and micro-
541 supercapacitors.⁹⁶

542

543 **Experimental Methods**

544 Synthesis of NiHCF Nanoparticles

545 Nickel hexacyanoferrate (NiHCF) nanoparticles – a type of Prussian Blue
546 analogue intercalation material – were prepared as in our previous work.²⁶ Two
547 solutions of 0.1 M $\text{K}_3\text{Fe}(\text{CN})_6$ and 0.2 M NiCl_2 with 1:1 volume ratio were added
548 dropwise into a beaker containing deionized (DI) water and stirred vigorously at room
549 temperature to obtain a suspension of NiHCF nanoparticles, which was then sonicated
550 for 30 mins and aged overnight. The nanoparticles were subsequently collected by
551 centrifugation and were rinsed with DI water and ethanol, followed by drying under
552 vacuum at 80°C.

553 Electrode Fabrication

554 Porous electrodes were made from 80:5:15 wt.% of NiHCF, Ketjen black (KB)
555 conductive additive (EC-600JB), and polyvinylidene fluoride (PVDF) binder (Solvay
556 Solef 5130), respectively. The mixture of NiHCF particles with KB was dry ground in a
557 vortex mill using 5 mm steel balls (Ultra Turra-X, IKA) at 6000 rpm for 30 minutes to

558 obtain a fine, homogeneous powder. PVDF was dissolved in N-methyl-2-pyrrolidone
559 (NMP, Sigma Aldrich) to obtain a viscous, transparent liquid. The NiHCF and KB
560 powder mixture was added to this solution resulting in 3 mL of NMP per 1 g of solid
561 material. These components were homogenized in a planetary mixer (Thinky, ARE-
562 310) for 30 minutes. The resulting slurry was cast at thicknesses of 1.1 mm for L-pair
563 electrodes, 1.3 mm for M-pair electrodes, and 1.4 mm for H-pair electrodes onto
564 graphite-foil (Ceramaterials) current-collectors by using a doctor blade and film
565 applicator (Elcometer 4340). We note here that we typically use 1 g of solid materials for
566 one batch of slurry, and 1.4mm thick is the maximum thickness we could get to produce
567 a nice 4.5×4.5cm electrode after removing the material near the edges, which is prone
568 to crack during calendaring. Increasing the cast thickness further may cause the
569 electrode area to be smaller than 4.5×4.5cm with the prepared slurry. While making
570 more slurry by using more solid materials and NMP is feasible, we did not do that since
571 optimizing electrode mass loading is not the main focus of this study. Immediately after
572 casting, electrodes were immersed in an alkaline bath with pH=12 at 85°C for
573 approximately 1 minute. These electrodes were then rinsed with DI water and
574 subsequently dried in a fume hood to produce thickness of greater than 400 μ m. They
575 were then calendered down to ~200 μ m using a roll press (MTI-XTL) and were
576 subsequently engraved with an interdigitated pattern over a 45 × 45 mm area. This
577 engraved area was then cut with scissors to obtain final electrodes.

578 Porosity and Permeability Determination for Electrodes

579 The porosity of each electrode ε was calculated from the electrode's measured
580 density ρ_e and the mass-averaged density ρ_c of its constituents (2.0 g cc⁻¹ for NiHCF,³³

581 2.0 g cc⁻¹ for Ketjen Black,⁹⁷ and 1.75 g cc⁻¹ for PVDF binder⁹⁸) as $\varepsilon = 1 - \rho_e/\rho_c$. The
582 permeability of each electrode with thickness t_e was measured using a gravity-driven
583 apparatus²⁸ wherein a constant pressure head Δp (in units of Pa) was applied via a
584 column of water to the FDI cell containing the targeted electrode. The amount of water
585 permeating through the electrode over a certain period of time was used to calculate the
586 average volumetric flow rate Q in units of m³ s⁻¹. The permeability k_h in units of m² was
587 then calculated from Darcy's law: $Q = \Delta p k_h W t_e / L \mu$, where μ is water's dynamic
588 viscosity in Pa-s, and W and L are sample width and length, respectively.

589 *Electrode Engraving by Laser Micromachining and Channel Characterization*

590 eμ-IDFFs were engraved using a Trotec Speedy Flexx 400 laser. Immediately
591 prior to water-imbibed engraving, dry electrodes were first soaked in DI water and
592 subsequently wiped a Kimwipe to remove excess water. In all instances electrode
593 engraving was conducted using ventilation to avoid human exposure to laser ablation
594 products (e.g., HCN and HF). Optical profilometry (Keyence VK-X1000), Raman
595 spectroscopy (Nanophoton Raman 11), and thermogravimetric analysis were used to
596 characterize the composition and thermal stability of electrode materials in heat affected
597 zones.

598 *Symmetric FDI Cell Setup and Fluid Recirculation System*

599 After laser engraving, electrodes with 45 × 45 mm size were cycled at a C-rate of
600 C/10 in a three-electrode setup in 500 mM NaCl with an Ag/AgCl reference electrode
601 (0.197 V vs. SHE) and a potentiostat (Biologic VMP-3). This step was used to remove
602 Na⁺ and K⁺ present in the NiHCF crystal lattice during synthesis. Before being
603 assembled in the FDI cell, one electrode was reduced to ~0% state-of-charge (SOC)

604 (0.1 V vs. Ag/AgCl) and the other one was oxidized to ~100% SOC (0.6 V vs. Ag/AgCl)
605 by chronopotentiometry in a three-electrodes set up.

606 The FDI cell used in this study (Fig. 4a) is a scaled-up version of the cell used in
607 our previous work²⁶ that contains two 45 × 45 mm electrodes separated by an anion-
608 exchange membrane (Neosepta AMX). In all experiments a potentiostat (Biologic VMP-
609 3) was used to control electrochemical cycling. A four-probe connection scheme (i.e., a
610 Kelvin sensing measurement) was used to mitigate contact resistance between the
611 potentiostat and the flow cell, as illustrated by distinct leads for sensing voltage and
612 driving current in Fig. 4a. Salt concentrations used to calculate salt removal were
613 determined by ion chromatography performed using a 930 Compact IC system from
614 Metrohm with a Metrosep C4 – 150/4.0 cation column. Real-time conductivity of the
615 reservoirs was collected using the Conduino system.⁹⁹

616 Performance metrics

617 *Thermodynamic energy efficiency:*

618 TEE for a desalination experiment was calculated as:

$$619 TEE = \frac{SEC_{min}}{SEC} \times 100$$

620 The specific energy consumption SEC (kJ mol⁻¹) was calculated by dividing the total
621 electrical energy input to the moles of salt removed from diluate stream into brine
622 stream n_{salt} , which was measured at the end of the experiment:

$$623 SEC = \frac{\int_{t_0}^{t_{end}} I(t)V(t)dt}{n_{salt}}$$

624 with $I(t)$ and $V(t)$ respectively being the applied current and full-cell potential at time t .
625 The minimum specific energy consumption was calculated per mole of salt removed as:

626
$$SEC_{min} = \frac{W_{rev}}{n_{salt}}$$

627 Here, the reversible work of separation W_{rev} was calculated using non-ideal activity
 628 coefficients due to the high-salinity feeds used in our experiments and the hypersaline
 629 brines produced from them:

630
$$W_{rev} = 2RT[V_D C_D \ln(f_{\pm}^{C_D} C_D) + V_B C_B \ln(f_{\pm}^{C_B} C_B) - (V_D + V_B) C_F \ln(f_{\pm}^{C_F} C_F)]$$

631 Here, V_i and C_i are respectively the volume of water and salt concentration of solution i ,
 632 where $i = B$, D , and F respectively refer to brine, diluate, and feed. The mean activity
 633 coefficient f_{\pm}^C was estimated for a given salt concentration C using literature data.¹⁰⁰

634 *Charge efficiency*

635 Charge efficiency was calculated from the ratio of the moles of electrons
 636 transferred throughout an experiment n_{charge} to the moles of salt removed n_{salt} :

637
$$CE = \frac{n_{salt}}{n_{charge}} \times 100\%$$

638 *Water recovery*

639 Water recovery was calculated at the end of each desalination half-cycle by
 640 using the volumes of the diluate V_D and brine V_B reservoirs, assuming that salt and
 641 liquid volume were conserved:

642
$$WR = \frac{V_D}{V_D + V_B} \times 100\%$$

643 *Water transport*

644 The water transport in each experiment was calculated as the difference between
 645 the volume of the diluate reservoir initially (V_D^0) and after the experiment finished (V_D^{end}),

646 divided by the time duration of the experiment Δt and the area of the anion exchange
647 membrane A_{AEM} :

648

$$J_w = \frac{V_D^0 - V_D^{end}}{\Delta t A_{AEM}}$$

649 Simulation of Flow through Electrodes with ep-IDFFs

650 Flow-through electrodes embedded with ep-IDFFs were modeled using
651 conservation of fluid volume with a Darcy-type rate law for superficial velocity \vec{u}_s , as
652 described already ($\vec{u}_s = -(k_h/\mu)\nabla p$). For each (x, y) location inside of a microchannel
653 region we used $k_h(x, y) = k_h^{ch}$, where k_h^{ch} was calculated based on the Boussinesq
654 solution for Poiseuille flow through a channel of rectangular cross-section with h -by- l
655 size (see SI):¹⁰¹

656

$$k_h^{ch} = \frac{h^2}{12} - \frac{16h^3}{l\pi^5} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^5} \frac{\cosh(\beta_n l) - 1}{\sinh(\beta_n l)} \quad (3)$$

657
658 Otherwise $k_h(x, y) = k_h^{pe}$ was used. The numerical solution for \vec{u}_s , obtained via the
659 finite volume method implemented in MATLAB and solved using an aggregation-based
660 algebraic multigrid method,¹⁰²⁻¹⁰⁴ was then used to calculate the stream function¹⁰⁵ ψ
661 via numerical integration:

662

$$\psi(x, y) = \psi_0 + \int_{(x_0, y_0)}^{(x, y)} u_s(x) dy - u_s(y) dx \quad (4)$$

663 Equally spaced contours of ψ were then used to determine streamlines.

664

665

666

667 **Acknowledgements**

668 The Expeditionary Energy Program of the US Office of Naval Research (Award no.
669 N00014-22-1-2577), the Chemical, Bioengineering, Environmental and Transport
670 Systems Division of the US National Science Foundation (Award no. 1931659), and the
671 Department of Mechanical Science and Engineering at the University of Illinois at
672 Urbana-Champaign (UIUC) supported this research. Thermogravimetric analysis,
673 optical profilometry, and Raman spectroscopy were performed at the Materials
674 Research Laboratory at UIUC. We thank Neil Pearse and Michael Dalton for the use of
675 the Trotec Speedy Flexx 400 Laser in the Siebel Center for Design at UIUC. We thank
676 Paolo Luzzatto-Fegiz for sharing the Conduino system used here. We thank Rob
677 Roberts, Patrick Fahey, and Yarik Syzdek of Biologic for helpful conversations about
678 Kelvin sensing and conductivity measurement by impedance. We thank Nouryon
679 Chemicals for providing Ketjen black material, and we thank All Foils for providing thin
680 Al foil for laser testing.

681

682 **Conflicts of Interest**

683 KCS, VQD, ERR, and ICL declare their filing of a related patent application.

684

685 **References**

- 686 1. Ihsanullah, I., Atieh, M. A., Sajid, M. & Nazal, M. K. Desalination and environment:
687 A critical analysis of impacts, mitigation strategies, and greener desalination
688 technologies. *Sci. Total Environ.* **780**, 146585 (2021).
- 689 2. Jones, E., Qadir, M., van Vliet, M. T. H., Smakhtin, V. & Kang, S. mu. The state of

690 desalination and brine production: A global outlook. *Sci. Total Environ.* **657**,
691 1343–1356 (2019).

692 3. Panagopoulos, A. Water-energy nexus: desalination technologies and renewable
693 energy sources. *Environ. Sci. Pollut. Res.* **28**, 21009–21022 (2021).

694 4. D.S. Sholl & Lively, R. P. Seven chemical separations to change the world.
695 *Nature* **532**, 435–437 (2016).

696 5. Anderson, M. A., Cudero, A. L. & Palma, J. Capacitive deionization as an
697 electrochemical means of saving energy and delivering clean water. Comparison
698 to present desalination practices: Will it compete? *Electrochim. Acta* **55**, 3845–
699 3856 (2010).

700 6. Subramani, A. & Jacangelo, J. G. Treatment technologies for reverse osmosis
701 concentrate volume minimization: A review. *Sep. Purif. Technol.* **122**, 472–489
702 (2014).

703 7. El Azhar, F., Tahaikt, M., Zouhri, N., Zdeg, A., Hafsi, M., Tahri, K., Bari, H., Taky,
704 M., Elamrani, M. & Elmidaoui, A. Remineralization of Reverse Osmosis (RO)-
705 desalted water for a Moroccan desalination plant: Optimization and cost
706 evaluation of the lime saturator post. *Desalination* **300**, 46–50 (2012).

707 8. Yermiyahu, U., Tal, A., Ben-Gal, A. & Bar-Tal, A. Rethinking Desalinated Water
708 Quality and Agriculture. *Science (80-.)* **318**, 920–921 (2007).

709 9. Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy,
710 technology, and the environment. *Science (80-.)* **333**, 712–717 (2011).

711 10. McGovern, R. K., Zubair, S. M. & Lienhard V, J. H. Hybrid electrodialysis reverse
712 osmosis system design and its optimization for treatment of highly saline brines.

713 *IDA J. Desalin. Water Reuse* **6**, 15–23 (2014).

714 11. Bitaw, T. N., Park, K., Kim, J., Chang, J. W. & Yang, D. R. Low-recovery, -energy-
715 consumption, -emission hybrid systems of seawater desalination: Energy
716 optimization and cost analysis. *Desalination* **468**, 114085 (2019).

717 12. Loganathan, K., Chelme-Ayala, P. & Gamal El-Din, M. Treatment of basal water
718 using a hybrid electrodialysis reversal-reverse osmosis system combined with a
719 low-temperature crystallizer for near-zero liquid discharge. *Desalination* **363**, 92–
720 98 (2015).

721 13. Oren, Y., Korngold, E., Daltrophe, N., Messalem, R., Volkman, Y., Aronov, L.,
722 Weismann, M., Bouriakov, N., Glueckstern, P. & Gilron, J. Pilot studies on high
723 recovery BWRO-EDR for near zero liquid discharge approach. *Desalination* **261**,
724 321–330 (2010).

725 14. Porada, S., Zhao, R., van der Wal, A., Presser, V. & Biesheuvel, P. M. Review on
726 the science and technology of water desalination by capacitive deionization. *Prog.
727 Mater. Sci.* **58**, 1388–1442 (2013).

728 15. Huang, Z. H., Yang, Z., Kang, F. & Inagaki, M. Carbon electrodes for capacitive
729 deionization. *J. Mater. Chem. A* **5**, 470–496 (2017).

730 16. Liu, Y., Nie, C., Liu, X., Xu, X., Sun, Z. & Pan, L. Review on carbon-based
731 composite materials for capacitive deionization. *RSC Adv.* **5**, 15205–15225
732 (2015).

733 17. Suresh, A., Hill, G. T., Hoenig, E. & Liu, C. Electrochemically mediated
734 deionization: a review. *Mol. Syst. Des. Eng.* **6**, 25–51 (2021).

735 18. Patel, S. K., Ritt, C. L., Deshmukh, A., Wang, Z., Qin, M., Epsztein, R. &

736 Elimelech, M. The relative insignificance of advanced materials in enhancing the
737 energy efficiency of desalination technologies. *Energy Environ. Sci.* **13**, 1694–
738 1710 (2020).

739 19. Wang, L., Dykstra, J. E. & Lin, S. Energy Efficiency of Capacitive Deionization.
740 *Environ. Sci. Technol.* **53**, 3366–3378 (2019).

741 20. Suss, M. E., Porada, S., Sun, X., Biesheuvel, P. M., Yoon, J. & Presser, V. Water
742 desalination via capacitive deionization: what is it and what can we expect from it?
743 *Energy Environ. Sci.* **8**, 2296–2319 (2015).

744 21. Tang, W., Liang, J., He, D., Gong, J., Tang, L., Liu, Z., Wang, D. & Zeng, G.
745 Various cell architectures of capacitive deionization: Recent advances and future
746 trends. *Water Res.* **150**, 225–251 (2019).

747 22. Pasta, M., Wessells, C. D., Cui, Y. & La Mantia, F. A desalination battery. *Nano*
748 *Lett.* **12**, 839–843 (2012).

749 23. Lee, J., Kim, S. & Yoon, J. Rocking Chair Desalination Battery Based on Prussian
750 Blue Electrodes. *ACS Omega* **2**, 1653–1659 (2017).

751 24. Smith, K. C. & Dmello, R. D. Na-Ion Desalination (NID) Enabled by Na-Blocking
752 Membranes and Symmetric Na-Intercalation: Porous-Electrode Modeling. *J.*
753 *Electrochem. Soc.* **163**, A530–A539 (2016).

754 25. Smith, K. C. Theoretical evaluation of electrochemical cell architectures using
755 cation intercalation electrodes for desalination. *Electrochim. Acta* **230**, 333–341
756 (2017).

757 26. Reale, E. R., Regenwetter, L., Agrawal, A., Dardón, B., Dicola, N., Sanagala, S. &
758 Smith, K. C. Low porosity, high areal-capacity Prussian blue analogue electrodes

759 enhance salt removal and thermodynamic efficiency in symmetric Faradaic
760 deionization with automated fluid control. *Water Res. X* **13**, 100116 (2021).

761 27. Cao, J., Wang, Y., Wang, L., Yu, F. & Ma, J. Na 3 V 2 (PO 4) 3 @C as Faradaic
762 Electrodes in Capacitive Deionization for High-Performance Desalination. *Nano*
763 *Lett.* **19**, 823–828 (2019).

764 28. Reale, E. R., Shrivastava, A. & Smith, K. C. Effect of conductive additives on the
765 transport properties of porous flow-through electrodes with insulative particles and
766 their optimization for Faradaic deionization. *Water Res.* **165**, 114995 (2019).

767 29. Pothanamkandathil, V., Fortunato, J. & Gorski, C. A. Electrochemical Desalination
768 Using Intercalating Electrode Materials: A Comparison of Energy Demands.
769 *Environ. Sci. Technol.* **54**, 3653–3662 (2020).

770 30. Son, M., Pothanamkandath, V., Yang, W., Vrouwenvelder, J., Gorski, C. A. &
771 Logan, B. E. Improving the Thermodynamic Energy Efficiency of Battery
772 Electrode Deionization Using Flow-Through Electrodes. *Environ. Sci. Technol.*
773 (2020). doi:10.1021/acs.est.9b06843

774 31. Kim, T., Gorski, C. A. & Logan, B. E. Low Energy Desalination Using Battery
775 Electrode Deionization. *Environ. Sci. Technol. Lett.* **4**, 444–449 (2017).

776 32. Ahn, J., Kim, S., Jeon, S. il, Lee, C., Lee, J. & Yoon, J. Nafion-coated Prussian
777 blue electrodes to enhance the stability and efficiency of battery desalination
778 system. *Desalination* 114778 (2020). doi:10.1016/j.desal.2020.114778

779 33. Porada, S., Shrivastava, A., Bukowska, P., Biesheuvel, P. M. & Smith, K. C.
780 Nickel Hexacyanoferrate Electrodes for Continuous Cation Intercalation
781 Desalination of Brackish Water. *Electrochim. Acta* **255**, 369–378 (2017).

782 34. Liu, Y., Wang, K., Xu, X., Eid, K., Abdullah, A. M., Pan, L. & Yamauchi, Y. Recent
783 Advances in Faradic Electrochemical Deionization: System Architectures versus
784 Electrode Materials. *ACS Nano* **15**, 13924–13942 (2021).

785 35. Smith, K. C. & Dmello, R. D. Desalination Devices. *US Pat. No. 11,053,142*
786 (2021).

787 36. Liu, S. & Smith, K. C. Quantifying the Trade-offs between Energy Consumption
788 and Salt Removal Rate in Membrane-free Cation Intercalation Desalination.
789 *Electrochim. Acta* **271**, 652–665 (2018).

790 37. Li, Q., Zheng, Y., Xiao, D., Or, T., Gao, R., Li, Z., Feng, M., Shui, L., Zhou, G.,
791 Wang, X. & Chen, Z. Faradaic Electrodes Open a New Era for Capacitive
792 Deionization. *Adv. Sci.* **7**, (2020).

793 38. Suss, M. E., Baumann, T. F., Bourcier, W. L., Spadaccini, C. M., Rose, K. A.,
794 Santiago, J. G. & Stadermann, M. Capacitive desalination with flow-through
795 electrodes. *Energy Environ. Sci.* **5**, 9511–9519 (2012).

796 39. Guyes, E. N., Simanovski, A. & Suss, M. E. Several orders of magnitude increase
797 in the hydraulic permeability of flow-through capacitive deionization electrodes via
798 laser perforations. *RSC Adv.* **7**, 21308–21313 (2017).

799 40. Bhattarai, A., Wai, N., Schweiss, R., Whitehead, A., Lim, T. M. & Hng, H. H.
800 Advanced porous electrodes with flow channels for vanadium redox flow battery.
801 *J. Power Sources* **341**, 83–90 (2017).

802 41. Dennison, C. R., Agar, E., Akuzum, B. & Kumbur, E. C. Enhancing Mass
803 Transport in Redox Flow Batteries by Tailoring Flow Field and Electrode Design.
804 *J. Electrochem. Soc.* **163**, A5163–A5169 (2016).

805 42. Sauermoser, M., Kizilova, N., Pollet, B. G. & Kjelstrup, S. Flow Field Patterns for
806 Proton Exchange Membrane Fuel Cells. *Front. Energy Res.* **8**, 1–20 (2020).

807 43. Zeng, Y., Li, F., Lu, F., Zhou, X., Yuan, Y., Cao, X. & Xiang, B. A hierarchical
808 interdigitated flow field design for scale-up of high-performance redox flow
809 batteries. *Appl. Energy* **238**, 435–441 (2019).

810 44. Lu, M., Jiao, Y., Tang, X., Yang, W., Ye, M. & Xu, Q. Blocked serpentine flow field
811 with enhanced species transport and improved flow distribution for vanadium
812 redox flow battery. *J. Energy Storage* **35**, 102284 (2021).

813 45. Aparicio-Mauricio, G., Rodríguez, F. A., Pijpers, J. J. H., Cruz-Díaz, M. R. &
814 Rivero, E. P. CFD modeling of residence time distribution and experimental
815 validation in a redox flow battery using free and porous flow. *J. Energy Storage*
816 **29**, 101337 (2020).

817 46. Gundlapalli, R., Bhattarai, A., Ranjan, R., Ghimire, P. C., Yeo, X. M., Bin
818 Zainudin, N. A., Wai, N., Mahlendorf, F., Jasincuk, A. & Thorsten, H.
819 Characterization and scale-up of serpentine and interdigitated flow fields for
820 application in commercial vanadium redox flow batteries. *J. Power Sources* **542**,
821 231812 (2022).

822 47. Macdonald, M. & Darling, R. M. Comparing velocities and pressures in redox flow
823 batteries with interdigitated and serpentine channels. *AIChE J.* **65**, 1–11 (2019).

824 48. Gundlapalli, R. & Jayanti, S. Effect of channel dimensions of serpentine flow fields
825 on the performance of a vanadium redox flow battery. *J. Energy Storage* **23**, 148–
826 158 (2019).

827 49. Gundlapalli, R. & Jayanti, S. Effect of electrolyte convection velocity in the

828 electrode on the performance of vanadium redox flow battery cells with serpentine
829 flow fields. *J. Energy Storage* **30**, (2020).

830 50. Gundlapalli, R. & Jayanti, S. Effective splitting of serpentine flow field for
831 applications in large-scale flow batteries. *J. Power Sources* **487**, 229409 (2021).

832 51. Pichugov, R. D., Konev, D. V., Petrov, M. M., Antipov, A. E., Loktionov, P. A.,
833 Abunaeva, L. Z., Usenko, A. A. & Vorotyntsev, M. A. Electrolyte Flow Field
834 Variation: A Cell for Testing and Optimization of Membrane Electrode Assembly
835 for Vanadium Redox Flow Batteries. *Chempluschem* **85**, 1919–1927 (2020).

836 52. Sun, J., Zheng, M., Yang, Z. & Yu, Z. Flow field design pathways from lab-scale
837 toward large-scale flow batteries. *Energy* **173**, 637–646 (2019).

838 53. Wan, S., Jiang, H., Guo, Z., He, C., Liang, X., Djilali, N. & Zhao, T. Machine
839 learning-assisted design of flow fields for redox flow batteries. *Energy Environ.
Sci.* **15**, 2874–2888 (2022).

840 54. Tsushima, S. & Suzuki, T. Modeling and Simulation of Vanadium Redox Flow
841 Battery with Interdigitated Flow Field for Optimizing Electrode Architecture. *J.
842 Electrochem. Soc.* **167**, 020553 (2020).

843 55. MacDonald, M. & Darling, R. M. Modeling flow distribution and pressure drop in
844 redox flow batteries. *AIChE J.* **64**, 3746–3755 (2018).

845 56. Xu, Z., Wang, J., Yan, S. C., Fan, Q. & Lund, P. D. Modeling of Zinc Bromine
846 redox flow battery with application to channel design. *J. Power Sources* **450**,
847 227436 (2020).

848 57. Yadav, S. & Krishnamurthy, B. Modeling the velocity profiles in Vanadium Redox
849 flow batteries-Serpentine flow field. *J. Electrochem. Sci. Eng.* **00**, 1–16 (2023).

850

851 58. Li, F., Wei, Y., Tan, P., Zeng, Y. & Yuan, Y. Numerical investigations of effects of
852 the interdigitated channel spacing on overall performance of vanadium redox flow
853 batteries. *J. Energy Storage* **32**, 101781 (2020).

854 59. Akuzum, B., Alparslan, Y. C., Robinson, N. C., Agar, E. & Kumbur, E. C.
855 Obstructed flow field designs for improved performance in vanadium redox flow
856 batteries. *J. Appl. Electrochem.* **49**, 551–561 (2019).

857 60. Gundlapalli, R. & Jayanti, S. Performance characteristics of several variants of
858 interdigitated flow fields for flow battery applications. *J. Power Sources* **467**,
859 228225 (2020).

860 61. Zeng, Y. K., Zhou, X. L., Zeng, L., Yan, X. H. & Zhao, T. S. Performance
861 enhancement of iron-chromium redox flow batteries by employing interdigitated
862 flow fields. *J. Power Sources* **327**, 258–264 (2016).

863 62. Ke, X., Prahl, J. M., Alexander, J. I. D. & Savinell, R. F. Redox flow batteries with
864 serpentine flow fields: Distributions of electrolyte flow reactant penetration into the
865 porous carbon electrodes and effects on performance. *J. Power Sources* **384**,
866 295–302 (2018).

867 63. Eifert, L., Bevilacqua, N., Kçble, K., Fahy, K., Liusheng Xiao, Li, M., Duan, K.,
868 Bazylak, A., Sui, P.-C. & Zeis, R. Synchrotron X-ray Radiography and
869 Tomography of Vanadium Redox Flow Batteries Cell Design, Electrolyte, Flow
870 Geometry, and Gas Bubble Formation. *ChemSusChem* **13**, 3154–3165 (2020).

871 64. Darling, R. M. & Perry, M. L. The influence of electrode and channel
872 configurations on flow battery performance. *J. Electrochem. Soc.* **161**, A1381--
873 A1387 (2014).

874 65. Sun, J., Jiang, H. R., Zhang, B. W., Chao, C. Y. H. & Zhao, T. S. Towards uniform
875 distributions of reactants via the aligned electrode design for vanadium redox flow
876 batteries. *Appl. Energy* **259**, 114198 (2020).

877 66. Ha, J., Choi, Y. Y., Kim, Y., Lee, J. N. & Choi, J. II. Two-layer hydrodynamic
878 network model for redox flow battery stack with flow field design. *Int. J. Heat Mass
879 Transf.* **201**, 123626 (2023).

880 67. Bhattarai, A., Wai, N., Schweiss, R., Whitehead, A., Scherer, G. G., Ghimire, P.
881 C., Lim, T. M. & Hng, H. H. Vanadium redox flow battery with slotted porous
882 electrodes and automatic rebalancing demonstrated on a 1 kW system level. *Appl.
883 Energy* **236**, 437–443 (2019).

884 68. Tu, Y. H., Tai, Y. C., Xu, J. Y., Yang, Y. H., Huang, H. Y., Huang, J. H. & Hu, C.
885 C. Highly efficient water purification devices utilizing the microfluidic
886 electrochemical deionization technique. *Desalination* **538**, 115928 (2022).

887 69. Lisboa, K. M., Marszewski, J., Ebejer, N., Ruch, P., Cotta, R. M., Michel, B. &
888 Poulikakos, D. Mass transport enhancement in redox flow batteries with
889 corrugated fluidic networks. *J. Power Sources* **359**, 322–331 (2017).

890 70. Ke, X., Prahl, J. M., Alexander, I. J. D., Wainright, J. S., Zawodzinski, T. A. &
891 Savinell, R. F. Rechargeable redox flow batteries: Flow fields, stacks and design
892 considerations. *Chem. Soc. Rev.* **47**, 8721–8743 (2018).

893 71. Gundlapalli, R. & Jayanti, S. Effect of electrode compression and operating
894 parameters on the performance of large vanadium redox flow battery cells. *J.
895 Power Sources* **427**, 231–242 (2019).

896 72. Charvát, J., Mazúr, P., Dundálek, J., Pocedič, J., Vrána, J., Mrník, J., Kosek, J. &

897 Dinter, S. Performance enhancement of vanadium redox flow battery by optimized
898 electrode compression and operational conditions. *J. Energy Storage* **30**, (2020).

899 73. Witherspoon, P. A., Wang, J. S. Y., Iwai, K. & Gale, J. E. Validity of Cubic Law for
900 Fluid Flow in a Deformable Rock Fracture. **16**, 1016–1024 (1980).

901 74. Inoue, M., Tada, Y., Suganuma, K. & Ishiguro, H. Thermal stability of
902 poly(vinylidene fluoride) films pre-annealed at various temperatures. *Polym.*
903 *Degrad. Stab.* **92**, 1833–1840 (2007).

904 75. Li, J. & Ananthasuresh, G. K. A quality study on the excimer laser micromachining
905 of electro-thermal-compliant micro devices. *ASME Int. Mech. Eng. Congr. Expo.*
906 *Proc. 2000-AB*, 687–694 (2000).

907 76. Kruusing, A., Leppävuori, S., Uusimäki, A., Petrētis, B. & Makarova, O.
908 Micromachining of magnetic materials. *Sensors Actuators, A Phys.* **74**, 45–51
909 (1999).

910 77. Bergman, T. & Lavine, A. *Fundamentals of Heat and Mass Transfer*. (Wiley,
911 2017).

912 78. Park, H. K., Zhang, X., Grigoropoulos, C. P., Poon, C. C. & Tam, A. C. Transient
913 temperature during the vaporization of liquid on a pulsed laser-heated solid
914 surface. *J. Heat Transfer* **118**, 702–708 (1996).

915 79. Lin, S. Energy Efficiency of Desalination: Fundamental Insights from Intuitive
916 Interpretation. *Environ. Sci. Technol.* **54**, 76–84 (2020).

917 80. Liu, H. & She, Q. Influence of membrane structure-dependent water transport on
918 conductivity-permselectivity trade-off and salt/water selectivity in electrodialysis:
919 Implications for osmotic electrodialysis using porous ion exchange membranes. *J.*

920 *Memb. Sci.* **650**, 120398 (2022).

921 81. Tedesco, M., Hamelers, H. V. M. V. M. & Biesheuvel, P. M. M. Nernst-Planck
922 transport theory for (reverse) electrodialysis: II. Effect of water transport through
923 ion-exchange membranes. *J. Memb. Sci.* **531**, 172–182 (2017).

924 82. Jiang, C., Wang, Q., Li, Y., Wang, Y. & Xu, T. Water electro-transport with
925 hydrated cations in electrodialysis. *Desalination* **365**, 204–212 (2015).

926 83. Kingsbury, R. S., Zhu, S., Flotron, S. & Coronell, O. Microstructure Determines
927 Water and Salt Permeation in Commercial Ion-Exchange Membranes. *ACS Appl.*
928 *Mater. Interfaces* **10**, 39745–39756 (2018).

929 84. Yan, H., Wang, Y., Wu, L., Shehzad, M. A., Jiang, C., Fu, R., Liu, Z. & Xu, T.
930 Multistage-batch electrodialysis to concentrate high-salinity solutions: Process
931 optimisation, water transport, and energy consumption. *J. Memb. Sci.* **570–571**,
932 245–257 (2019).

933 85. Darling, R. M., Weber, A. Z., Tucker, M. C. & Perry, M. L. The influence of electric
934 field on crossover in redox-flow batteries. *J. Electrochem. Soc.* **163**, A5014–
935 A5022 (2016).

936 86. Zhao, R., Biesheuvel, P. M., Miedema, H., Bruning, H. & van der Wal, A. Charge
937 efficiency: A functional tool to probe the double-layer structure inside of porous
938 electrodes and application in the modeling of capacitive deionization. *J. Phys.*
939 *Chem. Lett.* **1**, 205–210 (2010).

940 87. Johnson, A. M. & Newman, J. Desalting by Means of Porous Carbon Electrodes.
941 *J. Electrochem. Soc.* **118**, 510–517 (1971).

942 88. Hawks, S. A., Knipe, J. M., Campbell, P. G., Loeb, C. K., Hubert, M. A., Santiago,

943 J. G. & Stadermann, M. Quantifying the flow efficiency in constant-current
944 capacitive deionization. *Water Res.* **129**, 327–336 (2018).

945 89. Yoon, J., Flavin, M. T. & Han, J. Current efficiency and selectivity reduction
946 caused by co-ion leakage in electromembrane processes. *Water Res.* **201**,
947 117351 (2021).

948 90. Abu-Rjal, R., Chinaryan, V., Bazant, M. Z., Rubinstein, I. & Zaltzman, B. Effect of
949 concentration polarization on permselectivity. *Phys. Rev. E - Stat. Nonlinear, Soft*
950 *Matter Phys.* **89**, 1–10 (2014).

951 91. Lv, Y., Han, C., Zhu, Y., Zhang, T., Yao, S., He, Z., Dai, L. & Wang, L. Recent
952 advances in metals and metal oxides as catalysts for vanadium redox flow
953 battery: Properties, structures, and perspectives. *J. Mater. Sci. Technol.* **75**, 96–
954 109 (2021).

955 92. Long, Y., Ding, M. & Jia, C. Application of Nanomaterials in Aqueous Redox Flow
956 Batteries. *ChemNanoMat* **7**, 699–712 (2021).

957 93. Raduwan, N. F., Shaari, N., Kamarudin, S. K., Masdar, M. S. & Yunus, R. M. An
958 overview of nanomaterials in fuel cells: Synthesis method and application. *Int. J.*
959 *Hydrogen Energy* **47**, 18468–18495 (2022).

960 94. Yin, Z., Yu, C., Zhao, Z., Guo, X., Shen, M., Li, N., Muzzio, M., Li, J., Liu, H., Lin,
961 H., Yin, J., Lu, G., Su, D. & Sun, S. Cu₃n nanocubes for selective electrochemical
962 reduction of co₂ to ethylene. *Nano Lett.* 8658–8663 (2019).
963 doi:10.1021/acs.nanolett.9b03324

964 95. Chen, K.-H., Namkoong, M. J., Goel, V., Yang, C., Kazemiabnavi, S., Mortuza, S.
965 M., Kazyak, E., Mazumder, J., Thornton, K., Sakamoto, J. & Dasgupta, N. P.

966 Efficient fast-charging of lithium-ion batteries enabled by laser-patterned three-
967 dimensional graphite anode architectures. *J. Power Sources* **471**, 228475 (2020).

968 96. Cao, L., Yang, S., Gao, W., Liu, Z., Gong, Y., Ma, L., Shi, G., Lei, S., Zhang, Y.,
969 Zhang, S., Vajtai, R. & Ajayan, P. M. Direct Laser-Patterned Micro-
970 Supercapacitors from Paintable MoS₂ Films. *Small* **9**, 2905–2910 (2013).

971 97. Rossman, R. P. & Smith, W. R. Density of Carbon Black By Helium Displacement.
972 *Ind. Eng. Chem.* **35**, 972–976 (1943).

973 98. Solvay. *Solef® PVDF Design & Processing Guide*. (2015).

974 99. Carminati, M. & Luzzatto-Fegiz, P. Conduino: Affordable and high-resolution
975 multichannel water conductivity sensor using micro USB connectors. *Sensors*
976 *Actuators, B Chem.* **251**, 1034–1041 (2017).

977 100. Hamer, W. J. & Yung chi, Y. Osmotic Coefficients and Mean Activity Coefficients
978 of Uni univalent Electrolytes in Water at 25°C. *J. Phys. Chem. Ref. Data* **1**, 1047–
979 1100 (1972).

980 101. Boussinesq, M. J. Mémoire sur l'influence des frottements dans les mouvements
981 réguliers des fluides. *J. Math. Pure Appl.* **13**, 377–424 (1868).

982 102. Napov, A. & Notay, Y. An algebraic multigrid method with guaranteed
983 convergence rate. *SIAM J. Sci. Comput.* **34**, A1079–A1109 (2012).

984 103. Notay, Y. An aggregation-based algebraic multigrid method. *Electron. Trans.*
985 *Numer. Anal.* **37**, 123–146 (2010).

986 104. Notay, Y. Aggregation-based algebraic multigrid for convection-diffusion
987 equations. *SIAM J. Sci. Comput.* **34**, A2288–A2316 (2012).

988 105. Batchelor, G. K. *An introduction to fluid dynamics*. (Cambridge University Press,

989 2000).

990