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Direct van der Waals simulation (DVS) of phase-
transforming fluids
Tianyi Hu, Hao Wang, Hector Gomez*

We present the method of direct van der Waals simulation (DVS) to study computationally flows with liquid-
vapor phase transformations. Our approach is based on a discretization of the Navier-Stokes-Korteweg equa-
tions, which couple flow dynamics with van der Waals’ nonequilibrium thermodynamic theory of phase trans-
formations, and opens an opportunity for first-principles simulation of a wide range of boiling and cavitating
flows. The proposed algorithm enables unprecedented simulations of the Navier-Stokes-Korteweg equations
involving cavitating flows at strongly under-critical conditions and O(105) Reynolds number. The proposed tech-
nique provides a pathway for a fundamental understanding of phase-transforming flows with multiple applica-
tions in science, engineering, and medicine.
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INTRODUCTION
Flows of phase-transforming fluids are principal across science, en-
gineering, andmedicine. Management of electronics cooling, which
depends heavily on liquid-vapor flows, remains a critical barrier to
creating more powerful datacenter computers and meeting the per-
formance demands of an increasingly computerized society and in-
dustry. The collapse of a cavitation bubble, which is another notable
example of flows with phase transformations, has fascinated scien-
tists for decades due to the extreme conditions generated, including
temperatures of up to 5000 K, emission of light, and strong shock
waves and jets (1, 2). Although cavitation continues to be an impor-
tant concern in the design of marine propellers, it has also been ex-
ploited technologically for ultrasonic cleaning and drug delivery (3,
4). Despite their prevalence and importance, our understanding of
fluid flows with phase transformations remains poor, partially due
to the challenges that they pose to computational methods. Phase-
transforming flows involve nonequilibrium thermodynamics, large
viscosity, and density ratios, moving interfaces with topological
changes and flow physics that spans a wide range of time and
length scales. The most advanced computational methods are
based on compressible flow models for mixtures of liquid and
vapor. Although mixture models have been successful in several ap-
plications, their approach to phase change is either based on ther-
modynamic equilibrium or on phenomenological models that enter
the mass balance equations and are known to have an important
effect on the predictions (5). The latter phase change models, also
called mass transfer functions, involve parameters that depend on
the flow conditions and need frequent recalibration. These
models cannot predict nucleation of vapor bubbles from pure
liquid, which precludes further mechanistic understanding of, argu-
ably, the most critical problem in cavitating and boiling flows (6).

Van der Waals proposed a first-principles thermodynamic
theory of liquid-vapor phase change (7). The model is based on a
nonconvex bulk Helmholtz free energy extended with a nonlocal
term that accounts for interfacial energy. The use of a nonconvex
bulk thermodynamic potential permits to incorporate the state-

of-the-art theory of phase transformations that enables the predic-
tion of nucleation and spinodal decomposition. Nonconvex poten-
tials have found marked success in predicting thermodynamic
properties and critical points of liquid-vapor mixtures (8). Van
der Waals’ thermodynamic theory can be coupled with the
balance equations of compressible flows in a thermodynamically
consistent manner that guarantees that the second law is satisfied
for an arbitrary process compatible with the balance laws. The
result of coupling van der Waals’ theory with flow is the Navier-
Stokes-Korteweg (NSK) equations. The potential of the NSK equa-
tions for mechanistic understanding and prediction of liquid-vapor
flows has been exploited to study nucleation (9), fluid instability
under shear (10), and bubble collapse (11). Although many numer-
ical schemes have been proposed to solve the NSK equations, such
as the local discontinuous Galerkin method (12, 13) and relaxation
models (14, 15), current computational methods are limited to mi-
crometer-scale flows without solid walls or flow conditions very
close to criticality. Thus, the predictive capability of the NSK equa-
tions remains unrealized for a wide range of boiling and cavitating
flows at length scales larger than a few micrometers.

Here, we present unprecedented three-dimensional simulations
of wall-bounded cavitating flows at centimeter scale and O(105)
Reynolds number using the NSK equations. Because our simula-
tions are based only on van der Waals’ thermodynamic theory
and fundamental continuum mechanics without additional model-
ing assumptions, we call them direct van der Waals simulations
(DVS). Our computations are enabled by a residual-based, stabi-
lized discretization concept that does not require hyperbolicity of
the isentropic form of the equations, extends to van der Waals
fluids the Streamline Upwind Petrov-Galerkin (SUPG) technique
(16, 17) and the discontinuity-capturing (DC) operators (18), and
improves the thickened interface methods (19, 20). We illustrate the
algorithm’s performance with a parametric study of cavitating flow
past a cylinder and a simulation of flow over a wedge that shows
sheet-to-cloud transition. Our results are in good agreement with
experiments, indicating that the proposed algorithm opens the op-
portunity to predict boiling and cavitating flows at centimeter scale
or even larger using minimal modeling assumptions.

School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafa-
yette, IN 47906, USA.
*Corresponding author. Email: hectorgomez@purdue.edu.

Hu et al., Sci. Adv. 9, eadg3007 (2023) 17 March 2023 1 of 12

SC I ENCE ADVANCES | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org on D

ecem
ber 27, 2023

http://crossmark.crossref.org/dialog/?doi=10.1126%2Fsciadv.adg3007&domain=pdf&date_stamp=2023-03-17


RESULTS
Model overview
The NSK equations are derived from the functional Helmholtz free
energy

H½ρ� ¼

ð

Ω
ψðρÞ þ

λη
2

jrρj
2

� �

dΩ ð1Þ

Here, Ω is the fluid domain, ρ is the fluid’s density, and ψ is the
bulk Helmholtz free energy per unit volume, while λ and η are con-
stants that control interfacial energy and interface thickness, respec-
tively. The thermodynamic potential in Eq. 1 differs from standard
potentials used for compressible flows in two critical aspects that are
interconnected. First, ℋ depends not only on ρ but also on its gra-
dient. Second, because ℋ depends on the density gradient, the
system of equations remains well-posed even if ψ is nonconvex
(21). The possibility of using a nonconvex bulk free energy per
unit volume ψ allows us to use the state-of-the-art theory in non-
equilibrium phase transformations. From the thermodynamic po-
tential given in Eq. 1, we can derive the NSK equations using
balance laws for mass, linear momentum, angular momentum,
energy, and the second law of thermodynamics. The NSK equations
for an isothermal system are

∂ρ
∂t

þ r � ðρuÞ ¼ 0 ð2Þ

∂ðρuÞ

∂t
þ r � ðρu � u þ pIÞ � r � τ � r � ζ ¼ 0 ð3Þ

where Eqs. 2 and 3 represent mass and linear momentum conser-
vation, respectively. Here, u is the fluid velocity, p ¼ ρ2 ∂ðψ=ρÞ

∂ρ is the
fluid pressure, and I is the identity tensor. The tensor τ denotes
viscous stresses, which, for a Newtonian fluid under Stokes’ hypoth-
esis, are given by

τ ¼ μðρÞ ru þ rTu �
2
3

r � u I
� �

ð4Þ

where μðρÞ is the density-dependent viscosity coefficient; see
Methods. The Korteweg stress tensor is

ζ ¼ λη ρΔρ þ
1
2

jrρj
2

� �

I � rρ � rρ
� �

ð5Þ

and accounts for the interfacial stresses.
The challenges in the simulation of Eqs. 2 to 5 for wall-bounded,

large Reynolds number flows at centimeter scale emanate from two
difficulties. First, there is a very large disparity between the length
scale at which interfacial physics occurs and the largest length scale
that controls flow physics. We address this by proposing the stabi-
lized thickened interface method (sTIM); see Methods. Second, the
inviscid NSK equations with vanishing Korteweg stress are not hy-
perbolic, which precludes the direct use of most standard computa-
tional methods for compressible flows. We bypass this difficulty
using residual-based stabilization with shock capturing;
see Methods.

To illustrate the potential of DVS, we study cavitating flow over a
circular cylinder and over a wedge at centimeter scale. For all cases,
we impose free-stream inlet boundary conditions (u∞ and p∞) using
an acoustically absorbing sponge layer (22). The flow conditions are

characterized by the free-stream cavitation number and Reynolds
number. The free-stream cavitation number is
σ1 ¼ 2ðp1 � pvÞ=ðρ1u

2
1Þ, where ρ∞ is the density that corre-

sponds to p∞ in our equation of state (EoS), and pv is the vapor pres-
sure. The free-stream Reynolds number is R‘

e ¼ ρ1u1‘=μl, where l

is a problem-dependent length scale and μl is the dynamic viscosity
in the liquid phase. The strength and extent of cavitation will be
measured using the void fraction α = (ρ∞ − ρ)/(ρ∞ − ρv).

Cavitating flow over a circular cylinder
A flowing fluid accelerates as it moves around the leading edge of a
cylinder. The fluid’s acceleration leads to a pressure drop that can
trigger cavitation. Flows over cylinders have been often used to
study cavitation because, depending on the free-stream conditions,
they can feature different types of cavitation and different inception
locations. Here, we perform a parametric study varying the free-
stream pressure to produce free-stream cavitation numbers that
span the range σ∞ = 0.25 (strong cavitation) to σ∞ = 6.0 (no cavi-
tation). Figure 1A shows snapshots of the instantaneous void frac-
tion for different cavitation numbers under a flow field that goes
from left to right. For σ∞ = 3 (left panels), we observe cyclic cavita-
tion. In this cavitation regime, the small cavities formed at the cyl-
inder’s surface detach almost instantaneously and are captured by
the vortex immediately downstream of the cylinder. Because of their
small sizes, these cavities collapse shortly after leaving the vortex.
For transitional cavitation at σ∞ = 1.25 (center column), some
vapor pockets separate instantaneously from the cylinder’s
surface. Some cavities, however, remain attached to the cylinder
for a time interval, grow, and eventually are carried downstream
by the flow. Our simulation for σ∞ = 0.25 shows fixed cavitation.
In this case, a large fraction of the cylinder surface is consistently
covered by vapor. The average cavity length remains stable over
time, but its trailing edge continuously sheds gas pockets. The
time-averaged vapor fraction 〈α〉 offers a more conclusive picture
of the primary location of the cavity for each case; see Fig. 1B. For
cyclic cavitation, the cavity is entirely detached from the cylinder.
For transitional cavitation, the time-averaged cavity is attached to
the cylinder and has a length that is comparable to the cylinder’s
diameter. For fixed cavitation, the cavity length is much larger
than the cylinder and its thickness also exceeds the cylinder’s diam-
eter. Following (23), in Fig. 1C, we show the time-averaged length of
the cavity 〈L〉 relative to the cylinder’s diameter as a function of the
ratio cavitation number σ*. The results are in good agreement with
experiments (24) and past numerical studies (25). We observe that,
although the cavity length decreases monotonically with the cavita-
tion number in the majority of the plot, there is a small region close
to the boundary between transitional and cyclic cavitation where it
increases. This counterintuitive result has also been observed exper-
imentally (24). On the basis of our results, one potential explanation
is as follows: As the cavitation regime changes from cyclic to tran-
sitional, the size of the cavities attached to the cylinder grows. The
presence of larger cavities at the cylinder’s surface reduces the
vortex strength and leads to weaker cavitation inside the vortex. Al-
though for smaller cavitation number, larger cavities are shed into
the free stream, they are short-lived because the free-stream pressure
is relatively large and do not contribute notably to increase <L>.
Thus, in this regime, the overall effect of the cavitation number in-
crease is a larger cavity length. Figure 1D shows the point-wise,
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Fig. 1. Parametric study of cavitating flow over a circular cylinder. The cylinder’s diameter is D. The computations are performed on a two-dimensional (2D) domain
whose external boundary is an ellipse with a semimajor axis of 30D and a semiminor axis of 11.25D. The cylinder is located at the center of the ellipse. We use 77,274 C1-
continuous quadratic elements to discretize the domain, where 243 elements are placed on the cylinder surface. An acoustically absorbing sponge layer with a width of
2D is placed near the edge of the ellipse. The temperature is T = 300 K. The free-stream velocity is u∞ = 15.2 m/s, the cylinder’s diameter is D = 2 mm, and the dynamic
viscosity of the liquid phase is μl ¼ 10� 3 Pa·s, which corresponds to RDe ¼ 2:6 � 104. The dynamic viscosity of the vapor phase is μv ¼ 10� 5 Pa·s; see Eq. 9. We vary the free-
stream pressure to change the cavitation number. We choose λ = 10−16 m7/kg/s2 and η = 107 as interfacial parameters, which yields the surface tension for a liquid-vapor
interface in water at the problem’s length scale. To reduce the computational cost, the initial condition is obtained from an incompressible flow simulation with density
ρ∞, which implies that α = 0. (A) Instantaneous void fraction for free-stream cavitation number σ∞ of 3.0 (cyclic), 1.25 (transitional), and 0.25 (fixed). (B) Time-averaged void
fraction 〈α〉. (C) Average vapor cavity length nondimensionalized by cylinder diameter as a function of the ratio cavitation number σ* = (σ∞ − σck)/(σi − σck), where σck and
σi are the choke and incipient cavitation numbers, respectively (23). Experimental data are obtained from (24). (D) Time-averaged local cavitation number 〈σθ〉 distribution
on the cylinder.

Fig. 2. Parametric study of the velocity field for cavitating flow over a circular cylinder. Time-averaged velocity magnitude on the entire cylinder (top row) and
zoomed-in at the black rectangular regions (bottom row) for different cavitation modes.
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time-averaged cavitation number on the cylinder surface,
hσθi ¼ 2ðhpθi � pvÞ=ðρ1u

2
1Þ. Here, θ is a parametric coordinate

along the cylinder’s surface such that θ = 0∘ and θ = 180∘ correspond
to the leading and trailing edges, respectively. For cyclic cavitation,
〈σθ〉 reaches a local minimum at θ ≈ 80∘. For slightly larger values of
θ, the pressure first increases due to flow deceleration and later de-
creases due to cavity shedding. For transitional cavitation, 〈σθ〉 de-
creases monotonically with θ, which reinforces the idea that
cavitation inception is caused by instantaneous pressure fluctua-
tions. In contrast with the previous two cases, for fixed cavitation,
〈σθ〉 drops abruptly to zero at θ ≈ 80∘ and remains at this value on
the rest of the cylinder’s surface. These results further emphasize the
difference between the three cavitation modes. We observe that 〈σθ〉
has a sharp increase at θ ≈ 55∘ for fixed cavitation. To better under-
stand this phenomenon, we show the time-averaged velocity mag-
nitude for the entire cylinder (top) and near the separation point
(bottom) in Fig. 2. The velocity inside the vapor pocket remains
close to zero, which indicates that only a small fraction of the mo-
mentum is transported across the liquid-vapor interface. When we
have a cavity consistently attached to the cylinder, more kinetic
energy accumulates upstream and is converted into internal
energy. Such conversion causes a local increment in pressure and
a stronger adverse pressure gradient, which leads to the thickening
of the boundary layer and earlier flow separation. Such a phenom-
enon has been observed experimentally (26, 27) but has remained
elusive for computational methods.

Sheet-to-cloud transition in cavitating flow over a wedge
Flows over a wedge have been often used to study cavitation prob-
lems. Figure 3A shows a schematic configuration of this physical
system and our simulation setup. Under these conditions, the
inlet flow accelerates along the wedge, which leads to a pressure
drop that triggers cavitation. The cavity initially grows attached to
the bottom wall, developing the shape of an elongated sheet. The
sheet grows longer until it pinches off and transitions to a cloud.
The cloud is a three-dimensional structure with features that
range across multiple length scales. As the cloud travels down-
stream, it encounters increasingly large pressures that lead to
bubble collapse, which generates jets and sound. The results are
in agreement with the experimental observations (28) but reveal im-
portant aspects of the cavitation inception process and the sheet-to-
cloud transition. Understanding the flow conditions that trigger
cavitation remains an outstanding challenge. Our results point to
a complex scenario in which cavitation is a strongly unsteady and
heterogeneous process that is tightly controlled by localized and in-
stantaneous reductions of pressure. Figure 3B shows that the time-
averaged pressure remains well above the vapor pressure, but it is
instantaneous descents of the pressure, at a level similar to the
vapor pressure, that trigger cavitation. Figure 3B also illustrates
that the instantaneous pressure decreases quickly along the wedge
due to flow acceleration, but it does not reach a minimum at the
wedge apex. Instead, the boundary layer separation that occurs
downstream of the apex generates vortices that undergo stretching
and further reduce the pressure, eventually leading to the formation
of a vapor cavity. The transition from sheet to cloud cavitation is
important because cavitation clouds have a higher potential to gen-
erate shock waves and noise. However, the mechanisms that control
the transition remain poorly understood (29). Recent research (30,

31) points to a scenario in which, as the cavity grows, the sheet
becomes unstable and transitions into a cloud due to a combination
of a reentrant jet and a condensation shock that travels upstream.
Callenaere et al. (32) identify two transition types based on the
sheet’s thickness. In thick sheets, the jet plays a minor role until it
reaches the cavity’s leading edge and triggers the transition. In con-
trast, thin cavities break into smaller-scale, three-dimensional struc-
tures immediately after they are impinged by the reentrant jet.
Figure 3C shows snapshots of the spanwise-averaged instantaneous
void fraction. As the sheet cavity travels downstream, the reentrant
jet starts to develop due to the presence of an adverse pressure gra-
dient. Because the sheet is thick, it remains intact as the jet travels
through. Once the jet fully penetrates the sheet, a cloud cavity
pinches off the rest of the sheet. As the cloud cavity travels down-
stream, the remaining sheet starts to interact with free-stream nuclei
and forms a second cloud cavity. Meanwhile, a thinner sheet cavity
develops near the wedge apex due to pressure fluctuations. While
this secondary sheet cavity develops, a reentrant jet is formed.
Because the secondary sheet cavity is thinner, the reentrant jet im-
mediately destabilizes it, leading to many smaller-scale three-di-
mensional structures.

DISCUSSION
We propose an algorithm that allows DVS of phase-transforming
fluids for wall-bounded flows far from criticality and large Reynolds
numbers at unprecedented length scales. Our algorithm is based on
a residual-based formulation and a stabilized thickened interface
method (sTIM). The proposed approach successfully addresses
two critical challenges that limited existing computational
methods, namely, the nonhyperbolic eigenstructure of the inviscid
equations without Korteweg stress and the disparity of length scales
between interfacial physics and flow physics. The strength of DVS is
that it couples flow dynamics with a fundamental nonequilibrium
theory of phase transformations without resorting to phenomeno-
logical approaches that require flow-dependent parameter calibra-
tion. DVS opens the possibility to gain mechanistic
understanding of the most critical processes of phase-transforming
flows, including nucleation of the vapor phase in boiling and
cavitation.

To illustrate our approach, we performed a parametric study of
flow over a circular cylinder, varying the free-stream pressure. As
the free-stream pressure is reduced, DVS predicts a transition
from noncavitating to cavitating flow. DVS also predicts the pro-
gression from cyclic to fixed cavitation in quantitative agreement
with experiments. Our DVS results indicate that, as the vapor
cavity attached to the cylinder’s trailing edge grows larger, the sep-
aration point moves upstream. This subtle, yet critical phenome-
non, has been observed in experiments but not in state-of-the-art
cavitation simulations.

We performed a three-dimensional simulation of cavitating flow
over a wedge of 1.5 cm height. Our DVS results capture a highly
turbulent flow and the transition from sheet to cloud cavitation.
The simulation shows that cavitation inception is tightly controlled
by local pressure fluctuations and vortex dynamics. In agreement
with experiments, DVS shows that thin and thick sheet cavities
respond differently to reentrant jets and condensation shocks,
which leads to distinctive destabilization mechanisms of the sheet
cavity. Overall, our results highlight the predictive capabilities of
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Fig. 3. Sheet-to-cloud transition in cavitation over awedge. Thewedge height is H = 1.5 cm, and the flow temperature is T = 300 K. The dynamic viscosity of the liquid
and vapor phases is μl ¼ 10� 3 Pa·s and μv ¼ 10� 5 Pa·s, respectively; see Eq. 9. The free-stream conditions are u∞ = 15.17 m/s and p∞ = 101,325 Pa, which correspond to

RHe ¼ 2 � 105 and σ∞ = 1. We choose λ = 10−16 m7/kg per s2 and η = 109 as interfacial parameters, which yields the surface tension for a liquid-vapor interface in water at
the problem’s length scale. To reduce the computational cost, the initial condition is obtained from an incompressible flow simulation with density ρ∞, which implies that
α = 0. (A) Computational domain used for the simulation. Themesh is composed of 542,997 trilinear hexahedral elements, where 73% of the elements are concentrated in
the region of interest (ROI). (B) Spanwise-averaged cavitation number along the wedge surface as a function of normalized stream-wise distance. (C) Instantaneous
snapshots of the spanwise-averaged void fraction accompanied by arrowed streamlines (left) and 3D isocontours at void fraction α = 0.2 (right).
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DVS, which are particularly noteworthy because the modeling as-
sumptions are minimal. We believe that DVS opens possibilities not
only to simulate and predict flows of phase-transforming fluids but
also to fundamentally understand bubble nucleation and cavitation
inception.

METHODS
Governing equations
The isothermal NSK equations can be written as

U ;t þ Fadv
i;i ¼ Fdiff

i;i þ Fc ð6Þ

Here, an inferior comma denotes partial differentiation (e.g., U,t
= ∂U/∂t) and repeated indices indicate summation over the spatial
dimensions (e.g., Fadv

i;i ¼
Pd

i¼1∂F
adv
i =∂xi, where xi denotes the ith

Cartesian coordinate and d is the number of spatial dimensions).
The vector U = [ρ, ρu1, ρu2, ρu3] contains the conservation vari-
ables. The vectors Fadv

i , Fdiff
i , and Fc represent the advective fluxes,

the diffusive fluxes, and the Korteweg stress, respectively, and they
are defined as

Fadv
i ¼ Fadv=p

i þ Fp
i ¼

ρui
ρu1ui
ρu2ui
ρu3ui

2

6
6
4

3

7
7
5 þ

0
pδ1i
pδ2i
pδ3i

2

6
6
4

3

7
7
5 ð7Þ

Fdiff
i ¼

0
τ1i
τ2i
τ3i

2

6
6
4

3

7
7
5; Fc ¼

0
ληρΔρ;1
ληρΔρ;2
ληρΔρ;3

2

6
6
4

3

7
7
5 ð8Þ

where δij is the Kronecker delta. In Eq. 8, we have used the identity
∇ · ζ = ληρ ∇ (Δρ). In the viscous stress tensor
τ ¼ μðρÞ ru þ rTu � 2

3 r � u I
� �

, the dynamic viscosity is defined
as

μðρÞ ¼

μv; 0 , ρ � ρvρl � ρ
ρl � ρv

μv þ
ρ� ρv
ρl � ρv

μl; ρv , ρ , ρl
μl; ρl � ρ

8
<

:
ð9Þ

where μl=v and ρl/v are the dynamic viscosity and saturation density
for the liquid and vapor phases, respectively. To derive our algo-
rithm, we define the primitive variables Y = [ρ, u1, u2, u3] and the
following transformation matrices

A0 ¼
∂U
∂Y

;Aadv=p
i ¼

∂Fadv=p
i
∂Y

;Ap
i ¼

∂Fp
i

∂Y
ð10Þ

Aadv
i ¼ Aadv=p

i þ Ap
i ð11Þ

Ac
iY ;i ¼ Fc ð12Þ

K ijY ;j ¼ Fdiff
i ð13Þ

whose explicit expressions are given in the Supplementary Materi-
als. Using the transformation matrices, we can rewrite Eq. 6 in

quasi-linear form

A0Y ;t þ Aadv=p
i Y ;i þ Ap

i Y ;i ¼ ðK ijY ;jÞ;i þ Ac
iY ;i ð14Þ

Cubic EoS
Cubic EoS are widely used to represent liquid-vapor equilibrium
(8). The first cubic EoS is due to van der Waals (7), but many var-
iants and extensions have been proposed thereafter, including the
Soave-Redlich-Kwong (33) and Peng-Robinson models (34).
Here, we use the EoS

pEoSðρ;TÞ ¼ Rb
ρT

b � ρ
� aðTÞb2

ρ2

b2 þ 2ρb � ρ2
ð15Þ

where R is the specific gas constant, T is the temperature that is a
constant for isothermal conditions, and a(T) and b depend on the
fluid. Equation 15 was proposed in (35) and provides accurate pre-
dictions for liquid-vapor mixtures. For water, the parameter values
are R = 461.5 J/kg·K and b = 949.7 kg/m3. The value of a(T) in units
Pa·m6/kg2 is

aðTÞ ¼ 1848:2½1 þ kðTRÞð1 �
ffiffiffiffiffiffi
TR

p
Þ�
2

ð16Þ

where TR = T/Tc, the critical temperature is Tc = 647.1 K, and

kðTRÞ ¼ ½� 0:066 þ 0:02ð0:44 � TRÞð1 �
ffiffiffiffiffiffi
TR

p
Þ� � ð1

þ
ffiffiffiffiffiffi
TR

p
Þð0:7 � TRÞ þ 0:87 ð17Þ

Stabilized thickened interface method
For temperatures below the critical temperature, equilibrium solu-
tions of the NSK equations with Eq. 15 predict a liquid-vapor inter-
face described by a continuous variation of density. At room
temperature, the model predicts an interface thickness of less than
100 nm, in agreement with experiments and molecular dynamics
simulations (36, 37). In a simulation of the NSK equations, the in-
terface thickness needs to be resolved by the computational mesh
that implies that a three-dimensional centimeter-scale computation
would require at least ∼1016 degrees of freedom that is prohibitive in
today’s computer architectures. Enlargement of the interface can be
achieved by increasing the parameter η in the governing equations.
However, increasing η without modifying the EoS leads to an over-
prediction of surface tension that would make the results invalid.
Notably, the use of the thickened interface method (19, 20)
permits to enlarge the interface thickness while keeping surface
tension constant. This is accomplished by increasing η and modify-
ing accordingly the binodal region of the EoS. While the thickened
interface method opens the possibility to perform larger-scale com-
putations, it leads to the use of a nondifferentiable EoS. The lack of
smoothness in the EoS leads to the formation of strong spurious
shock waves at the interface that propagate throughout the compu-
tational domain and become a source of instability. To address this
issue, we propose the sTIM. The formulation of sTIM is

p ¼

pEoS þ
Avξρvρ

ð1þξÞρv � ρ � Avρ; 0 , ρ � ρv

psat þ
pEoSðρÞ� psat

η ; ρv , ρ , ρl
pEoS þ

Alξρlρ
ð1� ξÞρl � ρ þ Alρ; ρl � ρ;

8
>>><

>>>:

ð18Þ
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where Av=l ¼ ξ 1� η
η

∂pEoS
∂ρ ðρv=l;TÞ, and ρv and ρl are the vapor and

liquid saturation densities at temperature T, respectively. Equation
18 shows that, in the binodal region, ρv < ρ < ρl, the pressure is mod-
ified using the approach proposed in (20) and, thus, by increasing η,
one can enlarge the interface while keeping surface tension cons-
tant. In the vapor (0 < ρ ≤ ρv) and liquid (ρ ≥ ρl) phases, the original
EoS is modified with a stabilizing term whose strength is controlled
by the parameter ξ. The stabilizing term is designed such that the
following conditions are satisfied

pðρv;TÞ ¼ psatðTÞ ð19Þ

pðρl;TÞ ¼ psatðTÞ ð20Þ

∂p
∂ρ

ðρv;TÞ ¼
1
η
∂pEoS

∂ρ
ðρv;TÞ ð21Þ

∂p
∂ρ

ðρl;TÞ ¼
1
η
∂pEoS

∂ρ
ðρl;TÞ ð22Þ

Equations 19 and 20 guarantee that saturation pressure remains
unchanged, while Eqs. 21 and 22 ensure that the pressure is a differ-
entiable function at saturation conditions for all ξ ≠ 0. When the
stabilizing term is absent (ξ = 0), the sTIM reduces to the method-
ology proposed in (20). In our computations, we took ξ = 0.01,
which guarantees that the EoS is smooth and produces changes in
the pressure outside of the binodal region that are negligible.
Figure 4 shows a plot of p and pEoS as functions of the density for
ξ = 0.01 and several values of η. We can see that outside of the
binodal region p is indistinguishable from pEoS. In the binodal
region, p is different from pEoS for η ≠ 1 to achieve the desired
effect of decoupled interface thickness and surface tension. The
larger is η, the flatter is p in the binodal region. Our proposed
sTIM reconstruction has two additional important properties: (i)
The saturation conditions of the original EoS are exactly preserved

and (ii) the reconstructed EoS still satisfies the Maxwell’s rule of
equal area exactly.

Variational operators
Galerkin operator
The proposed computational method is based on aweak form of the
NSK equations that is stabilized with residual-based terms. Our
weak formulation makes use of several semilinear forms. The first
one, which emanates from the weak form of Eq. 14 without stabi-
lizing terms, is defined as

BNSKðW;YÞ ¼
Ð

ΩW � ðA0Y ;t þ Aadv=p
i Y ;i � Ac

iY ;iÞdΩ
�

Ð

ΩW;i � ðFp
i � Fdiff

i ÞdΩ
þ

Ð

ΓW � ðFp
i � Fdiff

i ÞnidΓ

ð23Þ

where W ∈ V is a vector-valued weight function, V is a suitably
chosen functional space, Ω is the computational domain, Γ is the
boundary of Ω, and ni is the ith Cartesian coordinate of the unit
outward normal to Γ.
SUPG operator
Stremline-Upwind/Petrov-Galerkin (SUPG) is a finite element sta-
bilization method for advection-dominated flow that is applicable
to incompressible and compressible flows (38, 39). SUPG is a resid-
ual-based stabilizing scheme that provides stable solutions retaining
optimal rate of convergence. The analysis performed in (40) pro-
vides a strong mathematical foundation for SUPG. Let us assume
that the domain Ω is divided into Nel elements each denoted by
Ωe. We define the SUPG operator as

BSUPGðW;YÞ ¼
XNel

e¼1

ð

Ωe
ðA�T

i W;iÞ � τSUPGResðYÞdΩ ð24Þ

Here,

ResðYÞ ¼ A0Y ;t þ Aadv=p
i Y ;i þ Ap

i Y ;i � ðK ijY ;jÞ;i � Ac
iY ;i ð25Þ

is the residual of the governing equations, τSUPG ¼ A� 1
0 τ̂SUPG is the

stabilizing matrix for the primitive variables, and τ̂SUPG is the stabi-
lizing matrix for the conservation variables, which is defined as (16,
17)

τ̂SUPG ¼
4I
Δt2

þ GijÂ
�

i Â
�

j þ CIGijGklK̂ ikK̂ jl

� �� 1
2

ð26Þ

In Eq. 26, Δt is the time step size, CI is a positive constant derived
from an element-wise inverse estimate (41), and Gij represents the
components of the element metric tensor G, that is

Gij ¼
∂Ξk

∂xi
∂Ξk

∂xj
ð27Þ

where x(Ξ) is the element isoparametric mapping. The matrices Â�

i
and K̂ij are the conservation variable counterpart of A�

i and Kij,
which can be obtained as

K̂ ij ¼ K ijA� 1
0 ; Â�

i ¼ A�
i A

� 1
0 ð28Þ

Because the SUPG operator defined in Eq. 24 is residual-based,
thematricesA�

i can be chosen inmultiple ways without compromis-
ing the accuracy of the algorithm. However, a poor choice of A�

i will
have a detrimental effect on the stability of the scheme. In classical

Fig. 4. Pressure reconstruction in the sTIM. Comparison of pEoS (Eq. 15) and p
(Eq. 18) for ξ = 0.01 and several values of η. For η = 1, p = pEoS. For increasing values
of η, p becomes closer to the saturation pressure in the interfacial region ρ ∈ (ρv, ρl)
while remaining nearly identical to pEoS outside of the interface. This shows that
the proposed approach sTIM effectively allows to increase the problem’s length
scale while maintaining the thermodynamic properties of the bulk phases.
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gas dynamics, this choice is guided by an eigenvalue analysis of the
isentropic system. The isentropic NSK equations are not hyperbolic
on the entire phase space and the eigenvalue analysis cannot be
used. On the basis of scaling arguments and local equilibrium at
the liquid-vapor interface, we choose

A�
i ¼ Aadv=p

i þ Ap
i � Ac;eq

i ð29Þ

where Ac;eq
i is an approximation to Ac

i . In Eqs. 23 to 25, Ac
i takes on

the form

Ac
i ¼

ληρΔρ;i

ρ;i
eiþ1 � eiðno sum on iÞ ð30Þ

where ei is the ith vector of the Cartesian basis in dimension d +
1. The computation of Ac

i is ill-conditioned, especially in the bulk
phases because both numerator and denominator approach zero.
Using Ac

i to compute the A�
i matrices leads to small perturbations

in the numerical solution that are eventually amplified unless the
time step is extremely small. To derive an approximation to Ac

i ,
we proceed as follows: Under equilibrium conditions, the equation
p,i − ληρΔρ,i = 0 is satisfied. Doing basic manipulations, one can
show that p,ρ = ληρΔρ,i/ρ,i, where no sum on i is implied. In addi-
tion, we know that, under equilibrium, p,ρ ≤ 0 in the interfacial

region and p,ρ ≈ 0 in the bulk phase. Thus, we define

Ac;eq
i ¼ p�

;ρeiþ1 � ei; ðno sum on iÞ ð31Þ

where p�
;ρ ¼ minð0; p;ρÞ. Unlike Ac

i in Eq. 30, the matrix Ac;eq
i in Eq.

31 can be computed in a stable manner at all points in the compu-
tational domain. Although our derivation of the matrices A�

i
assumes that the interface is under local equilibrium conditions,
this assumption does not compromise the accuracy of the algorithm
in any way. Our discretization method still features high-order ac-
curacy because the A�

i matrices are used only in the SUPG operator
that also involves the residual.

This completes the definition of all the matrices on the right-
hand side of Eq. 26. To calculate τ̂SUPG, we need to compute the
square root of a (d + 1) × (d + 1) matrix. In our simulations, this
is done using the Denman-Beavers algorithm (42, 43).
Discontinuity capturing
While the use of SUPG ensures stability and accuracy when the sol-
ution is smooth, it does not resolve effectively flow fields with sharp
layers (44). To stabilize solutions with sharp layers, the SUPG for-
mulation is usually augmented by a residual-based discontinuity
capturing (DC) operator. When the solution is under-resolved by
the mesh, the term adds local dissipation along direction of the sol-
ution gradient (45), which enhances the stability of the numerical
method while retaining optimal rate of convergence (46). The DC

Fig. 5. Stability of the proposed algorithm.We study the algorithm’s stability using a 2D inviscid simulation of vapor bubble dynamics. The computational domain is a
square of side L0 = 30 nm. The mesh is composed of 256 2 C1-continuous quadratic elements. An acoustically absorbing layer with a thickness of 0.05L0 is placed at the
boundary to simulate open boundary conditions. The temperature is T = 550 K. We use λ = 10−16 m7/kg per s2 and η = 1. (A) Initial condition representing three vapor
bubbles in a liquid pool. The bubble centers are located at C1 = (0.25L0,0.50L0), C2 = (0.75L0,0.50L0), and C3 = (0.40L0,0.75L0), while the bubble radii are R1 = 0.15L0, R2 =
0.10L0, and R3 = 0.08L0. (B) Instantaneous snapshots of the void fraction α using (a) A�

i ¼ Aadv=p
i þ Ap

i , (b) A
�
i ¼ Aadv=p

i þ Ap
i � Ac

i , and the proposed method; see SUPG
operator in Eq. 29. (C) Time evolution of the time step for the three different algorithms.
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operator for primitive variables is given by (17, 47)

BDCðW;YÞ ¼
XNel

e¼1
W;iκ̂DCA0Y ;idΩ ð32Þ

Here, κ̂DC ¼ κ̂Cei � ei þ κ̂Meiþ1 � eiþ1 is a (d + 1) × (d + 1) di-
agonal matrix with entries

κ̂c ¼ minðCCκ̂; κ̂capÞ ð33Þ

κ̂M ¼ minðCMκ̂; κ̂capÞ ð34Þ

where

κ̂ ¼ β
pþ

;ρjRes1ðYÞj þ uk k Res2:dþ1ðYÞk k

ðpþ
;ρrU1 � rU1 þ kukrU2:dþ1 � rU2:dþ1Þ:G

ð35Þ

κ̂cap ¼ β½urel � urel:G�  þ pþ
;ρ tr ðG� 1Þ�

1=2
ð36Þ

and CC and CM are O(1) positive constants for which we used the

value CC = CM = 0.1. In Eqs. 35 and 36, ∣Res1(Y)∣ is the absolute
value of the residual of the mass conservation equations, ‖ · ‖
denotes the Euclidean norm of a vector, Res2:d+1(Y) is the residual
of the linear momentum balance equation, pþ

;ρ ¼ max ðp;ρ; 0Þ, and
urel = u − u∞ is the relative velocity with respect to the free-stream
velocity. DC schemes were developed in the context of classical gas
dynamics. In liquid-vapor flows, however, the changes in density
and viscosity are much more marked, and this has to be considered
while designing the DC operator. For this reason, we proposed a
scaling term β, which is designed tominimize numerical dissipation
in the liquid phase while retaining stability in the vapor phase. We
use the expression

β ¼

minðβmax; ρm=ρÞ; ρ � ρm
1; ρm , ρ � ρv

ðρl � ρÞ=ðρl � ρvÞ; ρv , ρ , ρl
0; ρl � ρ

8
>><

>>:

ð37Þ

where ρm represents a very small value of the density and βmax is a
constant that sets the maximum strength of the DC operator. In our
simulations, we take ρm = 0.01 kg/m3 and βmax = 1000. In the liquid

Fig. 6. Accuracy of the proposed algorithm. We study the algorithm’s accuracy using a 2D simulation of a liquid-vapor interface oscillation in inviscid flow. The flow
temperature is T = 550 K. We use λ = 10−16 m7/kg per s2 and η = 1. We use free-slip boundary conditions and ∇ρ · n = 0 on the entire boundary. The computational domain
is discretized using N × 2N C1-continuous quadratic elements. (A) Initial condition representing a planar liquid-vapor interface. The initial velocity is zero. (B) Snapshots of
the void fraction in the ROI. (C) Time evolution of α at the center of the domain for different mesh sizes (left) and inset showing a larger view of the time evolution of α in
the second period of oscillation.
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phase, the speed of sound is high, the solution is primarily smooth,
and the use of the DC operator is not necessary. In the interfacial
region (ρv < ρ < ρl), the value of β varies linearly between zero and
one. In the vapor phase (ρ≤ ρv), the fluid is highly compressible and
the use of a robust DC is necessary to retain numerical stability. For
densities in the range ρm < ρ ≤ ρv, we set β = 1, which is a commonly
used value in gas dynamics simulations (18). The DC is maximum
when ρ ≤ ρm to avoid the appearance of negative densities.

Fully discrete formulation
The NSK equations include third-order derivatives of the density.
Thus, for the operators introduced in Eq. 23 to be well defined,
we need a discrete functional space that is at least globally C1-con-
tinuous. Although we use a spatial discretization based on isogeo-
metric analysis that offers this capability (48), classical finite
elements do not support globally C1-continuous spaces on
complex three-dimensional geometries. Thus, to make our algo-
rithm applicable to classical finite elements, we use the split ap-
proach that is based on introducing the additional unknown

μ ¼ ληΔρ ð38Þ

By treating μ as an independent unknown, we can redefine the
matrix Ac

i as

Ac;s
i ¼

μ;i

ρ;i
eiþ1 � ei; ðno sum on iÞ ð39Þ

and rewrite the NSK equations as a larger system of equations with
derivatives of order less or equal than two. To formulate our semi-
discrete problem, we use a finite element space Vh that satisfies the
Dirichlet boundary conditions and Vh

0, an analogous discrete space
that satisfies homogeneous conditions at the Dirichlet boundary.
The semi-discretized problem is as follows: find {Yh, μh} ∈ Vh,
such that for all fWh;Qhg [ Vh

0

BDVSðfWh;QhgfYh; μhgÞ ¼ 0 ð40Þ

where

BDVSðfWh;QhgfYh;μhgÞ ¼

ð

Ω
Wh � ðA0Yh

;t þAadv=p
i Yh

;i � Ac;s
i Yh

;iÞdΩ

�

ð

Ω
Wh

;i � ðFp
i � Fdiff

i ÞdΩ

þ

ð

Ω
ðQhμh þQh

;iληρ
h
;iÞdΩ

þ
XNel

e¼1

ð

Ωe
ðA�T

i Wh
;iÞ �τSUPGResðYh;μhÞdΩ

þ
XNel

e¼1
Wh

;i � κ̂DCA0Yh
;idΩ

þ

ð

Γ
Wh � ðFp

i � Fdiff
i ÞnidΓ

�

ð

Γ
Qhληρh;inidΓ

ð41Þ

We used the generalized-α method to perform time integration
(49). At each time step, the nonlinear system of equations is solved
using the Newton-Raphson’s method with a relative tolerance of 2.5
× 10−4. The linear systems of equations are solved using the gener-
alized minimal residual method (50) with an additive Schwarz pre-
conditioner. The time step is varied throughout the simulation to
achieve convergence of the Newton-Raphson algorithm in three
to four iterations. Our code makes use of the open-source
package PETSc (51) and PetIGA (52).

Stability and accuracy of the proposed algorithm
Because the SUPG operator in Eq. 24 vanishes when the residual
Res(Y) is zero, the matrices A�

i in Eq. 24 can be chosen in multiple
ways without compromising the rate of convergence of the algo-
rithm. However, a poor choice of A�

i can make the algorithm unsta-
ble for mesh sizes or time steps that are not sufficiently small to
reach the asymptotic regime of the algorithm. Here, we show that
two choices of A�

i that are logical extensions of the matrices used in
standard gas dynamics simulations render unsatisfactory results,
while our choice, given by Eq. 29, produces vastly superior
results. The alternatives to Eq. 29 that we study here are the follow-
ing: (a) A�

i ¼ Aadv=p
i þ Ap

i and (b) A�
i ¼ Aadv=p

i þ Ap
i � Ac

i . Case (a)
corresponds to the standard SUPG operator used for compressible
Navier-Stokes; see (17). Case (b) represents a plausible, but unsuc-
cessful, extension of the SUPG operators from compressible Navier-
Stokes to the NSK equations.

To compare these three algorithms, we simulate the dynamics of
three vapor bubbles; see Fig. 5. The expected solution is that the
bubbles will collapse one after another from the smallest to the
largest. As shown in Fig. 5B (left column), when we use method
(a), the two smallest bubbles collapse, but the largest bubble ac-
quires an irregular shape and periodically oscillates until the simu-
lation becomes unstable. Algorithm (b) produces results that, at the
scale of the plot, are indistinguishable from those of the proposed
algorithm (see center and right columns of Fig. 5B). However, the
time step required to get convergence of the Newton-Raphson
scheme is ∼200 times smaller when we use algorithm (b) than
when we use the proposed method; see Fig. 5C. Overall, this
shows that the proposed SUPG operator vastly outperforms naive
extensions of the classical SUPG method to the NSK equations.

We now perform an additional numerical test to evaluate the nu-
merical dissipation introduced by our algorithm. Most successful
algorithms for compressible flows introduce numerical dissipation.
However, to obtain an accurate method, the amount of numerical
dissipation should quickly approach zero as the mesh is refined. We
study the artificial dissipation of our method by simulating the os-
cillation of an inviscid, planar liquid-vapor interface driven by an
initial disturbance. Because the flow is inviscid, we expect a periodic
oscillation of the interface without any decay in the amplitude of the
disturbance. The initial velocity is zero and the initial void fraction
is depicted in Fig. 6A.We show snapshots of the void fraction in the
region of interest at multiple times in Fig. 6B. These pictures show a
periodic oscillation of the interface. A more informative description
of the oscillation is given by Fig. 6C (left), which shows the time
evolution of α at the center of the domain for different mesh
sizes. The plot shows that the simulation remains stable even for ex-
tremely coarse meshes (N = 32), but there is a notable decay in the
wave amplitude due to numerical dissipation. The amplitude decay
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is less noticeable as we refine the mesh and becomes very small for
our finest mesh (N = 256), even after 10 complete wave periods.

Supplementary Materials
This PDF file includes:
Transformation matrices
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