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Abstract

New theory is presented for the
dynamic response of redox-active
electrolyte flowing through porous
electrodes under time-dependent

reactant
concentration, Cg

applied current. This is done by ot
introducing certain frequency-

dependent transfer functions (TFs) to _
up-scale pore-scale  transport g

phenomena. One TF — dubbed the transfer functions and volume averaging
spectral Sherwood number — extends
the film law of mass transfer (FLoMT)
to transient conditions. Another TF &
captures the
acceleration/suppression of solute
advection that results from pore-scale velocity/concentration gradients. Numerical results
are shown for the frequency-dependent TFs of solid cylinders in crossflow to represent
porous electrodes commonly used in FBs. Spectral regions are observed where a
transition from lagless response to semi-infinite Warburg response occurs with increasing
frequency. The embedding of these TFs into an up-scaled model is also formulated to
obtain the time-domain response of FBs. Without adjustable parameters this model
predicts polarization in agreement with transient flow-battery (FB) experiments, despite
systematic overprediction of polarization by the conventional FLOMT model. Analysis of
concentration polarization and reactant concentration is also used to construct non-
dimensional maps of operational space. These predictions show that fast current
fluctuations are sustained even when current exceeds the limiting current expected from
the time-invariant FLOMT without solute advection suppression/acceleration, suggesting
implications for electrochemical conversion and separations devices in addition.
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1. Introduction

Renewable energy sources are projected to comprise approximately 60% of US
electricity generation by 2050, with wind and solar power contributing approximately 2000
and 1000 TW-h respectively [1]. Electricity generation from wind and solar power plants
requires installation of large-scale energy-storage devices to overcome the mismatch
between electricity demand and intermittent supply arising from the stochastic nature of
wind and the diurnal cycle of solar insolation [2]. Redox flow batteries (RFBs) have drawn
attention due to their ability to independently scale power and energy-storage capacity
because of the modularity of their reactors that dictate power capability and of their tanks
that dictate energy-storage capacity. Here, redox-active liquid electrolyte is circulated
through RFB electrodes to and from tanks, forming a closed loop. Despite advances in
RFB electrolyte chemistry [3—7], the surface chemistry of their electrodes [8—15], and the
design of flow fields [16-20], limited understanding has been established to date
concerning the impact of the inherently transient and irregular charge/discharge scenarios
that RFBs are likely to experience on renewable-powered grids and micro-grids. For
instance, past RFB models have adopted a film law of mass transfer using a time-
independent mass transfer coefficient to predict pore-scale concentration polarization and
associated energy losses (e.g., in Refs. [16,21-25]).

Here, we posit that understanding of such concentration polarization must start
from the bottom-up at the scale of the electrode pores at the surfaces on which redox
reactions take place, in concert with the flow of electrolyte and the transport of soluble
species occurring therein. Because all three modes of soluble species transport (diffusion,
advection, and migration) contribute to total flux, the time variation of current and cell
voltage — induced by the instantaneous power supplied to or demanded from the cell
incorporating that electrode — drives the associated transport of species in solution via
redox reactions at electrode surfaces. Here, the power spectral density (PSD) distribution
associated with any given power-supply or -demand entity indirectly captures their
transient and stochastic qualities using a frequency-based representation [26,27]. Wind
power experiences an especially wide PSD distribution relative to other renewable
sources [26], stemming from the occurrence of gusts (~1 Hz [26]) and daily weather (~0.1
to 1 mHz). For the sake of comparison, a typical aqueous all-vanadium RFB (diffusivity
D~10"°to 10~7c¢m? /s [28-31]) with carbon-felt electrode (fiber diameter b~10 to 20 um
[32,33]), has a characteristic frequency f, = D/b?~ 0.025 to 1 Hz. Further, the low
diffusivity of active species in non-aqueous electrolytes (e.g. D = 1071° ¢cm?/s in deep
eutectic solvent [34]) can decrease f. by orders of magnitude. Overlap between the
ranges of f. with the PSD distribution of wind, therefore, suggests that the frequency-
dependent response of RFBs is likely to play an important role in the efficient utilization
of wind energy.

Despite its potential importance for grid-scale energy storage with RFBs, limited
theoretical understanding of solution-phase frequency response has been established at
the pore-scale in modeling and experimentation. Beyond the film-law of convection mass
transfer, time-domain pore-scale simulations have been conducted using the lattice
Boltzmann method [35,36], but rigorous up-scaling strategies have yet to be developed
to enable the simulation of transient transport phenomena at scales larger than



representative volume elements. In contrast, a recent approach used Laplace
transformation to analyze the transient redox and diffusion of vanadium-based active-
species in stagnant electrolytes at carbon-felt electrodes during cyclic voltammetry [37].
We also recently introduced theory [38] to capture the effect of charge/discharge at the
pore-scale for active species undergoing simultaneous diffusion and advection in the
pseudo-steady limit, which is approached when the characteristic time period for a
charge/discharge cycle 7./, is large relative to the characteristic diffusion time-scale (i.e.,
Tc;a » b?/D). Previous work on stationary batteries has used a frequency-based
formalism to predict transient dynamics of solid-state diffusion processes [39] and to
model electrochemical impedance spectra [40—42]. In this article we introduce a new
theory for modeling transient pore-scale mass transfer with simultaneous convection and
redox reactions using a frequency-response formalism for the first time that enables direct
up-scaling of the coupling between pore-scale concentration polarization and temporal
variations of current supply and demand. In this article, we do this by defining a new
spectral Sherwood number transfer function (Sh) that relates average surface flux (j),
(i.e., reaction rate) to the associated concentration difference at the pore-scale Ac = ¢ —
(c) in the frequency domain: (Sh) = ()s(b/D) /(¢ — (¢)), where 4 is the continuous-time
Fourier transform of quantity A, b is a characteristic pore length-scale, and D is diffusivity.

The rate capability of electrochemical devices is determined by the amount of
electric current produced and various mechanisms of polarization. In RFBs and other
devices using flow-through electrodes (e.g., electrochemical deionization [43-45]),
continuous supply of fresh electrolyte to electrode pores and the simultaneous evacuation
of spent electrolyte from electrode pores is facilitated by bulk flow, i.e., advective flux.
The advective flux of soluble species is affected by their depletion or accumulation near
reacting interfaces where such species are respectively consumed or produced. Previous
models of electrochemical devices using flow-through electrodes have adopted a macro-
homogeneous advection-reaction-dispersion(-migration) (ARD(M)) theory, building on
earlier geochemical theory and practice [46], that implicitly assumes that the local volume-
averaged solute concentration is advected by the bulk superficial velocity of electrolyte
[24,25,43—-45]. In contrast, previous modeling of unconventional RFBs using mixed-
conducting suspensions flowing through open channels — rather than flowing liquid
electrolyte through porous electrodes — showed that coulombic and energy efficiency can
be enhanced by uniformizing advective transport via the control of interfacial slip [47],
rheology [47-49], and fluid pulsation [47,48,50], the effects of which are not captured by
conventional ARD(M) theory. Studies motivated by other applications have previously
modeled the effects of interfacial reactions on advection in porous media by accounting
for the difference between mean solute velocity and mean solvent velocity caused by the
inhomogeneity in solute concentration across pores [51,52]. The prediction of such was
accomplished in the long-time limit using the method of moments [53-55], where an
adjoint eigenvalue problem coupled to a closure problem was solved numerically to obtain
the mean solute velocity, reactivity coefficient, and dispersion tensor in a self-consistent
manner [55]. In contrast, the approach that we use in this article is to characterize the
integral covariance between the pore-scale velocity field and the pore-scale concentration
field obtained from solutions to the Fourier-transformed mass conservation equations
(MCEs), inspired by rigorous theory of pore-scale averaging [56]. We ultimately express



this covariance using a non-dimensional average advective-flux transfer function (N) =
(1/)ug]) (us(C) — euc))/(¢s — () that quantifies the deviation of average advective flux
e(uc) from the product of average concentration and superficial velocity ug(c).
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Fig. 1. (a) lllustration of a redox flow battery with flow-through porous electrodes
containing electrolyte with close-up view at the micro-scale pores where redox-active
species R and O are dissolved. Transient current with arbitrary time-dependence is
mapped to the frequency domain using Fourier transformation to obtain a spectral density
for current, and frequency-dependent transfer functions (TFs) are used to capture the
microscopic response of the RFB in the frequency domain, which are later embedded into
a macroscopic model. (b) Macroscopic model formulation using porous electrode theory,
where the dynamic response is captured through variation of polarization magnitude |Ac|
and average reactant concentration (c,.,.) with time for a step impulse input current. (c)
Schematic of transient RFB operation based on the dynamic response of |Ac| and (c)
inside a porous RFB electrode.

In this article we present new theory for the transient response of redox-active
electrolyte in porous electrodes using frequency-dependent transfer functions (TFs) that
we show are readily up-scalable. These TFs link the Fourier transform of output
parameters (reaction rates and advective flux deviation) to that of input parameters
(surface concentration and volume-averaged concentration). We use these TFs to
capture the microscopic response of RFB electrodes in the frequency domain under



varying current input at the reactive interface. Later these frequency-dependent TFs are
embedded into an up-scaled model (using porous electrode theory) to obtain the
macroscopic response of RFBs. A schematic representation of the approach is shown in
Fig. 1. In Sec. 2 the definitions of these TFs are derived by Fourier transformation of the
corresponding mass conservation equations (MCEs), which are first defined in the time
domain. Then the macro-scale MCEs based on porous electrode theory are presented,
where pore-scale responses are incorporated using the TFs derived earlier. In Sec. 3 the
developed transient model is compared with the experiments using transient operation of
a ferro/ferri-cyanide based flow cell with microchannels engraved in graphite foil. Finally,
the obtained pore-scale and macro-scale MCEs are solved numerically for different
porosity (¢) and Péclet number (Pe) values using electrodes comprised of cylinders in
crossflow. The results obtained from pore-scale simulations are presented in Sec. 4. In
Sec. 5 numerically obtained macroscopic responses of RFBs under step impulse variation
of input current are presented for two different porosity electrodes. For interested readers
derivations for the conditions of validity of this theory, a proof of the equivalence between
the limit of vanishing frequency and the pseudo-steady limit, numerical model
implementation, and model verification are presented in the supplementary information.

2. Methods

Here we present theory for the modeling of pore-scale transfer functions in the
frequency domain and for their incorporation into a macro-scale model of RFB electrodes
in the time domain. We do this by defining the pore-scale problem in the time domain
and by subsequently converting it to the frequency domain using the Fourier transform to
yield spectral Sherwood number and advective flux transfer functions. The macro-scale
model incorporates concentration polarization and advective flux within electrode pores
using state-space approximations of the aforementioned pore-scale transfer functions
under time-varying applied current. Derivations used to obtain the above models and the
numerical methods used to solve the governing equations at both scales are in the
supplementary information.

2.1. Governing equations for pore-scale transport

In this section we present the governing equations for electrolyte containing a
soluble redox couple undergoing redox at electrode surfaces. The mass conservation
equations (MCEs) and associated boundary conditions (BCs) governing the evolution of
the pore-scale concentration field within electrode pores are presented in the time domain
and are transformed into the frequency domain to derive transfer functions (TFs) for
reactive advective flux. We note that similar and analogous equations govern the
transport of other electrochemical, chemical, and thermal systems, but we focus here on
the specific application of the present theory to RFBs.

2.1.1. Time-domain governing equations

For electrochemical systems that use heterogenous electron transfer reactions
involving a soluble redox couple (R*R = 0%° 4+ ¢7), as in RFBs, the consumption of
reduced species R is coupled with the production of oxidized species 0. We neglect the



electromigration contributions to the net flux provided that the transference number of any
participating soluble species is sufficiently small [38]. Under such condition we show
subsequently that the theory that we presented previously [38] can be extended to
incorporate arbitrary time-variation of the surface concentration c; ;(t) of species i when
the associated Damka&hler numbers (Dayeq/0x = kreajox b/ D) for reduction and oxidation
reactions are sufficiently large: Da,.; > min[1,exp(—Fn/RT)] and Da,, »
min[1, exp(Fn/RT)], where n is a characteristic overpotential and RT/F is the thermal
voltage. The derivation of these criteria using scaling analysis is presented in the
supplementary information. Under such conditions the conservation of mass for species
i is written as:

dc;

TV (u"c; — D;V¢;) = 0; cils = cis(t) (1a)

Here, c; is the concentration of soluble redox-active species i,* which depends on position
r and time t, D; is its corresponding Fickian diffusion coefficient, and u® is the molar-
volume averaged fluid-velocity vector.? Further, we assume that the characteristic
streamwise concentration difference is negligible relative to the characteristic pore-scale
concentration difference through the microstructure of porous electrode, as in our
previous work [38]. Such an assumption enables us to use periodic BCs at the boundaries
of the repeat units of periodic microstructures:

Ci(r,t) = Cl'(r + R,t), (1b)

where R is any integer-multiple linear combination of lattice vectors defining the
microstructure’s periodicity. By analyzing the time-dependent dynamics of RFBs cycled
under galvanostatic conditions we showed previously that the validity of such a condition
depends on the respective magnitudes of the Sherwood number (Sh), Péclet number Pe,
and Fourier number Fo = Dt/b? [38]. For the limit of vanishing Fo this condition requires
(Sh) « (L,./b)/Fo, which allows the use of the periodic BC expressed in Eq. 1b for high
Pe flows where the associated characteristic frequency of the transient current is large.
Under such conditions solute transport is controlled by a fast-changing surface
concentration, and the effect of streamwise concentration differences is negligible in the
entrance region where the local concentration field develops. In this section, we invoke
periodic boundary conditions in an ad hoc manner motivated by the arbitrariness of the
surface condition imposed. However, after defining the spectral Sherwood number and
the nondimensional advective flux transfer function, we derive a new criterion for this
assumption to be valid using scaling analysis in the frequency domain (see
supplementary information).

! Throughout this article i as a subscript indicates either species R or 0, while i otherwise
indicates current density.

2 We model the bulk electrolyte as isochoric, such that the pore-scale molar-volume
averaged fluid-velocity u® is divergence free (i.e., V- u® = 0) [38].



2.1.2. Frequency-domain governing equations and pore-scale transfer functions

Using the time-domain governing equations from Sec. 2.1.1, we show that certain
transfer functions (TFs) can be used to succinctly capture the transient response of output
parameters to both the surface- and volume-averaged solute concentrations. To do so,
the MCEs that govern concentration fields are reduced to a set of linear partial differential
equations (PDEs) in the frequency domain using the continuous-time Fourier transform.
Using this approach, we define TFs for the average surface flux and the average
advective flux, the former of which we show is a kind of spectral Sherwood number (Sh)
that depends on frequency and the latter of which (N) captures the integral covariance
between pore-scale velocity and the Fourier-transformed concentration fields.

2.1.2.1. Fourier transformed governing equations

Fourier transformation of the MCEs and the BCs expressed in Eq. 1 results in a
steady, linear PDE that governs the Fourier transformed species concentration ¢ while
the solid/solution interface is subjected to a time-varying sinusoidal surface concentration
with angular frequency w = 2nf in rad/s, where f is regular frequency in Hz. In general,
Fourier transformed functions are denoted here by an overbar (i.e., F{A(t)} = A(w) =

fj;oA(t)exp(—ja)t)dt, where A(t) is an arbitrary function of time). The Fourier
transformed version of Eq. 1 is given by:

V- (u"c — D,VE) + jwg; = 0; Cils = Cis(w), (2)

where j = v—1 is the imaginary unit. Frequency response of the corresponding system’s
concentration field is captured by a transfer function C;(w, r) defined with ¢;(w, ) as its
output quantity and with ¢; ;(w) as its input quantity:

¢i(w,r)

Ei,s(w)

Cilw,1r) = (3)
Substituting ¢;(w,r) = ¢; s(w)C;(w, ) into Eq. 2 results in a time-independent PDE for C;
with a frequency-independent interfacial condition:

For D, = Dy inspection reveals that the dynamic responses of R and 0 are identical (C; =
Cy)- To establish a necessary condition to ensure the coupled production and
consumption of R and O we invoke reaction stoichiometry:

dcr aéo

0Cg aCp
DR =Rl = —p, %o
Rans 0 an

= DrCre—| =—DpCos—— 5
s R “R,s on s 0 %0, n s ( )

From this expression we deduce that ¢z ; = —¢, ¢ = ¢; ; enforces the conjugation condition
exactly when D, = D,, is satisfied. We note that changing the sign of ¢; ; does not change
the associated PDEs and BCs (Eq. 4) that govern C;(w,r). Thus, identical PDEs for O



and R automatically enforce the coupled production/consumption of active species when
posed in terms of C; (Eq. 4).

We now elaborate on the physical significance of the transfer function C;(w, r). Since
the interface condition that is controlled by ¢;; corresponds to a sinusoidal, periodic
disturbance signal in the time domain, Eq. 4 governs the propagation of this disturbance
throughout the electrolyte solution. The transient response at a location r is captured by
the magnitude and phase of C; that respectively represent the fractional concentration
change and phase lag with respect to the change made in surface concentration c; ;. For
example, at an interface the conditions |C;| = 1 and 6¢, = 0 imply that the concentration
there tracks the imposed c¢(t) boundary condition instantly. On the contrary C; = 0 at
some arbitrary location suggests that the interfacial disturbance induced by time-varying
c;s i1s not experienced there. Hereafter, we drop the subscript i from the various
parameters of interest because the various species of interest exhibit identical governing
equations for C;.

2.1.2.2. Spectral Sherwood number

The steady response of solution undergoing convective mass transfer with
simultaneous reactions in porous media has historically been captured using an overall
Sherwood number (Sh) = (h,,)b/D, with {h,,) being the overall mass transfer coefficient
that relates the average surface flux (j); = D(dc/dn|s) due to reactions to a driving
concentration difference Ac, according to the film law of mass transfer: (j); = (h,,)Ac.?
The operators (...) and (... ), are respectively integral averages over solution volume and
solid/solution interfaces contained in a representative volume element. To our knowledge,
however, similar theory has yet to be developed that captures the fransient response of
solutions undergoing convective mass transfer in porous media. It is our goal presently
to predict average reaction rates vis-a-vis average surface flux subjected to an arbitrary
time-varying surface concentration to enable up-scaling in volume-averaged/macro-
homogeneous formulations (cf. Ref. [56]) in @ manner that is consistent with transient
pore-scale transport phenomena.

To do this we derive a transfer function in the frequency domain that extends the
concept of the Sherwood number to transient conditions. This particular Sherwood
number, which we call a spectral Sherwood number (Sh), is a transfer function in the

3 Established theory and experiment [74—76] have previously shown that (Sh) principally
depends on Péclet number Pe = |ug|b/D, where ug is superficial velocity, and on the
Schmidt number Sc = v/D, where v is kinematic viscosity. In porous materials undergoing
forced convective heat transfer, the Nusselt number (Nu) = (h)b/k, with overall heat
transfer coefficient (h) and thermal conductivity k, is equivalent to (Sh) by virtue of the
formal analogy between the equations governing heat and mass transfer when the
Prandtl number Pr = v/a with thermal diffusivity « and the thermal Péclet number Pe, =
|us|d/a are respectively used in place of Sc and Pe.



frequency domain that captures the correlation between average surface flux (j)s and the
characteristic concentration difference A¢ = ¢, — (C):

A _b (s —(ac/an’) (G)

SR =52 05= "0 =1 ©)
Here, the nondimensional normal coordinate is n* =n/b, and G(w,r) is a gradient
transfer function defined as G(w,r) = (b/D)(j;/¢;) = —(dC/an*) with input as surface
concentration ¢, rather than A¢ = ¢, — (¢).* With (Sh) known from pore-scale simulation,
the average surface flux (j); can be determined in the time domain as (j), =
(D/b)F~{(Sh)(¢; — (€))}, according to Eq. 6.

For the sake of consistency with the definition of the Sherwood number obtained
in the pseudo-steady limit [38], we confirm presently that the spectral Sherwood number
(Sh) obtained in the limit of vanishing frequency is identical to the conventional (Sh) in the
pseudo-steady limit: i)i_r%(ﬁz) = (Sh)ps,- A detailed proof demonstrating this property of

(Sh) is shown in the supplementary information. This result thus provides intuition for the
broader meaning of the pseudo-steady limit in the context of frequency response. As we
later demonstrate using numerical modeling, the limit of vanishing frequency is equivalent
to the pseudo-steady limit because concentrations and fluxes exhibit lagless tracking (i.e.,
vanishing phase difference) with time variations of surface concentration in that limit.

2.1.2.3. Advective-flux transfer function

We now define a transfer function that quantifies the transient response of average
advective flux to the pore-scale concentration difference Ac = ¢; — (c). Previously derived
volume-averaging theory for pore-scale transport suggests that the local volume-
averaged advective flux (u™c) should be decomposed into terms that account for the
average contribution to velocity and concentration, as well as those that result from the
deviation of those parameters from their averages [56,57]. In contrast, we characterize
(u®c) presently by defining the integral covariance vector (W) for velocity u™ and
concentration c, thus avoiding the introduction of ad hoc assumptions that are needed to
decompose (u"c) into an arbitrary sum of products between average and deviatoric u"®
and c fields:

(W) = —covar(u®,c) = fvf u® dvg fvf cdvp — fvf u®cdvy = (ug/€){c) — (uc) (7)
Here, vy is the interstitial fluid volume occupied by electrolyte. Further, once (W) is known

we posit that the average advective-flux can be used directly as a kind of constitutive
equation within local volume-averaged or macro-homogeneous formulations by

* We note that ¢;/(dc/dn)|; has previously been referred to as the diffusion impedance
under potential modulation [41,77], and it can be obtained from the reciprocal of the
gradient transfer function G as G(w,r) = —1/b[(0¢/dn)|s/Cs].



recognizing that (u®c) = %(c) — (W), which is an alternative to the common assumption
of (u®c) = %(c) that is valid only when covar(u®,c) = 0.

The utility of (W) in volume-averaged formulations motivates predicting its
response to transient impulses. In the spirit of modeling such effects subject to arbitrary
variations of interfacial conditions, we define a corresponding advective-flux transfer
function (N) in terms of (W) and A¢ = ¢, — (C).

(N = =

|us| ¢s—(C)

(8)

Analysis of Eq. 7 shows that (W) scales in proportion to the characteristic interstitial
velocity ug/e. Thus, we normalize (N) by |u,|/e, and we decompose it into streamwise
((N), =(N)-¢,) and transverse ({(N), = (N)-é,) components, where &, and &, are
streamwise and transverse unit vectors with respect to u;:

_ (W)” _ (C) _ i (u”'(C)

(N>|| (0)) - |u_‘:| [ES—(C_)] 1—(C) (|us|) 1-(C) (ga)
= (=) @l

(N), (w) = @ [6e—(3)] (|u5|) 1-(C) o)

We note that (N), and (N), are respectively expressed in terms of pore-scale velocity
components that are parallel u' and transverse u? to the superficial velocity vector u.
While Eq. 9 alone is sufficient to capture the vectorial nature of (N) in two-dimensional
systems, in practice two distinct (N), components would be needed along orthogonal
directions to capture such effects for three-dimensional systems. With (N); known along
each direction j the corresponding component of average advective flux (u™c) - &; can
be determined in the time domain as (u"c)-&; = (1/&)[(us - &){(c) — |us|FH{(N); (& —

(@n}l-
2.2. Macro-scale time-domain governing equations

Here we present governing equations for the macro-scale transport of redox-active
species using porous electrode theory. In such a formulation the porous electrode is
considered as a superposition of two continua, one representing the liquid phase and the
other representing the solid phase, where spatially varying quantities are included using
their volume averaged values. While a dearth of past work using porous electrode theory
has been done, we refer interested readers to the seminal work where its basic postulates
were first presented [58]. We first express a macroscopic mass balance equation by
embedding the TFs (Sh) and (N) to account for their time-dependent
production/consumption rates and enhanced/retarded advection rates due to their
transient redox at interfaces. As both TFs are obtained in the frequency domain, their
inverse Fourier transforms are taken and implemented in a consistent manner. Further,
we neglect the macro-scale diffusion of reactive species by considering negligible
concentration variation across the reactor lengths parallel and perpendicular to the

10



macroscopic flow direction. In the limit of vanishing macro-scale diffusion, the up-scaled
mass conservation for species i can be expressed in terms of the macroscopic volume
averaged concentration (c;) as:

8% +V: us(ci> - Iusl V- T_l{(N>(C_'5'i - (E>l)} = Ziibi :F_l{(S'Tl)(Es,i - (E)l)} (10)

Here, (c;)(r,t) is local volume-averaged concentration obtained by averaging c; over a
finite volume larger than a periodic unit representing the porous microstructure. The
source term at the right-hand side of Eq. 10 accounts for the transient volumetric
production/consumption rate of species that is coupled to the transient current density (i)
as a(i)s/(s;F) = (@)(j;)s = aD/(s;b) FH{(Sh)(c;; — (€);)}. Further, the term |ug| V-
FH(N)(é;; — (€);)} accounts for the deviation (acceleration/suppression) in reactive
species advection rate through the porous electrode. We modeled the reaction at the
solid/solution interface by using Butler-Volmer (B-V) kinetics (Eq. 11), which describes
the current-overpotential relationship considering symmetric reaction kinetics for both
oxidation and reduction:

i =1 [exp (ZFTT’T) —exp (— ZFTUT)] (11)

Here, i is the current density at the electrode surface, i, is the exchange current density,
and RT/F is the thermal voltage. The reaction overpotential n is expressed using the solid
phase potential ¢,, solution (electrolyte) phase potential ¢, and the equilibrium potential

(eq aS:

n:¢s_¢e_¢eq:(ps_(pe_(%)ln(%:z) (12)

Further, the mass conservation equation for a well-mixed tank without any
consumption/production of species is expressed by Eq. 13, where (c;)? is the volume
averaged concentration of species i inside the tank.

a(c)T

) AT _
——+tVeuge))" =0 (13)

The assumption well-mixed refers to the fact that the local concentration field inside the
tank is uniform.

3. Experimental validation of bottom-up transient model

In this section we compare model predictions based on Section 2 with
experimental results obtained from the transient response of an electrolyte solution
containing the Fe(CN): /Fe(CN)3~ couple at 50% state-of-charge that undergoes
reversible redox via Fe(CN)3™ + e~ 5 Fe(CN)¢™. This redox couple was chosen for its
facile reaction kinetics (rate constant of k; = 0.1~1 cm/s [59-62]), so as to produce
negligible kinetic overpotential in the present experiments. The experimental reactor
consisted of two graphite foil electrodes (Ceramaterials) laser-engraved (Trotec Speedy

11



Flexx 400 fiber laser) with ~100 um wide parallel microchannels that were separated by
a non-selective separator (NP0O30 from STERLITECH Corporation). Electrolyte
containing 15 mM active species and 3 M KCI supporting salt was pumped through the
microchannels in the electrodes. To probe the electrodes’ transient response current was
applied using a square wave with half-period or pulse-width 7, as shown in Fig. D2b.
Experimental methods and model implementation are provided in the supplementary
information.
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Fig. 2: Variation of average concentration polarization with applied current ratio i,, at
different pulse width 7. (a) z/t, = 0.0057, (b) t/t, = 0.0128 and (c) t/t, = 0.0494. t, is
the mean residence time of solute (t, = L, /uy).

Figure D3 in the supplementary information shows the time variation of IR-
corrected cell voltage with non-dimensional time. In contrast with our experimental
results, the conventional model (CM) — that uses a time-invariant film law of mass transfer
and that neglects solution advection suppression/acceleration — shows instantaneous
jumps in polarization when applied current is switched with a sufficiently small pulse width
(r < 10). On the contrary the present bottom-up transient model (B-UTM) captures the
dynamic response in good agreement with experiment for such pulse widths, the
deviations of which arise from the statistical distribution of electrode cross-section area
and the uncertainty active-species diffusivity. For such short pulses diffusion is inherently
transient with concentration variations penetrating from interfaces into bulk to an extent
that is much shorter than the characteristic pore dimension (~100 ym), thus validating the
transient aspects of the present B-UTM model. For large impulse duration (z > 10) where
solute transport occurs through the entirety of pores, we observe that both the CM and
B-UTM models produce polarization variation with time that deviates qualitatively from
experiment, likely as a result of factors that both models neglect including entrance region
effects and macroscopic diffusion, dispersion, and ion conduction. Despite this, we note
that B-UTM shows less deviation from experiment than CM. We attribute this outcome
for B-UTM to its accounting of the suppression/acceleration arising from the
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inhomogeneity of pore scale concentration and velocity fields, validating its inclusion in
the present model.

Modeled and experimental time-averaged polarization for the various conditions
tested are shown in Fig. 2. The experimental data shows that average polarization
depends not only on the applied peak current ratio i,,,, but also on the pulse duration .
The CM model fails to capture the dependence of average polarization on impulse
duration t. Further, this inability to capture transient response causes CM prediction to
deviate substantially at high current ratio where it over-predicts the polarization up to
400%, and it prevents such models from simulating RFBs with near-limiting (i,,,~1) and
over-limiting (i,,, > 1) conditions that have been observed in previous studies [63—67]. On
the other hand, the present B-UTM model is not only capable of simulating the near-
limiting and over-limiting operations, but it also produces more accurate predictions at all
irp and 7 values tested.

4, Pore-scale simulations versus frequency

Using the frequency-based theory introduced in Sec. 2.1, we obtained results for
numerical simulations performed by applying that theory to study the transient response
of redox-active electrolyte flowing through a porous electrode comprised of infinite
cylinders undergoing crossflow as a representative geometry for carbon fiber felt
commonly used in RFBs. Here, pore-scale simulation results are presented to show the
characteristics of the frequency-dependent TFs. These simulations are used to
investigate the effect of microstructure porosity, superficial velocity, and frequency, where
different cases are created by varying their corresponding non-dimensional parameters
to make the results extensible to other conditions, provided that geometric, hydrodynamic,
and mass-transfer similarity criteria are satisfied. The non-dimensional frequency f* =
wb?/2nD is the ratio of the characteristic time-scale for diffusion (t; = b?/D) to the time-
scale associated with the angular frequency w (7.4 = 2m/w). For f* < 1 we find that
pore-scale mass transfer is consistent with that of the pseudo-steady limit, while higher
frequencies produce a finite temporal lag in response that we show is a signature of
transient response. For the present simulations we choose the characteristic length b as
the cylinder diameter d. Subsequently, we present results for the local-concentration
transfer function C(w,r), the overall spectral Sherwood number (Sh)(w), and the
parallel/transverse components of the average advective-flux transfer function (N), ,, (w).

We solved the transformed MCE (Eq. 4) numerically in the frequency domain to
obtain C(w,r) for a two-dimensional porous microstructure. The porous electrodes
investigated here are regular arrays of unconsolidated cylinders of infinite length and
diameter d (Fig. 3a). Simulations were performed over a domain defined by the unit cell
shown in Fig. 3b and 3c. We present simulated results for the transient response of
solution within microstructures having ¢ = 0.546 and ¢ = 0.874 as representative cases
in the limits of low and high porosity respectively. Inline flow with superficial velocity ug
parallel to the x-axis was simulated with Pe ranging from 1072 to 22.8 x 103.
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Fig. 3. Schematic of the modeled periodic domain: (a) regular, unconsolidated array of
infinite circular cylinders with bulk electrolyte flow through interstitial pores, (b)
designation of a repetitive unit cell with a circular cylinder at the cell’'s center, and (c)
enlarged view of a repetitive unit cell annotated with dimensions. A given microstructure’s
porosity ¢ results in a certain minimum pore dimension b, at the pore throat shown in (c).
Spatial distribution of |C| at different nondimensional frequencies for (d) € = 0.546 with
Pe = 0.019 (first row) and Pe = 380 (second row), and (e) € = 0.874 with Pe = 0.01 (first
row) and Pe = 300 (second row). The bulk flow direction is horizontal from left to right.
The values at the center of each distribution show the corresponding nondimensional
frequency f*.

The electrolyte solution flowing through the microstructure’s pores is assumed as
a Newtonian, isochoric solution with constant dynamic viscosity, while the flow field is
modeled as steady, creeping flow, as justified by a small pore-scale Reynolds number:
Re = Pe/Sc <« 1, where Sc is Schmidt number. The pore-scale velocity field u®" is
obtained from numerical solution of a time-independent, inertia-free version of the vorticity
transport equation (VTE) that is written in terms of the stream function v as V*y = 0 [68].
The VTE is solved with appropriate BCs imposed on cylinder surfaces (i.e., no-slip,
impermeability, and no-lift) and at the unit-cell boundaries (i.e., periodic jump/fall). For a
finite frequency (w > 0) the corresponding C(w, r) field is obtained by solving Eq. 4 with
periodic BCs applied at unit-cell boundaries, along with a Dirichlet BC C; = 1 at cylinder
surfaces. Details of discretization, numerical implementation, and model verification are
shown in the supplementary information.
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4.1. Concentration

Figures 3d and 3e show the spatial distribution of |C| = \/(Re[C])2 + (Im[C])? as a
function of non-dimensional frequency for high and low porosity values with either high or
low Péclet number. At sufficiently high frequency (f* > 200) these distributions reveal
that most solution volume remains unaffected by the disturbance induced by interfacial
reactions for all Pe and ¢ studied and that variations of |C| are focused near solid/solution
interfaces. This effect is caused by the comparatively slow rate of diffusion relative to the
frequency at which the surface concentration is cycled in such a limit. As a result, the
disturbance occurring at the solid/solution interface is unable to propagate substantially
into bulk solution before a new cycle of concentration fluctuation starts at the interface.

When the characteristic diffusion time-scale is comparable with the time-scale for
cycling at the solid/solution interface (f* = 1~200), |C| varies in space in different ways
depending on what the predominant mass-transfer mode is. For Pe < 1, the spatial
distribution of |C| is symmetric with respect to the x and y axes, and |C| approaches an
axisymmetric distribution for high-porosity electrodes due to the weak interactions
between adjacent cylinders. For low-porosity electrodes a four-peaked distribution is
observed as a result of strong inter-cylinder interactions that are evidenced by peak
positions coinciding with the surface positions at which neighboring cylinders have closest
proximity. For high Pe cases the spatial distribution of |C| becomes skewed along the
streamwise direction as a result of the predominant role of advection mass transfer in that
limit. In the limit of vanishing frequency (f* « 1) the distribution of |C| approaches a
uniform value of unity (i.e., |C| =1) as a result of the lagless tracking of surface
concentration by the entire concentration field in that limit. However, we note that such
an attribute does not imply an infinite mass transfer coefficient, as evidenced by our
subsequent investigation of the spectral Sherwood number.

In the pseudo-steady limit our previous simulations revealed that the effect of
advective mass transport is evidenced by the shape of the concentration profile at the
midplane of the cylinder and along the direction transverse to the streamwise direction
[38]. To determine how frequency influences such profiles the non-dimensional
concentration profiles are shown in the supplementary information, and they suggest that
response in the low-frequency limit is controlled primarily by the dominant transport
mechanism in the solution’s bulk (pseudo-steady diffusion and/or advection), while
response in the high-frequency limit is controlled by transient diffusion through boundary
layers of solution that exhibit frequency-specific thickness adjacent to interfaces.

4.2. Spectral Sherwood number

We now present results for the overall spectral Sherwood number (Sh) =
b(j);/[D(¢s —(c))], which relates the average surface flux due to reactions to the
concentration difference that drives it in the frequency domain. Figure 4 shows the
variation with frequency of (Sh) magnitude and phase for different Pe and porosity values.
The variation of (Sh) shows three distinct regions in the frequency domain, as annotated
in Fig. 4 At high frequency (Region Ill) the magnitude of (Sh) scales in proportion to vw
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while phase approaches /4, consistent with the scaling expected for a semi-infinite
Warburg impedance element and consistent with our observations from Figs. 3d and 3e
that compact diffusion layers form in the vicinity of the solid/solution interfaces in the high-
frequency limit. In this part of the frequency spectrum surface-concentration fluctuations
alone control (Sh), not those of average concentration. These features result in minimal
effect of Pe on (Sh) at high frequencies, and as a result we refer to this region as having
frequency-controlled transport (FCT). We define a lower bound for this region as the
frequency where phase reaches within 5% of its asymptotic value m /4, corresponding to
non-dimensional frequencies of f* = 10* and 103 for microstructures with respective
porosities of ¢ = 0.546 and 0.874.

At low frequency (Region ) the magnitude of (Sh) approaches a constant non-zero
value as frequency vanishes, while its phase approaches zero simultaneously. Such a
limiting phase value shows that frequency response is lagless in this limit, an effect that
results from the relatively fast mass transfer in comparison with the time-scale of
boundary condition cycling. Hence, in this limit the dominant mode of pore-scale mass
transfer, not the driving frequency, determines the magnitude of (Sh). In this limit systems
with Pe <« 1 experience diffusion-controlled transport (DCT), and systems with Pe > 1
experience advection-controlled transport (ACT), consistent with our previous modeling
[38] in the pseudo-steady limit. We define the upper bound for this region of the frequency
domain as the lowest frequency that exhibits a value of (Sh) that is 5% higher than its
value in the pseudo-steady limit, corresponding to non-dimensional frequencies of f* =
3.4 and 0.8 for microstructures with respective porosities of ¢ = 0.546 and 0.874.

In between Regions | and Ill, we observe Pe-specific transitions from low to high
frequency (Region Il) as a result of the characteristic diffusion time-scale being
comparable to the time period of boundary cycling. Within this region the magnitude and
the phase of (Sh) show frequency dependence that is distinguishable for different
extremes of Péclet number. For systems with low Péclet number (Pe «< 1) a smooth,
monotonic variation of phase is observed with frequency as a result of its transition from
diffusion-controlled transport at low frequency to frequency-controlled transport at high
frequency. On the other hand, for systems with high Péclet number (Pe > 1) the variation
of phase with frequency is non-monotonic because of its transition from advection-
controlled transport to frequency-controlled transport.

4.3. Advective-flux transfer function

Solute can either deplete or accumulate adjacent to such interfaces due to the
finite reaction rates occurring at solid/solution interfaces, thus reducing the effectiveness
of advective transport near such interfaces because of the no-slip condition. To
characterize such effects, in Sec. 2.1.2.3 we introduced a non-dimensional advective-flux
transfer function (N) = —covar(u",c)e/[|ug|(cs — (€))] that quantifies the departure
covar(u",c) of average advective-flux (u®¢) in the frequency domain from its value
(u™)(c) that is expected for homogeneous concentration and velocity fields. When a
microstructure comprised of a square array of cylinders is subjected to horizontal flow
along the x-axis, velocity and concentration fields are produced that show reflection
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symmetry about a line directed in the streamwise direction that also passes through the
cylinder’s centroid. For such cases to which we restrict the present investigation, the
transverse component of (N) is identically zero by virtue of this symmetry. Thus, in Fig.
4b we present simulated results for the variation with frequency of the streamwise
component of (N) at different Pe and porosity values, denoted as (N),.

At high frequencies, |(N),| decreases with increasing frequency by following a
power law correlation with exponent -0.5, while a negligible effect of Pe is observed
because of frequency-controlled transport in that limit. The decrease in |(N),| with
increasing frequency can be attributed to the fact that the steep concentration gradients
that are produced at interfaces at high frequency (Figs. 3c and 3d) promote supply of
reactant as well as the removal of product. In this frequency region the phase of (N),
approaches —mt/4. Atlow frequencies the magnitude of (N), approaches a constant, non-
zero value that depends on porosity, while its phase approaches zero, consistent with the
lagless response that is a hallmark of the pseudo-steady limit. Similar to our observations
for (Sh), (N);, shows smooth, monotonic variation for the transition from diffusion-
controlled transport to frequency-controlled transport at low Péclet number (Pe « 1),
while non-monotonic variation is apparent for the transition from advection-controlled
transport to frequency-controlled transport at high Péclet number (Pe > 200).

5. Macro-scale simulations versus time

Here we present simulations of the macro-scale response of an RFB subjected to
step impulse current variation by solving the TF embedded macro-scale MCEs from Sec.
2.2 (Egs. 10-13) in the time domain. We assume that an ideal separator isolates the high-
and low-potential sides of its reactor to eliminate crossover of reactive species. Thus, we
limit our study to one side of the reactor (i.e., a half cell) where a reduced species R is
oxidized to produce O due to a positive current applied at solution/electrode interfaces.
Assuming a parallel flow configuration and assuming negligible macro-scale
concentration gradients in the transverse direction, a one-dimensional model is sufficient
to capture the temporal and spatial variation of (c;) along the reactor’s length L, (Fig. 5b).
We discretized each electrode into 50 finite volumes (FVs) over which the local
concentrations are averaged to obtain (c;) (see Fig. 5b). Each tank was represented by a
single FV with a time-dependent average concentration (c;)”. The step impulse variation
of the applied current is presented non-dimensionally by defining a current ratio i,, where
the applied current density i,,, is normalized by the limiting current density i;;,,. The
limiting current density is calculated as i, = FD{(cg)""*(Sh)/d, where (Sh) is the time-
independent Sherwood number corresponding to PSL. The step impulse variation is
created by instantaneously increasing i, to a peak-current ratio i,, (from a base current
ratio i, = 0.1) for a time , after which i, returns to its initial value. Both 7 and i,,, were
varied to simulate different cases of RFB operation with high- (¢ = 0.874) and low- (¢ =
0.546) porosity electrodes.

For all cases simulated, the nondimensional flow rate  was at least 16 to prevent
reactant depletion at the reactive interface due to insufficient electrolyte flow [69]. Here,
B is the actual flow rate Q.+, NOrmalized by the stoichiometric flow rate Qg;y;., Where
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Qstoic = Viank + Vieactor)/Ten depends on the electrolyte volume in the tank (V;4,x) and
the reactor (V,.q4ctorr) @nd on the theoretical charging/discharging time t,,, resulting in a
certain Péclet number for low (Pe =22.8x103) and high (Pe =4 x 103) porosity
electrodes using Pe = Qu.tua1d/AD. In practice, 7., was determined by Faradaic balance
from the theoretical charge-storage capacity of the redox-active electrolyte and the
magnitude of the applied current. A kinetic rate constant that produces a Damkdhler
number of 414 (Da = kd /D) was used to ensure that reaction polarization was negligible
compared to the concentration polarization. For all cases the tank and the reactor were
initialized with identical electrolyte solution comprised of 90.9% reactant (R) and 9.1%
product (0) and were charged for 160 seconds with i,;,, = 0.1 before the step impulse was
applied. The time ranges presented were adjusted so that the step-impulse current
started att = 0.
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Fig. 5. (a) Schematic of an RFB with electrolyte flowing through both sides of the reactor,
(b) one-dimensional model showing the upper half cell with finite volumes, and (c) step
impulse variation of applied current density with time shown as current ratio i,.. Variation
of maximum local concentration polarization |Ac|;, with time at different /¢, for (d) ¢ =
0.546 and (e) ¢ = 0.874.

19



We used a self-consistent iterative algorithm to solve Eqgs. 10-13 numerically,
where (c;) and (c;)T were calculated from the discretized mass conservation equations
written for each FV inside the reactor (Eq. 10) and the tank (Eq. 13). The inverse Fourier
transforms appearing in Eg. 10 were calculated using a state-space model for each TF
by recognizing that the system is linear time-invariant [39,70]: (TF) = C(jwl — A)1B + D,
where (TF) is a rational approximation to a given irrational TF and A4,B,C,and D are
system matrices/vectors. Since (Sh) is an improper transfer function due to its divergence
at infinite frequency (see Fig. 4a), we determined a state-space model for its reciprocal
(Z) = 1/(Sh). To obtain the poles p; and residues r; for rational approximations to (Z) and
(Ny), a vector-fitting algorithm was used [71-73]. Additional details of the model’'s
discretization, self-consistent iterative algorithm, state-space models, vector fitting, and
verification are included in the supplementary information.

5.1. Concentration polarization across electrode pores

We used the macro-scale numerical model to analyze the transient concentration
polarization inside of the RFB reactor. The corresponding time variation of local maximum
concentration polarization |Ac|;,(t) = max (|c;s(t) — {c;)(r, t)|) is shown in Fig. 6 for
different porosity ¢, peak-current ratio i,,,, and impulse duration = values. We focus on
|Ac|;m because the reactor is most likely to deplete where and when |Ac| is maximum.
Numerical solutions were also obtained assuming time-independent (Sh) and negligible
solute acceleration/suppression (i.e., (N) = 0) as a conventional model (CM) against
which to benchmark the present bottom-up transient model (B-UTM) . For all cases
studied in this section, advection is the dominant mode of transport because Pe > 1 was
chosen. As we subsequently show, the dynamic response of such systems is dictated by
(i) the characteristic time-scale of the transient input and (ii) the average time solute
spends inside of the reactor. Hence, different cases of impulse duration are characterized
by their corresponding t/t, values, where t, is the fluid’s mean residence time defined by
t, = L,./|uf|. Further, we present system response versus t/t, which represents time as
a fraction of impulse duration. Fig. 6 shows that the CM model always predicts a lagless
response, as evidenced by a rectangular impulse variation of |Ac|;,, synchronously with
the applied current.
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Fig. 6. Variation of time-maximal concentration polarization |Ac|i? with 7/t, at different
peak-current ratio values i,,, for (a) low-porosity (¢ = 0.546, Pe = 22800) and (b) high-
porosity (¢ = 0.874; Pe = 4000) electrodes. The corresponding i,,, values are overlaid on
each curve. CM predictions for i,,, < 1 are shown as blue-dashed lines. Cases are only

presented for conditions that did not produce reactant depletion at any instant and
location.

Building on these results, we constructed a non-dimensional operation map that

shows the maximal concentration polarization over time versus pulse duration for different
peak current ratios i, (Fig. 6). Three different regimes of impulse duration are apparent.
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First, for 7/t > 102 the B-UTM and CM models produce identical results as a result of
pseudo-steady response. Further, pore-scale transport is dominated by bulk advection.
This is a consequence of the fluid’s average residence time being much shorter than
impulse duration, resulting in each solute molecule experiencing elevated current for less
than 1% of the impulse’s duration. In this regime i, alone dictates concentration
polarization, while further increase of t/t, has neglibible effect. Second, for 7/t,, < 10 the
B-UTM varies significantly from CM as a result of frequency-controlled transport. This is
a consequence of the fluid’s average residence time being similar to impulse duration,
resulting in each solute molecule experiencing elevated current for more than 10% of the
impulse’s duration. In this regime concentration polarization is dependent on both i,
and t/t,.. Of particular note is the modest concentration polarization that is achievable
even under over-limiting conditions (Figs. 6a and 6b, upper left corners) despite CM
predicting inoperable conditions. Third, for 10 < 7/t, < 10% a transition regime occurs
where B-UTM predictions near t/t, = 10 deviate from CM, but gradually merge with CM
for 7/t —» 102,

This operation map also contains a regime of vanishing concentration polarization
(|AC|E /{creac)™ =~ 0) that corresponds to highly efficient RFB operation with uniform
reaction-rate along the streamwise direction. Such operation is achieved by long duration
charging/discharging with very low current density. Another regime with very high
concentration polarization (JAc|i"/{(Creqc)™ =~ 1) is produced for very short duration
charging/discharging with high current density that results in non-uniform reaction-rate
along the streamwise direction. Under such conditions cycling terminates prematurely
during local reactant depletion (Figs. 6a and 6b, gray zones with boundaries marked by
cross symbols). In this regime the B-UTM model predicts reactant depletion at much lower
7/t compared to the CM model due to the increased advection rate of the reactant from
the reactor, as elucidated subsequently.

5.2. Reactant availability through electrode pores

Apart from pore-scale concentration polarization between electrode surfaces and
concentrations in the bulk of electrode pores, the local volume-averaged concentration
within electrode pores (c;) exhibits macro-scale variation along the streamwise direction.
Thus, the depletion of (c;) can cause premature termination of cycling. To quantify this
effect we determined the macro-scale average of solute concentration by averaging {(c;)
over each electrode as ({(c;)) = 1/V, [{(c;) dV, where V, is electrode pore volume. While
Fig. 7 reveals that short duration impulses (t/t, < 10) produce negligible temporal
change in {{(c;)) for all cases of i,,, both for the B-UTM and for CM, disparate responses
are observed for the two models for long duration impulses (z/t,. > 10%). For long
impulses system response is lagless for both models, but the B-UTM accounts for the
impact of local reaction rate on the covariance of concentration and velocity while CM
neglects it. Consequently, the B-UTM model exhibits abrupt temporal changes of ({(c;))
that track synchronously with the abrupt change in current that occurs when the current
pulse begins, whereas the CM model produces less abrupt and less significant temporal
changes of ({c;)). Forthe B-UTM the sudden increase in current increases concentration
polarization instantly via finite (Sh), which accelerates the advection rate of reactant,
causing a sudden decrease in ({Creqc)) Via non-zero (N),. Similarly, increased
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concentration polarization suppresses the advection rate of product, causing ({(cyroq)) t0

increase instantly. In general, we also note that the B-UTM model retains less reactant
and more product compared than CM at a given instant in time as a result of the transient
experienced when current is initially turned on (see supplementary information).
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Fig. 7. Time variation of volume-averaged concentration of reactant and product ({(c;)) for
(a) i, = 0.3 and (b) i, = 0.8 inside an electrode of ¢ = 0.546 (left panels) and ¢ = 0.874
(right panels). The upper and lower half of the broken vertical axis belong to the reactant
and product species respectively.

Our earlier results (Figs. 5 and 6) suggest that in the limit of short pulse duration
the acceleration/suppression effect is negligible, while transient mass transport effects
are substantial. The bottom-up transient model shows that such properties of the short
pulse duration limit enable RFB operation with over-limiting current (i,, > 1). The
opposite scenario is observed in the limit of long pulse duration, where the
acceleration/suppression effect is significant, and the transient mass transport effect is
negligible. To evaluate the relative influence of concentration polarization and reactant
availability we show the variation of ({(creqc)))e/Act in Fig. 8, where ({({Cyeqc))): is the
time-averaged reactant concentration inside the reactor calculated by averaging ((¢,cqc))
from t/t =0 to t/t = 4. In the limit of short pulse duration, the B-UTM model predicts
higher ({({(¢reac))):/Act values compared to the CM model. The difference between B-
UTM and CM in this limit is a direct result of transient mass transport effects that depends
on both t/t, and i, where system response is controlled by transient diffusion through
the concentration boundary layer adjacent to the reactive interface. On the other hand, in
the limit of long pulse duration the B-UTM produces consistently lower ({{c,eqc))):/Acim
than CM as a result of its dominant acceleration/suppression effect. For a given peak-
current ratio this effect remains constant in the limit of long pulse duration. Further, system
response of the B-UTM in this limit is dictated either by the advection of solute by bulk
electrolyte flow (Pe > 1) or by pseudo-steady diffusion across pores (Pe «< 1). From Fig.
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8 it is also evident that high-porosity electrodes exhibit increased transient mass transport
effects and less acceleration/suppression effects compared to low-porosity electrodes.
Thus, the use of high-porosity electrodes is advantageous for transient operations, along
with their low pressure-drop benefits.

(a)
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im
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—®— Bottom-up transient model (B-UTM) -—:'= Conventional model (CM) = — = Projected line
10
<«——— transient regime ————>€— t{ransition —><—— pseudo-steady regime —>
s i
e =0.546
Pe = 22800
6 |
4t
2 -
0
10 T

8,

4

<— transient regime — T transition —>——— pseudo-steady regime —>
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Fig. 8. Variation of time-averaged reactant concentration ({((c,..q.))): With 7/t,. at different
peak-current ratio i,,, for (a) a low-porosity electrode (¢ = 0.546, Pe = 22800) and (b) a
high-porosity electrode (¢ = 0.874; Pe = 4000). The numbers shown on the curves
represent corresponding i,,, values. The results from CM with i,,, < 1 are also shown by
broken blue lines in the figures.
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Conclusions

A bottom-up multi-scale modelling approach is presented to study the transient
response of redox flow batteries with time-dependent current input. The transient pore-
scale mass transport physics, including concentration polarization and the resulting
deviation of advection rate of reactive species, are captured via frequency dependent
transfer functions (TFs), which are incorporated into an up-scaled model through volume
averaging. These transfer functions include the spectral Sherwood number (Sh) that
enables determination of the average flux on reactive surfaces (j)s subject to a driving
concentration difference at the pore-scale Ac = ¢, — (c), as well as an advective flux
transfer function (N) that captures the deviation of the total advective flux vector (uc) from
its value expected in the absence of covariance between u and c (i.e., (u){c)), subject to
the same driving force Ac.

The spectral Sherwood number is shown for the first time to extend the
conventional concept of a Sherwood number to transient conditions. Also, the advective
flux transfer function describes the relative acceleration/suppression of solute advection
rates relative to bulk flows, without ad hoc introduction of a separate velocity for solute.
For solutions undergoing electrochemical reactions in porous electrodes these transfer
functions provide fundamental insights into the mechanisms that could limit achievable
current densities, thermodynamic efficiencies, device resilience, and cycle life. Beyond
their potential significance to electrochemical systems, these concepts will also find use
in understanding the coupling between reactions and convection processes in porous
media, as well as in understanding transient thermal transport via formal analogies
between heat and mass transfer.

Both qualitative and quantitative comparison between experiment and bottom-up
transient model (B-UTM) predictions are presented in contrast with the conventional
constant Sherwood number model, where the B-UTM model not only showed substantial
improvement in capturing transient response, but also provides a means to simulate flow
cell operations with short impulses of near-limiting and over-limiting applied current.

Aside from their future use, we demonstrated the utility of our frequency-based
theory by simulating such transfer functions using a simplified microstructure containing
a regular array of solid cylinders in horizontal crossflow. The effects of porous electrode
microstructure, superficial velocity, and boundary cycling frequency were respectively
investigated by varying porosity ¢, Péclet number Pe, and nondimensional frequency f*.
From the variations of (Sh) and (N), with frequency at different ¢ and Pe we deduced
three different spectral regions of response. In the low-frequency region (f* « 1)
transport is primarily controlled by the prevailing pseudo-steady mass-transfer mode:
diffusion and advection respectively for Pe << 1 and Pe > 1. In this spectral region, the
magnitude of (Sh) and (N), approach an asymptotic non-zero value with vanishing phase
lag. In the high frequency limit (f* > 1) transport is controlled by transient diffusion within
boundary layers, showing strong dependence of each transfer function on frequency. In
this spectral region, the magnitude of (Sh) and (N ), respectively increase and decrease
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according to a power law with exponent + 1/2, while their phases approach + /4 in
agreement with semi-infinite Warburg response.

We embedded these TFs into an up-scaled model using porous electrode theory
to investigate the dynamic response of a redox flow battery operating under step impulse
current input. The results obtained suggest that the dynamic response of such systems
is dictated by the characteristic time-scale of transient current variation. For fast
fluctuations the effect of transient mass transfer is substantial, and the system response
is found to lag. For such operation significant reduction in concentration polarization is
achieved with 60%-70% reduction for an applied current of 90% of the limiting current.
Finally, we demonstrated that short duration charging/discharging of a redox flow battery
with over-limiting current is possible, which provides a means to increase the utilization
of charge capacity of existing flow-based electrochemical devices that are operated under
transient conditions. Furthermore, while operating under fluctuations of low characteristic
frequency, such systems reach a pseudo-steady limit with negligible transient mass
transport effect. Here, the accelerated advection of reactant species from the reactor to
the tank causes earlier (in time) depletion at the reactive interfaces.

These findings motivate the exploration of related effects using the presently
introduced transfer functions to simulate the charging current input that is typical of
renewable power sources, as well as to model such effects with different electrode
microstructures. Additional physicochemical effects not shown here (e.g., macro-scale
migration and diffusion of redox-active species and supporting-electrolyte ions and
macro-scale superficial velocity gradients induced by the used of serpentine,
interdigitated, or other flow fields) are readily coupled with the present B-UTM by adopting
the two transfer functions of interest to express the interfacial redox-reaction rate and the
average advection rate in place of those determined by the conventional film law of mass
transfer in previous porous-electrode theory formulations of RFB models (see Ref. [24]).
Further, the similarity of the time-domain governing equations motivates the use of the
transfer functions defined here in other electrochemical contexts using flow-through
electrodes, including electrochemical separations and energy conversion. Increased
accuracy of the model is also possible by additionally including macro-scale dispersion,
ion conduction, entrance region effects, and non-uniform surface concentration effects.
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A. Derivation of the criteria for the validity of uniform surface-concentration
boundary conditions.

Here we derive the criteria that must be satisfied to use a uniform surface
concentration boundary condition for active soluble species undergoing a coupled
heterogenous redox (szgR*R + 5,070 + e~ =0), where the electromigration flux
contributions of such species are negligible in solution. The transient local concentration
of species i is governed by the following mass conservation equation (MCE):

%4_ V-G) =0 (A1)
Here j; = —D;Vc; — %Dicdi’) + u®c; is the total flux of species i. Note that i appearing

as subscript denotes either species R or 0, not to be confused with i appearing as
denotation of current density. The flux j; is also not to be confused with the imaginary

unit j = v—1 appearing later. We assume that solid/solution interfaces are stationary and
impenetrable to bulk flow, resulting in u™-n|, =0. The coupled production and
consumption of species is enforced by the boundary condition (BC) as j - 1i|; = —j, - 11|,

0 a . . . . ..
or Dy =Rl = —D, Z2| | since electromigration is assumed to be negligible and because

an | an |
electrode surfaces are impermeable to solution. The current density i at the solid/solution
interface is coupled to the flux of either species as a result of redox reaction stoichiometry:

. F ;. F dc;
i=-Uds=—3D :

Si t on

_=f@ (A2)
Here, overpotential is expressed as n = ¢(t) — ¢e(t) — ¢eq(Co,s Crs), @and we assume
that the oxidation reaction produces a positive current, while reduction produces a
negative current. Redox reaction kinetics relate i to overpotential n. Using Taylor series
expansion with respect to a certain current density i* that corresponds to a certain



overpotential n* = ¢, (t) — ¢, (t) — ¢eq(c5,s, crs), We obtain a linear expansion of current
density that will later be used to derive validity conditions on the basis of scaling analysis:

—¢s) + -

—€5,5)

¢e) + _| (CRS CR s) +

or, i~ i*

—APl) + 5 — — Chs) F 5 — —Co,s) (A3)

Here, A¢|s = ¢ — ¢, is a driving potential difference between the solid and the
electrolyte, and n° = ¢, — ¢, — @2, is the overpotential at standard conditions. Using the
law of mass action with rate constants for oxidation k,, and reduction k,..; we find:

[ = f(77) = F(kaR,s - kbCO,s) = F(koxCR,s - kredCO,s) (A4)

Using this kinetics formalism, the relevant partial derivatives of current density i are:

ai ok 0Kyred
—=F(c X —¢ re) Aba
ano R,s ano 0,s ano ( )
ai Okoyx 01° Okreq 01°
=Flc — —-cC —k A5b
dco,s R,s ano dco,s 0,s an® dco,s red ( )
ai Okoy 01° Okyeq 01°
=Flk ox —C Ab5c
aCRS ox + R S an() aCR,S O,S 6770 aCR_S ( )

Using Butler-Volmer kinetics with k,, = k%exp[(1 — a)F n°/RT] and k,.q =
kPexp[—aF n°/RT], these derivatives are 8i/dn° = F2/RT [(1 — @)koxcrs + @ kreaCoss|,
0i/0cgs = Fkoyx and 0i/0cy s = —Fk,.q. Using Egs. A2 and A3, we obtain a linear, Robin-
type BC that couples the concentration of both species to the gradient of their
concentrations at the solid/solution interface (Eq. AG).

After rearrangement Eq. A6 reduces to the following expression:

Dj 0 i * * i * * * *

: ajl + koxCR,s - kredCO,s = _l;_ koxCR,s [ (A(pls A¢| )] + (koxCRs kredco,s) [1 +
i s

a—(8pl, — AgL3))| (A6)

Nondimensionalization of the terms in Eq. A6 enables us to perform scaling analysis. To
do so we choose a nondimensional normal coordinate # = n/b with characteristic pore
dimension b, a nondimensional surface concentration ¢&;|; = (¢;/c/)l;, and a
nondimensional potential difference A¢ = A¢F /(RT):

6]+ 5 [ ) 522 2] (o) - stz [ 1= (o1, -

3] - e 2] [1 + (a9, - ad)] (a7)
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To approach a Dirichlet condition, thus representing a boundary condition that
depends solely on the concentration of either species but not on its gradient, requires that
the gradient term in Eq. A7 (i.e., d¢;/01i|,) vanish relative to the concentration-dependent
term. We now consider characteristic scales for the concentration of each species
(cos~Ccps and cgs~cg ) and for length (n~b), which require that (9¢;/07)|s~1 , érs~1,
and ¢, s~1). On this basis we argue that the gradient term in Eq. A7 vanishes relative to
the concentration-dependent terms when either of the two criteria are satisfied:

1 « |Krea® s or 1 « |Kexb CRs (A8)
D; Cis Di ¢
For oxidized and reduced species these conditions can be written as,
For 0: 1 « |fzea?]; or 1 « |freat (" R) (A9a)
Do Do Kreq Cos
For R: 1 < "””("tfd L) . or 1 « |fex? (A9b)
Dgr kox CRrs DR

The terms inside the parentheses in Eq. A9 can be simplified by utilizing the de Donder
relation  (kjx/kyeq = exp(Fn°/RT)) and a logarithm identity (c5¢/crs =
exp[in(cys/cis)]), by which we obtain (kjccrs)/(kieacss) = exp[F/RT (n° —
In(ct/cp)ls)] = exp(Fn*/RT). Introducing the definition of a Damkdhler number for both
reduction and oxidation as Da,..q = k;.q b/D, and Da,, = k,, b/Dg, the required criteria
to approach a uniform surface condition are given as:

Da,.q » min[1,exp(—Fn*/RT)] and Da,, > min[1,exp(Fn*/RT)] (A10)

Thus, the respective Damkohler numbers must be sufficiently large to assure that the
uniform surface concentration boundary is valid.

B. Validity criterion for periodic boundary conditions

Here we revisit the validity criteria for imposing periodic boundary conditions for
periodic microstructures — an assumption invoked ad hoc in section 2.1 — by performing
scaling analysis of electrolyte flow through an electrode, similar to our approach used in
the pseudo-steady limit (Ref. [1]) with the exceptions that (1) we consider a non-
recirculating cell configuration and (2) we perform our scaling analysis in the frequency
domain with the aid of the transfer functions introduced already. Following our previous
work, we analyze the time-dependent average concentration (c), within the
electrode/reactor using an integral MCE assuming an electrolyte feed with certain uniform
concentration of redox-active species flowing in ¢ with a volumetric flow rate V:

d(eAcLyr{c)y)
dt

= Vel — Aclugl[(c), — FHNY (G — (€))}] + 2 FH(SR)(E — (0),)} (B1)

Here, the rightmost two terms, which contain the transfer functions (N), and (Sh), are
respectively a result of the rate of solute advection through the outlet and the rate of solute
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production by virtue of electrochemical reactions at the solid/solution interface. A, and L,
are respectively the electrode’s cross sectional area normal to the superficial velocity ug
and the electrode’s length in the streamwise direction. a is the electrode’s surface area
per unit volume. Fourier transformation of this equation simplifies this expression to:

JwEAL(E)y = VE™ — Aclugl[(€)r — (N} (& — (€))] + =2 (SR) (e, — (€)r) (B2)

Similar to our previous work [1], we require the ratio of characteristic streamwise
(Ac)' and transverse (Ac)Tt concentration differences to be sufficiently small at the
macroscopic scale in order to assure that streamwise concentration differences are
sufficiently small, ultimately requiring that the following nondimensional quotient A¢ satisfy
AC K 1:

(Ac)m
(Ac);’j_

(€)y —ci

(C)r —Cs

A_ b
AC=—-

Ly

~

(B3)

By solving the Fourier-transformed MCE for (c),, — ¢ we obtain the following criterion
after significant simplification to assure the validity of periodic boundary conditions:
NG =—

Pe

21j f*&(C) .
1-(C)

ab(Sh) — LEPe(N>||| <1 (B4)

Hence, the validity of using periodic boundary conditions is, in a sense, a recursive
criterion because it depends not only on input nondimensional parameters (Pe, f*, ab,
and b/L,) but also on the nondimensional transfer functions (N), and (Sh) that are outputs
produced based on those input parameters. In practice, (N), and (Sh) would first be
predicted and A¢ would subsequently be calculated to verify the self-consistency of such
simulations performed using periodic boundary conditions. Further, Eq. B4 is a criterion
that is frequency- or mode-specific, and, hence, it is advisable to evaluate A¢ at
frequencies that are representative of the total response.

C. Equivalence of spectral Sherwood number (Sh) at vanishing frequency with
Sherwood number (Sh) in the pseudo-steady limit

Here we demonstrate the equivalence between the spectral Sherwood number
(Sh) in the limit of w — 0 with the conventional Sherwood number obtained in the pseudo-
steady limit. For the pseudo-steady limit, we consider the auxiliary problem that we
introduced previously in Ref. [1]. The auxiliary problem is described by a steady MCE in
terms of the time-independent contribution ¢, (r) to the time- and space- dependent
concentration field c(t,r) as:

V- (u.Ch - DVCh) = —0, ChIS =0 (C1)

where ¢, (1) = c(r,t) — cs(t) and the source term o represents the temporal rate of
change in surface concentration o = dc;/dt. The conventional Sherwood number is
defined in terms of ¢, () using the film law of mass transport. In the present study, the
unsteady conjugate problem is replaced by a Fourier-transformed MCE (Eq. 4) where the
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spectral Sherwood number (Sh) is defined by Eq. 6 from the main text. To demonstrate
the equivalence of the Fourier transformed MCE (Eqg. 4) with the auxiliary problem’s MCE
(Eq. B1), we define § = (¢ — ¢,)/¢s, and we substitute it back into Eq. 4 from the main
text to produce the following:

V- (u"6 — DVS) = — (1+5); Sls=0 (C2)

Scaling analysis of Eq. C2 with a characteristic length scale b and a characteristic velocity
U reveals that its righthand side approaches unity for vanishing frequency (i.e.,
lin(l)(l + §) = 1), based either on characteristic scales for advection (6§~ wb/U) or for
w—

diffusion ( §~ wb?/D;). In this limit Eq. C2 approaches the following form:
V-(u"§ —DVd) = —jw; 6ls=0 (C3)

Since § is a complex number, we expand it in terms of real and imaginary parts § = 8z, +
J 8;m to obtain a single PDE for the real part (V- (u®dz, — DVdg.) = 0 with 6z.|s = 0) and
a single PDE for the imaginary part (V - (u®6,,,, — DVé,,,) = — w with §;,,,|s = 0). The only
solution possible for the real component is the trivial solution, i.e., 6z, = 0. Thus, we
deduce that § = jé,,,, and we solve only for the imaginary component:

V- (u.61m - Dvalm) = —w, 6Im|s =0 (C4)

To verify the equivalence of Eq. C1 and Eq. C4, we define 6;,, = §,,,/w and ¢, = ¢, /o
and substitute into the respective equations to obtain:

V- (u.6;m - Dvallm) = -1 5I,m|s =0
V- (u"cy, — DVcy) = —1; chls =0

Inspection reveals that solutions to these PDEs are identical, such that §;,, = ¢; and
m — th gre satisfied exactly. By recognizing that surface fluxes are only due to diffusion

(and not advection), the associated flux and concentration difference can be expressed
interms of § as (j); = —D(dc/on) = —D{(05;,,/0n)¢; and ¢; — (C) = —(8;m) C;- Therefore,
(Sh) approaches the following expression in the limit of vanishing frequency:

L (Pimy o LB 0y o (2 = 1Y)~ (gp),, (CB)

d {J)s _
lim (Sh) = lim = D cs—(c)

w-0 w—0D &s—(€)  (8pm) (C )o 'on —(cs=(c)) ‘on

This analysis demonstrates that the value of (Sh) for w — 0 must be equal to the value of
(Sh) obtained in the pseudo-steady limit. This analysis also suggests an alternative
interpretation of the transfer function (Sh), i.e., that it is essentially a frequency-dependent
version of the Sherwood number. This statement is further supported through comparison
between Lloig})(ffz) values obtained from present model and (Sh)ps, values obtained from

pseudo-steady simulations [1], where the percentage deviation observed is found to be
within machine precession (~1071° %).



D. Experimentation and model prediction comparison

To compare the predictions of our bottom-up transient model with experimentally
obtained polarization values, a redox flow-cell setup was implemented and tested
experimentally. To validate the present model with experimental data the flow cell was
prepared using a well-prescribed electrode geometry using redox chemistry with well-
known electrochemical properties. The reaction chemistry chosen was the ferro/ferri-
cyanide (Fe(CN)g¢~/Fe(CN)3™) couple dissolved in an aqueous solution along with KCl
as supporting salt.

The flow cell consisted of two 200 wm thick graphite foil electrodes
(4.5cm x4.5cm) separated by a non-selective polymer separator (NP030 from
STERLITECH Corporation). The electrolyte solution was pumped at a rate of 5 mL/min
through the triangular channel engraved electrodes (TCEE) to create flow along the
length of such channels, as shown in Figs. D2a and D2c. The parallel triangular channels
(see Fig. D1a) were engraved using a Trotec laser engraver (Speedy Flexx 400 fiber
laser) with 100 um spacing from valley to valley. A nominal 90 um deep and 75 um wide
isosceles channel cross-section (Fig. D1d) was determined from the mean values of the
Gaussian distribution of measured depth and width for model implementation, as
determined from 3D profilometry (Keyence). The nominal channel cross-section area
obtained was 3375 um?, which coincides with the mean values obtained from Gaussian
distribution of measured cross-sectional area for both electrodes (Figs. D1b and D1c).
The volume-specific reactive area and total flow area for the electrolyte were calculated
from this representative geometry. We note that the channel depth d., = 90 um was
taken as the characteristic length to calculate non-dimensional parameters.

(a) (b) (c) (d)
25 Electrode-1 257 Electrode-2 < 75 um >

Area=3375

(um?)

0
2000 3000 4000 5000 1000 2000 3000 4000 5000
Triangular channel engraved electrode (TCEE) Channel cross-sectional area ( um?) ~ Channel cross-sectional area ( ;im-) Selected nominal cross-section of electrodes

Fig. D1: (a) Schematic of a triangular channel engraved electrode (TCEE) produced by
laser engraving of graphite foil. (b, c) Histograms showing Gaussian distribution of the
measured cross-sectional area at different locations. Representative channel cross-
section approximated for pore-scale model implementation that produces a cross-
sectional area close to the average values of the distributions observed in Figs. D1b and
D1c.

The electrolyte solution was prepared by dissolving potassium

hexacyanoferrate(ll) trihnydrate, K,Fe(CN)¢ - 3H,0, and potassium hexacyanoferrate(lll),
K;Fe(CN),, in deionized water. All the chemicals were from Sigma-Aldrich and were used
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as received to prepare 350mL of 15mM (individual species) solution. High salt
concentration (3 M KCl) was used to increase the ionic conductivity of the electrolyte as
well as to decrease the electromigration of active species. For simplicity, the anodic and
cathodic kinetic processes were modeled as symmetric with equal Butler-Volmer transfer
coefficients (a = 0.5) with an identical diffusivity of D =7 x 107% ¢cm?/s and a rate
constant of k;, = 0.1 cm/s. The values of D and kg were taken from published literature
[2-7]. From these values the calculated limiting current density i;;,,,, Peclet number Pe,
Damkohler number Da, and nondimensional flow rate S are listed in Table D1. To obtain
the transient response of the flow cell, applied current was varied as a square wave as
shown in Fig. D2b. During all experiments, each tank was prepared with 175 mL of
electrolyte to ensure that the change in state-of-charge during any charging/discharging
step was less than 0.1%.

(b)

ir
LN
S
= =
- N %
j=} \
& i g i,=0 S
2 / L)
§.-‘- Il z,
e T kS
~_ _; _ ’\xMMM%QQ%@Q@EMMMM
™ ORI speatoc s i et JaT s bl b
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Fig. D2: (a) Experimental setup of flow cell, showing electrolyte flow circuits and
electrode/separator/electrode staking inside of the reactor. (b) Schematic of applied
current density variation with time for two steps of galvanostatic charging/discharging. (c)
Magnified 3D representation of triangular channel engraved electrodes (TCEEs) with flow
along channel length. (d) 2D pore scale model of TCEEs with different boundary

conditions, reactive boundaries (C|; = 1) and no flux boundary (Z—ﬂ = 0). (e) 1D macro-
scale model of the electrode with electrolyte flow direction. Frequency dependence and
fitting obtained from rational function approximation of different TFs calculated from
numerical solution of pore-scale model, (f) spectral Sherwood number (Sh), (g) parallel
component of suppression vector (N), and (h) (Z) = 1/(Sh).



Table D1: Values of different parameters associated with flow cell experiments using
triangular channel engraved electrodes (TCEE).

Parameter (unit) Value/range
Volume-specific active area, a (m?/m?) 5.778 x 10*
Limiting current density, i;;,, (mA/cm?) 10.1
Exchange current density, i, (mA/cm?) 144.7
Mean residence time, t, (sec) 0.82
Characteristic diffusion time, t; (sec) 11.6
Damkohler number, Da (—) 128.5
Péclet number, Pe (—) 7.05 x 103
Non-dimensional flow rate, g (—) 24~0.3
Tank-to-reactor volume ratio 2.56 x 103
x Experiment e B-UTM model = == CM model
0.02 " i, = 0125 T 1S 0004sec | 0.02

g b LT g
= =
T I
- M
~ -0.02 . ‘ ‘ ‘ ‘ ‘ . ~ -0.02 ‘
- L 92 ip=0623 T = 0.04 sec
% E % E f--z= ‘: :—“__Z»--'-““i_' Pt BT =
| = = -k ] e __

-0.2 ‘

0.3
3 3
82 g
£ s 8
g ¥ gy 0
I3 I
x < ”

-0.3 |

0 1 2 3 4 5 6 7 8
t/t t/t

Fig. D3: Variation of IR-corrected cell voltage with time due to current applied with
different i,., and 7 values.

For the model implementation, the local pore velocity (x-component u, ) field was
obtained from numerical solution of the steady form of the x-component of the Navier-
Stokes equations in the creeping flow limit:

V- (Vul) =7 (D1)

with no-slip (uy |¢ = 0) and impermeable (%

= O) boundary condition at solid-solution
S
interfaces, including the separator/solution interface. The local C field was obtained from
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numerical solution of Eq. 4 from the main text by using a constant surface concentration
condition at reactive interfaces (C|; = 1), along with a no-flux condition (Z—: = 0) at the
separator/solution interface (see Fig. D2d). From the numerical solution of these
equations, the spectral Sherwood number (Sh) and the parallel component of the
suppression vector (N), were calculated using Eq. 6 and Eqg. 9. The variation of these
TFs with non-dimensional frequency and their fitting from rational function approximation
are shown in Fig. D2f-h. We note that, unlike arbitrary porous media, these TFs are
independent of Pe because the velocity components along any direction perpendicular to
channel length is zero (i.e., u, = u, = 0). Finally, these TFs were embedded into the
macroscopic model following an approach identical to that discussed in Sec. G to obtain
the transient response of the flow cell (see Figs. D2c-e).

To study the transient response of this system, current was applied to the flow cell
as a square wave with certain current magnitude and half-period t (Fig. D2b). Figure D3
shows the time variation of /R-corrected voltage for different i,,, and 7 values obtained
from experiment and from predictions of the bottom-up transient model (B-UTM) along
with conventional model (CM) predictions. A detailed discussion on Fig. D3 is in Sec. 3
of this article.

E. Discretization of pore-scale MCE, numerical implementation and verification

We model flow through a 2D microstructure’s pores as a Newtonian, isochoric
solution with constant dynamic viscosity and partial molar volume for each dissolved
species. The molar-volume averaged velocity field u®™ is governed by creeping flow,
assuming that the pore-scale Reynolds number Re = Pe/Sc is sufficiently small. These
assumptions enable us to simulate u™ using the time-independent, inertia-free version of
the vorticity transport equation (VTE) V*y = 0 [8], which is obtained by taking the curl of
the Navier-Stokes equations. Here, i is a stream function from which the components
of velocity automatically enforce conservation of volumetric flow rates (V- u™ = 0): uy =
dy/dy and uy = —dy/dx. The associated BCs at cylinder surfaces are enforced by the
no-slip (dy/dn|; = 0) and impermeability (dy/ds|s = 0) conditions. We also require that
no lift force is generated perpendicular to u, such that the Kutta-Joukowski [9] theorem

requires fluid circulation I' to vanish around each isolated solid in the domain: I' = § u* -

ds = — gﬁc V2 dA; = 0. Periodic jump/fall BCs are also applied at unit-cell boundaries,
Y+ R) =¢()+ (R/IR|) - AY. Here Ay = Ay, i+ Ay, jis the periodic jump/fall in 3
across the unit-cell that results in a certain volumetric flow rate per unit depth equal to

|Ay|. We used a second-order accurate finite difference method to discretize the VTE
subject to the BCs already described, and we solved for 1 using a direct solver.

The equations that govern the transfer function C(w,r) (Eq. 4) were discretized
using the finite volume method [10] using central differencing of advection and diffusion
flux contributions at finite-volume cell faces subject to periodic BCs at unit-cell boundaries
(i.,e., C(r+R) =C(r)) and a unity Dirichlet condition at solid/solution interfaces. A
complex-number, direct solver was used in MATLAB to obtain C(w, r) at the locations of

9



finite-volume cell centroids. The finite-volume cell dimensions Ax and Ay were selected
to ensure that the corresponding grid-level Péclet numbers (Pe, = uyAx/D and Pe, =
uyAy/D) remained less than 0.5 to guarantee numerical stability subjected to the
Courant—Friedrichs—Lewy condition [11].

(a) b) 10* (©) 10° _ 40
> gl (W] E————— — 60 — analytical ]_ magnitude
—> L ® numerical p T ° numerical
N L/H — 10 .'..“..u . ] 4 O ||, . . _ 20
L ey ? | ?
S i o o) ., [N ©
E—) H . 102 n 0 ) I.I .....° 20 % . 0.-‘ —H0 %
= # o o =
s — 2(4/:) .'.. . o' \./:( E 10—2 | E::
= o~ 1. 8 = s | z
— ‘ ‘,.-". |(Sh>| 0= Q(Nn)\'\. 20 s
—_— ._4 — ...
10°F . —-20 —-40
Y — analytical ]_ . _ ) tietennsy
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" - - ' ' 10—+ ' ' -60
Q> 1073 10° 103 10° 1073 10° 103 10°
w* w*

Fig. E1. (a) Domain of the parallel reactive boundaries used for verification of the present
pore-scale numerical simulations. (b) and (c) respectively show the variation of analytical
and numerical values for (Sh) and (N),; with nondimensional angular frequency w* for the
parallel reactive boundaries.

Here we present verification of our numerical scheme by comparing the obtained
results with analytically derived results for a simple geometry, namely parallel reactive
boundaries (PRBs). Fig. E1a shows a unit cell with a single boundary in the middle that
repeats itself transversely to simulate an infinite array of pairs of parallel boundaries. The
surface concentration is assumed to be uniform and to vary with time periodically
following a sine function with angular frequency w = 2rnf. For such a simple geometry
analytical expressions for the volume-averaged concentration transfer function (C) =
(¢)/¢; and the spectral Sherwood number (Sh) = b(j)s/[D(¢; — (¢))] were obtained as:

(€)= \/;Ftanh(\/j?) (E1)

= Jiw* tanh(,/jw*)
and, (Sh)= .
< > 1—Wtanh(‘/jw*)

(E2)

Here, frequency is nondimensionalized as w* = wb?/D, considering the gap between the
boundaries as the characteristic dimension b. Further, the analytical expression for the
streamwise component of transfer function (N), was obtained as:

3 1 — 3
(}.7+1)\/j7 tanh(,/jw )_joo*

(N>” - 1—Jj17tanh(\/j7) (EB)

The variations of both magnitude and phase in Figs. E1b and E1c for (Sh) and (N),
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respectively show excellent agreement between numerical simulation and the analytical
solution, though at high frequency the numerical results deviate from analytical values
because of the finite grid size used in numerical simulations. In practice we used a grid
size of 1000x1000 cells in most cases to minimize computational expense. For high Pe
cases more grid points were used to satisfy CFL criteria.

103 60 10°
102 40" 101+
23 I =
e 20 z
10t [ i T 102f
ol
100 1 0 PR B R T R 1073 L
1073 10° 103 10° 1073 10° 103 106 1073
w* w*
------- Ngrig =100 X100 --- Ngpjg =250 X 250  — Nypiq = 500 X 500 Ngrig =750 X 750 = Ngy;q = 1000 X 1000

Fig. E2. Variation of (Sh) and (N), with w* that were obtained using different numbers of
grid points applied to the periodic domain of cylinders depicted in Fig. 3c from the main
text.

To check the grid dependence of our predictions for (371) and (N), simulations were
performed for cylinder arrays at Pe = 100 using different grids, the results of which are
shown in Fig. E2. The most significant deviations among different grids were observed
in the limits of low and high frequency. However, a grid of 1000 x 1000 cells adequately
captures the fine-grid resolution while limiting computational expense.

F. Pore-scale concentration profiles

Here we analyze the shape of the concentration profiles at the midplane of the
cylinder within a periodic array and along the direction transverse to the streamwise
direction. To determine how frequency influences such profiles beyond that limit, the
magnitude and phase (8¢ = tan~!(Im[C]/Re[C])) of C(w, ) are shown in Fig. F1 on the
same surface, defined by the red-dashed line shown in Fig. 3c from the main text. All
profiles exhibit |C| =1 and 6; = 0 at the solid/solution interface, consistent with the
surface condition imposed in Eq. 4 from the main text. All profiles show a monotonic
decrease of |C| toward zero as distance from the interface increases, while 6 increases
monotonically with distance from the interface for all profiles, except those simulated at
Pe > 1 with either f* < 1 or f* > 200. At any given location of interest all profiles show
increased phase lag with increasing frequency, except for those simulated with f* > 200
at Pe » 1. For f* >» 200 and Pe > 1 the non-monotonic variation of 6. with increasing
distance and frequency is caused by the high rate of solute advection under such
conditions. For f* « 1 the lagless tracking of surface concentration causes 6 to vanish
uniformly.
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Fig. F1. Spatial variation of |C| and 6. in the transverse direction at the pore throat for (a)
€ = 0.546 with Pe = 0.019 (first row) and Pe = 380 (second row), (b) € = 0.874 with Pe =
0.01 (first row) and Pe = 300 (second). Spatial variation of |¢| in the transverse direction
at the pore throat for (c) € = 0.546 with Pe = 0.019 (left) and Pe = 380 (right), (d) ¢ =
0.874 with Pe = 0.01 (left) and Pe = 300 (right).

The effect of Pe on system response in the low frequency limit (f* «< 1) is not
apparent from Figs. F1a and F1b as a result of the vanishing degree of spatial variation
in C that occurs in the limit of vanishing frequency. To compare the shape of
concentration profiles in this limit at finite frequency we also calculated a non-dimensional
concentration profile ¢ whose surface value is identically zero and whose volume-
averaged value is unity in the frequency domain: ¢(w,r) = (¢ —¢5)/({¢) — ), which
simplifies to é(w,r) = (C—1)/((C) — 1). Consistent with our findings deduced from Figs.
F1a and F1b, the ¢ profiles in Fig. F1c and F1d reveal that the spatial extent of solution
over which concentration varies decreases with increasing frequency, producing
interfacial concentration gradients with magnitude that increases as frequency increases.
Such a profile is reminiscent of the diffusion boundary layers that are observed in
unbounded flows for sufficiently large frequencies. In addition, a negligible effect of Pe
on these profiles is observed at sufficiently high frequencies (f* > 200). In contrast,
Péclet number influences profile shape substantially at sufficiently low frequencies (f* «
1), resembling the profiles obtained from simulations that we performed in the pseudo-
steady limit [1]. In summary, these results suggest that response in the low-frequency
limit is controlled primarily by the dominant transport mechanism in the solution’s bulk
(pseudo-steady diffusion and/or advection), while response in the high-frequency limit is

12



controlled by transient diffusion through boundary layers of solution that exhibit
frequency-specific thickness adjacent to interfaces.

G. Discretization of macro-scale MCEs and numerical implementation

We note that, while charging an RFB with known applied current variation i, (t),
the instantaneous local current distribution i;,.,; (7, t) inside the reactor is in general
unknown. However, i,,..(r,t) must satisfy the current-overpotential relation at the
interface (Eq. 11 from the main text), and the mean of the distribution must be equal to
the instantaneous applied current: (ijocq;(1,1)) = iqpp(t). Since the solid phases are
electronically connected to the current collector, the solution obtained from Eqgs. 10 and
13 in the main text must reproduce the equipotential condition, which requires that the
solid phase potential at every location inside the reactor is identical. We used this
equipotential condition to develop an iterative algorithm where at each time step the initial
distribution of local current was assumed to be uniform and equal to the instantaneous
applied current distribution i,,,(t). First, Egs. 10 and 13 from the main text were
discretized using the finite volume method to obtain a set of algebraic equations that are
simultaneously solved to obtain (c;) and (c;)T using a direct solver, where the face
quantities were approximated using an up-wind scheme. Second, surface concentrations
of both species were calculated from the local concentration polarization, which was
obtained from the inverse Fourier transform of a rational transfer function approximation
of the reciprocal of the spectral Sherwood number, defined as (Z) = 1/(Sh), to obtain a
state-space formulation in the time domain. Third, the local solid-phase potentials ¢ were
calculated (Eq. 12) from local overpotential n values obtained by a Butler-Volmer (B-V)
kinetics expression (Eqg. 11). Lastly, the equipotential condition was checked within a
specified nondimensional tolerance (STD(¢s)/{¢s) < 1071%). If not satisfied, the entire
process was repeated for a subsequent iteration starting with the non-uniform, scaled
local current distribution from last iteration. The scaling of current distribution was done
to ensure that the obtained non-uniform current distribution had a mean value equal to
the instantaneous applied current i.e., (i;ocq (7, t)) = igpp(t). This iterative process was
repeated until the equipotential condition was satisfied. Then the algorithm proceeded to
the next time step. The iterative algorithm is shown as a block diagram in Fig. G1.

Below are described each of the components of the numerical methods used for the
macro-scale model.

o State space representation of transfer functions

Here we describe the step-by-step procedure to obtain the inverse Fourier
transforms of the frequency dependent TFs to solve EQ.10 in the time domain. Since the
associated PDEs and BCs are all linear, the system described here is a linear time-
invariant (LTI) system [12,13]. Further, (Sh) is a scalar quantity, and for uniform flow
through symmetric (with respect to wu,) electrode microstructure, the transverse
component of (N) is zero, i.e., (N,) = 0, which allowed us to define a single-input/single-
output (SISO) state-space model (SSM) for both TFs separately. For such systems a
rational transfer function (TF) can be expressed using its state space representation as:
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(TF) = C(jwl — A)~*B + D (G1)

Here, I is an identity matrix, and A, B, C,and D are the system matrices/vectors of the
corresponding state-space model. The system matrices/vectors were obtained from the
state-space representation that correlates the input u to the output y of the (TF) via a
state vector x as governed by Eq. G2.

State equation: % =Ax+Bu (G2a)
Output equation: y=Cx+Du (G2b)

The state matrix A consists of the poles p; as non-zero elements along its diagonal. The
input vector B is a column vector of ones. The output vector C is a row vector with residues
1; as its elements. D is zero for a proper transfer function, of which (Z) and (N) are specific
forms of. Since (Sh) is improper (Sh)(w — o) — o (Fig. 4) we define its reciprocal as
(Z) = 1/(Sh), which is a proper TF. We note that (Z) represents the diffusional impedance
of the system [14,15]. The input u and output y were taken from the definition of the
corresponding TFs as shown in Table G1.

Assu.me uniform distribution Re-scale the current Calculate the local
equal to iqpp (t? or use re-s:caled local distribution to enforce |« current from n(r,t)
i:*:i current density distribution from (itocat (T, ©)) = iapp (£) using equation 11

previous iteration

A

State space model vy

I
= Calculate n(r, t) from
7‘;' (SSM) of (N} Stop and proceed to {ps) using?efquat)ion 12
! él A 4 next time step
P Solve equation 10 and 13
B simultaneously to obtain {(c;) and {¢;)"

b SSM of
L < 2y = 1/(GR)

_____

STD (¢s)
(bs)

<10~

Obtain c;; (t) from cg; (t) = Ac; + {c;)

Obtain local solid
—> phase potentials ¢ | —
using equation 12

Obtain n(r, t) from local current
distribution using equation 11

Calculate {(¢¢) and
STD (¢s)

h 4

Fig. G1. Flow chart showing the steps in the self-consistent iteration algorithm used at
each time step to solve macro-scale mass conservation equations (Eqgs. 10 and 13 from
the main text), while the equipotential condition is checked at each iteration using Egs.
11 and 12 from the main text.
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Table G1: List of input u and output y for various transfer functions to implement their
corresponding state space model.

Transfer Frequency domain Time domain

function ype Input u Output y Input u Output y
(Z) proper b {ji)s/D Csi — (Ci) b {ji)s/D Csi = ()
(Ny) proper Cs; — (Cy) e W)/ lus| cs;i — (i) e W)/ lus|

The poles p; and the residues r; of the TFs (Z) and (N,) were obtained from a
rational function approximation with a finite number of poles (details in the following sub-
section). Equation F2 was discretized using an implicit scheme and solved at each time
step for each finite volume cell by using a direct solver to obtain their corresponding state
variables x and the outputs y in time domain, as shown in Table G1. First, the
concentration polarization c,; — (c;) was obtained from (Z) using instantaneous local
current density (i.e., b{j;);/D) as input. Lastly, the covariance of velocity and
concentration field e (W;)/|ug| was obtained from (N,) considering cy; — {(c;) as input.

o Rational function approximation and vector fitting of transfer functions

To obtain the poles p; and residues 7;, the TFs (Z) and (N,) were approximated as
rational transfer functions with finite numbers of poles (Eq. G3).

— N Ti
(TF) = e — (G3)

Here, N is the number of poles approximated, and (TF) = (Z) or (N;). To obtain p; and r;
a vector fitting algorithm [16—18] was used. This algorithm assumes an arbitrary initial
guess for poles p;, that makes Eq. G3 linear with r; as unknowns. A set of linear algebraic
equations for r; was obtained by expressing Eq. G3 at each frequency sampled to yield
an overdetermined linear system of equations Ax = b, where x is a column vector of
unknown residues. This overdetermined problem was solved using a least-squares fitting
technique. To improve the accuracy of the fitting these steps were repeated using an
iterative scheme, where the initial guess of the poles in the subsequent iteration was
updated by a new set of poles obtained from Eq. G3 using the residues from the previous
iteration. Weighting functions were used for the least-squares fitting, based on the
magnitude of data sampled at each frequency, so as TF values with small magnitude
were given greater weight. Stable poles were ensured by changing the sign of the real
part of the poles whenever necessary (i.e., pole shifting). To check the accuracy of the
vector fitting algorithm, we reproduced the TFs using poles and zeros obtained from the
vector fitting algorithm and compared with the original TFs values in Fig. G2. Vector fitting
with N = 30 poles/zeros resulted in excellent accuracy, where the reproduced TFs
showed maximum deviation among all sampled frequencies less than 1072% for all
cases.
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Fig. G2. Bode plot of the transfer functions (Z) = 1/(Sh) and (N,) for £ = 0.546 (left panel)
and ¢ = 0.874 (right panel) porosity electrodes. Pore-scale simulation data are shown as
solid lines and the fitted data are shown in circles.

o Selection of time step size and number of finite volumes and verification of
numerical implementation of the macroscopic model

Here, we present the dependence of the results on the time step size At and the
number of finite volumes Ng;, used in the one-dimensional macroscale model. Further,
we used our TF embedded model to investigate the response for a finite diffusional space
between two reactive parallel boundaries, for which analytical results were obtained by
solving the associated MCEs in the time domain. The transient response of such a simple
geometry obtained from the transient model introduced here is compared with the
analytical results.

o Selection of time step size and number of finite volumes

Figure G3a shows the variation of the numerically calculated volume-averaged
concentration polarization with time step size At used in the numerical implementation.
The absolute values of the volume-averaged concentration polarization are normalized
by their arithmetic mean (as the figure is designated to show the variation in data only).
The figure shows that for At < 0.1s, the solution approaches an asymptotic value
showing negligible dependence on At. In our calculations different values of At have been
used (107 s < At < 1071 5) to minimize computation time, where smaller and larger At
were used for short and large duration impulse simulations, respectively.
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The finite volume discretization of associated MCEs ensures the conservation of
mass for a finite-sized representative control volume. Thus, volume-averaged quantities
did depend on the number of finite volumes N, used in the calculation. Thus, we show
the dependency of the maximum polarization produced inside the reactor with Ny, in Fig.
F3b. The data are normalized by their arithmetic mean to emphasize their variations. The
results shows a negligible dependence of maximum polarization on Ng, for Ng, = 50
(Ngy = 50 produces deviation that is less than 107'% compared to Ny, = 200).
Consequently, we used Nz, = 50 in all simulations to minimize the computation cost while
capturing the local maximum values with acceptable accuracy.
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Fig. G3. (a) Time step dependence of numerical results for the macro-scale model. (b)
Dependence of numerical results on number of finite volumes Ny, used in numerical
simulations. (c) Schematic of the model used for model verification. (d) Variation of
surface concentration cg with time in the model shown in (c). (e) Comparison of volume
averaged concentration (c) variation with Fourier number Fo = Dt/L? obtained from
analytical solution and the bottom-up transient model (B-UTM). Comparison of time
variation of the surface flux (j), obtained from analytical solution and B-UTM (f) in linear
scale and (g) in logarithmic scale.

. Verification of numerical implementation of the macroscopic model

In Fig. G3c we show the geometry of the simplistic problem used for model
verification. Figure G3c shows a stationary finite diffusional space between two parallel
reactive boundaries separated by distance 2L (length along y direction is considered
infinite), where surface concentrations were varied identically by a step jump at time t =
0, as shown in Fig. F3d [i.e., c|y=¢ = clx=21 = cs(t)]. Thus, the finite diffusional space
enclosed can be considered as symmetric with respect to the midplane at x = L (i.e.,
dc/0x|.=, = 0). For such a problem the analytical solution can be obtained using
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separation of variables. The analytical solution obtained is shown in Eq. F4 using
nondimensional parameters.

2.2
cr=1-Yr, * _ sin (—(anl)"x*) exp (— @nt1)7n” Fo) (G4)

2n+1)m 4

Here, ¢* =c/cs, x* =x/L and the Fourier number Fo = Dt/L?. The macroscopic

response of the system can be observed from the time variation of non-dimensional

volume-averaged concentration (c*):%foLc*dx and the surface flux (j);:&_

Dcg/L
—dc*/dx*|,+=o as shown by Egs. G5 and G6.
. _ oo 8 (2n+1)2n2
(C) =1- Zn=0m exp (—T FO) (G5)
1 =285 exp (- EELE Fo) (G6)

For such a geometry, the analytical expressions for transfer functions (C) and (Sh)
are shown in Eqgs. E1 and E2, which were derived from the Fourier transform of the
corresponding MCEs. Because (Sh) is an improper transfer function, we defined its
reciprocal as (Z) = 1/(Sh) and obtained the macro-scale response of the system using
the TF embedded transient model following identical approaches discussed earlier in this
section (i.e., identical discretization, self-consistent iterative algorithm, state space
representation, rational function approximation, and vector fitting). The results for (c)*
from the analytical solution and the B-UTM model are shown in Fig. G3e. The results
show that the B-UTM matches the analytical solution for 1075 < Fo < 1072 with maximum
deviation of 1072%. Meanwhile, for Fo =5 the difference between the surface
concentration ¢, and volume-averaged concentration (c) becomes negligible with an
infinitesimal flux at the interface. Thus, the variation of (j); obtained from the analytical
solution and the B-UTM model are shown for 1075 < Fo < 5 on a linear scale (Fig. G3f)
and on a logarithmic scale (Fig. G3g) to compare them in the low and high Fo limits.
These curves show excellent agreement with maximum deviation of 2 x 1072% from the
analytical results.

H. Multiple long duration impulses

When acceleration/suppression of reactive solute is accounted for as with our
present bottom-up transient model (B-UTM), an initial step in current from open-circuit
conditions causes the electrode to contain less reactant and more product in the bulk
solution (Fig. 6 from the main text). Since the initial step lasts for the entire
charging/discharging duration studied, the corresponding acceleration/suppression effect
is not recovered. Rather, this pre-existing effect gets superimposed with the
acceleration/suppression effect introduced later at t/t =0. A schematic of such
superposition is depicted in Fig. H1 for a double-step transient in the applied current. For
this illustration we assumed that the corresponding impulse time for both the impulses
was large enough to approach the pseudo-steady limit (PSL).
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Fig. H1. Superposition of solute acceleration/suppression effect for multiple-step variation
of input current.

Figure H1 shows the prediction from both the conventional model (CM) and the B-
UTM model, where CM shows continuous change in reactant concentration with time.
Meanwhile, B-UTM shows an abrupt change in ({(c,.4.)) at the beginning of both the
current steps, and during i,,, = i, the observed effect has contributions from both
transients. When current is returned to i; the acceleration/suppression, the partial
contribution of the second transient vanishes immediately, while the partial contribution
of the initial transient persists.
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