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This paper analyses a model of strategic exploration in which competing players independently

explore a set of alternatives. The model features a multiple-player multiple-armed bandit problem and

captures a strategic trade-off between pre-emption—covert exploration of alternatives that the opponent

will explore in the future—and prioritization—exploration of the most promising alternatives. Our results

explain how the strategic trade-off shapes equilibrium behaviours and outcomes, for example, in technol-

ogy races between superpowers and R&D competitions between firms. We show that players compete on

the same set of alternatives, leading to duplicated exploration from start to finish, and they explore alter-

natives that are a priori less promising before more promising ones are exhausted. The model also predicts

that competition induces players to implement unreliable technologies too early, even though they should

wait for the technologies to mature. Coordinated exploration is impossible even if the alternatives are

equally promising, but it can emerge in equilibrium following a phase of pre-emptive competition if

there is a short deadline. With asymmetric capacities of exploration, the weak player conducts extensive

instead of intensive exploration—exploring as many alternatives as the strong player does but never fully

exploring any.

Key words: Strategic exploration, Multiple-armed bandit problem, Mutually greedy strategy, Pre-emption,

Prioritization, Superpower competition, R&D competition
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1. INTRODUCTION

This paper studies strategic exploration in which competing players covertly explore a set of

alternatives to find good candidates. The strategic trade-off is between pre-emption and prior-

itization. On the one hand, each player would like to pre-empt his opponents by exploring the

alternatives before they do. On the other hand, he would also like to prioritize the most promising

alternatives given his capacity constraint. Our goal is to understand how the trade-off between

pre-emption and prioritization shapes competitors’ strategic behaviour and the overall discovery

process and to develop analytical tools for this class of dynamic games.

This strategic trade-off appears in many applications of dynamic competition between firms

and countries, where the alternatives can be research ideas, scientific experiments, business
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opportunities, etc. For instance, in a technology race between superpowers, the first country to

discover a viable technology (such as nuclear weaponry, space technology, and more recently

quantum computing) will gain a military, political, or economic advantage. The discovery and

implementation necessitate exploring many different alternatives and conducting various exper-

iments, not all of which are equally promising and very few of which will lead to success.

Therefore, each country must strategically allocate its resources over alternatives and over time.

A number of theoretically and empirically relevant questions can be formulated in these

applications. Should players focus exclusively on the most promising route before moving on to

less promising ones? Should players explore different alternatives to reduce duplicated explo-

rations and alleviate competition? When is coordinated exploration possible? If a strong player

is capable of exploring more alternatives over the same period of time, how would the asymme-

try in capacity translate into asymmetry in their payoffs and probabilities of discovery? Should

the weak player concentrate on fewer alternatives, or cover as much ground as the strong player

although this would inevitably lead to insufficient exploration of some or all alternatives given

the resource constraint? Would a player with negligible resources have a negligible impact on

the competitor’s exploration strategies and the overall process of discovery?

None of these questions is a priori obvious, but our model will provide clear predictions as

consequences of the strategic trade-off between pre-emption and prioritization. We formulate

the benchmark model in the simplest form. The unit interval represents the set of alternatives,

of which at most one is good. Two players share a common prior of the good one over the set

of alternatives. In continuous time, they each face a capacity constraint on the set of alternatives

to explore per unit time. Whoever finds the good alternative first will receive a reward. The

simplest model identifies the key elements of the strategic tension between pre-emption and

prioritization. This allows us to see how other features, such as multiple good alternatives, short

deadlines, asymmetric capacity constraints, multiple players, etc., add to the strategic interaction.

For instance, the analysis and the main insights remain the same in an environment with gradual

learning where the outcome of each alternative arrives stochastically at a rate controlled by

resources allocated to the alternative. Unlike in the finite case, the continuum of alternatives

makes the model tractable by eliminating the aggregate uncertainty of signal arrivals thanks to

the law of large numbers. The model thus encapsulates a useful but underexplored multiple-

player multiple-armed bandit problem.

The strategic exploration game features a unique and simple equilibrium. Instead of con-

centrating on the a priori most promising alternatives, the players explore an expanding set of

alternatives of different prior probabilities in such a way that their posterior probabilities equal-

ize. The strategy pre-empts the opponent’s future explorations in order to maximize the option

value of exploration and at the same time prioritizes alternatives with the highest posterior

induced by the opponent’s strategy in order to maximize the myopic value of discovery. There-

fore, this “mutually greedy” strategy profile is the equilibration of pre-emption and prioritization.

The strategy drives a wedge between equilibrium exploration and coordinated exploration that

minimizes the time of discovery. Without pre-emption concerns, the fastest discovery would be

achieved by prioritizing alternatives according to the prior probabilities. The uniqueness result

rules out coordinated or specialized explorations even when the prior distribution is spread out

or the reward from the good alternative increases over time.

Somewhat counterintuitively, the coordination failure can be mitigated if the deadline is short

relative to the set of alternatives so that no single player can exhaustively explore all alternatives.

The mutually greedy competition of the benchmark model remains an equilibrium, but there are

a continuum of equilibria with two phases: a competition phase in which the mutually greedy

strategy profile is played to equalize the posteriors of a subset of alternatives, followed by a coor-

dination phase in which the two players divide and prioritize this set. In the coordination phase,
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players no longer have incentives to pre-empt each other because the set of alternatives with

the highest posterior induced by the competition phase is large relative to the remaining time.

Therefore, competition creates the condition for coordination. If the deadline is long, the most

promising alternatives left from the competition stage will be exhausted before the deadline, and

players will pre-empt their opponents in advance, unraveling the coordination phase.

When a “strong” player (she) has the capacity to explore more alternatives per unit time,

the weak player (he) still explores alternatives with the highest posterior, but the strong player

explores alternatives with unequal posterior and her strategy is no longer a greedy best response.

The weak player always covers the same set of alternatives as the strong one, but he never

explores any alternative with cumulative probability one, even if he can do so by focusing on

a smaller set of alternatives. In other words, the weak player conducts an extensive exploration

instead of an intensive exploration. We show that an edge in exploration capacity gives the

strong player a disproportionately large payoff advantage due to an endogenous information

advantage. When the exploration capacity is more asymmetric, the good alternative is discov-

ered earlier in the first-order stochastic sense; nevertheless, the pre-emption incentive continues

to play a non-vanishing role in slowing down discovery even when the weak player’s capacity

is vanishingly small.

We also study the strategic exploration game when more players enter the race in Supplemen-

tary Appendix. In the unique symmetric equilibrium, the players expand the set of alternatives

to explore to equalize the posterior probabilities, just as in the benchmark setting. We show that

the good alternative is discovered earlier with more players in the first-order stochastic domi-

nance sense. However, there exist asymmetric equilibria with asymmetric payoffs even though

the players are ex ante identical. Instead of competing over the same set of alternatives, the

players specialize in different segments of alternatives in different groups.

Related literature

The paper connects several branches of active research. Optimal exploration of an unknown area

is a well-known problem in operations research and computer science.1 This literature has so far

neglected the game-theoretic aspects of explorations. We do not consider the path dependence

intrinsic to exploring physical locations and we assume away switching costs. In our model,

the alternatives can be research ideas, scientific experiments, business opportunities, etc., all of

which are of economic interest.

Although the underlying mechanisms are very different, our definition of “pre-emption” is

not inconsistent with that in well-known pre-emption models, for example, Fudenberg and Tirole

(1985), Hendricks and Wilson (1992), Abreu and Brunnermeier (2003), and Hopenhayn and

Squintani (2011). Players make only a single irreversible pre-emption decision in these timing

games, while they make such a decision for each alternative in our model. More importantly,

we introduce prioritization among multiple alternatives to the pre-emption motive, and their

strategic tension opens up new research questions.

1. It has applications in navigation algorithms and robotics, where inefficiency typically arises from the path

dependence of exploration of physical locations. See, for example, the surveys by Kleinberg (1994) and Megow et al.

(2012).
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Fershtman and Rubinstein (1997) study a discrete-time finite-alternative search problem with

pre-emption. As their analysis demonstrates, the discrete problem is intractable beyond a uni-

form prior. Under the uniform prior, however, the prioritization motive does not exist.2 Matros

et al. (2019) consider a discrete-time continuum-alternative variant of Fershtman and Rubinstein

(1997), but assume away the pre-emption motive, and find a qualitatively different equilibrium

in pure strategies.3 Bavly et al. (2022) consider a static search model where players have pri-

vate information about the viability of different routes. Hence, these papers do not capture the

dynamic trade-off between prioritization and pre-emption.

Chatterjee and Evans (2004) embed a two-alternative model of treasure hunting in a dynamic

R&D game with Poisson bandits. Klein and Rady (2011) analyse a continuous-time model of

a negatively correlated bandit, in which one of the two arms contains a prize and two players

share a common value instead of competing with each other. Again, there is no pre-emption–

prioritization trade-off in these two papers, but both their models and ours feature a negatively

correlated bandit.

The canonical models of strategic experimentation by Keller et al. (2005) and Bolton and

Harris (1999) capture a trade-off between exploration and exploitation in a multiple-player set-

ting and are useful in many economic applications.4 Most models in this literature feature a

one-armed bandit, with one risky alternative and one safe default option, thus abstracting away

the rich set of alternatives to explore and precluding interesting learning, search, and innova-

tion processes in many applications. By eliminating aggregate uncertainties and facilitating the

analysis of randomization, the multiple-player continuum-armed bandit formulated in this paper

overcomes some of the analytical difficulties associated with finite-armed bandit problems that

are largely intractable even when the arms are independent.

The strategic exploration game can also be viewed as a contest in which players choose

what project to explore over time. Existing models in the literature of contests often study effort

choices on a given project; see, for example, Siegel (2009) and Fu et al. (2015) for recent devel-

opments.5 Our model also differs from Hotelling’s spatial competition models, for example,

Osborne and Pitchik (1986) and Ottaviani and Sørensen (2003), in that the good alternative (or

location) is fixed, the topology of the alternatives is payoff-irrelevant, and the players choose

which alternatives to explore dynamically.

2. MODEL

In this section, we formulate the strategic exploration game.

2. Fershtman and Rubinstein (1997) allow players to choose their search capacities. They discuss the case where

exactly one alternative has a different probability of success from the rest and make the observation that, under some

parameter values, this alternative cannot always be searched first.
3. They assume a uniform distribution, but this assumption is not the driving force. Instead, their model features

a Bertrand-style competition so that the rent is dissipated completely. Their uniqueness fails, however, without the

restriction to symmetric or Markovian strategies. Matros and Smirnov (2016) and de Roos et al. (2018) look into variants

of this model with observable actions and with/without coordination.
4. See Manso (2011) and the literature on contractual arrangements for experimentation. See Hörner and

Skrzypacz (2016) for a survey.
5. The literature also studies optimal design of effort-maximizing contests; see, for example, Moldovanu and

Sela (2001, 2006) and Che and Gale (2003) for static problems and Bimpikis et al. (2019) and Halac et al. (2017) for

dynamic problems. Akcigit and Liu (2015) study the incentive of concealing negative findings from competitiors in

R&D contests. Optimal design with strategic exploration will be an interesting direction for future research.
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2.1. Set-up

Two players explore a continuum of alternatives x ∈ X := [0, 1] of which at most one is good.

The prior distribution of the good alternative is given by a bounded density f that is strictly

positive almost everywhere. Therefore, the prior probability that the good alternative exists is

π :=
∫

X
f (x)dx ∈ (0, 1]. The continuum of alternatives is an idealization of a large discrete

set, and so two alternatives labelled 0.1 and 0.101 may not give similar outcomes.

The players explore over time horizon [0, T ] without observing each other’s explorations,

where T ≥ 1. Each player faces a capacity constraint: he can explore up to a unit (Lebesgue)

measure of alternatives per unit time. With some abuse of notation, we also let T denote the set

[0, T ] when no confusion arises.

The first player to find the good alternative exclusively claims a payoff of 1—and the two

split it equally in the case of simultaneous discovery. In all other cases, their payoffs are 0.

There is no temporal discounting.6 Once the good alternative is found, the discovery is publicly

announced and the game is over (equivalently, we may assume that the discovery is private but

it removes the reward from the good alternative). In Supplementary Appendix, we consider the

extension where each player finds out whether an alternative is good gradually through a Poisson

process instead of instantaneously.

2.2. Strategy

We shall define strategies to describe how the players explore the alternatives over time. The

strategy space demands a new and formal treatment because the intuition of “exploring one

alternative each period” inherited from a discrete problem does not extend to a continuum

of alternatives in continuous time.7 Our definition of strategies exploits two ideas: the out-

come function approach overcomes the indeterminacy of continuous-time strategies and the

distributional approach handles the randomization.

2.2.1. Pure strategy. A pure strategy σ : T × X → {0, 1} specifies whether an alternative

is explored by a certain time: an alternative x ∈ X is explored at or before t ∈ T if σ(t, x) = 1.

Definition 1. A function σ : T × X → {0, 1} is a pure strategy if it satisfies the following four

conditions:

(1) Initial condition: σ(0, ·) = 0;

(2) Monotonicity and right-continuity: σ(·, x) is non-decreasing and right continuous for all

x ∈ X ;

(3) Measurability: σ(t, ·) is measurable for all t ∈ T ;

(4) Capacity constraint:
∫

X
(σ (t, x) − σ(s, x))dx ≤ t − s for all intervals [s, t] ⊂ T .

The four conditions correspond to intuitive requirements for exploration activities.8 The ini-

tial condition states that none of the alternatives has been explored at the beginning of the

6. The equilibrium construction of the benchmark model remains valid even if there is discounting. In

Supplementary Appendix, we consider time preferences to capture a growing reward from the good alternative.
7. First, this measure-preserving bijection between continuous time and the continuum of alternatives is not

tractable. Second, a desirable definition should apply to an abstract set of alternatives, but the existence of measure-

preserving bijections is not always guaranteed, let alone equilibria in such bijections. Third, the strategy should specify

the set of alternatives explored at each moment in time. To avoid an uncountable union of measurable sets over time, we

specify the outcome function that determines exploration activities.
8. Simon and Stinchcombe (1989) point out the indeterminacy of the continuous-time strategy when it is written

as a function of histories (including a player’s own past actions). In our setting where the opponent’s exploration is
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game. The monotonicity condition requires that, once an alternative has been explored, it is

explored by any future time as well. The right-continuity property, similar to that of a cumu-

lative distribution function, guarantees that the time at which an alternative x ∈ X is explored

τ(x) := min{t : σ(t, x) = 1} is well defined. The measurability condition further requires that

τ : X → T be a measurable function and τ−1(t), the set of alternatives to be explored at time

t, be a measurable set. It is the induced map τ−1 that instructs how the player should actually

search.9 Lastly, the capacity constraint describes how quickly a player can explore the space of

alternatives. The maximum measure of alternatives explored per unit time is normalized to 1.

We identify a strategy σ up to a stationary null set of X.

2.2.2. Distributional strategy. We define distributional strategies to capture randomized

explorations of a continuum of alternatives in continuous time. A distributional strategy ρ :

T × X → [0, 1] specifies the probability that alternative x ∈ X is explored by time t ∈ T . It is

the evolution of the cumulative distributions of outcomes. One should not confuse this notion

with that of Milgrom and Weber (1985).10

Definition 2. A function ρ : T × X → [0, 1] is a distributional strategy if it satisfies the

following conditions:

(1) Initial condition: ρ(0, ·) = 0;

(2) Monotonicity and right-continuity: ρ(·, x) is non-decreasing and right continuous for all

x ∈ X ;

(3) Measurability: ρ(t, ·) is measurable for all t ∈ T ;

(4) Capacity constraint:
∫

X
(ρ(t, x) − ρ(s, x))dx ≤ t − s for all intervals [s, t] ⊂ T .

The four conditions extend naturally from pure strategies. A distributional strategy ρ reduces

to a pure strategy if ρ(t, x) ∈ {0, 1} as one can see by comparing Definitions 1 and 2.

Unlike a pure strategy, a distributional strategy specifies the cumulative probability of

exploring each alternative but not the path of exploration. We prove a representation theorem

(Theorem 7) that shows the outcome equivalence between distributional strategies and mixtures

of pure strategies, which provides an instruction for players to randomize over the paths of

exploration. We relegate the representation theorem, which relies on weak measurability and the

Gelfand–Pettis integral, to Appendix A.8.

Remark 1 (Interpretations of randomization). There are two more interpretations for the ran-

domized strategies in addition to literal randomization. Randomized strategies can be viewed

as the uncertainty entertained by the opponent.11 Alternatively, they can be interpreted as the

cumulative resources spent on each alternative, which we formalize in Supplementary Appendix.

unobservable, the alternatives available for exploration for one player at each moment depend on his own exploration

history. We overcome this issue by defining a strategy indirectly through an outcome function.

9. The set of alternatives explored thus far {x : σ(t, x) = 1} =
⋃

s∈[0,t] τ−1(s) is measurable. Our outcome

function approach circumvents the measurability of such an uncountable union of measurable sets when τ−1 is defined

directly as in discrete problems.
10. Abreu and Gul (2000) and Hendricks et al. (1988) use distributions to describe randomization in continuous-

time games. In contrast to the one-dimensional distribution of stopping times in prior work, the distributional strategy in

this paper takes into account a continuum of alternatives.
11. See, for example, Aumann (1987) for an exposition.



LIU AND WONG STRATEGIC EXPLORATION: PRE-EMPTION AND PRIORITIZATION 7

2.3. Payoff

We compute the expected payoff of each player in a profile of distributional strategies. Let

−i denote player i’s opponent. Given a profile of distributional strategies (ρi , ρ−i ), player i’s

expected payoff ui (ρi , ρ−i ) is

∫

X

∫

T

f (x)(1 − ρ−i (t, x))dtρi (t, x)dx +
1

2

∫

X

f (x)
∑

t∈Dx

�tρi (t, x)�tρ−i (t, x)dx . (1)

The first term in equation (1) is player i’s expected payoff from discovering the good alternative

before his opponent. It reflects the probabilities of three events: alternative x is good with prob-

ability f (x), the opponent −i has not explored it yet with probability 1 − ρ−i (t, x), and player

i explores that alternative instantaneously with probability dtρi (t, x), where the time integral is

the Lebesgue–Stieltjes integral with respect to the non-decreasing and right-continuous function

t �→ ρi (t, x).12

The second term in equation (1) is player i’s expected payoff from simultaneously dis-

covering the good alternative with his opponent. For each x, the set Dx ⊂ T is the at most

countable set of discontinuity points of both ρi (·, x) and ρ−i (·, x). The function �tρi (t, x) :=

ρi (t, x) − ρi (t
−, x) is the jump measure of the distributional strategy ρi (·, x) on T, where

ρi (t
−, x) := lims↑t ρi (s, x). At alternative x, the probability of simultaneous discovery is

∑

t∈Dx
�tρi (t, x)�tρ−i (t, x). The integral over X is well defined as the integrand can be written

as the limit of measurable functions.

2.4. The one-player problem

Consider a useful benchmark of the single-player problem, which is equivalent to exogenously

fixing ρ ≡ 0 for the other player in the two-player game. The incentive for pre-emption is absent

in this case. There are many payoff-equivalent optimal search strategies. A greedy strategy is a

distributional strategy that maximizes the myopic expected payoff at each moment in time, that

is, it prioritizes the most promising alternatives according to the prior distribution. It will be a

relevant benchmark for the competitive environment.13

For each y ∈ [0,∞), let h(y) = λ({x : f (x) ≥ y}) be the measure of alternatives whose

prior densities are at least y, where λ is the Lebesgue measure. Therefore, h is non-increasing

and left continuous with limy→+∞ h(y) = 0 and h(0) = 1. Intuitively, a greedy strategy explores

alternatives sequentially according to their densities from the highest to the lowest. Formally, for

any x ∈ X,

ρ(t, x) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if t ≥ h( f (x)),

0 if t < h( f (x)+),
t − h( f (x)+)

h( f (x)) − h( f (x)+)
if t ∈ [h( f (x)+), h( f (x))),

where h( f (x)+) := limy↓ f (x) h(y). This greedy strategy ρ says that, when the prior density

is constant over a positive measure set, the player randomizes uniformly over this set. This

is clearly not the unique greedy strategy. When such a positive-measure set does not exist,

ρ specifies a deterministic exploration strategy and hence is uniquely determined.

12. The Lebesgue–Stieltjes measure is obtained from µ((s, t]) := ρi (t, x) − ρi (s, x) for all 0 ≤ s < t ≤ 1.
13. A non-greedy strategy will not be robust to discounting or to a perturbation of the other player’s strategy with

uniform randomization, ρ(t, x) = εt for all x ∈ X and t ∈ T , where ε > 0 is small.
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Example 1. Consider a symmetric probability density function

f (x) =

{

4x if x ≤ 1
2
,

4 − 4x if x > 1
2
.

Then we have

h(y) =

{

1 −
y

2
if y ≤ 2,

0 if y > 2,

and

ρ (t, x) =

{

1 if 1−t
2

≤ x ≤ 1+t
2

,

0 o.w.

What might appear counterintuitive is that two alternatives { 1−t
2

, 1+t
2

} are explored at the same

time t > 0, but it takes exactly one unit of time, instead of half units, to fully explore the unit

interval X = [0, 1]. Intuitively, the capacity is divided so that the speed of exploration is halved.

3. EQUILIBRATION OF PRE-EMPTION AND PRIORITIZATION

We shall derive the unique Nash equilibrium of the strategic exploration game. A profile of

distributional strategies (ρi , ρ−i ) is a Nash equilibrium if ui (ρi , ρ−i ) ≥ ui (ρ
′
i , ρ−i ) for each

i ∈ {1, 2} and distributional strategy ρ ′
i .

We shall argue that, due to pre-emption motives, no player can play a pure strategy in a Nash

equilibrium. Facing any pure strategy ρ−i , player i can stay “one step ahead” of his opponent by

exploring at time t what his opponent will explore at time t + ε. When ε is close to 0, player i’s

payoff from this response is close to π and his opponent’s payoff is close to 0. Thus, player −i’s

payoff is 0 in the putative equilibrium. However, the opponent −i can always imitate player

i’s equilibrium strategy to guarantee a strictly positive payoff. Therefore, both players must

randomize in any equilibrium.

But how should players randomize in general? They must consider not only the myopic

value of each alternative (measured by its posterior density) but also the option value (which is

determined by how intensively his opponent will explore certain alternatives in the future). The

trade-off between prioritization and pre-emption thus emerges.

3.1. Belief updating

Belief updating is essential to characterizing equilibrium randomization. With prior density f and

the opponent’s distributional strategy ρ−i , player i’s posterior density that x is a good alternative

right after t is

g−i (t, x) := (1 − ρ−i (t, x)) f (x). (2)

We call g−i (t, x) player i’s (unnormalized) posterior distribution over X at time t. We use the

subscript “−i” because the posterior conditions only on the strategy of player −i . Note that

the posterior does not take player i’s own exploration into account; his posterior belief will be

degenerate for alternatives that he has explored (see Supplementary Appendix for the case where

exploration reveals the state only through gradual arrivals of conclusive signals.)

The initial condition of the distributional strategy in Definition 2 implies that g−i (0, x) =

f (x). The monotonicity condition entails that the posterior g−i (t, x) is non-increasing in t for
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(a) (b)

FIGURE 1

A distributional strategy ρ−i (a) and the posterior g−i (b), at a fixed time

each x ∈ X . Intuitively, as the opponent −i explores more alternatives over time, the poste-

rior distribution is pushed lower and lower. Figure 1 illustrates the relationship between the

distributional strategy, prior distribution, and posterior distribution.

We observe that the posterior equals the flow payoff when the probability of simultaneous

discovery is zero. In that case, the expected payoff reduces to

ui (ρi , ρ−i ) =

∫

X

∫

T

(1 − ρ−i (t, x)) f (x)dtρi (t, x)dx =

∫

X

∫

T

g−i (t, x)dtρi (t, x)dx . (3)

Intuitively, the flow payoff of exploring alternative x at time t is the probability that x is good and

the opponent has not explored it yet. A sufficient condition for zero probability of simultaneous

discovery is that either ρi or ρ−i is t-continuous.

3.2. Levelling strategy

We shall construct a candidate equilibrium strategy such that the equilibrium posterior gi (t, x)

levels the prior f (x) over time as illustrated in Figure 2. As such, we shall call it the levelling

strategy.

We first pin down the highest posterior as a function of time. By the definition of posterior

distribution in equation (2), player −i’s strategy ρ−i and its induced posterior g−i follow

ρ−i (t, x) = 1 −
g−i (t, x)

f (x)
(4)

for all t ∈ T and x ∈ X. We call a function ḡ : T → [0, sup f ] the levelling function if it

satisfies

∫

X

(

1 −
ḡ(t)

f (x)

)

1{ f (x)≥ḡ(t)}(x)dx = t (5)
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FIGURE 2

The posterior gi (t, x) levels the prior f (x) over time

for all t ∈ [0, 1] and ḡ(t) = 0 for t > 1. We then define the levelling strategy ρ̄ : T × X →

[0, 1] in terms of the levelling function as

ρ̄(t, x) :=

(

1 −
ḡ(t)

f (x)

)

1{ f (x)≥ḡ(t)}(x) (6)

for all t ∈ T and x ∈ X . As the integrand on the left-hand side of equation (5) equals ρ̄, equation

(5) corresponds to the binding capacity constraint in Definition 2. Therefore, by comparing

equations (4) and (6), we know that the posterior induced by ρ̄ at t achieves its maximum ḡ(t)

on {x ∈ X : f (x) ≥ ḡ(t)}. Therefore the levelling strategy ρ̄ levels the prior f over time.

Lemma 1. The levelling function ḡ exists and is unique, absolutely continuous, convex, and

strictly decreasing on [0, 1]. The levelling strategy ρ̄ is a well-defined distributional strategy.

With some abuse of notation, we write the posterior density induced by the levelling strategy

at time t as ḡ(t, x) := (1 − ρ̄(t, x)) f (x) and call it the levelling posterior at t. We reiterate that

it is player i’s levelling strategy ρ̄ that levels player −i’s posterior ḡ.

We demonstrate the relationship between the levelling strategy, the prior, and the levelling

posterior in Figure 3, and illustrate the implementation of exploration over time Figure 4, where

∂t ρ̄ describes how intensive an alternative x is explored at time t.

3.3. Unique equilibrium

We shall show that the symmetric levelling strategy profile is the unique Nash equilibrium of the

strategic exploration game, and then discuss its economic implications.

Theorem 1. The strategy profile (ρ̄, ρ̄) is the unique Nash equilibrium.

The proof is contained in Appendix A.3. The fact that (ρ̄, ρ̄) is an equilibrium follows from

its construction. Since the levelling strategy is t-continuous, the flow payoff of exploring an

alternative equals the posterior. The equilibrium strategies are mutually greedy in that each
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(a) (b)

FIGURE 3

The levelling strategy ρ̄ (a) and the posterior density ḡ (b), at a fixed time

(a) (b)

FIGURE 4

Exploration over time according to the levelling strategy ρ̄. (a) Contour plot of the intensity of exploration ∂t ρ̄. (b)

Discretized realization of exploration

player will explore only alternatives x with the highest posterior/myopic payoff at each time

t, ḡ(t), induced by the opponent’s strategy to maximize his own myopic value of discovery.

While myopic best responses are determined solely by the posterior beliefs (the prioritization

motive), dynamic best responses in addition take into account the option value of exploration,

or how quickly posteriors decline (the pre-emption motive). The levelling posterior of the most

promising alternatives declines at the same rate, so the myopically optimal levelling strategy is

indeed dynamically optimal against the opponent’s levelling strategy.

A coordinated exploration prioritizes alternatives according to the prior density without

pre-emption (i.e. the greedy exploration of the one-player problem described in Section 2.4, but

with a combined capacity of 2). The strategic motives distort the equilibrium exploration in two

ways from the coordinated exploration. First, the players prioritize the most promising alterna-

tives a posteriori but not a priori. They explore many a priori less promising alternatives before

exhausting the more promising ones. Second, the players pre-empt each other by duplicating
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the opponent’s exploration in an extreme way. From start to finish, each player explores only

the alternatives that his opponent could have already explored. Due to the two distortions, the

equilibrium discovery time first-order stochastically dominates, that is, is slower than, the coor-

dinated counterpart. The instantaneous probability of discovery by one player at t equals the

highest posterior ḡ(t). Therefore, the probability that a discovery is made by time t is

P(t) =

∫ t

0

2ḡ(s)ds. (7)

For uniqueness, we note that the levelling strategy ρ̄ guarantees a payoff of π/2 regardless of

the opponent’s strategy, that is, both players can guarantee half of the total payoff. Therefore,

it suffices to find, against each non-levelling strategy, a deviation with a payoff above π/2. As

shown in Figure 2, the levelling strategy explores at full capacity such that the posterior or flow

payoff decreases uniformly over time. For any other strategy, there must exist an interval of time

over which the posterior declines faster for one set of alternatives and slower for another. One

can then modify the levelling strategy to pre-empt that strategy by prioritizing the former set at

the expense of the latter, in the spirit of the “one-step-ahead” strategy to achieve a higher payoff.

We conclude this section by highlighting the robustness of the model.

Remark 2 (Robustness to modeling details). The model is parsimonious to capture the essence

of the strategic trade-off between pre-emption and prioritization, independent of some modeling

details. Theorem 1 continues to hold verbatim in the following environments: (1) the first discov-

erer enjoys a larger but not exclusive share of the prize, or payoff sharing is arbitrary in the case

of simultaneous discovery, because in both cases the unique equilibrium strategy is t-continuous;

(2) the space of alternatives is multidimensional, because of the one-to-one correspondence

between the levelling function and the levelling strategy (of course, actual exploration activities

depend on the space of alternatives); and (3) the players value the weighted sum of prizes from

multiple (or from a continuum of) independent and identically distributed good alternatives.

Remark 3 (Robustness to time preferences). The equilibrium in levelling strategies in

Theorem 1 is robust to the introduction of exponential discounting, but we do not know

its uniqueness. In many applications, the reward is increasing in time. For example, a tech-

nology may become safer and more reliable over time, and its premature exploitation may

sometimes lead to adverse outcomes. This corresponds to a strictly increasing reward function

β : [0, T ] → R+. When a player discovers the good alternative at time t, he enjoys a payoff of

β(t). Without competition, players would prefer waiting to exploring a premature technology.

Nevertheless, in Supplementary Appendix, we show that the equilibrium in Theorem 1 is the

unique Nash equilibrium even in this case. The result demonstrates the payoff effect and infor-

mation advantage behind the strategic trade-off between pre-emption and prioritization. If an

early exploration leads to a discovery, the player enjoys the current payoff but eliminates the

possibility of a later discovery that can be much more valuable. However, if early explorations

fail, the player can pre-empt his opponent in future explorations by concentrating his capacity

on the remaining alternatives. We show that the information advantage dominates the payoff

effect so that the players cannot coordinate on delayed explorations. Moreover, they reap the full

information advantage by prioritizing the most promising alternatives a posteriori. Therefore,

the unique equilibrium features the mutually greedy levelling strategy.

Remark 4 (Multiple players). The equilibrium in levelling strategies can be extended to an envi-

ronment with more than two players, where the players expand the set of alternatives to explore

in such a way that equalizes the posterior probabilities. In Supplementary Appendix, we show

that this is the unique symmetric equilibrium and that the good alternative is discovered earlier
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(a) (b)

FIGURE 5

Two distributions f1 and f2, where f2 is more even than f1. (a) Prior density functions. (b) Pushforward measures

with more players in the first-order stochastic dominance sense. However, there exist asymmet-

ric equilibria with asymmetric payoffs even though the players are ex ante identical: instead of

competing over the same set of alternatives, the players form different groups that specialize

in different segments of alternatives; competition occurs within groups and coordination occurs

across groups.

3.4. Impact of prior beliefs

We study how the prior distribution affects the equilibrium exploration, and show that the good

alternative is discovered more quickly if the prior is less evenly distributed.

With the probability of the existence of the good alternative π fixed, we vary the evenness

of the prior distribution. Let λ be the Lebesgue measure. For any prior distribution f, let λ ◦ f −1

be the pushforward measure over R+. Note that λ ◦ f −1(R+) = λ([0, 1]) = 1, so the pushfor-

ward measure is a probability measure of the prior density. Its expectation is
∫

R+
ydλ ◦ f −1 =

∫

[0,1]
f (x)dλ = π. For example, if the good alternative is uniformly distributed over X, then

f (x) is a constant and λ ◦ f −1 assigns probability 1 to a single point. This is the case where the

good alternative is most evenly distributed over X = [0, 1]. We can then capture the evenness of

a prior distribution by its pushforward measure. Figure 5 illustrates the partial order of evenness.

Definition 3. Let f1 and f2 be two prior distributions. We say that f2 is more even than f1 if

λ ◦ f −1
1 is a mean-preserving spread of λ ◦ f −1

2 .

The good alternative is discovered more quickly if the prior distribution is less even. The

players concentrate their exploration, which increases pre-emptive duplications but prioritizes

more promising alternatives. We show that the prioritization effect dominates.

Theorem 2. If f2 is more even than f1, then the distribution of the equilibrium discovery time

associated with f2 first-order stochastically dominates that associated with f1; that is, the good

alternative is discovered earlier with f1 than with f2.

The comparative statics is intuitive given our equilibrium characterization but it is not

obvious a priori. One may have anticipated Theorem 2 since it also applies to coordinated

exploration. We would like to highlight our result that the players cannot coordinate on less
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duplicative explorations regardless of the prior distribution. A priori, one might expect the play-

ers to specialize in distinct sets of alternatives to speed up equilibrium exploration when the

prior distribution is more even. It would be more difficult to coordinate when the prior is less

even because of the strengthened incentives to prioritize the most promising alternatives. We

have shown, however, that such coordination is impossible for any prior distribution. By ruling

out all possible coordination, our equilibrium characterization makes it straightforward to prove

the monotonicity in discovery time.

4. EXTENSIONS

Having analysed the strategic exploration in the simplest setting, we shall extend the analysis to

two settings of interest. These extensions are by no means exhaustive, but they will demonstrate

how the strategic trade-off between pre-emption and prioritization plays out in richer settings of

search and learning. Additional extensions with stochastic learning, multiple players, and time

preferences can be found in the Supplementary Appendix.

4.1. Short deadlines

The model assumes that the deadline is sufficiently long so that a player can exhaustively explore

all alternatives. Theorem 1 shows that coordination is impossible to attain. Can a short deadline

T < 1 make coordination possible? The answer is in the affirmative but there is a limit to the

scope of coordination.

We start developing the intuition from the mutually greedy strategy profile over [0, T ].

Suppose that players level each other’s posteriors up till T − ε for some small ε > 0. At this

moment, each player faces a set of unexplored alternatives with the highest posteriors. Since

T < 1, this set is large relative to the remaining time ε, which is very short. The two play-

ers can divide the set into two disjoint segments, one for each player to search exclusively. No

player has the incentive to pre-empt his opponent anymore, as long as his own segment contains

enough alternatives to explore before the deadline. Therefore, competition creates the condition

for coordination. But coordination cannot be followed by another round of competition, because

the pre-emption incentive will unravel the phase of coordination. This line of argument suggests

that an equilibrium play consists of two phases: a phase of competition for a sufficiently long

period of time followed by a phase of coordination.

We must also complement the above reasoning with the following two observations. First, the

mutually greedy strategy profile is still an equilibrium in which the players level their posteriors

till the deadline, completely crowding out the coordination phase. This equilibrium does not

unravel backward from the deadline simply because, if his opponent uses the levelling strategy,

a player has no incentive to use a different strategy. For the same reason, in an equilibrium with

two phases, a player does not have the incentive to enter the coordination phase unilaterally

even if the competition phase has created a sufficiently large set of alternatives with the highest

posterior.

Second, for long deadlines, there does not exist an equilibrium with a coordination phase as

shown in Theorem 1. The reason is that, at any point in time t < 1, the remaining alternatives

(let alone the alternatives with the highest posterior) are few relative to the remaining time and,

hence, there would not be enough alternatives for the two players to split. Suppose to the contrary

that there were a coordination phase, both players would exhaust their exploration of the most

promising alternatives before the deadline, and they would have no choice but to continue to

explore less promising alternatives; however, a player would covertly explore his opponent’s
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segment early on. Therefore, the pre-emption incentive unravels the coordination phase under

long deadlines.

Theorem 3. For the strategic exploration game with deadline T < 1, there exists T ∗(T ) ∈

[0, T ) such that the following properties are satisfied:

(1) If (ρ1, ρ2) is a Nash equilibrium, then there exists t∗ ∈ [T ∗(T ), T ] that divides the

equilibrium play into two phases:

(a) Competition: for all t ∈ [0, t∗], ρ1(t, ·) = ρ2(t, ·) = ρ̄(t, ·); that is, players play the

levelling strategy.

(b) Coordination: for all t ∈ (t∗, T ], if ρi (T, x) − ρi (t
∗, x) > 0 then g−i (t, x) = ḡ(t∗) and

ρ−i (T, x) − ρ−i (t
∗, x) = 0; that is, players explore only alternatives with the posterior

ḡ(t∗) and they do not duplicate each other’s search after t∗.

(2) For any t∗ ∈ [T ∗(T ), T ], there exists a Nash equilibrium (ρ1, ρ2) that satisfies (a) and (b)

above.

Furthermore, limT →1 T ∗(T ) = 1.

The proof in Appendix A.5 characterizes the critical threshold as

T ∗(T ) = min

{

t ∈ [0, T ] :

∫

ḡ(t)

f (x)
1 f (x)≥ḡ(t)dx ≥ 2(T − t)

}

. (8)

Since limT →1 T ∗(T ) = 1, the coordination phases in all equilibria vanish as the deadline

approaches 1, when each player can exhaust all alternatives. Since T ∗(T ) < T , there must

be a continuum of equilibria with a coordination phase with transition times t∗ ∈ [T ∗(T ), T ).

The equilibrium with transition time t∗ = T ∗(T ) has the longest coordination phase. The lev-

elling equilibrium (with transition time t∗ = T ) has the most duplicated search. Property (b)

in Theorem 3 does not uniquely determine a distributional strategy, because there are multiple

ways to partition alternatives with the posterior ḡ(t∗) into two segments and players’ searches

over their own segments are flexible.

We shall use the uniform distribution to demonstrate the role of deadlines.

Example 2. Suppose f ≡ 1. Then the levelling strategy ρ̄ is given by ρ̄(t, x) = t .

• For long deadlines T ≥ 1, the unique equilibrium is the levelling equilibrium (ρ̄, ρ̄) by

Theorem 1.

• For very short deadlines T ∈ (0, 1
2
], the transition to coordination can start immediately

T ∗(T ) = 0. The two extremes are the equilibrium with t∗ = 0 (coordination starts immedi-

ately) and the equilibrium with t∗ = T (the levelling equilibrium). The fact that T ∗(T ) = 0

and hence equilibrium coordination can start immediately is a knife-edge case, which, by

Theorem 3, only occurs when the prior density plateaus for a set of alternatives with a mea-

sure of at least 2T , so that the two players do not need to compete over the course of the

game.

• For moderately short deadlines T ∈ ( 1
2
, 1), the earliest transition time is T ∗(T ) = 2T − 1.

To see this, note that in the equilibrium where players use the levelling strategy till T ∗(T ),

the set of alternatives X will be divided equally between the two players for them to explore

over the remaining time T − T ∗(T ). In the competition phase prior to T ∗(T ), each player

has explored a measure of 1
2
T ∗(T ) in each segment, leaving a measure of 1

2
− 1

2
T ∗(T ) for

the player. Therefore, T − T ∗(T ) = 1
2

− 1
2
T ∗(T ) and, hence, T ∗(T ) = 2T − 1.
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(a) (b)

FIGURE 6

The strategy profile (ρ̄, αρ̄) (a) and the corresponding posterior densities (b), at a fixed time

Notes: In this example, player 2 is half as capable as player 1, that is, α = 1/2.

4.2. Asymmetric capacity

In this section, we analyse the strategic trade-off between prioritization and pre-emption under

asymmetric capacity and uncover a number of new interesting implications veiled in the

symmetric problem. We shall assume a long deadline T ≥ 1 as in the benchmark model.

The two players have different capacities: player 1 can explore measure 1 of alternatives per

unit time but player 2 can explore only measure α ∈ (0, 1]. Player 1 (the “strong” player, she) is

more capable or more resourceful than player 2 (the “weak” player, he) at exploration. We refer

to α as player 2’s capacity. Thus, player 2’s distributional strategy ρα
2 : T × X → [0, 1] should

satisfy the new capacity constraint

∫

X

(ρα
2 (t, x) − ρα

2 (s, x))dx ≤ α(t − s) for all [s, t] ⊂ T (9)

as well as the first three conditions in Definition 2.

4.2.1. Unique equilibrium. We first introduce the equilibrium strategy of the weak player.

Consider a distributional strategy ρα
2 of the weak player ρα

2 (t, x) = αρ̄(t, x) for all t ∈ [0, 1]

and x ∈ X . The corresponding posterior g(t, x) = (1 − αρ̄(t, x)) f (x) decreases uniformly just

like the levelling strategy but at a slower speed. The fractional strategy αρ̄, however, no longer

levels the posterior, and explores any given alternative only with probability α by t = 1. Figure 6

demonstrates the distinction of ρ̄ and αρ̄.

In the unique equilibrium with asymmetric capacity, the strong player plays the levelling

strategy ρ̄ and the weak player plays the fractional strategy αρ̄. To develop an intuition for this

candidate equilibrium, we explain how it is related to the unique equilibrium in the symmetric

case.

First, although the two players differ in their capacity for exploration, they randomize over

the same expanding set of alternatives. This results from the pre-emption motive: if the weak

player concentrates on a smaller set of alternatives, the strong player can pre-empt him by

exploring this set more intensively. Consequently, the weak player cannot explore the same set

of alternatives as intensively as the strong player. In the candidate equilibrium, the weak player

never explores any alternative with probability more than α, although a priori player 2 can choose
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to explore a subset of them with probability greater than α.14 Therefore, the pre-emption motive

drives the weak player to conduct extensive, but not intensive, explorations.

Second, unlike the symmetric case, the asymmetric capacity drives a wedge between the

myopic payoff and the dynamic option value of exploration for the strong player. Although the

weak player cannot equalize the posterior faced by the strong player over the common support

as shown in Figure 6, the induced posterior declines uniformly at a constant rate by the con-

struction of αρ̄. The equal option values make the strong player’s levelling strategy dynamically

optimal, but not myopically optimal. Nevertheless, the strong player’s levelling strategy ρ̄ and

its induced levelling posterior make the weaker player’s extensive exploration both myopically

and dynamically optimal, as in the symmetric case. To summarize, the strong player’s strategy

is levelling but not greedy, while the weaker player’s strategy is greedy but not levelling.

Theorem 4. The profile of distributional strategies (ρ̄, αρ̄) gives the unique Nash equilibrium

outcome of the game with asymmetric players. Player 1’s equilibrium payoff is (1 − 1
2
α)π and

player 2’s equilibrium payoff is 1
2
απ .

We note that the strong player is able to explore all alternatives at t = 1, so the weak player’s

exploration activities afterward are irrelevant. Therefore, the equilibrium outcome is uniquely

pinned down by (ρ̄, αρ̄) even if we want to assume that the weak player continues to search

after t = 1.

The strong player enjoys a disproportionately larger share of the payoff, (2 − α) : α than

of the capacity, 1 : α. It is as if player 1 monopolizes a fraction 1 − α of the total surplus and

then splits the remaining fraction evenly with player 2. For example, if the strong player is

twice as fast as the weak player α = 1
2
, the payoff share is ( 3

4
, 1

4
). The strong player’s payoff

is three times as much as the weak player’s. By comparison, in a three-player game in which

the more resourceful player is split into two equal selves, the payoff share will be ( 1
3
, 1

3
, 1

3
) in

the symmetric three-player equilibrium (see Supplementary Appendix for the extension). The

excess payoff of player 1 beyond the sum of her two selves is due to the pooled information of

the two: knowing which alternatives have been explored by herself, player 1 does better as one

big player than as an ensemble of smaller selves who may duplicate each other’s explorations.

The connection between the asymmetric case and the symmetric case is as follows. For every

strategy ρα
2 of player 2, define ρ2 := ρα

2 /α. It is easy to verify that ρ2 : T × X → [0, 1/α] sat-

isfies the four conditions of Definition 2. It differs from a distributional strategy in its codomain

[0, 1/α] instead of [0, 1]. We shall call ρ2 : T × X → [0, 1/α] a normalized strategy. Players’

payoffs from the strategy profile (ρ1, ρ
α
2 ) can be rewritten as payoffs from (ρ1, ρ2) as follows:

u1(ρ1, ρ
α
2 ) = (1 − α)π + αu1(ρ1, ρ2); (10)

u2(ρ
α
2 , ρ1) = αu2(ρ2, ρ1). (11)

Therefore, the payoff functions under asymmetric capacity are increasing affine transformations

of those with a normalized strategy of player 2. Thus, the game with asymmetric capacity is

strategically equivalent to the game with a normalized strategy, and the existence and unique-

ness of the Nash equilibrium in the game with asymmetric players will follow from the existence

and uniqueness in the game with normalized strategies. But the latter game is not quite the same

14. If we model each alternative as a Poisson process with the arrival rate controlled by resource allocated to the

alternative as in Supplementary Appendix, the weak player would cover as many alternatives as the strong player, but

would spend less of the resources on each alternative.
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as the symmetric game because of the codomain of the normalized strategy ρ2; that is, it is not a

priori clear that ρ2(1, ·) = 1 in equilibrium. This gap is closed using the following proof strategy.

We decompose the maximization over normalized strategies into two components: the (normal-

ized) probability of exploration by the end of the game ρ2(1, ·), and the dynamic implementation

of the exploration given this probability. We show that, for any probability of exploration, a

generalized levelling strategy is optimal for player 2, and his payoff is uniquely maximized at

ρ2(1, ·) = 1 given the levelling strategy.

4.2.2. Discovery time. We now investigate how equilibrium exploration depends on the

asymmetry in capacity and show that the asymmetry speeds up the process of discovery. We

fix the total capacity to 2 (as in the symmetric case), and vary the asymmetry between the two

players. Formally, let γ ∈ [1, 2) and consider the strategic exploration game in which the strong

player has capacity γ and the weak player has capacity 2 − γ ∈ (0, 1].

We compute the distribution of discovery time in the unique equilibrium under asymmetric

capacity. Applying a change of variables in Theorem 4, we know that the strong player plays

ρ1(t, x) = ρ̄(γ t, x), which levels the posterior ḡ(γ t), and the weak player plays ρ2(t, x) =
1−γ

γ
ρ̄(γ t, x), which does not level the posterior. For t ≥ 1/γ , the strong player has exhausted

all alternatives so the probability of discovery by t is Pγ (t) = π . For t ∈ [0, 1/γ ], the probability

of discovery by t is given by

Pγ (t) =

∫

X

( f (x) − ḡ(γ t)) 1{ f (x)≥ḡ(γ t)}dx + (2 − γ )t ḡ(γ t).

The two terms correspond to a hypothetical sequential exploration. The first term is the proba-

bility of discovery by the strong player if she were to level the posterior before the weak player

explored anything. The second term is the probability of discovery by the weak player if he were

to expend his cumulative capacity (2 − γ )t on the levelled posterior.

Because the strong player always levels the posterior with all her capacity, the remaining

capacity of the weak player replicates some of her explorations. As the strong player enjoys a

larger share of capacity, there is less duplication and thus a faster discovery time. This property

is illustrated in Figure 7 and formally established in Theorem 5.

Theorem 5. The distribution of discovery time is decreasing in γ in the first-order stochastic

dominance sense.

As the strong player controls almost the total capacity, the duplication effect vanishes but

the equilibrium discovery remains discontinuously slower than the coordinated exploration

(Figure 7) due to the pre-emption motive. To avoid pre-emption by the weak player, the strong

player must randomize exploration according to the levelling strategy even as γ → 2. The ran-

domization prevents her from prioritizing the most promising alternatives, either a priori or a

posteriori, and thus slows down discovery compared to the fastest, coordinated exploration.15

4.2.3. Endogenous capacities. The exact characterization of equilibrium payoffs in

Theorem 4 facilitates the study of capacity investment in an augmented game. Suppose that

player i can choose a capacity αi at a constant marginal cost ci before entering the strategic

exploration game, where player 2 faces a higher marginal cost c2 > c1 > 0. It follows from

15. Nonetheless, there is no discontinuity in payoffs. Indeed, when the strong player controls the total capac-

ity, all exploration strategies are optimal. As in many known results, discontinuity is often due to different orders of

convergence. In our analysis, we take the limit of asymmetry in the model that is the patient, no-discounting limit.
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FIGURE 7

Distribution of discovery time for the coordinated exploration and equilibria with different divisions of capacity

Theorem 4 that, for α1 ≥ α2, the two players’ equilibrium payoffs from the strategic explo-

ration game (before paying the cost) are (1 − 1
2
α)π and 1

2
απ , respectively, where α := α2/α1.

Therefore, the equilibrium capacities (α∗
1 , α

∗
2) satisfy the following conditions:

α∗
1 ∈ argmaxα1≥0

(

1 −
α2

2α1

)

π − c1α1,

α∗
2 ∈ argmaxα2≥0

(

α2

2α1

)

π − c2α2.

It can be shown that α∗ = c1/c2. Player 1 earns a strictly positive net profit (1 − c1/c2)π, while

player 2 dissipates his return from exploration through capacity investment. In the limit of c1 =

c2 > 0, both players’ net payoffs are zero.

If the cost of investment is ci (αi )
2, where c2 > c1 > 0, then a similar line of argument shows

that α∗ = (c1/c2)
1
2 . The two players’ net payoffs are (1 − 3

4
(c1/c2)

1
2 )π > 0 and 1

4
(c1/c2)

1
2 π >

0, respectively. In the limit of c1 = c2 > 0, both players’ net payoffs are 1
4
π > 0.

Research personnel is a major component of exploration capacity in applications such as the

technology race between superpowers, and migration of research personnel is one way in which

capacity can change. Although the number of researchers can be assumed to be relatively stable,

researchers migrate from one country to the other. To this end, suppose that the total exploration

capacity is 1 and the weak player has a fraction θ < 1
2

of the total capacity. By Theorem 4, the

weak player’s equilibrium payoff share is 1
2

θ
1−θ

. The elasticity of his payoff share with respect to

his capacity share is 1
1−θ

> 2. Thus, migration always has an outsized impact on the weak player.

For the strong player, the elasticity of her payoff share with respect to her own capacity share

1 − θ is 1
3(1−θ)−1

, and unit elasticity is attained when her capacity share is 2
3
. Hence, although

the strong player always benefits from the migration of researchers, the scale depends on her

existing capacity.
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5. CONCLUSION

This paper studies the pre-emption–prioritization trade-off in a strategic exploration game. The

model features a special multiple-armed bandit problem with correlated arms and competing

players. We achieve tractability by formulating a continuous-time model with a continuum of

alternatives, where randomization is described by the evolution of cumulative distributions of

outcomes.

We show that mutually greedy competition eliminates the possibility of coordinated explo-

rations. This is the case even when the reward from the good alternative is growing (Section

I of Supplementary Appendix). However, if there is a deadline to the game, mutually greedy

competition can create the condition for coordination explorations. If there are many players,

equilibrium coordination can happen across coalitions of players (Section II of Supplementary

Appendix). The analysis can also be extended to the case where each alternative is modelled by

a Poisson process (Section III of Supplementary Appendix). While the empirical relevance of

our theoretical predictions awaits further investigation, the model and the analytical tools from

this paper will be useful for studying other applications.

APPENDIX

A. Proofs

A.1. Proof of Lemma 1

Proof. Since ḡ is a constant function on t > 1, it suffices to prove the lemma on t ∈ [0, 1].

For y ∈ [0, sup f ], let

h(y) :=

∫

X

(

1 −
y

f (x)

)

1{ f (x)≥y}(x)dx . (A.1)

For x ∈ X , the integrand (1 −
y

f (x)
)1{ f (x)≥y}(x) is decreasing in y and strictly so for f (x) >

y, which has positive measure for y < sup f . Thus, h is strictly decreasing. In addition, the

integrand is continuous, and therefore h is continuous by the dominated convergence theorem.

The convexity of h also follows from that of the integrand.

The function h is continuous and strictly decreasing with h(0) = 1 and h(sup f ) = 0. There-

fore, there exists a unique, continuous, and strictly decreasing function ḡ = h−1 that solves

equation (5). Since h is strictly decreasing, its inverse ḡ is also convex. The absolute continuity

of ḡ follows from its continuity and convexity.

We verify that ρ̄ is a well-defined distributional strategy. It is straightforward to check that

ρ̄ satisfies the initial condition. The function (x, y) �→ (1 −
y

f (x)
)1{ f (x)≥y} is continuous and

decreasing in y. Together with the continuity and monotonicity of ḡ, this property implies that

ρ̄ is continuous in t and satisfies the monotonicity and right-continuity condition. The function

is also measurable in x and hence ρ̄ satisfies the measurability condition. Finally, ρ̄ respects the

capacity constraint by equation (5).

A.2. Auxiliary game

To prove the theorems that characterize equilibria in the benchmark model and its extensions, we

first develop some general tools. We define an auxiliary game called the timing game in which

players’ strategy is the timing of exploration, but not the probability of exploration by the end of

the game.
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A.2.1. The timing game and levelling strategies. Consider two functions �ρ1 : X →

[0, 1] and �ρ2 : X → [0, 1/α] for some α ∈ (0, 1] such that
∫

X
�ρi dx = T where T ≤ 1.16 We

interpret �ρi (x) as the probability that x is explored before the deadline. To accommodate the

asymmetric case, we allow the probability of exploration of the weak player to have an enlarged

domain.

Definition 4 (Timing game). For T ≤ 1 and (�ρ1,�ρ2), the timing game is a game in which

player 1 plays a distributional strategy, player 2 plays a normalized strategy subject to terminal

condition ρi (T, ·) = �ρi (·), and the payoff function is given by equation (1).

The timing game is a constant-sum game since the sum of payoffs depends only on the

probabilities of exploration.

For any timing game, we define �ρmin := min{�ρ1,�ρ2} and t∗ :=
∫

X
�ρmindx ∈ [0, T ].

We define the levelling strategy in a timing game, which generalizes the levelling strategy for

the benchmark case T = 1 and �ρ1,�ρ2 ≡ 1.

Definition 5 (Levelling strategy in timing game). Function ḡ : [0, t∗] → [0, supx f �ρmin] is the

levelling function if

∫

X

(

�ρmin(x) −
ḡ(t)

f (x)

)

1{ f (x)�ρmin(x)≥ḡ(t)}(x)dx = t for all t ∈ [0, t∗].

Function ρ̄ : [0, t∗] × X → [0, 1] is the levelling strategy if

ρ̄(t, x) :=

(

�ρmin(x) −
ḡ(t)

f (x)

)

1{ f (x)�ρmin(x)≥ḡ(t)}(x) for all t ∈ [0, t∗] and x ∈ X.

Lemma 2. The levelling function ḡ exists and is unique, absolutely continuous, convex, and

strictly decreasing. The levelling strategy ρ̄ is a well-defined strategy on [0, t∗].

Proof. If �ρmin ≡ 0, t∗ = 0 so the unique ḡ(0) = 0 satisfies the lemma trivially and so does the

levelling strategy ρ̄(0, ·) = 0. Otherwise, �ρmin �≡ 0 so t∗ > 0. For y ∈ [0, sup f �ρmin], let

h(y) :=

∫

X

(

�ρmin(x) −
y

f (x)

)

1{ f (x)�ρmin(x)≥y}(x)dx . (A.2)

For x ∈ X , the integrand (�ρmin(x) −
y

f (x)
)1{ f (x)�ρmin(x)≥y}(x) is decreasing in y and strictly

so for f (x)�ρmin(x) > y, which has positive measure for y < sup f �ρmin. Thus, h is strictly

decreasing. In addition, the integrand is continuous, and therefore h is continuous by the

dominated convergence theorem. The convexity of h also follows from that of the integrand.

The function h is continuous and strictly decreasing with h(0) = t∗ and h(sup f �ρmin) =

0. Therefore, there exists a unique, continuous, and strictly decreasing function ḡ := h−1 that

solves equation (5). Since h is strictly decreasing, its inverse ḡ is also convex. The absolute

continuity of ḡ follows from its continuity and convexity.

We verify that ρ̄ is a well-defined distributional strategy. It is straightforward to check that

ρ̄ satisfies the initial condition. The function (x, y) �→ (�ρmin(x) −
y

f (x)
)1{ f (x)�ρmin(x)≥y} is con-

tinuous and decreasing in y. Together with the continuity and monotonicity of ḡ, this property

implies that ρ̄ is continuous in t and satisfies the monotonicity and right-continuity condition.

16. This T is not the same as the deadline of the original strategic exploration game, which can be strictly larger

than 1.
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The function is also measurable in x and hence ρ̄ satisfies the measurability condition. Finally,

ρ̄ respects the capacity constraint by the definition of ḡ in Definition 5.

We extend ḡ to (t∗, T ] at value 0. With a slight abuse of notation, we call a strategy

ρ : [0, T ] × X → [0, 1] levelling if ρ|[0,t∗]×X = ρ̄. It is obvious that a t-continuous levelling

strategy exists.

A.2.2. Equilibria of timing game. We show that the equilibria of the timing game are the

levelling strategy profiles.

Theorem 6. Strategy profile (ρ1, ρ2) is an equilibrium of the timing game if and only if ρ1 and

ρ2 are both levelling.

Overview. A levelling strategy profile is a Nash equilibrium of the timing game because

it maximizes the myopic payoff, just as in the benchmark model. For the timing game, we

generalize the posterior distribution as gi (t, x) := f (x)(�ρmin(x) − ρi (t, x)).

All equilibria are levelling strategy profiles due to three lemmas. Lemma 3 states that, in

equilibrium over [0, t∗], each player can search only over the set of alternatives, which we call

the upper contour set of f �ρmin, that the levelling strategy randomizes over. Otherwise, his

payoff against the levelling strategy will be lower than his equilibrium payoff.

Lemma 4 is key to Theorem 6. It states that, in equilibrium, the posterior declines fastest on

the upper contour set. If instead the posterior declined slower in some subset of the upper contour

set than in another subset for a period of time, the opponent could devise a modified levelling

strategy that searches the former in place of the latter just before the period, and vice versa just

after the period. The modification generalizes the “one-step-ahead” strategy in Section 3. The

opponent’s strategy would then pre-empt the player’s strategy and yield a higher payoff than the

levelling strategy, which cannot be true in equilibrium in a constant-sum game.

Lemma 4 has two useful implications. Corollary 1 establishes the t-continuity of the equi-

librium strategy on [0, t∗]. If the posterior were discontinuous over some alternatives at some

point, the posterior of all alternatives in the upper contour set would have to decline discontin-

uously. This would violate the capacity constraint. By applying Lemma 4 twice, we then obtain

Corollary 2: the decrease in the posterior must be equal across the upper contour set.

Lemma 5 computes the equilibrium posterior within the upper contour set. As the decrease

in the posterior is constant across the set of alternatives according to Corollary 2, the posterior is

pinned down by the capacity constraint and the initial condition, which is exactly the levelling

posterior defined by the levelling strategy.

Proof of Theorem 6. The payoff function can be written as

ui (ρi , ρ−i )

=

∫

X

∫

T

f (1 − ρ−i )dtρi dx +
1

2

∫

X

f
∑

t∈Dx

�tρi�tρ−i dx

=

∫

X

f (1 − �ρmin)�ρi dx +

∫

X

∫

T

f (�ρmin − ρ−i ) dtρi dx +
1

2

∫

X

f
∑

t∈Dx

�tρi�tρ−i dx

≤

∫

X

f (1 − �ρmin)�ρi dx +

∫

X

∫

T

f
(

�ρmin − ρ−
−i

)

dtρi dx,
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where the inequality follows from an identity of Stieltjes integral

∫

T

ρ−
−i dtρi +

∑

t∈Dx

�tρi�tρ−i =

∫

T

ρ−i dtρi .

Note that the integrand in the second utility term motivates the more general definition of the

posterior distribution.

We verify that any levelling strategy profile (ρ1, ρ2) is a Nash equilibrium. Suppose that

ρ−i is levelling. Over [0, t∗], it is t-continuous and hence g−
−i = g−i . The posterior g−i is

maximized at value ḡ on H. Therefore, the levelling strategy ρi , which searches only on H,

attains the maximum myopic payoff. Over (t∗, T ], the posterior is maximized at value 0 on

{�ρmin = �ρ−i }. Therefore, the levelling strategy ρi , which searches only on {�ρmin < �ρi },

attains the maximum myopic payoff.

Formally, for x ∈ X , let κx ∈ �(T ) be the Lebesgue–Stieltjes measure induced by ρi (·, x).

Then κx ([0, t]) = ρi (t, x). For any t ∈ T , we have

∫

X

κx ([0, t])dx =

∫

X

ρi (t, x)dx = t, (A.3)

where the last equality follows from the capacity constraint of the distributional strategy ρi .

Thus,
∫

X
κx dx ∈ �(T ) is the Lebesgue measure by the Caratheodory extension theorem. For

any ρi , the payoff from [0, t∗] is bounded by that of ρ̄i :

∫

X

∫

[0,t∗]

ḡ(t, x)dtρi dx ≤

∫

X

∫

[0,t∗]

ḡ(t)dtρi dx

=

∫

X

∫

[0,t∗]

ḡ(t)dκx dx

=

∫

[0,t∗]

ḡ(t)d

(∫

X

κx dx

)

=

∫

[0,t∗]

ḡ(t)dt

=

∫

X

∫

[0,t∗]

ḡ(t)dt ρ̄i dx, (A.4)

where the first equality is by the definition of Lebesgue–Stieltjes integration and the second

equality follows from Fubini’s theorem. The payoff from (t∗, T ] follows a similar inequality

from the same argument.

Since ρi attains the maximum myopic payoff for all t ∈ [0, T ], it is a best response to ρ−i .

The equilibrium payoff is

ui (ρi , ρ−i ) =

∫

X

f (�ρi − �ρmin)�ρi dx +

∫

X

∫

[0,t∗]

ḡdt ρ̄dx

=

∫

X

f (1 − �ρmin)�ρi dx +
1

2

∫

X

f (�ρmin)
2dx

=

∫

X

f

(

(1 − �ρmin)�ρi +
1

2
(�ρmin)

2

)

dx . (A.5)

All equilibria must give the same payoffs because the timing game is a constant-sum game.
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For t ∈ [0, t∗), denote H(t) := {x ∈ X : f (x)�ρmin ≥ ḡ(t)} as the upper contour set of f.

For t = t∗, define H(t∗) := lims↑t∗ H(s). We denote its complement by H C(t) := X\H(t).

Lemma 3. Let (ρ1, ρ2) be a Nash equilibrium. Then, for all t0 ∈ [0, t∗] and i ∈ {1, 2},

ρi (t0, x) = 0 for x ∈ H C(t0) almost everywhere.

Proof. The statement for t0 = 0 follows from the initial condition. Suppose that there exist a

time t0 ∈ (0, t∗] and a positive-measure set A ⊂ H C(t0) such that ρi (t0, x) > 0 for all x ∈ A.

Then the payoff of player i against a t-continuous levelling strategy of player −i is strictly below

the equilibrium payoff:

ui (ρi , ρ̄−i ) − ui (ρ̄i , ρ̄−i )

=

∫

X

∫

T

g−i (t, x)dtρi (t, x)dx −

∫

X

∫

T

ḡ(t, x)dt ρ̄i (t, x)dx

=

∫

X

∫

T

g−i (t, x)dtρi (t, x)dx −

∫

X

∫

T

ḡ(t)dtρi (t, x)dx

≤

∫

A

∫

[0,t0]

(g−i (t, x) − ḡ(t)) dtρi (t, x)dx

< 0.

The second equality is due to the Fubini argument in equation (A.4). The weak inequality fol-

lows from g−i (t, x) ≤ ḡ(t) for all t ∈ T and x ∈ X , and the strict one from the supposition that

g−i (t, x) < ḡ(t) for all t ≤ t0 and ρi (t0, x) > 0 for all x ∈ A.

For i ∈ {1, 2}, t ∈ T , and x ∈ X , denote gi (t
−, x) := lims↑t gi (s, x).

Lemma 4. Let (ρ1, ρ2) be a Nash equilibrium. For 0 < t0 < t1 ≤ t2 < t∗ and i ∈ {1, 2},

gi (t2, xA) − gi (t
−
1 , xA) ≥ gi (t2, xB) − gi (t

−
1 , xB)

for xA ∈ X and xB ∈ H(t0) almost everywhere.

Proof. For xA ∈ H C(t2) almost everywhere, Lemma 3 implies gi (t2, xA) − gi (t
−
1 , xA) = 0 and

hence the inequality follows from the monotonicity condition.

Suppose that there exist positive-measure sets A ⊂ H(t2) and B ⊂ H(t0) such that

gi (t2, xA) − gi (t
−
1 , xA) < gi (t2, xB) − gi (t

−
1 , xB) for all xA ∈ A, xB ∈ B. Note that f �ρmin > 0

on A ∪ B. Without loss of generality, assume that gi (t2, xA) − gi (t
−
1 , xA) < a < gi (t2, xB) −

gi (t
−
1 , xB) for some a < 0, ess infA∪B f �ρmin > 0, and

∫

A
1
f

=
∫

B
1
f

> 0; if this is not the case,

replace the sets by some positive-measure subsets. Fix ε ∈ (0, 1). We proceed in two steps.

Step 1: A modified levelling strategy.

Let ε1 := (t1 − t0)ε > 0. Let ε2 > 0 be a solution to ḡ(t1 − ε1) − ḡ(t1) = ḡ(t2) − ḡ(t2 + ε2).

For sufficiently small ε, it exists and is unique by the continuity and monotonicity of ḡ. In

addition, 0 < t1 − ε1 and t2 + ε2 < t∗. The left- and right-differentiability of ḡ from Lemma 2

imply that ε1∂
−
t ḡ(t1) = ε2∂

+
t ḡ(t2) + o(ε). Let �1t := [t1 − ε1, t1] and �2t := [t2, t2 + ε2].

Consider the following modified levelling strategy ρ̃−i , which, compared to the levelling

strategy, explores A at the expense of B over �1t , and vice versa over �2t .

If t ∈ �1t , let

ρ̃−i (t, x) :=

{

ρ̄(t, x) +
ḡ(t1−ε1)−ḡ(t)

f (x)
, if x ∈ A;

ρ̄(t1 − ε1, x), if x ∈ B.
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If t ∈ (t1, t2), let

ρ̃−i (t, x) :=

{

ρ̄(t, x) +
ḡ(t1−ε1)−ḡ(t1)

f (x)
, if x ∈ A;

ρ̄(t, x) −
ḡ(t1−ε1)−ḡ(t1)

f (x)
, if x ∈ B.

If t ∈ �2t , let

ρ̃−i (t, x) :=

{

ρ̄(t2 + ε2, x), if x ∈ A;

ρ̄(t, x) −
ḡ(t1−ε1)−ḡ(t1)

f (x)
+

ḡ(t2)−ḡ(t)

f (x)
, if x ∈ B.

If x /∈ A ∪ B or t /∈ [t1 − ε1, t2 + ε2], let ρ̃−i (t, x) := ρ̄(t, x).

Note that the modified strategy ρ̃−i is a strategy for player −i , and that, in particular, it

satisfies the capacity constraint because
∫

A
1
f

=
∫

B
1
f
. It can be verified to be t-continuous.

Step 2: Payoffs from the modified levelling strategy.

Observe that the difference in strategies is dt ρ̃−i − dt ρ̄ = − 1
f
dt ḡ on A and dt ρ̃−i − dt ρ̄ =

1
f
dt ḡ on B over �1t , and vice versa over �2t . It is zero otherwise. The utility difference of the

modified levelling strategy compared to the levelling strategy, u−i (ρ̃−i , ρi ) − u−i (ρ̄−i , ρi ), is

−

∫

A

1

f

∫

�1t

gi dt ḡdx +

∫

B

1

f

∫

�1t

gi dt ḡdx +

∫

A

1

f

∫

�2t

gi dt ḡdx −

∫

B

1

f

∫

�2t

gi dt ḡdx .

(A.6)

For the first term in equation (A.6), we perform a change of variable to get

−

∫

A

1

f (x)

∫

�1t

gi (t, x)dḡ(t, x)dx

= −ε1

∫

A

1

f (x)

∫

[0,1]

gi (t1 − sε1)∂
−
t ḡ(t1 − sε1)dsdx

= −ε1∂
−
t ḡ(t1)

∫

A

1

f (x)
gi (t

−
1 , x)dx + o(ε),

where the second equality is due to the dominated convergence theorem. The equation states

that, over the short time interval �1t , both gi and ∂−
t ḡ−i can be taken as constants with respect

to time. The same can be applied to the other three terms.

The payoff difference u−i (ρ̃−i , ρi ) − u−i (ρ̄−i , ρi ) can thus be written as

−

(∫

A

1

f (x)
gi (t

−
1 , x)dx −

∫

B

1

f (x)
gi (t

−
1 , x)dx

)

ε1∂
−
t ḡ(t1)

+

(∫

A

1

f (x)
gi (t2, x)dx −

∫

B

1

f (x)
gi (t2, x)dx

)

ε2∂
+
t ḡ(t2) + o(ε)

=

(

−

∫

A

1

f (x)

(

gi (t2, x) − gi (t
−
1 , x)

)

dx +

∫

B

1

f (x)

(

gi (t2, x) − gi (t
−
1 , x)

)

dx

)

× ∂+
t ḡ(t2)ε2 + o(ε).
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By supposition,

−

∫

A

1

f (x)

(

gi (t2, x) − gi (t
−
1 , x)

)

dx +

∫

B

1

f (x)

(

gi (t2, x) − gi (t
−
1 , x)

)

> −a

∫

A

1

f (x)
dx + a

∫

B

1

f (x)
dx

= x 0.

Therefore, there exists ε > 0 sufficiently small such that, against ρi , the modified levelling strat-

egy ρ̃−i yields a strictly higher payoff than levelling strategy does, which guarantees the maximin

payoff.

The first corollary below establishes the t-continuity of the equilibrium strategy on [0, t∗].

According to Lemma 4, the posterior decreases fastest on the upper contour set H. If the strategy

were discontinuous, the posterior for those alternatives would have to decline discontinuously,

which would violate the capacity constraint.

Corollary 1. In any Nash equilibrium, player i’s strategy ρi is t-continuous on [0, t∗].

Proof. The statement for t = 0 follows from the monotonicity and right-continuity condition,

and the statement for t = t∗ is without loss of generality because the set {x ∈ X : ρi (t
∗, x) −

ρi ((t
∗)−, x) > 0} is null. It is trivial for x ∈ H C(t) because ρi (t, x) = 0 by Lemma 3.

Suppose there exists positive-measure set B ⊂ X such that ρi , or equivalently gi , is not t-

continuous on (0, t∗) × B. Without loss of generality, there exist b < 0 and ε ∈ (0, t∗) such that

B ⊂ H(ε) and, for all x ∈ B, there exists tx ∈ (ε, t∗) satisfying

gi (tx , x) − gi (t
−
x , x) ≤ b.

The compactness of [ε, t∗] implies that, for any δ > 0, there exist t δ, t̄δ ∈ (ε, t∗), where tδ < t̄δ
and t̄δ − tδ < δ, and a positive-measure subset Bδ ⊂ B such that

gi (t̄δ, x) − gi (t
−
δ , x) ≤ b.

Lemma 4 implies that ρi (t̄δ, x) − ρi (t
−
δ , x) ≥ −b/ f (x) for all x ∈ H(ε), a positive-measure set.

The capacity constraint implies that

δ =

∫

X

ρi (t̄δ, x) − ρi (t
−
δ , x)dx ≥

∫

H(ε)

ρi (t̄δ, x) − ρi (t
−
δ , x)dx ≥

∫

H(ε)

−b

f (x)
dx,

which yields a contradiction as δ ↓ 0.

Corollary 2. In any Nash equilibrium, for 0 < t1 < t2 ≤ t∗,

gi (t2, xA) − gi (t1, xA) = gi (t2, xB) − gi (t1, xB)

for xA, xB ∈ H(t1) almost everywhere.

Proof. Assume that t2 < t∗. For any t ∈ (t1, t2), H(t1) ⊂ H(t). Lemma 4 thus gives the equality

gi (t2, xA) − gi (t, xA) = gi (t2, xB) − gi (t, xB)
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for xA, xB ∈ H(t1) almost everywhere. The statement is obtained by taking a countable sequence

t ↑ t1, noting that gi is t-continuous by Corollary 1. The boundary case t2 = t∗ follows similarly

by taking a countable sequence t2 ↑ t∗.

Lemma 5. In any Nash equilibrium, for i ∈ {1, 2} and t ∈ [0, t∗], gi (t, x) = ḡ(t) for x ∈ H(t)

almost everywhere.

Proof. Once the statement is proven for t ∈ (0, t∗], it extends to the endpoint t = 0 because of

the monotonicity and right-continuity condition.

For t ∈ (0, t∗], define g̃i (t) := supx∈H(t) gi (t, x) − gi (t
∗, x). The t-continuity of gi on

[0, t∗] × X implies that g̃i (t
∗) = 0. Corollary 2 with t2 = t∗ implies that

gi (t, x) − gi (t
∗, x) = g̃i (t) (A.7)

for all x ∈ H(t) almost everywhere.

We now derive the right-derivative ∂+
t g̃i . For 0 < t1 < t2 < 1, the capacity constraint yields

t2 − t1 =

∫

H(t1)

ρi (t2, x) − ρi (t1, x)dx +

∫

H(t2)\H(t1)

ρi (t2, x) − ρi (t1, x)dx

= − (g̃i (t2) − g̃i (t1))

∫

H(t1)

dx

f (x)
−

∫

H(t2)\H(t1)

gi (t2, x) − gi (t1, x)

f (x)
dx

≤ − (g̃i (t2) − g̃i (t1))

(∫

H(t1)

dx

f (x)
+

∫

H(t2)\H(t1)

dx

f (x)

)

. (A.8)

The inequality is due to Lemma 4. Rearranging terms, we have

0 ≥
g̃i (t2) − g̃i (t1)

t2 − t1
≥ −

(∫

H(t1)

dx

f (x)
+

∫

H(t2)\H(t1)

dx

f (x)

)−1

≥ −
ḡ(t2)

|H(t2)|
> −∞,

where the third inequality is due to the definition of H. The function g̃i is Lipschitz and thus

absolutely continuous on (0, 1).

Take t2 ↓ t1. Since H(t2) ↓ H(t1) in the set-inclusion sense, the dominated convergence

theorem states that |H(t2)\H(t1)| ↓ 0. The second term in equation (A.8) is dominated by

∫

H(t2)\H(t1)

|gi (t2, x) − gi (t1, x)|

f (x)
dx ≤

|g̃i (t2) − g̃i (t1)| |H(t2)\H(t1)|

ḡ
(

1
2
(t1 + 1)

) = o(t2 − t1).

The right-derivative of g̃i is thus given by

∂+
t g̃i (t1) = lim

t2↓t1

g̃i (t2) − g̃i (t1)

t2 − t1
= −

∫

H(t1)

dx

f (x)
.

Since ḡ also satisfies the first two lemmas and the two corollaries, an analogous calculation

shows that

∂+
t ḡ(t) = −

∫

H(t)

dx

f (x)
= ∂+

t g̃i (t).

Therefore, ḡ = g̃i + C for some constant C ∈ R. The boundary condition at t = t∗ is

limt↑1 g̃i (t) = ḡ(t∗) = 0, which implies that C = 0.
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On H(t∗) = {x ∈ X : �ρmin(x) > 0} almost surely, the other boundary condition at

t = ḡ−1( f (x)�ρmin(x)) < t∗ shows that

gi (t
∗, x) = lim

s↓t
gi (s, x) − ḡ(t, x) = f (x)�ρmin(x) − f (x)�ρmin(x) = 0.

This establishes the desired result.

Lemmas 3 and 5 imply that, for all t ∈ [0, t∗], gi (t, ·) = ḡ(t, ·) almost everywhere. There

exists a full measure set over which the equality holds for all t ∈ [0, 1] ∩ Q. Theorem 6 then

follows from the monotonicity and right-continuity condition.

A.3. Proof of Theorem 1

It is sufficient to consider strategies and deviations ρ that satisfy ρ(1, x) = 1 for all x ∈ X . These

strategies explore all alternatives for sure and do so at full capacity by t = 1. For any strategy ρi

that does not satisfy the restriction, there exist multiple strategies ρ ′
i ’s that satisfy it with ρ ′

i ≥ ρi

by exploring the alternatives with higher probability and/or earlier. Since the payoff is monotonic

in ρi , we have ui (ρ
′
i , ρ−i ) ≥ ui (ρi , ρ−i ) so it is sufficient to consider these deviations only.

If ui (ρ
′
i , ρ−i ) > ui (ρi , ρ−i ), then ρ ′

i is a profitable deviation for i so (ρi , ρ−i ) cannot be

an equilibrium. Otherwise, ρ ′
i does not change player i’s payoff ui (ρ

′
i , ρ−i ) = ui (ρi , ρ−i ). The

added/expedited explorations by ρ ′
i do not lead to any additional probability of discovery so ρ ′

i

does not change opponent −i’s payoff either. Formally, the sum of the changes in the payoff

equals the change in the probability of discovery

(

ui (ρ
′
i , ρ−i ) − ui (ρi , ρ−i )

)

+
(

u−i (ρ
′
i , ρ−i ) − u−i (ρi , ρ−i )

)

=

∫

X

(1 − ρ−i (T, x))
(

ρ ′
i (T, x) − ρi (T, x)

)

dx

from integration by parts for the Lebesgue–Stieltjes integral. Since ρ ′ ≥ ρ, the change in −i’s

payoff is non-positive and the change in total probability is nonnegative. Zero change in i’s pay-

off thus implies zero change in −i’s payoff. If (ρi , ρ−i ) is an equilibrium, then so is (ρ ′
i , ρ−i ).

The multiplicity of ρ ′
i will then imply the multiplicity of equilibria within the restricted class

of strategies. By contraposition, uniqueness within this class of strategy profiles will imply

uniqueness for all profiles.

For this class, the strategic exploration game is a timing game with T = 1, �ρ1 = �ρ2 = 1,

and α = 1. The equilibria are levelling strategy profiles by Theorem 6. Since t∗ = 1, there is no

degeneracy on (t∗, 1], so the levelling equilibrium is unique.

A.4. Proof of Theorem 2

We first show a technical lemma.

Lemma 6. Let v1 and v2 be continuous, strictly decreasing, and convex functions from [0, 1] to

R+ with v1(1) = v2(1) = 0 and
∫ 1

0
v1(s)ds =

∫ 1

0
v2(s)ds. Let v−1

1 and v−1
2 be their respective

inverses, with the extension of value 0 outside of their domains. Then
∫ t

0
v1(s)ds ≥

∫ t

0
v2(s)ds

for all t ∈ [0, 1] if and only if
∫ z

0
v−1

1 (y)dy ≤
∫ z

0
v−1

2 (y)dy for all z ∈ R+.

Proof. We prove the inequality
∫ t

0
v1(s)ds ≤

∫ t

0
v2(s)ds for all t ∈ T under the hypothesis that

∫ z

0
v−1

1 (y)dy ≥
∫ z

0
v−1

2 (y)dy for all z ∈ R+. The converse is analogous.
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Since vm , m ∈ {1, 2}, is strictly decreasing and convex, it has a strictly negative derivative

almost everywhere on (0, 1). Performing the integration by parts and then a change of variables,

we have
∫ t

0

vm(s)ds = tvm(t) −

∫ t

0

sdvm(s) = tvm(t) +

∫ ∞

vm (t)

v−1
m (y)dy. (A.9)

Taking t = 1 (and hence vm(t) = 0), we obtain

∫ 1

0

vm(s)ds =

∫ ∞

0

v−1
m (y)dy. (A.10)

Equations (A.9) and (A.10) combine to yield

∫ t

0

vm(s)ds = tvm(t) +

∫ 1

0

vm(s)ds −

∫ vm (t)

0

v−1
m (y)dy. (A.11)

Thus, the desired inequality holds on the set S := {t ∈ T : v1(t) = v2(t)} because it follows

from equation (A.11) that

∫ t

0

(v1(s) − v2(s))ds =

∫ v1(t)

0

(v−1
2 (y) − v−1

1 (y))dy ≤ 0.

The set S is closed by the continuity of v1 and v2, and it contains t = 1 by assumption. The

inequality holds trivially at t = 0. Denote S∗ := S ∪ {0}.

For any t /∈ S∗, define two endpoints t := max{s ∈ S∗ : s < t} and t̄ := min{s ∈ S∗ : s > t}.

They are well defined because S∗ is closed. The difference v1(s) − v2(s) has the same sign over

(t, t̄) by continuity, so its integral
∫ t ′

0
(v1(s) − v2(s))ds is monotonic over the same interval.

As the desired inequality holds at the endpoints, it holds over the entire interval, and at t in

particular.

Proof of Theorem 2. Let ḡm be the equilibrium levelling function for prior fm and hm be its

inverse, m ∈ {1, 2}, where

hm(y) =

∫

X

(

1 −
y

fm(x)

)

1{ fm (x)≥y}(x)dx . (A.12)

As the probability of simultaneous discovery is zero, the flow probabilities of discovery are 2ḡ1

and 2ḡ2, respectively. The desired conclusion is
∫ t

0
2ḡ1(s)ds ≥

∫ t

0
2ḡ2(s)ds for all t ∈ Y. Since

ḡ1 and ḡ2 satisfy the assumptions of Lemma 6, it suffices to show that their inverses satisfy
∫ z

0
h1(y)dy ≤

∫ z

0
h2(y)dy ∀z ∈ R+. By equation (A.12), the Fubini theorem, and then a change

of variables, the integral can be written as

∫ z

0

hm(y)dy =

∫ z

0

∫

X

(

1 −
y

fm(x)

)

1{ fm (x)≥y}(x, y)dxdy

=

∫

X

∫ z

0

(

1 −
y

fm(x)

)

1{ fm (x)≥y}(x, y)dydx

=

∫ ∞

0

∫ z

0

(

1 −
y

w

)

1{w≥y}(w, y)dydλ ◦ f −1
m

=

∫ ∞

0

I (w, z)dλ ◦ f −1
m ,
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where the integrand is given by

I (w, z) =

{

z − 1
2

(

z
w

)

z, if w ≥ z,
w
2
, if w < z.

The result follows because I (·, z) is an increasing concave function and λ ◦ f −1
1 is a mean-

preserving spread of λ ◦ f −1
2 .

A.5. Proof of Theorem 3

We first define the set of transition times as

θ(T ) :=

{

t ∈ [0, T ] :

∫

ḡ(t)

f (x)
1 f (x)≥ḡ(t)dx ≥ 2(T − t)

}

.

Lemma 7. θ(T ) is a non-degenerate closed interval containing T. Moreover, min θ(T ) → 1 as

T → 1.

Proof. By the definition of ḡ, time t belongs to θ(T ) if and only if

∫

1 f (x)≥ḡ(t)dx ≥ 2T − t.

The left-hand side is right continuous and increasing in t because ḡ is continuous and decreasing.

It attains λ{ f ≥ ḡ(T )} = T +
∫

ḡ(T )

f (x)
1 f (x)≥ḡ(T )dx > T at t = T . The right-hand side is contin-

uous and decreasing in t and attains T at t = T . Therefore, θ is a non-degenerate closed interval

containing T.

Moreover, for any fixed t ∈ (0, 1), the left-hand side is strictly less than one but the right-hand

side is strictly larger than one for sufficiently large T. The second statement then follows.

Proof of Theorem 3. We define the lowest transition required by Theorem 3 as

T ∗(T ) := min θ(T ) = min

{

t ∈ [0, T ] :

∫

ḡ(t)

f (x)
1 f (x)≥ḡ(t)dx ≥ 2(T − t)

}

.

Therefore, θ(T ) = [T ∗(T ), T ] by Lemma 7.

We first show the second part of the theorem. For t∗ ∈ [T ∗, T ], define

x1 := inf

{

x ′ :

∫ x ′

0

ḡ(t∗)

f (x)
1 f (x)≥ḡ(t∗)dx = T − t∗

}

;

x2 := sup

{

x ′ :

∫ 1

x ′

ḡ(t∗)

f (x)
1 f (x)≥ḡ(t∗)dx = T − t∗

}

.

We have x1 ≤ x2 by the definition of T ∗. Recall that H(t) = {x : f (x) ≥ ḡ(t)} is the upper con-

tour set of ḡ. We write X1 := (0, x1)
⋂

H(t) and X2 := (x2, 1)
⋂

H(t). Therefore, X1

⋂

X2 =

∅. For i = 1, 2 and t ∈ (t∗, T ], define

ρi (t, x) =

{

ρ̄(t∗, x) + t−t∗

T −t∗ (1 − ρ̄(t∗, x)) , if x ∈ X i ,

ρ(t∗, x), if x �∈ X i .
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It is straightforward to verify that ρi is a well-defined distributional strategy. We write

δi (x) := ρi (T, x) − ρi (t
∗, x).

By the definition of X i , if δi (x) > 0, then ḡ(t∗) = g−i (t, x) for all t > t∗ and δ−i (x) = 0.

Moreover, it is an equilibrium because both players maximize the myopic payoff.

We now show the first part of the theorem. We argue that such an equilibrium exists only if

t ∈ [T ∗(T ), T ]. If the players compete during [0, t∗] and coordinate during (t∗, T ] in an equi-

librium, the capacity constraint must be binding because, for i = 1, 2 and t ∈ [0, T ], there exists

some alternative with a positive myopic return. We then have

2(T − t∗) =

∫

δ1(x)1δ1(x)>0dx +

∫

δ2(x)1δ2(x)>0dx

≤

∫

δ1(x)1 f (x)≥ḡ(t∗)dx +

∫

δ2(x)1 f (x)≥ḡ(t∗)dx

≤

∫

ḡ(t∗)

f (x)
1δ1(x)>01 f (x)≥ḡ(t∗)dx +

∫

ḡ(t∗)

f (x)
1δ2(x)>01 f (x)≥ḡ(t∗)dx

≤

∫

ḡ(t∗)

f (x)
1 f (x)≥ḡ(t∗)dx,

where the equality follows from the binding capacity constraint, the first weak inequality holds

because in the coordination phase δi (x) > 0 implies that f (x) ≥ ḡ(t∗), the second weak inequal-

ity follows from the levelling strategy over [0, t∗], and the last inequality holds because in the

coordination phase δi (x) > 0 implies that δ−i = 0. Therefore, t∗ ≥ T ∗(T ) by the definition of

T ∗(T ).

We prove that all equilibria take the prescribed form using the timing game. For equilib-

rium (ρ1, ρ2), define �ρ1 := ρ1(T, ·) and �ρ2 := ρ2(T, ·). We first restrict attention to strategies

that exhaust the capacity
∫

�ρ1dx =
∫

�ρ2dx = T . Consider the timing game with deadline T,

(�ρ1,�ρ2), and α = 1. Since the strategies are feasible in the timing game, they are not prof-

itable deviations in (ρ1, ρ2), which is thus an equilibrium of the timing game. Theorem 6 gives

the equilibrium payoff of the timing game as

ui =

∫

X

f

(

�ρi − �ρmin�ρi +
1

2
(�ρmin)

2

)

dx, (A.13)

where �ρmin := min{�ρ1,�ρ2}. The integrand is the utility from exploring x. It is C1 and con-

cave in �ρi (x). The marginal utility f (x)(1 − �ρmin(x)) is common among both players, and

decreasing in both �ρi (x) and �ρ−i (x).

We show by contraposition that (�ρ1,�ρ2) is an equilibrium in a game in which the players

choose �ρi that exhausts the capacity and receive the timing-game payoff in equation (A.13).

Without loss of generality, suppose that player 1 has a profitable deviation �ρ ′
1 in this game. Let

ρ ′
1 be a strategy of player 1 corresponding to (�ρ ′

1,�ρ2). Since the timing game is a constant-

sum game, ρ ′
1 guarantees the maximin payoff in equation (A.13). Thus, ρ ′

1 is a profitable

deviation in the game with deadline T, contradicting the equilibrium (ρ1, ρ2).

We obtain the equilibria of the game of �ρ’s by computing the best response correspon-

dence. For fixed �ρ−i , player i faces a concave maximization problem subject to the capacity

constraint
∫

X
�ρi dx = T . Therefore, for any equilibrium (ρ1, ρ2), there exists the shadow

value of capacity λi ≥ 0 such that the first-order condition holds: λi = f (x)(1 − �ρmin(x)) for
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�ρi (x) ∈ (0, 1), and the complementary slackness conditions hold: λi ≥ f (x)(1 − �ρmin(x)) if

�ρi = 0, and λi ≤ f (x)(1 − �ρmin(x)) if �ρi (x) = 1.

We show that the shadow value equalizes for the two players.

Lemma 8. λ1 = λ2.

Proof. Without loss of generality, suppose λ1 > λ2 ≥ 0. For x ∈ X such that f (x) < λ1, the

marginal payoff is strictly below λ1 and hence �ρ1(x) = 0. For x ∈ X such that f (x) ≥ λ1, we

claim that �ρ2(x) > �ρ1(x). Suppose that �ρ1(x) ≥ �ρ2(x). We have �ρ2(x) > 0; otherwise,

the marginal utility is above the shadow cost for player 2: f (x) ≥ λ1 > λ2. Since �ρ1(x) ≥

�ρ2(x) > 0, the complementary slackness condition gives λ1 ≤ f (1 − �ρmin) = λ2, a con-

tradiction. Alternatives in {x : f (x) ≥ λ1} have a positive measure because player 1 explores

only this set. With �ρ1 = 0 ≤ �ρ2 on {x : f (x) < λ1} and �ρ1 < �ρ2 on {x : f (x) ≥ λ1}, the

capacity constraint is T =
∫

X
�ρ1dx =

∫

f ≥λ1
�ρ1dx <

∫

f ≥λ1
�ρ2dx ≤ T , a contradiction.

Let λ ≥ 0 be the common shadow value.

Lemma 9. If f (x) < λ, then �ρ1(x) = �ρ2(x) = 0. If f (x) ≥ λ, λ = f (x)(1 − �ρmin(x)).

Proof. If f (x) < λ, the marginal payoff is strictly less than the shadow value f (x)(1 −

�ρmin(x)) ≤ f (x) < λ and hence �ρ1(x) = �ρ2(x) = 0. If f (x) ≥ λ, we show the equal-

ity by contraposition. Suppose λ < f (1 − �ρmin(x)). Then �ρ1(x) = �ρ2(x) = 1, but

then f (x)(1 − �ρmin(x)) = 0 < λ, a contradiction. Suppose λ > f (x)(1 − �ρmin(x)). Then

�ρ1(x) = �ρ2(x) = 0, but then f (x)(1 − �ρmin(x)) = f (x) ≥ λ, a contradiction.

The equilibrium strategy profile of the game of �ρ’s is then given by Theorem 6. Define

t∗ :=
∫

�ρmindx ∈ [0, T ]. On [0, t∗], the players level f �ρmin = f − λ. Since λ is a constant,

the strategy is equivalent to levelling f itself. At t∗, the posterior satisfies ḡ(t∗) = f (x)(1 −

ρi (t
∗, x)) = f (x)(1 − �ρmin(x)) = λ on {x : f (x) ≥ λ}. For such x, ρ1(t

∗, x) = ρ2(t
∗, x) =

�ρmin(x) implies ρi (T, x) − ρi (t
∗, x) = 0 for at least one i. It follows that ρi (T, x) −

ρi (t
∗, x) > 0 implies ρ−i (T, x) − ρ−i (t

∗, x) = 0. Moreover, ρi (T, x) − ρi (t
∗, x) > 0 implies

g−i (t, x) = f (x)(1 − ρ−i (t, x)) = f (x)(1 − �ρmin(x)) = λ = ḡ(t∗).

Since we have verified that the equilibria of the game of �ρ’s remain equilibria in the game

with deadline T, it remains to rule out (ρ1, ρ2) in which some strategy does not exhaust the

capacity. Following the discussion in Appendix A.3, (ρ1, ρ2) is an equilibrium only if its full-

capacity version (ρ ′
1, ρ

′
2) is also an equilibrium that gives the same payoffs. However, in such

an equilibrium (ρ ′
1, ρ

′
2), the myopic payoff is strictly positive and, hence, no (ρ1, ρ2) gives the

same payoffs. The proof of Theorem 3 is completed.

A.6. Proof of Theorem 4

The idea of the proof of Theorem 4 is to normalize the strategy of the weak player to obtain a

timing game, and then maximize his payoff over the probability of exploration.

For every strategy ρα
2 of player 2, define ρ2 := ρα

2 /α. It is easy to verify that ρ2 : T × X →

[0, 1/α] satisfies the four conditions of Definition 2. It differs from a distributional strategy in its

codomain [0, 1/α] instead of [0, 1]. We shall call ρ2 : T × X → [0, 1/α] a normalized strategy.

Players’ payoffs from the strategy profile (ρ1, ρ
α
2 ) can be rewritten as payoffs from (ρ1, ρ2) as
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follows:

u1(ρ1, ρ
α
2 ) =

∫

X

∫

T

(1 − αρ2(t, x)) f (x)dtρ1(t, x)dx

+
1

2

∫

X

f (x)
∑

t∈Dx

�tρ1(t, x)�tαρ2(t, x)dx

= (1 − α)

∫

X

∫

T

f (x)dtρ1(t, x)dx

+ α

∫

X

∫

T

(1 − ρ2(t, x)) f (x)dtρ1(t, x)dx

+
α

2

∫

X

f (x)
∑

t∈Dx

�tρ1(t, x)�tρ2(t, x)dx

= (1 − α)π + αu1(ρ1, ρ2). (A.14)

u2(ρ
α
2 , ρ1) =

∫

X

∫

T

α (1 − ρ1(t, x)) f (x)dtρ2(t, x)dx

+
α

2

∫

X

f (x)
∑

t∈Dx

�tρ1(t, x)�tρ2(t, x)dx

= αu2(ρ2, ρ1). (A.15)

Therefore, the payoff functions under asymmetric capacity are increasing affine transformations

of the payoff functions with a normalized strategy of player 2. Thus, the game with asymmetric

capacity is strategically equivalent to the game with a normalized strategy.

We first argue that the candidate is a Nash equilibrium in the normalized game. The strong

player 1 has the same set of strategies in the normalized game as in the benchmark game. Since

the profile is a Nash equilibrium in the benchmark, she has no profitable deviation in the nor-

malized game. The weak player 2 has no profitable deviations by the myopic argument because

of the levelling posterior g1. Both players enjoy maximin payoff π/2.

We continue to show the uniqueness of the equilibrium. Let us consider strategies that

exhaust the capacity ρ1(1, ·) = 1. Among those strategies, any equilibrium of the normalized

game is an equilibrium of the timing game with the corresponding normalized probability of

exploration ρ2(1, ·), that is, a timing game with T = 1, �ρ1 = 1, �ρ2 = ρ2(1, ·), and α ∈ (0, 1].

Theorem 6 implies that the equilibria of this timing game are the levelling strategy profiles, and

the weak player’s equilibrium payoff is

u2(ρ1, ρ2) =

∫

X

f

(

(1 − min{1,�ρ2})�ρ2 +
1

2
min{1,�ρ2}

2

)

dx .

Consider the function of �ρ2(x):

(1 − min{1,�ρ2})�ρ2 +
1

2
min{1,�ρ2}

2.

It is maximized on �ρ2(x) ∈ [1, 1/α]. If �ρ2 > 1 for a positive-measure set, the capacity con-

straint implies that �ρ2 < 1 for another positive-measure set, which yields a strictly lower

payoff. Therefore, the equilibrium payoff of the normalized game π/2 can only be achieved with
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�ρ2 = 1 almost everywhere with the corresponding levelling profile (ρ̄, ρ̄), which is unique

because t∗ = 1.

Since the equilibrium is unique among strategies that exhaust the capacity, it is also unique

among all normalized strategies following the discussion in Appendix A.3.

A.7. Proof of Theorem 5

It suffices to show that Pγ (t) is increasing in γ for all t ∈ T . By differentiating equation (5) with

respect to time, we obtain

ḡ′(t) = −

(∫

X

f (x)−11{ f (x)≥ḡ(t)}dx

)−1

.

The Lipschitz term due to the changing domain of integration vanishes because 1 −
ḡ(t)

f (x)
= 0 on

{x ∈ X : f (x) = ḡ(t)}.

As the levelling function ḡ is absolutely continuous, the probability of discovery, Pγ (t), is

absolutely continuous with respect to γ , and for γ -almost everywhere,

∂γ Pγ (t) = −t ḡ′(γ t)

∫

X

1{ f (x)≥ḡ(γ t)}dx − t ḡ(γ t) + (2 − γ )t2ḡ′(γ t)

=
t

∫

X
f (x)−11{ f (x)≥ḡ(γ t)}dx

(∫

X

1 f (x)≥ḡ(γ t)dx −

∫

X

ḡ(γ t)

f (x)
1{ f (x)≥ḡ(γ t)}dx − (2 − γ )t

)

=
t

∫

X
f (x)−11{ f (x)≥ḡ(γ t)}dx

(γ t − (2 − γ )t)

=
2(γ − 1)t2

∫

X
f (x)−11{ f (x)≥ḡ(γ t)}dx

≥ 0,

where the third equality follows from equation (5).

A.8. Implementation of distributional strategy

We introduce a probability space (�,F , P) to describe randomization. In addition, weak mea-

surability is used to accommodate continuous time and continuous space, and the Gelfand–Pettis

integral is used, which extends the Lebesgue integral to functional spaces.17

Definition 6. A mixed strategy on a probability space (�,F , P) is a function σ : � × T ×

X → {0, 1} that satisfies the following conditions:

(1) Initial condition: σ(ω, 0, ·) = 0 for all ω ∈ �;

(2) Monotonicity and right-continuity: σ(ω, ·, x) is non-decreasing and right continuous for all

ω ∈ � and x ∈ X ;

(3) Measurability: mapping x �→ σ(·, t, x) ∈ L2(�) is weakly measurable for all t ∈ T ;

(4) Capacity constraint:
∫

X
(σ (·, t, x) − σ(·, s, x))dx ≤ t − s for all intervals [s, t] ⊂ T , where

the integral is the Gelfand–Pettis integral.

17. See Talagrand (1984) for an exposition.
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The initial condition and the monotonicity and right-continuity condition are the realization-

by-realization generalizations of their counterparts in Definition 1 of pure strategies. The

measurability condition and the capacity constraint in Definition 6 for mixed strategies, how-

ever, are weaker than their counterparts. They must hold when averaged over any measurable

event in � that has a positive probability under P, but not necessarily at each ω ∈ �. If � is a

singleton, a mixed strategy reduces to a pure strategy as defined in Definition 1.

With realization ω ∈ �, an alternative x ∈ X is explored at or before time t ∈ T if and only

if σ(ω, t, x) = 1, analogously to the pure strategy case. The stochastic time at which alternative

x is searched is a random variable on � given by τ(ω, x) = min{t : σ(ω, t, x) = 1}.

Theorem 7.

(1) For every mixed strategy σ : � × T × X → {0, 1} on a probability space (�,F , P), the

function ρ, defined by ρ(t, x) := E[σ(·, t, x)] for t ∈ T and x ∈ X, is a distributional strat-

egy that represents σ ; that is, the probability of an alternative x ∈ X being explored by

t ∈ T under σ is ρ(t, x).

(2) For every distributional strategy ρ, there exists a probability space (�,F , P) and a mixed

strategy σ : � × T × X → {0, 1} that implements ρ, that is, E[σ(·, t, x)] = ρ(t, x) for all

t ∈ T and x ∈ X.

Proof. The first part of Theorem 7 follows directly from the definitions of the weak measurabil-

ity and the weak integral, so its proof is omitted. We show the second part by construction. By

the Kolmogorov extension theorem, there exists a probability triple (�,F , P) in which random

variables rx ∼ U (0, 1) are i.i.d. across x ∈ X . Define candidate mixed strategy σ(ω, t, x) :=

1{rx (ω)≤ρ(t,x)}(ω, t, x). By construction, it satisfies the initial condition and the monotonicity and

right-continuity condition, and implements the search density.

Fix t ∈ [0, 1]. We shall show that x �→ σ(·, t, x) ∈ L2(�) is weak-integrable over the

Lebesgue measure with integral
∫

X
ρ(t, x)dx . The dual space of L2(�) is isomorphic to itself

by the Riesz representation theorem. Every element Z ∈ L2(�) operates on Y ∈ L2(�) via

ZY = E[ZY ].

Since σ(·, x, t) ∈ {0, 1}, its variance is bounded by 1/4. The pairwise independence of

{σ(·, t, x) : x ∈ X} implies that {σ(·, t, x) − ρ(t, x) : x ∈ X} is an orthogonal set in L2(�). By

the Bessel theorem, we have that for, any countable collection {xn},

1

4
E[Z2] ≥

∞
∑

n=1

(E[Z(σ (·, t, xn) − ρ(t, xn))])
2

4V ar [σ(·, t, x)]
≥

∞
∑

n=1

(E[Z(σ (·, t, xn) − ρ(t, xn))])
2 ,

which implies that E[Z(σ (·, t, x) − ρ(t, x))] = 0, or E[Zσ(·, t, x)] = E[Z ]ρ(t, x), everywhere

except on a countable set. Therefore, the function σ(ω, t, ·) is weakly measurable and has weak

integral
∫

X
ρ(t, x)dx , satisfying the capacity constraint.

The following example shows that the mixed-strategy implementation is not unique.

Example 3. Under the Lebesgue probability space on � = [0, 1], both mixed strategies

σ1(ω, x, t) := 1{frac(x−ω)≤t} and σ2(ω, x, t) := 1{frac(x+ω)≤t}, where 1 denotes the indicator func-

tion and frac(y) = y − �y� denotes the fractional part of y, implement the same distributional

strategy ρ(t, x) = t . Intuitively, according to the mixed strategy σ1, a player searches to the right

starting from x = ω, where ω is drawn uniformly from the interval [0, 1], and continues at x = 0

after reaching x = 1, while according to σ2, a player searches in the other direction starting from

the same starting point. The two mixed strategies correspond to the same uncertainty faced by

the opponent.



36 REVIEW OF ECONOMIC STUDIES

Acknowledgments. We thank Dilip Abreu, Nageeb Ali, Mike Borns, Arjada Bardhi, Francis Bloch, Kalyan Chat-

terjee, Boyan Jovanovic, Navin Kartik, Nenad Kos, Rohit Lamba, George Mailath, Tatiana Mayskaya, Xin Meng, Marco

Ottaviani, Jacopo Perego, Nikhil Vellodi, Siyang Xiong, Weijie Zhong, and workshop participants for helpful comments.

We thank the editor, Andrea Galeotti, and three referees for their excellent suggestions. This research is supported by

NSF grant SES-1824328.

Supplementary Data

Supplementary data are available at Review of Economic Studies online.

Data Availability Statement

The data and code underlying this research is available on Zenodo at https://doi.org/10.5281/zenodo.8172429.

REFERENCES

ABREU, D. and BRUNNERMEIER, M. K. (2003), “Bubbles and Crashes”, Econometrica, 71, 173–204.
ABREU, D. and GUL, F. (2000), “Bargaining and Reputation”, Econometrica, 68, 85–117.
AKCIGIT, U. and LIU, Q. (2015), “The Role of Information in Innovation and Competition”, Journal of the European

Economic Association, 14, 828–870.
AUMANN, R. J. (1987), “Correlated Equilibrium as an Expression of Bayesian Rationality”, Econometrica, 55, 1–18.
BAVLY, G., HELLER, Y. and SCHREIBER, A. (2022), “Social Welfare in Search Games with Asymmetric Informa-

tion”, Journal of Economic Theory, 202, 105–462.
BIMPIKIS, K., EHSANI, S. and MOSTAGIR, M. (2019), “Designing Dynamic Contests”, Operations Research, 67,

339–356.
BOLTON, P. and HARRIS, C. (1999), “Strategic Experimentation”, Econometrica, 67, 349–374.
CHATTERJEE, K. and EVANS, R. (2004), “Rivals’ Search for Buried Treasure: Competition and Duplication in R&D”,

RAND Journal of Economics, 15, 160–183.
CHE, Y.-K. and GALE, I. (2003), “Optimal Design of Research Contests”, American Economic Review, 93, 646–671.
DE ROOS, N., MATROS, A., SMIRNOV, V., et al. (2018), “Shipwrecks and Treasure Hunters”, Journal of Economic

Dynamics and Control, 90, 259–283.
FERSHTMAN, C. and RUBINSTEIN, A. (1997), “A Simple Model of Equilibrium in Search Procedures”, Journal of

Economic Theory, 72, 432–441.
FU, Q., LU, J. and PAN, Y. (2015), “Team Contests with Multiple Pairwise Battles”, American Economic Review, 105,

2120–40.
FUDENBERG, D. and TIROLE, J. (1985), “Preemption and Rent Equalization in the Adoption of New Technology”,

The Review of Economic Studies, 52, 383–401.
HALAC, M., KARTIK, N. and LIU, Q. (2017), “Contests for Experimentation”, Journal of Political Economy, 125,

1523–1569.
HENDRICKS, K., WEISS, A. and WILSON, C. (1988), “The War of Attrition in Continuous Time with Complete

Information”, International Economic Review, 29, 663–680.
HENDRICKS, K. and WILSON, C. (1992), “Equilibrium in preemption games with complete information”, in Majum-

dar, M. (ed), Equilibrium and Dynamics: Essays in Honour of David Gale (Basingstoke, Hampshire: Macmillan)
123–147.

HOPENHAYN, H. A. and SQUINTANI, F. (2011), “Preemption Games with Private Information”, The Review of

Economic Studies, 78, 667–692.
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