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Abstract 
New theory is presented for the 

dynamic response of redox-active 
electrolyte flowing through porous 
electrodes under time-dependent 
applied current.  This is done by 
introducing certain frequency-
dependent transfer functions (TFs) to 
up-scale pore-scale transport 
phenomena. One TF – dubbed the 
spectral Sherwood number – extends 
the film law of mass transfer (FLoMT) 
to transient conditions. Another TF 
captures the 
acceleration/suppression of solute 
advection that results from pore-scale velocity/concentration gradients. Numerical results 
are shown for the frequency-dependent TFs of solid cylinders in crossflow to represent 
porous electrodes commonly used in FBs. Spectral regions are observed where a 
transition from lagless response to semi-infinite Warburg response occurs with increasing 
frequency. The embedding of these TFs into an up-scaled model is also formulated to 
obtain the time-domain response of FBs.  Without adjustable parameters this model 
predicts polarization in agreement with transient flow-battery (FB) experiments, despite 
systematic overprediction of polarization by the conventional FLoMT model.  Analysis of 
concentration polarization and reactant concentration is also used to construct non-
dimensional maps of operational space.  These predictions show that fast current 
fluctuations are sustained even when current exceeds the limiting current expected from 
the time-invariant FLoMT without solute advection suppression/acceleration, suggesting 
implications for electrochemical conversion and separations devices in addition.  
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1. Introduction  

Renewable energy sources are projected to comprise approximately 60% of US 
electricity generation by 2050, with wind and solar power contributing approximately 2000 
and 1000 TW-h respectively [1]. Electricity generation from wind and solar power plants 
requires installation of large-scale energy-storage devices to overcome the mismatch 
between electricity demand and intermittent supply arising from the stochastic nature of 
wind and the diurnal cycle of solar insolation [2].  Redox flow batteries (RFBs) have drawn 
attention due to their ability to independently scale power and energy-storage capacity 
because of the modularity of their reactors that dictate power capability and of their tanks 
that dictate energy-storage capacity. Here, redox-active liquid electrolyte is circulated 
through RFB electrodes to and from tanks, forming a closed loop. Despite advances in 
RFB electrolyte chemistry [3–7], the surface chemistry of their electrodes [8–15], and the 
design of flow fields [16–20], limited understanding has been established to date 
concerning the impact of the inherently transient and irregular charge/discharge scenarios 
that RFBs are likely to experience on renewable-powered grids and micro-grids. For 
instance, past RFB models have adopted a film law of mass transfer using a time-
independent mass transfer coefficient to predict pore-scale concentration polarization and 
associated energy losses (e.g., in Refs. [16,21–25]).  

Here, we posit that understanding of such concentration polarization must start 
from the bottom-up at the scale of the electrode pores at the surfaces on which redox 
reactions take place, in concert with the flow of electrolyte and the transport of soluble 
species occurring therein. Because all three modes of soluble species transport (diffusion, 
advection, and migration) contribute to total flux, the time variation of current and cell 
voltage – induced by the instantaneous power supplied to or demanded from the cell 
incorporating that electrode – drives the associated transport of species in solution via 
redox reactions at electrode surfaces. Here, the power spectral density (PSD) distribution 
associated with any given power-supply or -demand entity indirectly captures their 
transient and stochastic qualities using a frequency-based representation [26,27].  Wind 
power experiences an especially wide PSD distribution relative to other renewable 
sources [26], stemming from the occurrence of gusts (~1 Hz [26]) and daily weather (~0.1 
to 1 mHz).  For the sake of comparison, a typical aqueous all-vanadium RFB (diffusivity 
𝐷~10!"	to 10!#𝑐𝑚$/𝑠 [28–31]) with carbon-felt electrode (fiber diameter 𝑏~10 to 20	𝜇𝑚 
[32,33]), has a characteristic frequency 𝑓% = 𝐷 𝑏$⁄ ~	0.025 to 1	𝐻𝑧. Further, the low 
diffusivity of active species in non-aqueous electrolytes (e.g. 𝐷 = 10!&'	𝑐𝑚$/𝑠 in deep 
eutectic solvent [34]) can decrease 𝑓% by orders of magnitude. Overlap between the 
ranges of 𝑓% with the PSD distribution of wind, therefore, suggests that the frequency-
dependent response of RFBs is likely to play an important role in the efficient utilization 
of wind energy.  

Despite its potential importance for grid-scale energy storage with RFBs, limited 
theoretical understanding of solution-phase frequency response has been established at 
the pore-scale in modeling and experimentation. Beyond the film-law of convection mass 
transfer, time-domain pore-scale simulations have been conducted using the lattice 
Boltzmann method [35,36], but rigorous up-scaling strategies have yet to be developed 
to enable the simulation of transient transport phenomena at scales larger than 
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representative volume elements. In contrast, a recent approach used Laplace 
transformation to analyze the transient redox and diffusion of vanadium-based active-
species in stagnant electrolytes at carbon-felt electrodes during cyclic voltammetry [37]. 
We also recently introduced theory [38] to capture the effect of charge/discharge at the 
pore-scale for active species undergoing simultaneous diffusion and advection in the 
pseudo-steady limit, which is approached when the characteristic time period for a 
charge/discharge cycle 𝜏%/) is large relative to the characteristic diffusion time-scale (i.e., 
𝜏%/) 	≫ 	 𝑏$/𝐷).  Previous work on stationary batteries has used a frequency-based 
formalism to predict transient dynamics of solid-state diffusion processes [39] and to 
model electrochemical impedance spectra [40–42].  In this article we introduce a new 
theory for modeling transient pore-scale mass transfer with simultaneous convection and 
redox reactions using a frequency-response formalism for the first time that enables direct 
up-scaling of the coupling between pore-scale concentration polarization and temporal 
variations of current supply and demand.  In this article, we do this by defining a new 
spectral Sherwood number transfer function 〈𝑆ℎ9〉 that relates average surface flux 〈𝑗〉* 
(i.e., reaction rate) to the associated concentration difference at the pore-scale ∆𝑐 = 𝑐* −
〈𝑐〉 in the frequency domain: 〈𝑆ℎ9〉 ≡ 〈𝚥〉̅*(𝑏/𝐷)/(𝑐*̅ − 〈𝑐̅〉), where 𝐴̅ is the continuous-time 
Fourier transform of quantity 𝐴, 𝑏 is a characteristic pore length-scale, and 𝐷 is diffusivity. 

The rate capability of electrochemical devices is determined by the amount of 
electric current produced and various mechanisms of polarization. In RFBs and other 
devices using flow-through electrodes (e.g., electrochemical deionization [43–45]), 
continuous supply of fresh electrolyte to electrode pores and the simultaneous evacuation 
of spent electrolyte from electrode pores is facilitated by bulk flow, i.e., advective flux.  
The advective flux of soluble species is affected by their depletion or accumulation near 
reacting interfaces where such species are respectively consumed or produced.  Previous 
models of electrochemical devices using flow-through electrodes have adopted a macro-
homogeneous advection-reaction-dispersion(-migration) (ARD(M)) theory, building on 
earlier geochemical theory and practice [46], that implicitly assumes that the local volume-
averaged solute concentration is advected by the bulk superficial velocity of electrolyte 
[24,25,43–45]. In contrast, previous modeling of unconventional RFBs using mixed-
conducting suspensions flowing through open channels – rather than flowing liquid 
electrolyte through porous electrodes – showed that coulombic and energy efficiency can 
be enhanced by uniformizing advective transport via the control of interfacial slip [47], 
rheology [47–49], and fluid pulsation [47,48,50], the effects of which are not captured by 
conventional ARD(M) theory. Studies motivated by other applications have previously 
modeled the effects of interfacial reactions on advection in porous media by accounting 
for the difference between mean solute velocity and mean solvent velocity caused by the 
inhomogeneity in solute concentration across pores [51,52].  The prediction of such was 
accomplished in the long-time limit using the method of moments [53–55], where an 
adjoint eigenvalue problem coupled to a closure problem was solved numerically to obtain 
the mean solute velocity, reactivity coefficient, and dispersion tensor in a self-consistent 
manner [55]. In contrast, the approach that we use in this article is to characterize the 
integral covariance between the pore-scale velocity field and the pore-scale concentration 
field obtained from solutions to the Fourier-transformed mass conservation equations 
(MCEs), inspired by rigorous theory of pore-scale averaging [56]. We ultimately express 
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this covariance using a non-dimensional average advective-flux transfer function 〈𝑵〉 ≡
(1/|𝒖*|)(𝒖*〈𝑐̅〉 − 𝜀〈𝒖𝑐̅〉)/(𝑐*̅ − 〈𝑐̅〉) that quantifies the deviation of average advective flux 
𝜀〈𝒖𝑐〉 from the product of average concentration and superficial velocity 𝒖*〈𝑐〉.  

 

Fig. 1. (a) Illustration of a redox flow battery with flow-through porous electrodes 
containing electrolyte with close-up view at the micro-scale pores where redox-active 
species 𝑅 and 𝑂 are dissolved. Transient current with arbitrary time-dependence is 
mapped to the frequency domain using Fourier transformation to obtain a spectral density 
for current, and frequency-dependent transfer functions (TFs) are used to capture the 
microscopic response of the RFB in the frequency domain, which are later embedded into 
a macroscopic model. (b) Macroscopic model formulation using porous electrode theory, 
where the dynamic response is captured through variation of polarization magnitude |∆𝑐| 
and average reactant concentration 〈𝑐+,-%〉 with time for a step impulse input current. (c) 
Schematic of transient RFB operation based on the dynamic response of |∆𝑐| and 〈𝑐〉 
inside a porous RFB electrode. 

In this article we present new theory for the transient response of redox-active 
electrolyte in porous electrodes using frequency-dependent transfer functions (TFs) that 
we show are readily up-scalable. These TFs link the Fourier transform of output 
parameters (reaction rates and advective flux deviation) to that of input parameters 
(surface concentration and volume-averaged concentration). We use these TFs to 
capture the microscopic response of RFB electrodes in the frequency domain under 
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varying current input at the reactive interface. Later these frequency-dependent TFs are 
embedded into an up-scaled model (using porous electrode theory) to obtain the 
macroscopic response of RFBs. A schematic representation of the approach is shown in 
Fig. 1. In Sec. 2 the definitions of these TFs are derived by Fourier transformation of the 
corresponding mass conservation equations (MCEs), which are first defined in the time 
domain. Then the macro-scale MCEs based on porous electrode theory are presented, 
where pore-scale responses are incorporated using the TFs derived earlier. In Sec. 3 the 
developed transient model is compared with the experiments using transient operation of 
a ferro/ferri-cyanide based flow cell with microchannels engraved in graphite foil. Finally, 
the obtained pore-scale and macro-scale MCEs are solved numerically for different 
porosity (𝜀) and Péclet number (𝑃𝑒) values using electrodes comprised of cylinders in 
crossflow. The results obtained from pore-scale simulations are presented in Sec. 4. In 
Sec. 5 numerically obtained macroscopic responses of RFBs under step impulse variation 
of input current are presented for two different porosity electrodes. For interested readers 
derivations for the conditions of validity of this theory, a proof of the equivalence between 
the limit of vanishing frequency and the pseudo-steady limit, numerical model 
implementation, and model verification are presented in the supplementary information. 

2. Methods 

Here we present theory for the modeling of pore-scale transfer functions in the 
frequency domain and for their incorporation into a macro-scale model of RFB electrodes 
in the time domain.  We do this by defining the pore-scale problem in the time domain 
and by subsequently converting it to the frequency domain using the Fourier transform to 
yield spectral Sherwood number and advective flux transfer functions. The macro-scale 
model incorporates concentration polarization and advective flux within electrode pores 
using state-space approximations of the aforementioned pore-scale transfer functions 
under time-varying applied current. Derivations used to obtain the above models and the 
numerical methods used to solve the governing equations at both scales are in the 
supplementary information.  

2.1. Governing equations for pore-scale transport 

In this section we present the governing equations for electrolyte containing a 
soluble redox couple undergoing redox at electrode surfaces. The mass conservation 
equations (MCEs) and associated boundary conditions (BCs) governing the evolution of 
the pore-scale concentration field within electrode pores are presented in the time domain 
and are transformed into the frequency domain to derive transfer functions (TFs) for 
reactive advective flux. We note that similar and analogous equations govern the 
transport of other electrochemical, chemical, and thermal systems, but we focus here on 
the specific application of the present theory to RFBs. 

2.1.1. Time-domain governing equations 
 
For electrochemical systems that use heterogenous electron transfer reactions 

involving a soluble redox couple (𝑅.! ⇌ 𝑂." + 𝑒!), as in RFBs, the consumption of 
reduced species 𝑅 is coupled with the production of oxidized species 𝑂. We neglect the 
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electromigration contributions to the net flux provided that the transference number of any 
participating soluble species is sufficiently small [38].  Under such condition we show 
subsequently that the theory that we presented previously [38] can be extended to 
incorporate arbitrary time-variation of the surface concentration 𝑐/,*(𝑡) of species 𝑖 when 
the associated Damköhler numbers (𝐷𝑎+,)/12 = 𝑘+,)/12	𝑏 𝐷⁄ ) for reduction and oxidation 
reactions are sufficiently large: 𝐷𝑎+,) ≫ min[1, 𝑒𝑥𝑝(−𝐹𝜂 𝑅𝑇⁄ )] and 𝐷𝑎12 ≫
min[1, 𝑒𝑥𝑝(𝐹𝜂 𝑅𝑇⁄ )], where 𝜂 is a characteristic overpotential and 𝑅𝑇/𝐹 is the thermal 
voltage. The derivation of these criteria using scaling analysis is presented in the 
supplementary information. Under such conditions the conservation of mass for species 
𝑖 is written as: 

3%#
34
+	∇ · (𝒖∎𝑐/ − 𝐷/∇𝑐/) = 	0;   𝑐/|* = 𝑐/,*(𝑡)   (1a) 

Here, 𝑐/ is the concentration of soluble redox-active species 𝑖,1 which depends on position 
𝒓 and time 𝑡, 𝐷/ is its corresponding Fickian diffusion coefficient, and 𝒖∎ is the molar-
volume averaged fluid-velocity vector.2 Further, we assume that the characteristic 
streamwise concentration difference is negligible relative to the characteristic pore-scale 
concentration difference through the microstructure of porous electrode, as in our 
previous work [38]. Such an assumption enables us to use periodic BCs at the boundaries 
of the repeat units of periodic microstructures: 

𝑐/(𝒓, 𝑡) 	= 	 𝑐/(𝒓	 + 	𝑹, 𝑡),          (1b) 

where 𝑹 is any integer-multiple linear combination of lattice vectors defining the 
microstructure’s periodicity. By analyzing the time-dependent dynamics of RFBs cycled 
under galvanostatic conditions we showed previously that the validity of such a condition 
depends on the respective magnitudes of the Sherwood number 〈𝑆ℎ〉, Péclet number 𝑃𝑒, 
and Fourier number 𝐹𝑜 = 𝐷𝑡/𝑏$ [38]. For the limit of vanishing 𝐹𝑜 this condition requires 
〈𝑆ℎ〉 ≪ (𝐿+/𝑏)/𝐹𝑜, which allows the use of the periodic BC expressed in Eq. 1b for high 
𝑃𝑒 flows where the associated characteristic frequency of the transient current is large. 
Under such conditions solute transport is controlled by a fast-changing surface 
concentration, and the effect of streamwise concentration differences is negligible in the 
entrance region where the local concentration field develops. In this section, we invoke 
periodic boundary conditions in an ad hoc manner motivated by the arbitrariness of the 
surface condition imposed. However, after defining the spectral Sherwood number and 
the nondimensional advective flux transfer function, we derive a new criterion for this 
assumption to be valid using scaling analysis in the frequency domain (see 
supplementary information).  

 

 
1 Throughout this article 𝑖 as a subscript indicates either species 𝑅 or 𝑂, while 𝑖 otherwise 
indicates current density. 
2 We model the bulk electrolyte as isochoric, such that the pore-scale molar-volume 
averaged fluid-velocity 𝒖∎ is divergence free (i.e., ∇ · 𝒖∎ = 0) [38]. 
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2.1.2. Frequency-domain governing equations and pore-scale transfer functions 

Using the time-domain governing equations from Sec. 2.1.1, we show that certain 
transfer functions (TFs) can be used to succinctly capture the transient response of output 
parameters to both the surface- and volume-averaged solute concentrations. To do so, 
the MCEs that govern concentration fields are reduced to a set of linear partial differential 
equations (PDEs) in the frequency domain using the continuous-time Fourier transform.  
Using this approach, we define TFs for the average surface flux and the average 
advective flux, the former of which we show is a kind of spectral Sherwood number 〈𝑆ℎ9〉 
that depends on frequency and the latter of which 〈𝑵〉 captures the integral covariance 
between pore-scale velocity and the Fourier-transformed concentration fields.  

2.1.2.1. Fourier transformed governing equations 

Fourier transformation of the MCEs and the BCs expressed in Eq. 1 results in a 
steady, linear PDE that governs the Fourier transformed species concentration 𝑐 ̅ while 
the solid/solution interface is subjected to a time-varying sinusoidal surface concentration 
with angular frequency 𝜔 = 2𝜋𝑓 in rad/s, where 𝑓 is regular frequency in Hz. In general, 
Fourier transformed functions are denoted here by an overbar (i.e., ℱ{𝐴(𝑡)} = 𝐴̅(𝜔) =
∫ 𝐴(𝑡)𝑒𝑥𝑝(−𝑗𝜔𝑡)𝑑𝑡6∞
!∞ , where 𝐴(𝑡) is an arbitrary function of time). The Fourier 
transformed version of Eq. 1 is given by: 

∇ · (𝒖∎𝑐/̅ − 𝐷/∇𝑐/̅) + 	𝑗𝜔𝑐/̅ = 0;   𝑐/̅|* = 𝑐/̅,*(𝜔),   (2) 

where 𝑗 = √−1 is the imaginary unit.  Frequency response of the corresponding system’s 
concentration field is captured by a transfer function ℂ/(𝜔, 𝒓) defined with 𝑐/̅(𝜔, 𝒓) as its 
output quantity and with 𝑐/̅,*(𝜔) as its input quantity:  

ℂ/(𝜔, 𝒓) ≡
%#̅(9,𝒓)
%#̅,%(9)

         (3) 

Substituting 𝑐/̅(𝜔, 𝒓) = 𝑐/̅,*(𝜔)ℂ/(𝜔, 𝒓) into Eq. 2 results in a time-independent PDE for ℂ/ 
with a frequency-independent interfacial condition:  

∇ · (𝒖∎ℂ/ − 𝐷/∇ℂ/) + 	𝑗𝜔ℂ/ = 0;   ℂ/|* = 1.   (4) 

For 𝐷< = 𝐷= inspection reveals that the dynamic responses of 𝑅 and 𝑂 are identical (ℂ= =
ℂ<). To establish a necessary condition to ensure the coupled production and 
consumption of 𝑅 and 𝑂 we invoke reaction stoichiometry: 

𝐷=
3%!̅
3>
m
*
= −𝐷<

3%"̅
3>
m
*
 ⇒ 𝐷= 	𝑐=̅,*

3ℂ!
3>
m
*
= −𝐷<	𝑐<̅,*

3ℂ"
3>
m
*
   (5) 

From this expression we deduce that 𝑐=̅,* = −𝑐<̅,* = 𝑐/̅,*	enforces the conjugation condition 
exactly when 𝐷= = 𝐷< is satisfied.  We note that changing the sign of 𝑐/̅,* does not change 
the associated PDEs and BCs (Eq. 4) that govern ℂ/(𝜔, 𝒓). Thus, identical PDEs for 𝑂 
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and 𝑅 automatically enforce the coupled production/consumption of active species when 
posed in terms of ℂ/ (Eq. 4).  

We now elaborate on the physical significance of the transfer function ℂ/(𝜔, 𝒓). Since 
the interface condition that is controlled by 𝑐/̅,* corresponds to a sinusoidal, periodic 
disturbance signal in the time domain, Eq. 4 governs the propagation of this disturbance 
throughout the electrolyte solution. The transient response at a location 𝒓 is captured by 
the magnitude and phase of ℂ/ that respectively represent the fractional concentration 
change and phase lag with respect to the change made in surface concentration 𝑐/,*. For 
example, at an interface the conditions |ℂ/| = 1 and 𝜃ℂ# = 0 imply that the concentration 
there tracks the imposed 𝑐*(𝑡) boundary condition instantly. On the contrary ℂ/ = 0 at 
some arbitrary location suggests that the interfacial disturbance induced by time-varying 
𝑐/,* is not experienced there.  Hereafter, we drop the subscript 𝑖 from the various 
parameters of interest because the various species of interest exhibit identical governing 
equations for ℂ/. 

2.1.2.2. Spectral Sherwood number 

The steady response of solution undergoing convective mass transfer with 
simultaneous reactions in porous media has historically been captured using an overall 
Sherwood number 〈𝑆ℎ〉 = 〈ℎ@〉𝑏/𝐷, with 〈ℎ@〉 being the overall mass transfer coefficient 
that relates the average surface flux 〈𝑗〉* = 𝐷〈𝜕𝑐/𝜕𝑛|*〉 due to reactions to a driving 
concentration difference ∆𝑐, according to the film law of mass transfer: 〈𝑗〉* = 〈ℎ@〉∆𝑐.3  
The operators ⟨… ⟩ and ⟨… ⟩* are respectively integral averages over solution volume and 
solid/solution interfaces contained in a representative volume element. To our knowledge, 
however, similar theory has yet to be developed that captures the transient response of 
solutions undergoing convective mass transfer in porous media.  It is our goal presently 
to predict average reaction rates vis-à-vis average surface flux subjected to an arbitrary 
time-varying surface concentration to enable up-scaling in volume-averaged/macro-
homogeneous formulations (cf. Ref. [56]) in a manner that is consistent with transient 
pore-scale transport phenomena. 

To do this we derive a transfer function in the frequency domain that extends the 
concept of the Sherwood number to transient conditions. This particular Sherwood 
number, which we call a spectral Sherwood number 〈𝑆ℎ9〉, is a transfer function in the 

 
3 Established theory and experiment [74–76] have previously shown that 〈𝑆ℎ〉 principally 
depends on Péclet number 𝑃𝑒 = |𝒖*|𝑏/𝐷, where 𝒖* is superficial velocity, and on the 
Schmidt number 𝑆𝑐 = 𝜈/𝐷, where 𝜈 is kinematic viscosity. In porous materials undergoing 
forced convective heat transfer, the Nusselt number 〈𝑁𝑢〉 = 〈ℎ〉𝑏/𝑘, with overall heat 
transfer coefficient 〈ℎ〉 and thermal conductivity 𝑘, is equivalent to 〈𝑆ℎ〉 by virtue of the 
formal analogy between the equations governing heat and mass transfer when the 
Prandtl number 𝑃𝑟 = 𝜈/𝛼 with thermal diffusivity 𝛼 and the thermal Péclet number 𝑃𝑒4 =
|𝒖*|𝑑/𝛼 are respectively used in place of 𝑆𝑐 and 𝑃𝑒.   
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frequency domain that captures the correlation between average surface flux 〈𝚥〉̅* and the 
characteristic concentration difference ∆𝑐̅ = 𝑐*̅ −	〈𝑐̅〉: 

〈𝑆ℎ9〉(𝜔) ≡ A
B

〈D̅〉%
%%̅!〈%̅〉

= !〈3ℂ 3>∗⁄ 〉
&!〈ℂ〉

= 〈G〉
&!〈ℂ〉

     (6)  

Here, the nondimensional normal coordinate is 𝑛∗ = 𝑛/𝑏, and 𝐺(𝜔, 𝑟) is a gradient 
transfer function defined as 𝐺(𝜔, 𝑟) ≡ (𝑏 𝐷⁄ )(𝚥*̅ 𝑐*̅⁄ ) = −〈𝜕ℂ 𝜕𝑛∗⁄ 〉 with input as surface 
concentration 𝑐*̅, rather than ∆𝑐̅ = 𝑐*̅ − 〈𝑐̅〉.4  With 〈𝑆ℎ9〉 known from pore-scale simulation, 
the average surface flux 〈𝚥〉̅* can be determined in the time domain as 〈𝚥〉̅* =
(𝐷/𝑏)ℱ!&{〈𝑆ℎ9〉(𝑐*̅ − 〈𝑐̅〉)|, according to Eq. 6. 

For the sake of consistency with the definition of the Sherwood number obtained 
in the pseudo-steady limit [38], we confirm presently that the spectral Sherwood number 
〈𝑆ℎ9〉 obtained in the limit of vanishing frequency is identical to the conventional 〈𝑆ℎ〉 in the 
pseudo-steady limit: lim

9→'
〈𝑆ℎ9〉 = 〈𝑆ℎ〉JKL.  A detailed proof demonstrating this property of 

〈𝑆ℎ9〉 is shown in the supplementary information.  This result thus provides intuition for the 
broader meaning of the pseudo-steady limit in the context of frequency response.  As we 
later demonstrate using numerical modeling, the limit of vanishing frequency is equivalent 
to the pseudo-steady limit because concentrations and fluxes exhibit lagless tracking (i.e., 
vanishing phase difference) with time variations of surface concentration in that limit. 

2.1.2.3. Advective-flux transfer function 

We now define a transfer function that quantifies the transient response of average 
advective flux to the pore-scale concentration difference ∆𝑐 = 𝑐* − 〈𝑐〉.  Previously derived 
volume-averaging theory for pore-scale transport suggests that the local volume-
averaged advective flux 〈𝒖∎𝑐〉 should be decomposed into terms that account for the 
average contribution to velocity and concentration, as well as those that result from the 
deviation of those parameters from their averages [56,57]. In contrast, we characterize 
〈𝒖∎𝑐〉 presently by defining the integral covariance vector 〈𝑾〉 for velocity 𝑢∎ and 
concentration 𝑐, thus avoiding the introduction of ad hoc assumptions that are needed to 
decompose 〈𝒖∎𝑐〉 into an arbitrary sum of products between average and deviatoric 𝑢∎ 
and 𝑐 fields: 

〈𝑾〉 ≡ −covar(𝒖∎, 𝑐) ≡ ∫ 𝒖∎	𝑑𝑣M ∫ 𝑐	𝑑𝑣MN'N'
− ∫ 𝒖∎𝑐	𝑑𝑣MN'

=	 (𝒖*/𝜀)〈𝑐〉 − 〈𝒖∎𝑐〉   (7) 

Here, 𝑣M is the interstitial fluid volume occupied by electrolyte. Further, once 〈𝑾〉 is known 
we posit that the average advective-flux can be used directly as a kind of constitutive 
equation within local volume-averaged or macro-homogeneous formulations by 

 
4 We note that 𝑐*̅ (𝜕𝑐̅ 𝜕𝑛⁄ )|*⁄  has previously been referred to as the diffusion impedance 
under potential modulation [41,77], and it can be obtained from the reciprocal of the 
gradient transfer function 𝐺 as 𝐺(𝜔, 𝑟) ≡ −1 𝑏⁄ [(𝜕𝑐̅ 𝜕𝑛⁄ )|* 𝑐*̅⁄ ].   
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recognizing that 〈𝒖∎𝑐〉 = 𝒖%
P
〈𝑐〉 − 〈𝑾〉, which is an alternative to the common assumption 

of 〈𝒖∎𝑐〉 = 𝒖%
P
〈𝑐〉 that is valid only when 𝑐𝑜𝑣𝑎𝑟(𝒖∎, 𝑐) = 0. 

The utility of 〈𝑾〉 in volume-averaged formulations motivates predicting its 
response to transient impulses.  In the spirit of modeling such effects subject to arbitrary 
variations of interfacial conditions, we define a corresponding advective-flux transfer 
function 〈𝑵〉 in terms of 〈𝑾ÖÖÖ〉 and ∆𝑐̅ = 𝑐*̅ − 〈𝑐̅〉. 

〈𝑵〉 ≡ P
|𝒖%|

〈𝑾SSS〉
%%̅!〈%̅〉

         (8)  

Analysis of Eq. 7 shows that 〈𝑾〉 scales in proportion to the characteristic interstitial 
velocity 𝒖*/𝜀.  Thus, we normalize 〈𝑵〉 by |𝒖*|/𝜀, and we decompose it into streamwise 
(〈𝑁〉∥ = 〈𝑵〉 · 𝒆á∥) and transverse (〈𝑁〉U = 〈𝑵〉 · 𝒆áU) components, where 𝒆á∥ and 𝒆áU are 
streamwise and transverse unit vectors with respect to 𝒖*: 

〈𝑁〉∥(𝜔) ≡
〈VW 〉∥

|𝒖%|
+ 		[%%̅!〈%̅〉]

= 〈ℂ〉
&!〈ℂ〉

− à P
|𝒖%|
â 	〈[∥

∎ℂ〉
&!〈ℂ〉

       (9a) 

〈𝑁〉U(𝜔) ≡
〈VW 〉-

|𝒖%|
+ 		[%%̅!〈%〉̅]

= −à P
|𝒖%|
â	 〈[-

∎ℂ〉
&!〈ℂ〉

      (9b) 

We note that 〈𝑁〉∥ and 〈𝑁〉U are respectively expressed in terms of pore-scale velocity 
components that are parallel 𝑢∥∎ and transverse 𝑢U∎ to the superficial velocity vector 𝒖*.  
While Eq. 9 alone is sufficient to capture the vectorial nature of 〈𝑵〉 in two-dimensional 
systems, in practice two distinct 〈𝑁〉U components would be needed along orthogonal 
directions to capture such effects for three-dimensional systems.  With 〈𝑁〉\ known along 
each direction 𝑗  the corresponding component of average advective flux 〈𝒖∎𝑐〉 ∙ 𝒆á\ can 
be determined in the time domain as 〈𝒖∎𝑐〉 ∙ 𝒆á\ = (1/𝜀)ã(𝒖* ∙ 𝒆á\)〈𝑐〉 − |𝒖*|ℱ!&{〈𝑁〉\(𝑐*̅ −
〈𝑐̅〉)|å. 

2.2. Macro-scale time-domain governing equations 

Here we present governing equations for the macro-scale transport of redox-active 
species using porous electrode theory. In such a formulation the porous electrode is 
considered as a superposition of two continua, one representing the liquid phase and the 
other representing the solid phase, where spatially varying quantities are included using 
their volume averaged values. While a dearth of past work using porous electrode theory 
has been done, we refer interested readers to the seminal work where its basic postulates 
were first presented [58]. We first express a macroscopic mass balance equation by 
embedding the TFs 〈𝑆ℎ9〉 and 〈𝑵〉 to account for their time-dependent 
production/consumption rates and enhanced/retarded advection rates due to their 
transient redox at interfaces. As both TFs are obtained in the frequency domain, their 
inverse Fourier transforms are taken and implemented in a consistent manner. Further, 
we neglect the macro-scale diffusion of reactive species by considering negligible 
concentration variation across the reactor lengths parallel and perpendicular to the 
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macroscopic flow direction. In the limit of vanishing macro-scale diffusion, the up-scaled 
mass conservation for species 𝑖 can be expressed in terms of the macroscopic volume 
averaged concentration 〈𝑐/〉 as: 

 𝜀 3〈%#〉
34

+ ∇ ∙ 𝒖*〈𝑐/〉 − |𝒖*|	∇ ∙ ℱ!&{〈𝑵〉ç𝑐*̅,/ − 〈𝑐̅〉/é| =
-B#	
*#A	

	ℱ!&{〈𝑆ℎ9〉ç𝑐*̅,/ − 〈𝑐̅〉/é|               (10) 

Here, 〈𝑐/〉(𝒓, 𝑡) is local volume-averaged concentration obtained by averaging 𝑐/ over a 
finite volume larger than a periodic unit representing the porous microstructure. The 
source term at the right-hand side of Eq. 10 accounts for the transient volumetric 
production/consumption rate of species that is coupled to the transient current density 〈𝑖〉* 
as 𝑎〈𝑖〉* (𝑠/𝐹)⁄ = (𝑎)〈𝑗/〉* = 𝑎𝐷 (𝑠/𝑏)⁄ 	ℱ!&{〈𝑆ℎ9〉ç𝑐*̅,/ − 〈𝑐̅〉/é|. Further, the term |𝒖*|	∇ ∙
ℱ!&{〈𝑵〉ç𝑐*̅,/ − 〈𝑐̅〉/é| accounts for the deviation (acceleration/suppression) in reactive 
species advection rate through the porous electrode. We modeled the reaction at the 
solid/solution interface by using Butler-Volmer (B-V) kinetics (Eq. 11), which describes 
the current-overpotential relationship considering symmetric reaction kinetics for both 
oxidation and reduction: 
 

𝑖 = 𝑖' è𝑒𝑥𝑝 à
]^
$=_

â − 𝑒𝑥𝑝 à− ]^
$=_

âê	         (11) 

Here, 𝑖 is the current density at the electrode surface, 𝑖' is the exchange current density, 
and 𝑅𝑇/𝐹 is the thermal voltage. The reaction overpotential 𝜂 is expressed using the solid 
phase potential 𝜙*, solution (electrolyte) phase potential 𝜙,, and the equilibrium potential 
𝜙,` as: 

 𝜂 = 𝜙* − 𝜙, − 𝜙,` = 𝜙* − 𝜙, − à
=_
]
â 𝑙𝑛 ì%",%

%!,%
î      (12)  

Further, the mass conservation equation for a well-mixed tank without any 
consumption/production of species is expressed by Eq. 13, where 〈𝑐/〉_ is the volume 
averaged concentration of species 𝑖 inside the tank. 

 3〈%#〉
.

34
+ ∇ ∙ 𝒖*〈𝑐/〉_ = 0                                                                                 (13) 

The assumption well-mixed refers to the fact that the local concentration field inside the 
tank is uniform. 

3. Experimental validation of bottom-up transient model 

In this section we compare model predictions based on Section 2 with 
experimental results obtained from the transient response of an electrolyte solution 
containing the 𝐹𝑒(𝐶𝑁)"a!/𝐹𝑒(𝐶𝑁)"b! couple at 50% state-of-charge that undergoes 
reversible redox via 𝐹𝑒(𝐶𝑁)"b! + 𝑒! ⇋ 	𝐹𝑒(𝐶𝑁)"a!. This redox couple was chosen for its 
facile reaction kinetics (rate constant of 𝑘* = 0.1~1	𝑐𝑚/𝑠 [59–62]), so as to produce 
negligible kinetic overpotential in the present experiments. The experimental reactor 
consisted of two graphite foil electrodes (Ceramaterials) laser-engraved (Trotec Speedy 
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Flexx 400 fiber laser) with ~100 µm wide parallel microchannels that were separated by 
a non-selective separator (NP030 from STERLITECH Corporation). Electrolyte 
containing 15 mM active species and 3 M KCl supporting salt was pumped through the 
microchannels in the electrodes. To probe the electrodes’ transient response current was 
applied using a square wave with half-period or pulse-width 𝜏, as shown in Fig. D2b. 
Experimental methods and model implementation are provided in the supplementary 
information.  

 

Fig. 2: Variation of average concentration polarization with applied current ratio 𝑖+c at 
different pulse width 𝜏. (a) 𝜏/𝑡+ = 0.0057, (b) 𝜏/𝑡+ = 0.0128 and (c) 𝜏/𝑡+ = 0.0494. 𝑡+ is 
the mean residence time of solute (𝑡+ = 𝐿+/𝑢*). 

Figure D3 in the supplementary information shows the time variation of 𝐼𝑅-
corrected cell voltage with non-dimensional time. In contrast with our experimental 
results, the conventional model (CM) – that uses a time-invariant film law of mass transfer 
and that neglects solution advection suppression/acceleration – shows instantaneous 
jumps in polarization when applied current is switched with a sufficiently small pulse width 
(𝜏 < 10). On the contrary the present bottom-up transient model (B-UTM) captures the 
dynamic response in good agreement with experiment for such pulse widths, the 
deviations of which arise from the statistical distribution of electrode cross-section area 
and the uncertainty active-species diffusivity. For such short pulses diffusion is inherently 
transient with concentration variations penetrating from interfaces into bulk to an extent 
that is much shorter than the characteristic pore dimension (~100 µm), thus validating the 
transient aspects of the present B-UTM model. For large impulse duration (𝜏 ≥ 10) where 
solute transport occurs through the entirety of pores, we observe that both the CM and 
B-UTM models produce polarization variation with time that deviates qualitatively from 
experiment, likely as a result of factors that both models neglect including entrance region 
effects and macroscopic diffusion, dispersion, and ion conduction. Despite this, we note 
that B-UTM shows less deviation from experiment than CM.  We attribute this outcome 
for B-UTM to its accounting of the suppression/acceleration arising from the 
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inhomogeneity of pore scale concentration and velocity fields, validating its inclusion in 
the present model. 

Modeled and experimental time-averaged polarization for the various conditions 
tested are shown in Fig. 2. The experimental data shows that average polarization 
depends not only on the applied peak current ratio 𝑖+c, but also on the pulse duration 𝜏. 
The CM model fails to capture the dependence of average polarization on impulse 
duration 𝜏. Further, this inability to capture transient response causes CM prediction to 
deviate substantially at high current ratio where it over-predicts the polarization up to 
400%, and it prevents such models from simulating RFBs with near-limiting (𝑖+c~1) and 
over-limiting (𝑖+c > 1) conditions that have been observed in previous studies [63–67]. On 
the other hand, the present B-UTM model is not only capable of simulating the near-
limiting and over-limiting operations, but it also produces more accurate predictions at all 
𝑖+c and 𝜏 values tested. 

4. Pore-scale simulations versus frequency 

Using the frequency-based theory introduced in Sec. 2.1, we obtained results for 
numerical simulations performed by applying that theory to study the transient response 
of redox-active electrolyte flowing through a porous electrode comprised of infinite 
cylinders undergoing crossflow as a representative geometry for carbon fiber felt 
commonly used in RFBs. Here, pore-scale simulation results are presented to show the 
characteristics of the frequency-dependent TFs. These simulations are used to 
investigate the effect of microstructure porosity, superficial velocity, and frequency, where 
different cases are created by varying their corresponding non-dimensional parameters 
to make the results extensible to other conditions, provided that geometric, hydrodynamic, 
and mass-transfer similarity criteria are satisfied. The non-dimensional frequency 𝑓∗ ≡
𝜔𝑏$/2𝜋𝐷 is the ratio of the characteristic time-scale for diffusion (𝜏) = 𝑏$/𝐷) to the time-
scale associated with the angular frequency 𝜔 (𝜏%/) = 2𝜋/𝜔).  For 𝑓∗ ≪ 1 we find that 
pore-scale mass transfer is consistent with that of the pseudo-steady limit, while higher 
frequencies produce a finite temporal lag in response that we show is a signature of 
transient response. For the present simulations we choose the characteristic length 𝑏 as 
the cylinder diameter 𝑑.  Subsequently, we present results for the local-concentration 
transfer function ℂ(𝜔, 𝒓), the overall spectral Sherwood number 〈𝑆ℎ9〉(𝜔), and the 
parallel/transverse components of the average advective-flux transfer function 〈𝑁〉∥/U(𝜔). 

We solved the transformed MCE (Eq. 4) numerically in the frequency domain to 
obtain ℂ(𝜔, 𝒓) for a two-dimensional porous microstructure. The porous electrodes 
investigated here are regular arrays of unconsolidated cylinders of infinite length and 
diameter 𝑑 (Fig. 3a).  Simulations were performed over a domain defined by the unit cell 
shown in Fig. 3b and 3c. We present simulated results for the transient response of 
solution within microstructures having 𝜀 = 0.546 and 𝜀 = 0.874 as representative cases 
in the limits of low and high porosity respectively. Inline flow with superficial velocity 𝒖* 
parallel to the 𝑥-axis was simulated with 𝑃𝑒 ranging from 10!$ to 22.8 × 10b. 
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Fig. 3. Schematic of the modeled periodic domain: (a) regular, unconsolidated array of 
infinite circular cylinders with bulk electrolyte flow through interstitial pores, (b) 
designation of a repetitive unit cell with a circular cylinder at the cell’s center, and (c) 
enlarged view of a repetitive unit cell annotated with dimensions.  A given microstructure’s 
porosity 𝜀 results in a certain minimum pore dimension 𝑏4 at the pore throat shown in (c). 
Spatial distribution of |ℂ| at different nondimensional frequencies for (d) 𝜀 = 0.546 with 
𝑃𝑒 = 0.019 (first row) and 𝑃𝑒 = 380 (second row), and (e) 𝜀 = 0.874 with 𝑃𝑒 = 0.01 (first 
row) and 𝑃𝑒 = 300 (second row). The bulk flow direction is horizontal from left to right. 
The values at the center of each distribution show the corresponding nondimensional 
frequency 𝑓∗. 

The electrolyte solution flowing through the microstructure’s pores is assumed as 
a Newtonian, isochoric solution with constant dynamic viscosity, while the flow field is 
modeled as steady, creeping flow, as justified by a small pore-scale Reynolds number: 
𝑅𝑒 = 𝑃𝑒 𝑆𝑐⁄ ≪ 1, where 𝑆𝑐 is Schmidt number. The pore-scale velocity field 𝒖∎ is 
obtained from numerical solution of a time-independent, inertia-free version of the vorticity 
transport equation (VTE) that is written in terms of the stream function 𝜓 as ∇a𝜓 = 0 [68]. 
The VTE is solved with appropriate BCs imposed on cylinder surfaces (i.e., no-slip, 
impermeability, and no-lift) and at the unit-cell boundaries (i.e., periodic jump/fall). For a 
finite frequency (𝜔 > 0) the corresponding ℂ(𝜔, 𝒓) field is obtained by solving Eq. 4 with 
periodic BCs applied at unit-cell boundaries, along with a Dirichlet BC ℂd = 1 at cylinder 
surfaces. Details of discretization, numerical implementation, and model verification are 
shown in the supplementary information.  
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Fig. 4. Variation of transfer functions (a) 〈𝑆ℎ9〉 and (b) 〈𝑁〉∥ with frequency for 𝜀 = 0.546 
(left panel) and 𝜀 = 0.874 (right panel). The upper and lower row show magnitude and 
phase of the respective TFs. 
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4.1. Concentration 

Figures 3d and 3e show the spatial distribution of |ℂ| = §(Re[ℂ])$ + (Im[ℂ])$ as a 
function of non-dimensional frequency for high and low porosity values with either high or 
low Péclet number. At sufficiently high frequency (𝑓∗ ≫ 200) these distributions reveal 
that most solution volume remains unaffected by the disturbance induced by interfacial 
reactions for all 𝑃𝑒 and 𝜀 studied and that variations of |ℂ| are focused near solid/solution 
interfaces. This effect is caused by the comparatively slow rate of diffusion relative to the 
frequency at which the surface concentration is cycled in such a limit.  As a result, the 
disturbance occurring at the solid/solution interface is unable to propagate substantially 
into bulk solution before a new cycle of concentration fluctuation starts at the interface. 

When the characteristic diffusion time-scale is comparable with the time-scale for 
cycling at the solid/solution interface (𝑓∗ = 1~200), |ℂ| varies in space in different ways 
depending on what the predominant mass-transfer mode is. For 𝑃𝑒 ≪ 1, the spatial 
distribution of |ℂ| is symmetric with respect to the 𝑥 and 𝑦 axes, and |ℂ| approaches an 
axisymmetric distribution for high-porosity electrodes due to the weak interactions 
between adjacent cylinders. For low-porosity electrodes a four-peaked distribution is 
observed as a result of strong inter-cylinder interactions that are evidenced by peak 
positions coinciding with the surface positions at which neighboring cylinders have closest 
proximity. For high 𝑃𝑒 cases the spatial distribution of |ℂ| becomes skewed along the 
streamwise direction as a result of the predominant role of advection mass transfer in that 
limit.  In the limit of vanishing frequency (𝑓∗ ≪ 1) the distribution of |ℂ| approaches a 
uniform value of unity (i.e., |ℂ| = 1) as a result of the lagless tracking of surface 
concentration by the entire concentration field in that limit.  However, we note that such 
an attribute does not imply an infinite mass transfer coefficient, as evidenced by our 
subsequent investigation of the spectral Sherwood number. 

In the pseudo-steady limit our previous simulations revealed that the effect of 
advective mass transport is evidenced by the shape of the concentration profile at the 
midplane of the cylinder and along the direction transverse to the streamwise direction 
[38]. To determine how frequency influences such profiles the non-dimensional 
concentration profiles are shown in the supplementary information, and they suggest that 
response in the low-frequency limit is controlled primarily by the dominant transport 
mechanism in the solution’s bulk (pseudo-steady diffusion and/or advection), while 
response in the high-frequency limit is controlled by transient diffusion through boundary 
layers of solution that exhibit frequency-specific thickness adjacent to interfaces. 

4.2. Spectral Sherwood number 

We now present results for the overall spectral Sherwood number 〈𝑆ℎ9〉 ≡
𝑏〈𝚥〉̅*/[𝐷(𝑐*̅ − 〈𝑐̅〉)], which relates the average surface flux due to reactions to the 
concentration difference that drives it in the frequency domain.  Figure 4 shows the 
variation with frequency of 〈𝑆ℎ9〉 magnitude and phase for different 𝑃𝑒 and porosity values. 
The variation of 〈𝑆ℎ9〉 shows three distinct regions in the frequency domain, as annotated 
in Fig. 4  At high frequency (Region III) the magnitude of 〈𝑆ℎ9〉 scales in proportion to √𝜔 
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while phase approaches 𝜋/4, consistent with the scaling expected for a semi-infinite 
Warburg impedance element and consistent with our observations from Figs. 3d and 3e 
that compact diffusion layers form in the vicinity of the solid/solution interfaces in the high-
frequency limit.  In this part of the frequency spectrum surface-concentration fluctuations 
alone control 〈𝑆ℎ9〉, not those of average concentration. These features result in minimal 
effect of 𝑃𝑒 on 〈𝑆ℎ9〉 at high frequencies, and as a result we refer to this region as having 
frequency-controlled transport (FCT).  We define a lower bound for this region as the 
frequency where phase reaches within 5% of its asymptotic value 𝜋/4, corresponding to 
non-dimensional frequencies of 𝑓∗ = 10a and 10b for microstructures with respective 
porosities of 𝜀 = 0.546 and 0.874. 

At low frequency (Region I) the magnitude of 〈𝑆ℎ9〉 approaches a constant non-zero 
value as frequency vanishes, while its phase approaches zero simultaneously. Such a 
limiting phase value shows that frequency response is lagless in this limit, an effect that 
results from the relatively fast mass transfer in comparison with the time-scale of 
boundary condition cycling.  Hence, in this limit the dominant mode of pore-scale mass 
transfer, not the driving frequency, determines the magnitude of 〈𝑆ℎ9〉. In this limit systems 
with 𝑃𝑒 ≪ 1 experience diffusion-controlled transport (DCT), and systems with 𝑃𝑒 ≫ 1 
experience advection-controlled transport (ACT), consistent with our previous modeling 
[38] in the pseudo-steady limit. We define the upper bound for this region of the frequency 
domain as the lowest frequency that exhibits a value of 〈𝑆ℎ9〉 that is 5% higher than its 
value in the pseudo-steady limit, corresponding to non-dimensional frequencies of 𝑓∗ =
3.4 and 0.8 for microstructures with respective porosities of 𝜀 = 0.546 and 0.874. 

In between Regions I and III, we observe 𝑃𝑒-specific transitions from low to high 
frequency (Region II) as a result of the characteristic diffusion time-scale being 
comparable to the time period of boundary cycling.  Within this region the magnitude and 
the phase of 〈𝑆ℎ9〉 show frequency dependence that is distinguishable for different 
extremes of Péclet number.  For systems with low Péclet number (𝑃𝑒 ≪ 1) a smooth, 
monotonic variation of phase is observed with frequency as a result of its transition from 
diffusion-controlled transport at low frequency to frequency-controlled transport at high 
frequency. On the other hand, for systems with high Péclet number (𝑃𝑒 ≫ 1) the variation 
of phase with frequency is non-monotonic because of its transition from advection-
controlled transport to frequency-controlled transport. 

4.3. Advective-flux transfer function 

Solute can either deplete or accumulate adjacent to such interfaces due to the 
finite reaction rates occurring at solid/solution interfaces, thus reducing the effectiveness 
of advective transport near such interfaces because of the no-slip condition. To 
characterize such effects, in Sec. 2.1.2.3 we introduced a non-dimensional advective-flux 
transfer function 〈𝑵〉 ≡ −covar(𝒖∎, 𝑐̅)𝜀/[|𝒖*|(𝑐*̅ − 〈𝑐̅〉)] that quantifies the departure 
𝑐𝑜𝑣𝑎𝑟(𝒖∎, 𝑐̅) of average advective-flux 〈𝒖∎𝑐̅〉 in the frequency domain from its value 
〈𝒖∎〉〈𝑐̅〉 that is expected for homogeneous concentration and velocity fields.  When a 
microstructure comprised of a square array of cylinders is subjected to horizontal flow 
along the 𝑥-axis, velocity and concentration fields are produced that show reflection 
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symmetry about a line directed in the streamwise direction that also passes through the 
cylinder’s centroid.  For such cases to which we restrict the present investigation, the 
transverse component of 〈𝑵〉 is identically zero by virtue of this symmetry.  Thus, in Fig. 
4b we present simulated results for the variation with frequency of the streamwise 
component of 〈𝑵〉 at different 𝑃𝑒 and porosity values, denoted as 〈𝑁〉∥.  

At high frequencies, ©〈𝑁〉∥© decreases with increasing frequency by following a 
power law correlation with exponent -0.5, while a negligible effect of 𝑃𝑒 is observed 
because of frequency-controlled transport in that limit. The decrease in ©〈𝑁〉∥© with 
increasing frequency can be attributed to the fact that the steep concentration gradients 
that are produced at interfaces at high frequency (Figs. 3c and 3d) promote supply of 
reactant as well as the removal of product. In this frequency region the phase of 〈𝑁〉∥ 
approaches −𝜋/4.  At low frequencies the magnitude of 〈𝑁〉∥ approaches a constant, non-
zero value that depends on porosity, while its phase approaches zero, consistent with the 
lagless response that is a hallmark of the pseudo-steady limit.  Similar to our observations 
for 〈𝑆ℎ9〉, 〈𝑁〉∥ shows smooth, monotonic variation for the transition from diffusion-
controlled transport to frequency-controlled transport at low Péclet number (𝑃𝑒 ≪ 1), 
while non-monotonic variation is apparent for the transition from advection-controlled 
transport to frequency-controlled transport at high Péclet number (𝑃𝑒 ≫ 200).  

5. Macro-scale simulations versus time 

Here we present simulations of the macro-scale response of an RFB subjected to 
step impulse current variation by solving the TF embedded macro-scale MCEs from Sec. 
2.2 (Eqs. 10-13) in the time domain. We assume that an ideal separator isolates the high- 
and low-potential sides of its reactor to eliminate crossover of reactive species. Thus, we 
limit our study to one side of the reactor (i.e., a half cell) where a reduced species 𝑅 is 
oxidized to produce 𝑂 due to a positive current applied at solution/electrode interfaces. 
Assuming a parallel flow configuration and assuming negligible macro-scale 
concentration gradients in the transverse direction, a one-dimensional model is sufficient 
to capture the temporal and spatial variation of 〈𝑐/〉 along the reactor’s length 𝐿+ (Fig. 5b). 
We discretized each electrode into 50 finite volumes (FVs) over which the local 
concentrations are averaged to obtain 〈𝑐/〉 (see Fig. 5b). Each tank was represented by a 
single FV with a time-dependent average concentration 〈𝑐/〉_. The step impulse variation 
of the applied current is presented non-dimensionally by defining a current ratio 𝑖+ where 
the applied current density 𝑖-cc is normalized by the limiting current density 𝑖e/@. The 
limiting current density is calculated as 𝑖e/@ = 𝐹𝐷〈𝑐=〉/>/〈𝑆ℎ〉 𝑑⁄ , where 〈𝑆ℎ〉 is the time-
independent Sherwood number corresponding to PSL. The step impulse variation is 
created by instantaneously increasing 𝑖+ to a peak-current ratio 𝑖+c (from a base current 
ratio 𝑖+A = 0.1) for a time 𝜏, after which 𝑖+ returns to its initial value.  Both 𝜏 and 𝑖+c were 
varied to simulate different cases of RFB operation with high- (𝜀 = 0.874) and low- (𝜀 =
0.546) porosity electrodes. 

For all cases simulated, the nondimensional flow rate 𝛽 was at least 16 to prevent 
reactant depletion at the reactive interface due to insufficient electrolyte flow [69]. Here, 
𝛽 is the actual flow rate 𝑄-%4[-e normalized by the stoichiometric flow rate 𝑄*41/%, where 
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𝑄*41/% = (𝑉4->f + 𝑉+,-%41+) 𝜏4g⁄  depends on the electrolyte volume in the tank (𝑉4->f) and 
the reactor (𝑉+,-%41+) and on the theoretical charging/discharging time 𝜏4g, resulting in a 
certain Péclet number for low (𝑃𝑒 = 22.8 × 10b) and high (𝑃𝑒 = 4 × 10b) porosity 
electrodes using 𝑃𝑒 = 𝑄-%4[-e𝑑/𝐴+𝐷. In practice, 𝜏4g was determined by Faradaic balance 
from the theoretical charge-storage capacity of the redox-active electrolyte and the 
magnitude of the applied current. A kinetic rate constant that produces a Damköhler 
number of 414 (𝐷𝑎 = 𝑘𝑑 𝐷⁄ ) was used to ensure that reaction polarization was negligible 
compared to the concentration polarization. For all cases the tank and the reactor were 
initialized with identical electrolyte solution comprised of 90.9% reactant (𝑅) and 9.1% 
product (𝑂) and were charged for 160 seconds with 𝑖+A = 0.1 before the step impulse was 
applied. The time ranges presented were adjusted so that the step-impulse current 
started at 𝑡 = 0. 

 

Fig. 5. (a) Schematic of an RFB with electrolyte flowing through both sides of the reactor, 
(b) one-dimensional model showing the upper half cell with finite volumes, and (c) step 
impulse variation of applied current density with time shown as current ratio 𝑖+. Variation 
of maximum local concentration polarization |∆𝑐|e@ with time at different 𝜏/𝑡+ for (d) 𝜀 =
0.546 and (e)	𝜀 = 0.874. 
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We used a self-consistent iterative algorithm to solve Eqs. 10-13 numerically, 
where 〈𝑐/〉 and 〈𝑐/〉_ were calculated from the discretized mass conservation equations 
written for each FV inside the reactor (Eq. 10) and the tank (Eq. 13). The inverse Fourier 
transforms appearing in Eq. 10 were calculated using a state-space model for each TF 
by recognizing that the system is linear time-invariant [39,70]: 〈𝑇𝐹〉 = 𝐶(𝑗𝜔𝐼 − 𝐴)!&𝐵 + 𝐷, 
where 〈𝑇𝐹〉 is a rational approximation to a given irrational TF and 𝐴, 𝐵, 𝐶,	and	𝐷 are 
system matrices/vectors. Since 〈𝑆ℎ9〉 is an improper transfer function due to its divergence 
at infinite frequency (see Fig. 4a), we determined a state-space model for its reciprocal 
〈𝑍Ø〉 = 1 〈𝑆ℎ9〉⁄ . To obtain the poles 𝑝/ and residues 𝑟/ for rational approximations to 〈𝑍Ø〉 and 
〈𝑁∥〉, a vector-fitting algorithm was used [71–73]. Additional details of the model’s 
discretization, self-consistent iterative algorithm, state-space models, vector fitting, and 
verification are included in the supplementary information. 

5.1. Concentration polarization across electrode pores 

We used the macro-scale numerical model to analyze the transient concentration 
polarization inside of the RFB reactor. The corresponding time variation of local maximum 
concentration polarization |Δ𝑐|e@(𝑡) = 𝑚𝑎𝑥	(©𝑐/,*(𝑡) − 〈𝑐/〉(𝒓, 𝑡)©) is shown in Fig. 6 for 
different porosity 𝜀, peak-current ratio 𝑖+c, and impulse duration 𝜏 values. We focus on 
|Δ𝑐|e@ because the reactor is most likely to deplete where and when |Δ𝑐| is maximum. 
Numerical solutions were also obtained assuming time-independent 〈𝑆ℎ〉 and negligible 
solute acceleration/suppression (i.e., 〈𝑵〉 = 0) as a conventional model (CM) against 
which to benchmark the present bottom-up transient model (B-UTM) .  For all cases 
studied in this section, advection is the dominant mode of transport because 𝑃𝑒 ≫ 1 was 
chosen. As we subsequently show, the dynamic response of such systems is dictated by 
(i) the characteristic time-scale of the transient input and (ii) the average time solute 
spends inside of the reactor.  Hence, different cases of impulse duration are characterized 
by their corresponding 𝜏/𝑡+ values, where 𝑡+ is the fluid’s mean residence time defined by 
𝑡+ = 𝐿+ |𝑢*∎|⁄ . Further, we present system response versus 𝑡 𝜏⁄ , which represents time as 
a fraction of impulse duration. Fig. 6 shows that the CM model always predicts a lagless 
response, as evidenced by a rectangular impulse variation of |Δ𝑐|e@ synchronously with 
the applied current.  
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Fig. 6. Variation of time-maximal concentration polarization |∆𝑐|e@4@ with 𝜏/𝑡+ at different 
peak-current ratio values 𝑖+c for (a) low-porosity (𝜀 = 0.546, 𝑃𝑒 = 22800) and (b) high-
porosity (𝜀 = 0.874; 	𝑃𝑒 = 4000) electrodes. The corresponding 𝑖+c values are overlaid on 
each curve.  CM predictions for 𝑖+c < 1 are shown as blue-dashed lines. Cases are only 
presented for conditions that did not produce reactant depletion at any instant and 
location. 

Building on these results, we constructed a non-dimensional operation map that 
shows the maximal concentration polarization over time versus pulse duration for different 
peak current ratios 𝑖+c (Fig. 6).  Three different regimes of impulse duration are apparent. 
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First, for 𝜏/𝑡+ > 10$ the B-UTM and CM models produce identical results as a result of 
pseudo-steady response.  Further, pore-scale transport is dominated by bulk advection.  
This is a consequence of the fluid’s average residence time being much shorter than 
impulse duration, resulting in each solute molecule experiencing elevated current for less 
than 1% of the impulse’s duration. In this regime 𝑖+c alone dictates concentration 
polarization, while further increase of 𝜏/𝑡+ has neglibible effect. Second, for 𝜏 𝑡+⁄ < 10 the 
B-UTM varies significantly from CM as a result of frequency-controlled transport.  This is 
a consequence of the fluid’s average residence time being similar to impulse duration, 
resulting in each solute molecule experiencing elevated current for more than 10% of the 
impulse’s duration.  In this regime	 concentration polarization is dependent on both 𝑖+c 
and 𝜏/𝑡+.  Of particular note is the modest concentration polarization that is achievable 
even under over-limiting conditions (Figs. 6a and 6b, upper left corners) despite CM 
predicting inoperable conditions.  Third, for 10 < 𝜏/𝑡+ < 10$ a transition regime occurs 
where B-UTM predictions near 𝜏 𝑡+⁄ ≈ 10 deviate from CM, but gradually merge with CM 
for 𝜏 𝑡+⁄ → 10$. 

This operation map also contains a regime of vanishing concentration polarization 
(|Δ𝑐|e@4@ 〈𝑐+,-%〉/>/⁄ ≈ 0) that corresponds to highly efficient RFB operation with uniform 
reaction-rate along the streamwise direction.  Such operation is achieved by long duration 
charging/discharging with very low current density. Another regime with very high 
concentration polarization (|Δ𝑐|e@4@ 〈𝑐+,-%〉/>/⁄ ≈ 1) is produced for very short duration 
charging/discharging with high current density that results in non-uniform reaction-rate 
along the streamwise direction.  Under such conditions cycling terminates prematurely 
during local reactant depletion (Figs. 6a and 6b, gray zones with boundaries marked by   
cross symbols). In this regime the B-UTM model predicts reactant depletion at much lower 
𝜏 𝑡+⁄  compared to the CM model due to the increased advection rate of the reactant from 
the reactor, as elucidated subsequently. 

5.2. Reactant availability through electrode pores 
Apart from pore-scale concentration polarization between electrode surfaces and 

concentrations in the bulk of electrode pores, the local volume-averaged concentration 
within electrode pores 〈𝑐/〉 exhibits macro-scale variation along the streamwise direction.  
Thus, the depletion of 〈𝑐/〉 can cause premature termination of cycling.  To quantify this 
effect we determined the macro-scale average of solute concentration by averaging 〈𝑐/〉 
over each electrode as 〈〈𝑐/〉〉 = 1 𝑉+ ∫〈𝑐/〉 𝑑𝑉⁄ , where 𝑉+ is electrode pore volume. While 
Fig. 7 reveals that short duration impulses (𝜏/𝑡+ < 10) produce negligible temporal 
change in 〈〈𝑐/〉〉 for all cases of 𝑖+c both for the B-UTM and for CM, disparate responses 
are observed for the two models for long duration impulses (𝜏 𝑡+⁄ > 10$).  For long 
impulses system response is lagless for both models, but the B-UTM accounts for the 
impact of local reaction rate on the covariance of concentration and velocity while CM 
neglects it.  Consequently, the B-UTM model exhibits abrupt temporal changes of 〈〈𝑐/〉〉 
that track synchronously with the abrupt change in current that occurs when the current 
pulse begins, whereas the CM model produces less abrupt and less significant temporal 
changes of 〈〈𝑐/〉〉.  For the B-UTM the sudden increase in current increases concentration 
polarization instantly via finite 〈𝑆ℎ9〉, which accelerates the advection rate of reactant, 
causing a sudden decrease in 〈〈𝑐+,-%〉〉 via non-zero 〈𝑁〉∥. Similarly, increased 
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concentration polarization suppresses the advection rate of product, causing 〈〈𝑐c+1)〉〉 to 
increase instantly.  In general, we also note that the B-UTM model retains less reactant 
and more product compared than CM at a given instant in time as a result of the transient 
experienced when current is initially turned on (see supplementary information). 

 

Fig. 7. Time variation of volume-averaged concentration of reactant and product 〈〈𝑐/〉〉 for 
(a) 𝑖+c = 0.3 and (b) 𝑖+c = 0.8 inside an electrode of 𝜀 = 0.546 (left panels) and 𝜀 = 0.874 
(right panels). The upper and lower half of the broken vertical axis belong to the reactant 
and product species respectively. 

Our earlier results (Figs. 5 and 6) suggest that in the limit of short pulse duration 
the acceleration/suppression effect is negligible, while transient mass transport effects 
are substantial.  The bottom-up transient model shows that such properties of the short 
pulse duration limit enable RFB operation with over-limiting current (𝑖+c > 1). The 
opposite scenario is observed in the limit of long pulse duration, where the 
acceleration/suppression effect is significant, and the transient mass transport effect is 
negligible.  To evaluate the relative influence of concentration polarization and reactant 
availability we show the variation of 〈〈〈𝑐+,-%〉〉〉4 ∆𝑐e@4@⁄  in Fig. 8, where 〈〈〈𝑐+,-%〉〉〉4 is the 
time-averaged reactant concentration inside the reactor calculated by averaging 〈〈𝑐+,-%〉〉 
from 𝑡/𝜏 = 0 to 𝑡/𝜏 = 4. In the limit of short pulse duration, the B-UTM model predicts 
higher 〈〈〈𝑐+,-%〉〉〉4 ∆𝑐e@4@⁄  values compared to the CM model. The difference between B-
UTM and CM in this limit is a direct result of transient mass transport effects that depends 
on both 𝜏 𝑡+⁄  and 𝑖+ where system response is controlled by transient diffusion through 
the concentration boundary layer adjacent to the reactive interface. On the other hand, in 
the limit of long pulse duration the B-UTM produces consistently lower 〈〈〈𝑐+,-%〉〉〉4 ∆𝑐e@4@⁄  
than CM as a result of its dominant acceleration/suppression effect. For a given peak-
current ratio this effect remains constant in the limit of long pulse duration. Further, system 
response of the B-UTM in this limit is dictated either by the advection of solute by bulk 
electrolyte flow (𝑃𝑒 ≫ 1) or by pseudo-steady diffusion across pores (𝑃𝑒 ≪ 1). From Fig. 
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8 it is also evident that high-porosity electrodes exhibit increased transient mass transport 
effects and less acceleration/suppression effects compared to low-porosity electrodes. 
Thus, the use of high-porosity electrodes is advantageous for transient operations, along 
with their low pressure-drop benefits. 

 

 

Fig. 8. Variation of time-averaged reactant concentration 〈〈〈𝑐+,-%〉〉〉4 with 𝜏/𝑡+ at different 
peak-current ratio 𝑖+c for (a) a low-porosity electrode (𝜀 = 0.546, 𝑃𝑒 = 22800) and (b) a 
high-porosity electrode (𝜀 = 0.874; 	𝑃𝑒 = 4000). The numbers shown on the curves 
represent corresponding 𝑖+c values.  The results from CM with 𝑖+c < 1 are also shown by 
broken blue lines in the figures. 
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Conclusions 

A bottom-up multi-scale modelling approach is presented to study the transient 
response of redox flow batteries with time-dependent current input. The transient pore-
scale mass transport physics, including concentration polarization and the resulting 
deviation of advection rate of reactive species, are captured via frequency dependent 
transfer functions (TFs), which are incorporated into an up-scaled model through volume 
averaging. These transfer functions include the spectral Sherwood number 〈𝑆ℎ9〉 that 
enables determination of the average flux on reactive surfaces 〈𝑗〉* subject to a driving 
concentration difference at the pore-scale ∆𝑐 = 𝑐* −	〈𝑐〉, as well as an advective flux 
transfer function 〈𝑵〉 that captures the deviation of the total advective flux vector 〈𝒖𝑐〉 from 
its value expected in the absence of covariance between 𝒖 and 𝑐 (i.e., 〈𝒖〉〈𝑐〉), subject to 
the same driving force ∆𝑐.   

The spectral Sherwood number is shown for the first time to extend the 
conventional concept of a Sherwood number to transient conditions. Also, the advective 
flux transfer function describes the relative acceleration/suppression of solute advection 
rates relative to bulk flows, without ad hoc introduction of a separate velocity for solute. 
For solutions undergoing electrochemical reactions in porous electrodes these transfer 
functions provide fundamental insights into the mechanisms that could limit achievable 
current densities, thermodynamic efficiencies, device resilience, and cycle life. Beyond 
their potential significance to electrochemical systems, these concepts will also find use 
in understanding the coupling between reactions and convection processes in porous 
media, as well as in understanding transient thermal transport via formal analogies 
between heat and mass transfer. 

Both qualitative and quantitative comparison between experiment and bottom-up 
transient model (B-UTM) predictions are presented in contrast with the conventional 
constant Sherwood number model, where the B-UTM model not only showed substantial 
improvement in capturing transient response, but also provides a means to simulate flow 
cell operations with short impulses of near-limiting and over-limiting applied current.   

Aside from their future use, we demonstrated the utility of our frequency-based 
theory by simulating such transfer functions using a simplified microstructure containing 
a regular array of solid cylinders in horizontal crossflow. The effects of porous electrode 
microstructure, superficial velocity, and boundary cycling frequency were respectively 
investigated by varying porosity 𝜀, Péclet number 𝑃𝑒, and nondimensional frequency 𝑓∗. 
From the variations of 〈𝑆ℎ9〉 and 〈𝑁〉∥ with frequency at different 𝜀 and 𝑃𝑒 we deduced 
three different spectral regions of response. In the low-frequency region (𝑓∗ ≪ 1) 
transport is primarily controlled by the prevailing pseudo-steady mass-transfer mode: 
diffusion and advection respectively for 𝑃𝑒 ≪ 1 and 𝑃𝑒 ≫ 1.  In this spectral region, the 
magnitude of 〈𝑆ℎ9〉 and 〈𝑁〉∥ approach an asymptotic non-zero value with vanishing phase 
lag. In the high frequency limit (𝑓∗ ≫ 1) transport is controlled by transient diffusion within 
boundary layers, showing strong dependence of each transfer function on frequency. In 
this spectral region, the magnitude of 〈𝑆ℎ9〉 and 〈𝑁〉∥ respectively increase and decrease 
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according to a power law with exponent ±1 2⁄ , while their phases approach ±	𝜋/4 in 
agreement with semi-infinite Warburg response.  

We embedded these TFs into an up-scaled model using porous electrode theory 
to investigate the dynamic response of a redox flow battery operating under step impulse 
current input. The results obtained suggest that the dynamic response of such systems 
is dictated by the characteristic time-scale of transient current variation. For fast 
fluctuations the effect of transient mass transfer is substantial, and the system response 
is found to lag. For such operation significant reduction in concentration polarization is 
achieved with 60%-70% reduction for an applied current of 90% of the limiting current. 
Finally, we demonstrated that short duration charging/discharging of a redox flow battery 
with over-limiting current is possible, which provides a means to increase the utilization 
of charge capacity of existing flow-based electrochemical devices that are operated under 
transient conditions. Furthermore, while operating under fluctuations of low characteristic 
frequency, such systems reach a pseudo-steady limit with negligible transient mass 
transport effect. Here, the accelerated advection of reactant species from the reactor to 
the tank causes earlier (in time) depletion at the reactive interfaces. 

These findings motivate the exploration of related effects using the presently 
introduced transfer functions to simulate the charging current input that is typical of 
renewable power sources, as well as to model such effects with different electrode 
microstructures.  Additional physicochemical effects not shown here (e.g., macro-scale 
migration and diffusion of redox-active species and supporting-electrolyte ions and 
macro-scale superficial velocity gradients induced by the used of serpentine, 
interdigitated, or other flow fields) are readily coupled with the present B-UTM by adopting 
the two transfer functions of interest to express the interfacial redox-reaction rate and the 
average advection rate in place of those determined by the conventional film law of mass 
transfer in previous porous-electrode theory formulations of RFB models (see Ref. [24]). 
Further, the similarity of the time-domain governing equations motivates the use of the 
transfer functions defined here in other electrochemical contexts using flow-through 
electrodes, including electrochemical separations and energy conversion.  Increased 
accuracy of the model is also possible by additionally including macro-scale dispersion, 
ion conduction, entrance region effects, and non-uniform surface concentration effects. 
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A. Derivation of the criteria for the validity of uniform surface-concentration 
boundary conditions. 

Here we derive the criteria that must be satisfied to use a uniform surface 
concentration boundary condition for active soluble species undergoing a coupled 
heterogenous redox (s!𝑅"! + 𝑠#𝑂"" + 𝑒$ ⇌ 0), where the electromigration flux 
contributions of such species are negligible in solution. The transient local concentration 
of species 𝑖 is governed by the following mass conservation equation (MCE):  

%&#
%'
+	∇ · (𝒋() = 	0          (A1)  

Here 𝒋( = −𝐷(∇𝑐( −
)#*
!+
𝐷(𝑐(∇𝜙 + 𝒖∎𝑐( is the total flux of species 𝑖.  Note that 𝑖 appearing 

as subscript denotes either species 𝑅 or 𝑂, not to be confused with 𝑖 appearing as 
denotation of current density.  The flux 𝒋( is also not to be confused with the imaginary 
unit 𝑗 = √−1 appearing later.  We assume that solid/solution interfaces are stationary and 
impenetrable to bulk flow, resulting in 𝒖∎ ∙ 𝒏|- = 0. The coupled production and 
consumption of species is enforced by the boundary condition (BC) as 𝒋! ∙ 𝒏<|- = −𝒋# ∙ 𝒏<|- 
or 𝐷!

%&!
%.
=
-
= −𝐷#

%&"
%.
=
-
, since electromigration is assumed to be negligible and because 

electrode surfaces are impermeable to solution. The current density 𝑖 at the solid/solution 
interface is coupled to the flux of either species as a result of redox reaction stoichiometry:  

𝑖 = *
-#
	〈𝑗(〉- = − *

-#
	𝐷(

%&#
%.
=
-
= 𝑓(𝜂)       (A2) 

Here, overpotential is expressed as 𝜂 = 𝜙-(𝑡) − 𝜙/(𝑡) − 𝜙/0(𝑐#,-, 𝑐!,-), and we assume 
that the oxidation reaction produces a positive current, while reduction produces a 
negative current.  Redox reaction kinetics relate 𝑖 to overpotential 𝜂.  Using Taylor series 
expansion with respect to a certain current density 𝑖∗ that corresponds to a certain 
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overpotential 𝜂∗ = 𝜙-(𝑡) − 𝜙/(𝑡) − 𝜙/0D𝑐#,-∗ , 𝑐!,-∗ E, we obtain a linear expansion of current 
density that will later be used to derive validity conditions on the basis of scaling analysis: 
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Here, ∆𝜙|- = 𝜙- − 𝜙/ is a driving potential difference between the solid and the 
electrolyte, and 𝜂6 = 𝜙- − 𝜙/ − 𝜙/06  is the overpotential at standard conditions. Using the 
law of mass action with rate constants for oxidation 𝑘78 and reduction 𝑘9/: we find: 

𝑖 = 𝑓(𝜂) = 𝐹(𝑘;𝑐!,- − 𝑘<𝑐#,-) = 𝐹(𝑘78𝑐!,- − 𝑘9/:𝑐#,-)    (A4) 

Using this kinetics formalism, the relevant partial derivatives of current density 𝑖 are: 
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Using Butler-Volmer kinetics with 𝑘78 = 𝑘6𝑒𝑥𝑝[(1 − 𝛼)𝐹	𝜂6/𝑅𝑇] and 𝑘9/: =
𝑘6𝑒𝑥𝑝[−𝛼𝐹	𝜂6/𝑅𝑇], these derivatives are 𝜕𝑖 𝜕𝜂6 = 𝐹> 𝑅𝑇⁄ 	X(1 − 𝛼)𝑘78𝑐!,- + 𝛼	𝑘9/:𝑐#,-Y⁄ , 
𝜕𝑖 𝜕𝑐!,-⁄ = 𝐹𝑘78 and 𝜕𝑖 𝜕𝑐#,-⁄ = −𝐹𝑘9/:. Using Eqs. A2 and A3, we obtain a linear, Robin-
type BC that couples the concentration of both species to the gradient of their 
concentrations at the solid/solution interface (Eq. A6).  

After rearrangement Eq. A6 reduces to the following expression:  

?#
-#

%&#
%.
=
-
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(∆𝜙|- − ∆𝜙|-∗)[            (A6) 

Nondimensionalization of the terms in Eq. A6 enables us to perform scaling analysis. To 
do so we choose a nondimensional normal coordinate 𝑛] = 𝑛 𝑏⁄  with characteristic pore 
dimension 𝑏, a nondimensional surface concentration 𝑐̃(|- = (𝑐( 𝑐(∗⁄ )|-, and a 
nondimensional potential difference Δ𝜙a = Δ𝜙𝐹 (𝑅𝑇)⁄ : 

@
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To approach a Dirichlet condition, thus representing a boundary condition that 
depends solely on the concentration of either species but not on its gradient, requires that 
the gradient term in Eq. A7 (i.e., 𝜕𝑐̃(/𝜕𝑛]|-) vanish relative to the concentration-dependent 
term.  We now consider characteristic scales for the concentration of each species 
(𝑐#,-~𝑐#,-∗  and 𝑐!,-~𝑐!,-∗ ) and for length (𝑛~𝑏), which require that (𝜕𝑐̃( 𝜕𝑛]⁄ )|-~1 , 𝑐̃!,-~1, 
and 𝑐̃#,-~1).  On this basis we argue that the gradient term in Eq. A7 vanishes relative to 
the concentration-dependent terms when either of the two criteria are satisfied: 

1 ≪ G	=*%+
∗ 	<
?#	

	&",$
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	&!,$
∗

&#,$
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For oxidized and reduced species these conditions can be written as, 
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The terms inside the parentheses in Eq. A9 can be simplified by utilizing the de Donder  
relation (𝑘78∗ 𝑘9/:∗⁄ = 𝑒𝑥𝑝(𝐹𝜂6 𝑅𝑇⁄ )) and a logarithm identity (𝑐#,-∗ 𝑐!,-∗⁄ =
𝑒𝑥𝑝X𝑙𝑛D𝑐#,-∗ 𝑐!,-∗⁄ EY), by which we obtain D𝑘78∗ 𝑐!,-∗ E D𝑘9/:∗ 𝑐#,-∗ Eh = 𝑒𝑥𝑝[𝐹 𝑅𝑇⁄ (𝜂6 −
𝑙𝑛(𝑐#∗ 𝑐!∗⁄ )|-)] = 𝑒𝑥𝑝(𝐹𝜂∗ 𝑅𝑇⁄ ). Introducing the definition of a Damköhler number for both 
reduction and oxidation as 𝐷𝑎9/: =	𝑘9/: 	𝑏 𝐷7⁄  and 𝐷𝑎78 =	𝑘78	𝑏 𝐷!⁄ , the required criteria 
to approach a uniform surface condition are given as: 

𝐷𝑎9/: ≫ min[1, 𝑒𝑥𝑝(−𝐹𝜂∗ 𝑅𝑇⁄ )]  and 𝐷𝑎78 ≫ min[1, 𝑒𝑥𝑝(𝐹𝜂∗ 𝑅𝑇⁄ )] (A10) 

Thus, the respective Damköhler numbers must be sufficiently large to assure that the 
uniform surface concentration boundary is valid. 

B. Validity criterion for periodic boundary conditions 

Here we revisit the validity criteria for imposing periodic boundary conditions for 
periodic microstructures – an assumption invoked ad hoc in section 2.1 – by performing 
scaling analysis of electrolyte flow through an electrode, similar to our approach used in 
the pseudo-steady limit (Ref. [1]) with the exceptions that (1) we consider a non-
recirculating cell configuration and (2) we perform our scaling analysis in the frequency 
domain with the aid of the transfer functions introduced already.  Following our previous 
work, we analyze the time-dependent average concentration 〈𝑐〉9 within the 
electrode/reactor using an integral MCE assuming an electrolyte feed with certain uniform 
concentration of redox-active species flowing in 𝑐(. with a volumetric flow rate 𝑉̇: 

:(EF-G*〈&〉*)
:'

= 𝑉̇𝑐(. − 𝐴&|𝒖-|[〈𝑐〉9 − ℱ$@{〈𝑁〉∥(𝑐-̅ − 〈𝑐̅〉9)}] +
LG*F-?

<
ℱ$@v〈𝑆ℎy〉(𝑐-̅ − 〈𝑐̅〉9)z  (B1) 

Here, the rightmost two terms, which contain the transfer functions 〈𝑁〉∥ and 〈𝑆ℎy〉, are 
respectively a result of the rate of solute advection through the outlet and the rate of solute 
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production by virtue of electrochemical reactions at the solid/solution interface.  𝐴& and 𝐿9 
are respectively the electrode’s cross sectional area normal to the superficial velocity 𝒖- 
and the electrode’s length in the streamwise direction. 𝑎 is the electrode’s surface area 
per unit volume.  Fourier transformation of this equation simplifies this expression to: 

𝑗𝜔𝜀𝐴&𝐿9〈𝑐̅〉9 = 𝑉̇𝑐̅(. − 𝐴&|𝒖-|[〈𝑐̅〉9 − 〈𝑁〉∥(𝑐-̅ − 〈𝑐̅〉9)] +
LG*F-?

<
〈𝑆ℎy〉(𝑐-̅ − 〈𝑐̅〉9)     (B2) 

 Similar to our previous work [1], we require the ratio of characteristic streamwise 
(Δ𝑐)	ǁN and transverse (Δ𝑐)ON  concentration differences to be sufficiently small at the 
macroscopic scale in order to assure that streamwise concentration differences are 
sufficiently small, ultimately requiring that the following nondimensional quotient Δ𝑐̂ satisfy 
Δ𝑐̂ ≪ 1: 

Δ𝑐̂ = <
G*
∙ =〈&〉̅*	$&̅

#/

〈&〉̅*	$&$Q
= ~ G

(R&)#,ǁ
1

(R&)#,2
1 G      (B3)  

By solving the Fourier-transformed MCE for 〈𝑐̅〉9	 − 𝑐̅(. we obtain the following criterion 
after significant simplification to assure the validity of periodic boundary conditions: 

Δ𝑐̂ = @
S/
=>TU;

∗E〈ℂ〉
@$〈ℂ〉

− 𝑎𝑏〈𝑆ℎy〉 − <
G*
𝑃𝑒〈𝑁〉∥= ≪ 1    (B4) 

Hence, the validity of using periodic boundary conditions is, in a sense, a recursive 
criterion because it depends not only on input nondimensional parameters (𝑃𝑒, 𝑓∗, 𝑎𝑏, 
and 𝑏/𝐿9) but also on the nondimensional transfer functions 〈𝑁〉∥ and 〈𝑆ℎy〉 that are outputs 
produced based on those input parameters. In practice, 〈𝑁〉∥ and 〈𝑆ℎy〉 would first be 
predicted and Δ𝑐̂ would subsequently be calculated to verify the self-consistency of such 
simulations performed using periodic boundary conditions.  Further, Eq. B4 is a criterion 
that is frequency- or mode-specific, and, hence, it is advisable to evaluate Δ𝑐̂ at 
frequencies that are representative of the total response. 

C. Equivalence of spectral Sherwood number 〈𝑺𝒉y〉 at vanishing frequency with 
Sherwood number 〈𝑺𝒉〉 in the pseudo-steady limit 

Here we demonstrate the equivalence between the spectral Sherwood number 
〈𝑆ℎy〉 in the limit of 𝜔 → 0 with the conventional Sherwood number obtained in the pseudo-
steady limit. For the pseudo-steady limit, we consider the auxiliary problem that we 
introduced previously in Ref. [1]. The auxiliary problem is described by a steady MCE in 
terms of the time-independent contribution 𝑐W(𝒓) to the time- and space- dependent 
concentration field 𝑐(𝑡, 𝒓) as: 

∇ · (𝒖∎𝑐W − 𝐷∇𝑐W) = −𝜎;   𝑐W|- = 0    (C1) 

where 𝑐W(𝒓) = 𝑐(𝒓, 𝑡) − 𝑐-(𝑡) and the source term 𝜎 represents the temporal rate of 
change in surface concentration 𝜎 = 𝜕𝑐- 𝜕𝑡⁄ . The conventional Sherwood number is 
defined in terms of 𝑐W(𝒓) using the film law of mass transport. In the present study, the 
unsteady conjugate problem is replaced by a Fourier-transformed MCE (Eq. 4) where the 
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spectral Sherwood number 〈𝑆ℎy〉 is defined by Eq. 6 from the main text. To demonstrate 
the equivalence of the Fourier transformed MCE (Eq. 4) with the auxiliary problem’s MCE 
(Eq. B1), we define 𝛿 = (𝑐̅ − 𝑐-̅) 𝑐-̅⁄ , and we substitute it back into Eq. 4 from the main 
text to produce the following:  

@
UX
∇ · (𝒖∎𝛿 − 𝐷∇𝛿) = 	−	(1 + 𝛿);   𝛿|- = 0   (C2) 

Scaling analysis of Eq. C2 with a characteristic length scale 𝑏 and a characteristic velocity 
𝑈 reveals that its righthand side approaches unity for vanishing frequency (i.e., 
lim
X→6

(1 + 𝛿) = 1), based either on characteristic scales for advection (𝛿~𝜔𝑏 𝑈⁄ ) or for 
diffusion ( 𝛿~𝜔𝑏> 𝐷(⁄ ).  In this limit Eq. C2 approaches the following form:  

∇ · (𝒖∎𝛿 − 𝐷∇𝛿) = 	−	𝑗𝜔;   𝛿|- = 0   (C3) 

Since 𝛿 is a complex number, we expand it in terms of real and imaginary parts 𝛿 = 𝛿!/ +
𝑗	𝛿ZN to obtain a single PDE for the real part (∇ · (𝒖∎𝛿!/ − 𝐷∇𝛿!/) = 	0 with 𝛿!/|- = 0) and 
a single PDE for the imaginary part (∇ · (𝒖∎𝛿ZN − 𝐷∇𝛿ZN) = 	−	𝜔 with 𝛿ZN|- = 0).  The only 
solution possible for the real component is the trivial solution, i.e., 𝛿!/ = 0.  Thus, we 
deduce that 𝛿 = 𝑗𝛿ZN, and we solve only for the imaginary component: 

∇ · (𝒖∎𝛿ZN − 𝐷∇𝛿ZN) = 	−	𝜔;   𝛿ZN|- = 0   (C4) 

To verify the equivalence of Eq. C1 and Eq. C4, we define 𝛿ZN[ = 𝛿ZN/𝜔 and 𝑐W[ = 𝑐W/𝜎 
and substitute into the respective equations to obtain: 

∇ · (𝒖∎𝛿ZN[ − 𝐷∇𝛿ZN[ ) = 	−	1;   𝛿ZN[ |- = 0 

∇ · (𝒖∎𝑐W[ − 𝐷∇𝑐W[ ) = −1;     𝑐W[ |- = 0 

Inspection reveals that solutions to these PDEs are identical, such that 𝛿ZN[ = 𝑐W[  and  
\31
X
= &4

]
 are satisfied exactly.  By recognizing that surface fluxes are only due to diffusion 

(and not advection), the associated flux and concentration difference can be expressed 
in terms of 𝛿 as 〈𝚥〉̅- = −𝐷〈𝜕𝑐̅ 𝜕𝑛⁄ 〉 = −𝐷〈𝜕𝛿ZN 𝜕𝑛⁄ 〉𝑐-̅ and 𝑐-̅ − 〈𝑐̅〉 = −〈𝛿ZN〉	𝑐-̅.  Therefore, 
〈𝑆ℎy〉 approaches the following expression in the limit of vanishing frequency: 

lim
X→6

〈𝑆ℎy〉 = lim
X→6

:
?

〈^̅〉$
&$̅$〈&̅〉

= :
〈\31〉

〈%\31
%.

〉 = :
5
6〈&4〉

X
]
〈%&4
%.
〉 = :

$(&$$〈&〉)
〈%&
%.
〉 = :

?
〈U$〉
&$$〈&〉

= 〈𝑆ℎ〉S_G (C5) 

This analysis demonstrates that the value of 〈𝑆ℎy〉 for 𝜔 → 0 must be equal to the value of 
〈𝑆ℎ〉 obtained in the pseudo-steady limit. This analysis also suggests an alternative 
interpretation of the transfer function 〈𝑆ℎy〉, i.e., that it is essentially a frequency-dependent 
version of the Sherwood number. This statement is further supported through comparison 
between lim

X→6
〈𝑆ℎy〉 values obtained from present model and 〈𝑆ℎ〉S_G values obtained from 

pseudo-steady simulations [1], where the percentage deviation observed is found to be 
within machine precession (~10$@` %).  
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D. Experimentation and model prediction comparison 

To compare the predictions of our bottom-up transient model with experimentally 
obtained polarization values, a redox flow-cell setup was implemented and tested 
experimentally. To validate the present model with experimental data the flow cell was 
prepared using a well-prescribed electrode geometry using redox chemistry with well-
known electrochemical properties. The reaction chemistry chosen was the ferro/ferri-
cyanide (𝐹𝑒(𝐶𝑁)ab$/𝐹𝑒(𝐶𝑁)ac$) couple dissolved in an aqueous solution along with 𝐾𝐶𝑙 
as supporting salt.  

The flow cell consisted of two 200 𝜇𝑚 thick graphite foil electrodes 
(4.5	𝑐𝑚	 × 4.5	𝑐𝑚) separated by a non-selective polymer separator (NP030 from 
STERLITECH Corporation). The electrolyte solution was pumped at a rate of 5	𝑚𝐿/𝑚𝑖𝑛 
through the triangular channel engraved electrodes (TCEE) to create flow along the 
length of such channels, as shown in Figs. D2a and D2c. The parallel triangular channels 
(see Fig. D1a) were engraved using a Trotec laser engraver (Speedy Flexx 400 fiber 
laser) with 100	𝜇𝑚 spacing from valley to valley. A nominal 90	𝜇𝑚 deep and 75	𝜇𝑚 wide 
isosceles channel cross-section (Fig. D1d) was determined from the mean values of the 
Gaussian distribution of measured depth and width for model implementation, as 
determined from 3D profilometry (Keyence). The nominal channel cross-section area 
obtained was 3375	𝜇𝑚>, which coincides with the mean values obtained from Gaussian 
distribution of measured cross-sectional area for both electrodes (Figs. D1b and D1c). 
The volume-specific reactive area and total flow area for the electrolyte were calculated 
from this representative geometry. We note that the channel depth 𝑑&W = 90	𝜇𝑚 was 
taken as the characteristic length to calculate non-dimensional parameters. 

 

 
Fig. D1: (a) Schematic of a triangular channel engraved electrode (TCEE) produced by 
laser engraving of graphite foil. (b, c) Histograms showing Gaussian distribution of the 
measured cross-sectional area at different locations. Representative channel cross-
section approximated for pore-scale model implementation that produces a cross-
sectional area close to the average values of the distributions observed in Figs. D1b and 
D1c. 

The electrolyte solution was prepared by dissolving potassium 
hexacyanoferrate(II) trihydrate, 𝐾b𝐹𝑒(𝐶𝑁)a ∙ 3𝐻>𝑂, and potassium hexacyanoferrate(III), 
𝐾c𝐹𝑒(𝐶𝑁)a, in deionized water.  All the chemicals were from Sigma-Aldrich and were used 
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as received to prepare 350	𝑚𝐿 of 15	𝑚𝑀 (individual species) solution. High salt 
concentration (3	𝑀	𝐾𝐶𝑙) was used to increase the ionic conductivity of the electrolyte as 
well as to decrease the electromigration of active species. For simplicity, the anodic and 
cathodic kinetic processes were modeled as symmetric with equal Butler-Volmer transfer 
coefficients (𝛼 = 0.5) with an identical diffusivity of 𝐷 = 7 × 10$a	𝑐𝑚>/𝑠  and a rate 
constant of 𝑘- = 0.1	𝑐𝑚/𝑠. The values of 𝐷 and 𝑘- were taken from published literature 
[2–7]. From these values the calculated limiting current density 𝑖d(N, Peclet number 𝑃𝑒, 
Damköhler number 𝐷𝑎, and nondimensional flow rate 𝛽 are listed in Table D1. To obtain 
the transient response of the flow cell, applied current was varied as a square wave as 
shown in Fig. D2b. During all experiments, each tank was prepared with 175	𝑚𝐿 of 
electrolyte to ensure that the change in state-of-charge during any charging/discharging 
step was less than 0.1%. 

 

Fig. D2: (a) Experimental setup of flow cell, showing electrolyte flow circuits and 
electrode/separator/electrode staking inside of the reactor. (b) Schematic of applied 
current density variation with time for two steps of galvanostatic charging/discharging. (c) 
Magnified 3D representation of triangular channel engraved electrodes (TCEEs) with flow 
along channel length. (d) 2D pore scale model of TCEEs with different boundary 
conditions, reactive boundaries (ℂ|- = 1) and no flux boundary K%ℂ

%.
=
-
= 0L. (e) 1D macro-

scale model of the electrode with electrolyte flow direction. Frequency dependence and 
fitting obtained from rational function approximation of different TFs calculated from 
numerical solution of pore-scale model, (f) spectral Sherwood number 〈𝑆ℎy〉, (g) parallel 
component of suppression vector 〈𝑁〉∥ and (h) 〈𝑍a〉 = 1 〈𝑆ℎy〉⁄ . 
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Table D1: Values of different parameters associated with flow cell experiments using 
triangular channel engraved electrodes (TCEE).  

Parameter (unit) Value/range 
Volume-specific active area, 𝑎 (𝑚>/𝑚c) 5.778	 × 10b  
Limiting current density, 𝑖d(N (𝑚𝐴/𝑐𝑚>) 10.1  
Exchange current density, 𝑖6 (𝑚𝐴/𝑐𝑚>) 144.7  
Mean residence time, 𝑡9 (𝑠𝑒𝑐) 0.82  
Characteristic diffusion time, 𝜏: (𝑠𝑒𝑐) 11.6  
Damköhler number, 𝐷𝑎 (−) 128.5  
Péclet number, 𝑃𝑒 (−) 7.05 × 10c  
Non-dimensional flow rate, 𝛽 (−) 2.4	~	0.3  
Tank-to-reactor volume ratio 2.56 × 10c  

 

 

Fig. D3: Variation of 𝐼𝑅-corrected cell voltage with time due to current applied with 
different 𝑖9e and 𝜏 values. 

For the model implementation, the local pore velocity (x-component 𝑢8) field was 
obtained from numerical solution of the steady form of the x-component of the Navier-
Stokes equations in the creeping flow limit: 

∇ ∙ (∇𝑢8∎) =
∇e
g
        (D1) 

with no-slip (𝑢8∎|- = 0) and impermeable K%h)
∎

%.
=
-
= 0L boundary condition at solid-solution 

interfaces, including the separator/solution interface. The local ℂ field was obtained from 
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numerical solution of Eq. 4 from the main text by using a constant surface concentration 
condition at reactive interfaces (ℂ|i = 1), along with a no-flux condition K%ℂ

%.
=
i
= 0L at the 

separator/solution interface (see Fig. D2d). From the numerical solution of these 
equations, the spectral Sherwood number 〈𝑆ℎy〉 and the parallel component of the 
suppression vector 〈𝑁〉∥ were calculated using Eq. 6 and Eq. 9. The variation of these 
TFs with non-dimensional frequency and their fitting from rational function approximation 
are shown in Fig. D2f-h. We note that, unlike arbitrary porous media, these TFs are 
independent of 𝑃𝑒 because the velocity components along any direction perpendicular to 
channel length is zero (i.e., 𝑢j = 𝑢" = 0). Finally, these TFs were embedded into the 
macroscopic model following an approach identical to that discussed in Sec. G to obtain 
the transient response of the flow cell (see Figs. D2c-e).   

To study the transient response of this system, current was applied to the flow cell 
as a square wave with certain current magnitude and half-period	𝜏  (Fig. D2b). Figure D3 
shows the time variation of 𝐼𝑅-corrected voltage for different 𝑖9e and 𝜏 values obtained 
from experiment and from predictions of the bottom-up transient model (B-UTM) along 
with conventional model (CM) predictions. A detailed discussion on Fig. D3 is in Sec. 3 
of this article. 

 
E. Discretization of pore-scale MCE, numerical implementation and verification 

We model flow through a 2D microstructure’s pores as a Newtonian, isochoric 
solution with constant dynamic viscosity and partial molar volume for each dissolved 
species. The molar-volume averaged velocity field 𝒖∎ is governed by creeping flow, 
assuming that the pore-scale Reynolds number 𝑅𝑒 = 𝑃𝑒/𝑆𝑐 is sufficiently small. These 
assumptions enable us to simulate 𝒖∎ using the time-independent, inertia-free version of 
the vorticity transport equation (VTE) ∇b𝜓 = 0 [8], which is obtained by taking the curl of 
the Navier-Stokes equations.  Here, 𝜓 is a stream function from which the components 
of velocity automatically enforce conservation of volumetric flow rates (∇ ∙ 𝒖∎ = 0): 𝑢8∎ =
𝜕𝜓 𝜕𝑦⁄  and 𝑢j∎ = −𝜕𝜓 𝜕𝑥⁄ . The associated BCs at cylinder surfaces are enforced by the 
no-slip (𝜕𝜓 𝜕𝑛⁄ |- = 0) and impermeability (𝜕𝜓 𝜕𝑠⁄ |- = 0) conditions.  We also require that 
no lift force is generated perpendicular to 𝒖-, such that the Kutta-Joukowski [9] theorem 
requires fluid circulation 𝛤 to vanish around each isolated solid in the domain: 𝛤 = ∮ 𝒖∎& ∙

	𝑑𝒔 = −∮ ∇>𝜓	𝑑𝐴-& 	= 0.  Periodic jump/fall BCs are also applied at unit-cell boundaries, 
𝜓(𝒓 + 𝑹) = 𝜓(𝒓) + (𝑹/|𝑹|) · Δ𝝍.  Here Δ𝝍 = 	Δ𝜓8	𝚤̂ + Δ𝜓j	𝚥	̂is the periodic jump/fall in 𝜓 
across the unit-cell that results in a certain volumetric flow rate per unit depth equal to 
|Δ𝝍|.  We used a second-order accurate finite difference method to discretize the VTE 
subject to the BCs already described, and we solved for 𝜓 using a direct solver.  

The equations that govern the transfer function ℂ(𝜔, 𝒓) (Eq. 4) were discretized 
using the finite volume method [10] using central differencing of advection and diffusion 
flux contributions at finite-volume cell faces subject to periodic BCs at unit-cell boundaries 
(i.e., ℂ(𝒓 + 𝑹) = ℂ(𝒓)) and a unity Dirichlet condition at solid/solution interfaces. A 
complex-number, direct solver was used in MATLAB to obtain ℂ(𝜔, 𝒓) at the locations of 
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finite-volume cell centroids. The finite-volume cell dimensions Δ𝑥 and Δ𝑦 were selected 
to ensure that the corresponding grid-level Péclet numbers (𝑃𝑒8 =	𝑢8∎Δ𝑥/𝐷 and 𝑃𝑒j =
	𝑢j∎Δ𝑦/𝐷) remained less than 0.5 to guarantee numerical stability subjected to the 
Courant–Friedrichs–Lewy condition [11]. 

 

Fig. E1. (a) Domain of the parallel reactive boundaries used for verification of the present 
pore-scale numerical simulations. (b) and (c) respectively show the variation of analytical 
and numerical values for 〈𝑆ℎy〉 and 〈𝑁〉∥ with nondimensional angular frequency 𝜔∗ for the 
parallel reactive boundaries.  

Here we present verification of our numerical scheme by comparing the obtained 
results with analytically derived results for a simple geometry, namely parallel reactive 
boundaries (PRBs). Fig. E1a shows a unit cell with a single boundary in the middle that 
repeats itself transversely to simulate an infinite array of pairs of parallel boundaries. The 
surface concentration is assumed to be uniform and to vary with time periodically 
following a sine function with angular frequency 𝜔 = 2𝜋𝑓.  For such a simple geometry 
analytical expressions for the volume-averaged concentration transfer function 〈ℂ〉 =
〈𝑐̅〉/𝑐-̅ and the spectral Sherwood number ©𝑆ℎy™ = 𝑏〈𝚥〉̅-/[𝐷(𝑐-̅ − 〈𝑐̅〉)] were obtained as: 

〈ℂ〉 = @
kUX∗

tanhDÆ𝑗𝜔∗E        (E1) 

and,  ©𝑆ℎy™ = kUX∗	lmnopkUX∗q

@$ 8
9:5∗

lmnopkUX∗q
        (E2) 

Here, frequency is nondimensionalized as 𝜔∗ = 𝜔𝑏>/𝐷, considering the gap between the 
boundaries as the characteristic dimension 𝑏. Further, the analytical expression for the 
streamwise component of transfer function ⟨𝑁⟩∥ was obtained as: 

⟨𝑁⟩∥ =
r ;
:5∗s@t

8
9:5∗

	lmnopkUX∗q$ ;
:5∗

@$ 8
9:5∗

lmnopkUX∗q
       (E3) 

The variations of both magnitude and phase in Figs. E1b and E1c for ©𝑆ℎy™ and ⟨𝑁⟩∥ 
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respectively show excellent agreement between numerical simulation and the analytical 
solution, though at high frequency the numerical results deviate from analytical values 
because of the finite grid size used in numerical simulations. In practice we used a grid 
size of 1000×1000 cells in most cases to minimize computational expense. For high 𝑃𝑒 
cases more grid points were used to satisfy CFL criteria. 

 

Fig. E2. Variation of 〈𝑆ℎy〉 and 〈𝑁〉∥ with 𝜔∗ that were obtained using different numbers of 
grid points applied to the periodic domain of cylinders depicted in Fig. 3c from the main 
text. 

To check the grid dependence of our predictions for ©𝑆ℎy™ and ⟨𝑁⟩∥ simulations were 
performed for cylinder arrays at 𝑃𝑒 = 100 using different grids, the results of which are 
shown in Fig. E2.  The most significant deviations among different grids were observed 
in the limits of low and high frequency.  However, a grid of 1000 × 1000 cells adequately 
captures the fine-grid resolution while limiting computational expense.  

F. Pore-scale concentration profiles 

Here we analyze the shape of the concentration profiles at the midplane of the 
cylinder within a periodic array and along the direction transverse to the streamwise 
direction. To determine how frequency influences such profiles beyond that limit, the 
magnitude and phase (𝜃ℂ = tan$@(Im[ℂ] Re[ℂ]⁄ )) of ℂ(𝜔, 𝒓) are shown in Fig. F1 on the 
same surface, defined by the red-dashed line shown in Fig. 3c from the main text. All 
profiles exhibit |ℂ| = 1 and 𝜃ℂ = 0 at the solid/solution interface, consistent with the 
surface condition imposed in Eq. 4 from the main text.  All profiles show a monotonic 
decrease of |ℂ| toward zero as distance from the interface increases, while 𝜃ℂ increases 
monotonically with distance from the interface for all profiles, except those simulated at 
𝑃𝑒 ≫ 1 with either 𝑓∗ ≪ 1 or 𝑓∗ ≫ 200.  At any given location of interest all profiles show 
increased phase lag with increasing frequency, except for those simulated with 𝑓∗ ≫ 200 
at 𝑃𝑒 ≫ 1. For 𝑓∗ ≫ 200 and 𝑃𝑒 ≫ 1 the non-monotonic variation of 𝜃ℂ with increasing 
distance and frequency is caused by the high rate of solute advection under such 
conditions. For 𝑓∗ ≪ 1 the lagless tracking of surface concentration causes 𝜃ℂ to vanish 
uniformly. 
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Fig. F1. Spatial variation of |ℂ| and 𝜃ℂ in the transverse direction at the pore throat for (a) 
𝜀 = 0.546 with 𝑃𝑒 = 0.019 (first row) and 𝑃𝑒 = 380 (second row), (b) 𝜀 = 0.874 with 𝑃𝑒 =
0.01 (first row) and 𝑃𝑒 = 300 (second). Spatial variation of |𝑐̂| in the transverse direction 
at the pore throat for (c) 𝜀 = 0.546 with 𝑃𝑒 = 0.019 (left) and 𝑃𝑒 = 380 (right), (d) 𝜀 =
0.874 with 𝑃𝑒 = 0.01 (left) and 𝑃𝑒 = 300 (right). 

The effect of 𝑃𝑒 on system response in the low frequency limit (𝑓∗ ≪ 1) is not 
apparent from Figs. F1a and F1b as a result of the vanishing degree of spatial variation 
in ℂ that occurs in the limit of vanishing frequency.  To compare the shape of 
concentration profiles in this limit at finite frequency we also calculated a non-dimensional 
concentration profile 𝑐̂ whose surface value is identically zero and whose volume-
averaged value is unity in the frequency domain: 𝑐̂(𝜔, 𝒓) ≡ (𝑐̅ − 𝑐-̅) (〈𝑐̅〉 − 𝑐-̅)⁄ , which 
simplifies to 𝑐̂(𝜔, 𝒓) = (ℂ − 1) (〈ℂ〉 − 1)⁄ .  Consistent with our findings deduced from Figs. 
F1a and F1b, the 𝑐̂ profiles in Fig. F1c and F1d reveal that the spatial extent of solution 
over which concentration varies decreases with increasing frequency, producing 
interfacial concentration gradients with magnitude that increases as frequency increases. 
Such a profile is reminiscent of the diffusion boundary layers that are observed in 
unbounded flows for sufficiently large frequencies.  In addition, a negligible effect of Pe 
on these profiles is observed at sufficiently high frequencies (𝑓∗ ≫ 200).  In contrast, 
Péclet number influences profile shape substantially at sufficiently low frequencies (𝑓∗ ≪
1), resembling the profiles obtained from simulations that we performed in the pseudo-
steady limit [1].  In summary, these results suggest that response in the low-frequency 
limit is controlled primarily by the dominant transport mechanism in the solution’s bulk 
(pseudo-steady diffusion and/or advection), while response in the high-frequency limit is 
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controlled by transient diffusion through boundary layers of solution that exhibit 
frequency-specific thickness adjacent to interfaces. 

G. Discretization of macro-scale MCEs and numerical implementation 

We note that, while charging an RFB with known applied current variation 𝑖Lee(𝑡), 
the instantaneous local current distribution 𝑖d7&Ld(𝒓, 𝑡) inside the reactor is in general 
unknown. However, 𝑖d7&Ld(𝒓, 𝑡) must satisfy the current-overpotential relation at the 
interface (Eq. 11 from the main text), and the mean of the distribution must be equal to 
the instantaneous applied current: 〈𝑖d7&Ld(𝒓, 𝑡)〉 = 𝑖Lee(𝑡). Since the solid phases are 
electronically connected to the current collector, the solution obtained from Eqs. 10 and 
13 in the main text must reproduce the equipotential condition, which requires that the 
solid phase potential at every location inside the reactor is identical. We used this 
equipotential condition to develop an iterative algorithm where at each time step the initial 
distribution of local current was assumed to be uniform and equal to the instantaneous 
applied current distribution 𝑖Lee(𝑡). First, Eqs. 10 and 13 from the main text were 
discretized using the finite volume method to obtain a set of algebraic equations that are 
simultaneously solved to obtain ⟨𝑐(⟩ and ⟨𝑐(⟩+ using a direct solver, where the face 
quantities were approximated using an up-wind scheme. Second, surface concentrations 
of both species were calculated from the local concentration polarization, which was 
obtained from the inverse Fourier transform of a rational transfer function approximation 
of the reciprocal of the spectral Sherwood number, defined as 〈𝑍a〉 = 1/〈𝑆ℎy〉, to obtain a 
state-space formulation in the time domain. Third, the local solid-phase potentials 𝜙_ were 
calculated (Eq. 12) from local overpotential 𝜂 values obtained by a Butler-Volmer (B-V) 
kinetics expression (Eq. 11). Lastly, the equipotential condition was checked within a 
specified nondimensional tolerance (𝑆𝑇𝐷(𝜙_)/〈𝜙_〉 ≤ 	10$@b).  If not satisfied, the entire 
process was repeated for a subsequent iteration starting with the non-uniform, scaled 
local current distribution from last iteration. The scaling of current distribution was done 
to ensure that the obtained non-uniform current distribution had a mean value equal to 
the instantaneous applied current i.e., 〈𝑖d7&Ld(𝒓, 𝑡)〉 = 𝑖Lee(𝑡). This iterative process was 
repeated until the equipotential condition was satisfied. Then the algorithm proceeded to 
the next time step. The iterative algorithm is shown as a block diagram in Fig. G1. 

Below are described each of the components of the numerical methods used for the 
macro-scale model. 

• State space representation of transfer functions 

Here we describe the step-by-step procedure to obtain the inverse Fourier 
transforms of the frequency dependent TFs to solve Eq.10 in the time domain. Since the 
associated PDEs and BCs are all linear, the system described here is a linear time-
invariant (LTI) system [12,13]. Further, 〈𝑆ℎy〉 is a scalar quantity, and for uniform flow 
through symmetric (with respect to 𝒖-) electrode microstructure, the transverse 
component of 〈𝑵〉 is zero, i.e., 〈𝑁O〉 = 0, which allowed us to define a single-input/single-
output (SISO) state-space model (SSM) for both TFs separately. For such systems a 
rational transfer function 〈𝑇𝐹〉 can be expressed using its state space representation as: 



14 
 

〈𝑇𝐹〉 = 𝐶(𝑗𝜔𝐼 − 𝐴)$@𝐵 + 𝐷         (G1) 

Here, 𝐼 is an identity matrix, and 𝐴, 𝐵, 𝐶,	and	𝐷 are the system matrices/vectors of the 
corresponding state-space model. The system matrices/vectors were obtained from the 
state-space representation that correlates the input 𝑢 to the output 𝑦 of the 〈𝑇𝐹〉 via a 
state vector 𝑥 as governed by Eq. G2.  

State equation: :8
:'
= 𝐴	𝑥 + 𝐵	𝑢       (G2a) 

Output equation: 𝑦 = 𝐶	𝑥 + 𝐷	𝑢       (G2b) 

The state matrix 𝐴 consists of the poles 𝑝( as non-zero elements along its diagonal. The 
input vector 𝐵 is a column vector of ones. The output vector 𝐶 is a row vector with residues 
𝑟( as its elements. 𝐷 is zero for a proper transfer function, of which 〈𝑍a〉 and 〈𝑵〉 are specific 
forms of. Since 〈𝑆ℎy〉 is improper 〈𝑆ℎy〉(𝜔 → ∞) → ∞ (Fig. 4) we define its reciprocal as 
〈𝑍a〉 = 1 〈𝑆ℎy〉⁄ , which is a proper TF. We note that 〈𝑍a〉 represents the diffusional impedance 
of the system [14,15]. The input 𝑢 and output 𝑦 were taken from the definition of the 
corresponding TFs as shown in Table G1.  

 

Fig. G1. Flow chart showing the steps in the self-consistent iteration algorithm used at 
each time step to solve macro-scale mass conservation equations (Eqs. 10 and 13 from 
the main text), while the equipotential condition is checked at each iteration using Eqs. 
11 and 12 from the main text. 
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Table G1: List of input 𝑢 and output 𝑦 for various transfer functions to implement their 
corresponding state space model.  

Transfer 
function Type Frequency domain  Time domain 

Input 𝑢 Output 𝑦  Input 𝑢 Output 𝑦 
〈𝑍a〉  proper 𝑏 〈𝚥(̅〉- 𝐷⁄  𝑐-̅,( − 〈𝑐(̅〉  𝑏 〈𝑗(〉- 𝐷⁄  𝑐-,( − 〈𝑐(〉 
〈𝑁∥〉  proper 𝑐-̅,( − 〈𝑐(̅〉 𝜀 〈𝑊uΩΩΩ〉 |𝑢-|⁄   𝑐-,( − 〈𝑐(〉 𝜀 〈𝑊(〉 |𝑢-|⁄  

The poles 𝑝( and the residues 𝑟( of the TFs 〈𝑍a〉 and 〈𝑁∥〉 were obtained from a 
rational function approximation with a finite number of poles (details in the following sub-
section). Equation F2 was discretized using an implicit scheme and solved at each time 
step for each finite volume cell by using a direct solver to obtain their corresponding state 
variables 𝑥 and the outputs 𝑦 in time domain, as shown in Table G1. First, the 
concentration polarization 𝑐-,( − 〈𝑐(〉 was obtained from 〈𝑍a〉 using instantaneous local 
current density (i.e., 𝑏 〈𝑗(〉- 𝐷⁄ ) as input. Lastly, the covariance of velocity and 
concentration field 𝜀 〈𝑊(〉 |𝑢-|⁄  was obtained from 〈𝑁∥〉 considering 𝑐-,( − 〈𝑐(〉 as input. 

• Rational function approximation and vector fitting of transfer functions  

To obtain the poles 𝑝( and residues 𝑟(, the TFs 〈𝑍a〉 and 〈𝑁∥〉 were approximated as 
rational transfer functions with finite numbers of poles (Eq. G3).  

〈𝑇𝐹〉 = ∑ 9#
UX$e#

v
(w@           (G3) 

Here, 𝑁 is the number of poles approximated, and 〈𝑇𝐹〉 = 〈𝑍a〉	or	〈𝑁∥〉. To obtain 𝑝( and 𝑟( 
a vector fitting algorithm [16–18] was used. This algorithm assumes an arbitrary initial 
guess for poles 𝑝(, that makes Eq. G3 linear with 𝑟( as unknowns. A set of linear algebraic 
equations for 𝑟( was obtained by expressing Eq. G3 at each frequency sampled to yield 
an overdetermined linear system of equations 𝐴𝑥 = 𝑏, where 𝑥 is a column vector of 
unknown residues. This overdetermined problem was solved using a least-squares fitting 
technique. To improve the accuracy of the fitting these steps were repeated using an 
iterative scheme, where the initial guess of the poles in the subsequent iteration was 
updated by a new set of poles obtained from Eq. G3 using the residues from the previous 
iteration. Weighting functions were used for the least-squares fitting, based on the 
magnitude of data sampled at each frequency, so as TF values with small magnitude 
were given greater weight. Stable poles were ensured by changing the sign of the real 
part of the poles whenever necessary (i.e., pole shifting). To check the accuracy of the 
vector fitting algorithm, we reproduced the TFs using poles and zeros obtained from the 
vector fitting algorithm and compared with the original TFs values in Fig. G2. Vector fitting 
with 𝑁 = 30 poles/zeros resulted in excellent accuracy, where the reproduced TFs 
showed maximum deviation among all sampled frequencies less than 10$>% for all 
cases.  
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Fig. G2. Bode plot of the transfer functions 〈𝑍a〉 = 1 〈𝑆ℎy〉⁄  and 〈𝑁∥〉 for 𝜀 = 0.546 (left panel) 
and 𝜀 = 0.874 (right panel) porosity electrodes. Pore-scale simulation data are shown as 
solid lines and the fitted data are shown in circles. 

• Selection of time step size and number of finite volumes and verification of 
numerical implementation of the macroscopic model  

Here, we present the dependence of the results on the time step size ∆𝑡 and the 
number of finite volumes 𝑁*x used in the one-dimensional macroscale model. Further, 
we used our TF embedded model to investigate the response for a finite diffusional space 
between two reactive parallel boundaries, for which analytical results were obtained by 
solving the associated MCEs in the time domain. The transient response of such a simple 
geometry obtained from the transient model introduced here is compared with the 
analytical results.   

• Selection of time step size and number of finite volumes 

Figure G3a shows the variation of the numerically calculated volume-averaged 
concentration polarization with time step size ∆𝑡 used in the numerical implementation. 
The absolute values of the volume-averaged concentration polarization are normalized 
by their arithmetic mean (as the figure is designated to show the variation in data only). 
The figure shows that for ∆𝑡 ≤ 0.1	𝑠, the solution approaches an asymptotic value 
showing negligible dependence on ∆𝑡. In our calculations different values of ∆𝑡 have been 
used (10$a	𝑠 ≤ ∆𝑡 ≤ 10$@	𝑠) to minimize computation time, where smaller and larger ∆𝑡 
were used for short and large duration impulse simulations, respectively. 
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The finite volume discretization of associated MCEs ensures the conservation of 
mass for a finite-sized representative control volume. Thus, volume-averaged quantities 
did depend on the number of finite volumes 𝑁*x used in the calculation. Thus, we show 
the dependency of the maximum polarization produced inside the reactor with 𝑁*x in Fig. 
F3b. The data are normalized by their arithmetic mean to emphasize their variations. The 
results shows a negligible dependence of maximum polarization on 𝑁*x for 𝑁*x ≥ 50 
(𝑁*x = 50 produces deviation that is less than 10$@% compared to 𝑁*x = 200). 
Consequently, we used 𝑁*x = 50 in all simulations to minimize the computation cost while 
capturing the local maximum values with acceptable accuracy. 

 

Fig. G3. (a) Time step dependence of numerical results for the macro-scale model. (b) 
Dependence of numerical results on number of finite volumes 𝑁*x used in numerical 
simulations. (c) Schematic of the model used for model verification. (d) Variation of 
surface concentration 𝑐- with time in the model shown in (c). (e) Comparison of volume 
averaged concentration 〈𝑐〉 variation with Fourier number 𝐹𝑜 = 𝐷𝑡/𝐿> obtained from 
analytical solution and the bottom-up transient model (B-UTM). Comparison of time 
variation of the surface flux 〈𝑗〉- obtained from analytical solution and B-UTM (f) in linear 
scale and (g) in logarithmic scale. 

• Verification of numerical implementation of the macroscopic model  

In Fig. G3c we show the geometry of the simplistic problem used for model 
verification. Figure G3c  shows a stationary finite diffusional space between two parallel 
reactive boundaries separated by distance 2𝐿 (length along 𝑦 direction is considered 
infinite), where surface concentrations were varied identically by a step jump at time 𝑡 =
0, as shown in Fig. F3d [i.e., 𝑐|8w6 = 𝑐|8w>G = 𝑐-(𝑡)]. Thus, the finite diffusional space 
enclosed can be considered as symmetric with respect to the midplane at 𝑥 = 𝐿 (i.e., 
𝜕𝑐 𝜕𝑥⁄ |8wG = 0). For such a problem the analytical solution can be obtained using 
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separation of variables. The analytical solution obtained is shown in Eq. F4 using 
nondimensional parameters. 

𝑐∗ = 1 − ∑ b
(>.s@)T

	𝑠𝑖𝑛 K(>.s@)T
>

𝑥∗L 	𝑒𝑥𝑝 K− (>.s@)<T<

b
	𝐹𝑜Ly

.w6                        (G4) 

Here, 𝑐∗ = 𝑐/𝑐-, 𝑥∗ = 𝑥/𝐿 and the Fourier number 𝐹𝑜 = 𝐷𝑡/𝐿>. The macroscopic 
response of the system can be observed from the time variation of non-dimensional 
volume-averaged concentration 〈𝑐∗〉 = @

G ∫ 𝑐∗𝑑𝑥G
6  and the surface flux 〈𝑗〉-∗ =

〈U〉$
?&$ G⁄

=
−𝜕𝑐∗ 𝜕𝑥∗⁄ |8∗w6 as shown by Eqs. G5 and G6.  

⟨𝑐⟩∗ = 1 − ∑ {
(>.s@)<T<

	𝑒𝑥𝑝 K− (>.s@)<T<

b
	𝐹𝑜Ly

.w6       (G5) 

〈𝑗〉-∗ = 2∑ 	𝑒𝑥𝑝 K− (>.s@)<T<

b
	𝐹𝑜Ly

.w6        (G6) 

For such a geometry, the analytical expressions for transfer functions 〈ℂ〉 and 〈𝑆ℎy〉 
are shown in Eqs. E1 and E2, which were derived from the Fourier transform of the 
corresponding MCEs. Because 〈𝑆ℎy〉 is an improper transfer function, we defined its 
reciprocal as 〈𝑍a〉 = 1/〈𝑆ℎy〉 and obtained the macro-scale response of the system using 
the TF embedded transient model following identical approaches discussed earlier in this 
section (i.e., identical discretization, self-consistent iterative algorithm, state space 
representation, rational function approximation, and vector fitting). The results for ⟨𝑐⟩∗ 
from the analytical solution and the B-UTM model are shown in Fig. G3e. The results 
show that the B-UTM matches the analytical solution for 10$` ≤ 𝐹𝑜 ≤ 10$> with maximum 
deviation of 10$>%. Meanwhile, for 𝐹𝑜 ≥ 5 the difference between the surface 
concentration 𝑐- and volume-averaged concentration 〈𝑐〉 becomes negligible with an 
infinitesimal flux at the interface. Thus, the variation of 〈𝑗〉-∗ obtained from the analytical 
solution and the B-UTM model are shown for 10$` ≤ 𝐹𝑜 ≤ 5 on a linear scale (Fig. G3f) 
and on a logarithmic scale (Fig. G3g) to compare them in the low and high 𝐹𝑜 limits. 
These curves show excellent agreement with maximum deviation of 2 × 10$>% from the 
analytical results. 

H. Multiple long duration impulses 

When acceleration/suppression of reactive solute is accounted for as with our 
present bottom-up transient model (B-UTM), an initial step in current from open-circuit 
conditions causes the electrode to contain less reactant and more product in the bulk 
solution (Fig. 6 from the main text). Since the initial step lasts for the entire 
charging/discharging duration studied, the corresponding acceleration/suppression effect 
is not recovered. Rather, this pre-existing effect gets superimposed with the 
acceleration/suppression effect introduced later at 𝑡/𝜏 = 0. A schematic of such 
superposition is depicted in Fig. H1 for a double-step transient in the applied current. For 
this illustration we assumed that the corresponding impulse time for both the impulses 
was large enough to approach the pseudo-steady limit (PSL).  



19 
 

 

Fig. H1. Superposition of solute acceleration/suppression effect for multiple-step variation 
of input current. 

Figure H1 shows the prediction from both the conventional model (CM) and the B-
UTM model, where CM shows continuous change in reactant concentration with time. 
Meanwhile, B-UTM shows an abrupt change in 〈〈𝑐9/L&〉〉 at the beginning of both the 
current steps, and during 𝑖Lee = 𝑖> the observed effect has contributions from both 
transients. When current is returned to 𝑖@ the acceleration/suppression, the partial 
contribution of the second transient vanishes immediately, while the partial contribution 
of the initial transient persists. 
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