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This paper analyses a model of strategic exploration in which competing players independently
explore a set of alternatives. The model features a multiple-player multiple-armed bandit problem and
captures a strategic trade-off between pre-emption—covert exploration of alternatives that the opponent
will explore in the future—and prioritization—exploration of the most promising alternatives. Our results
explain how the strategic trade-off shapes equilibrium behaviours and outcomes, for example, in technol-
ogy races between superpowers and R&D competitions between firms. We show that players compete on
the same set of alternatives, leading to duplicated exploration from start to finish, and they explore alter-
natives that are a priori less promising before more promising ones are exhausted. The model also predicts
that competition induces players to implement unreliable technologies too early, even though they should
wait for the technologies to mature. Coordinated exploration is impossible even if the alternatives are
equally promising, but it can emerge in equilibrium following a phase of pre-emptive competition if
there is a short deadline. With asymmetric capacities of exploration, the weak player conducts extensive
instead of intensive exploration—exploring as many alternatives as the strong player does but never fully
exploring any.
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1. INTRODUCTION

This paper studies strategic exploration in which competing players covertly explore a set of
alternatives to find good candidates. The strategic trade-off is between pre-emption and prior-
itization. On the one hand, each player would like to pre-empt his opponents by exploring the
alternatives before they do. On the other hand, he would also like to prioritize the most promising
alternatives given his capacity constraint. Our goal is to understand how the trade-off between
pre-emption and prioritization shapes competitors’ strategic behaviour and the overall discovery
process and to develop analytical tools for this class of dynamic games.

This strategic trade-off appears in many applications of dynamic competition between firms
and countries, where the alternatives can be research ideas, scientific experiments, business
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opportunities, etc. For instance, in a technology race between superpowers, the first country to
discover a viable technology (such as nuclear weaponry, space technology, and more recently
quantum computing) will gain a military, political, or economic advantage. The discovery and
implementation necessitate exploring many different alternatives and conducting various exper-
iments, not all of which are equally promising and very few of which will lead to success.
Therefore, each country must strategically allocate its resources over alternatives and over time.

A number of theoretically and empirically relevant questions can be formulated in these
applications. Should players focus exclusively on the most promising route before moving on to
less promising ones? Should players explore different alternatives to reduce duplicated explo-
rations and alleviate competition? When is coordinated exploration possible? If a strong player
is capable of exploring more alternatives over the same period of time, how would the asymme-
try in capacity translate into asymmetry in their payoffs and probabilities of discovery? Should
the weak player concentrate on fewer alternatives, or cover as much ground as the strong player
although this would inevitably lead to insufficient exploration of some or all alternatives given
the resource constraint? Would a player with negligible resources have a negligible impact on
the competitor’s exploration strategies and the overall process of discovery?

None of these questions is a priori obvious, but our model will provide clear predictions as
consequences of the strategic trade-off between pre-emption and prioritization. We formulate
the benchmark model in the simplest form. The unit interval represents the set of alternatives,
of which at most one is good. Two players share a common prior of the good one over the set
of alternatives. In continuous time, they each face a capacity constraint on the set of alternatives
to explore per unit time. Whoever finds the good alternative first will receive a reward. The
simplest model identifies the key elements of the strategic tension between pre-emption and
prioritization. This allows us to see how other features, such as multiple good alternatives, short
deadlines, asymmetric capacity constraints, multiple players, etc., add to the strategic interaction.
For instance, the analysis and the main insights remain the same in an environment with gradual
learning where the outcome of each alternative arrives stochastically at a rate controlled by
resources allocated to the alternative. Unlike in the finite case, the continuum of alternatives
makes the model tractable by eliminating the aggregate uncertainty of signal arrivals thanks to
the law of large numbers. The model thus encapsulates a useful but underexplored multiple-
player multiple-armed bandit problem.

The strategic exploration game features a unique and simple equilibrium. Instead of con-
centrating on the a priori most promising alternatives, the players explore an expanding set of
alternatives of different prior probabilities in such a way that their posterior probabilities equal-
ize. The strategy pre-empts the opponent’s future explorations in order to maximize the option
value of exploration and at the same time prioritizes alternatives with the highest posterior
induced by the opponent’s strategy in order to maximize the myopic value of discovery. There-
fore, this “mutually greedy” strategy profile is the equilibration of pre-emption and prioritization.
The strategy drives a wedge between equilibrium exploration and coordinated exploration that
minimizes the time of discovery. Without pre-emption concerns, the fastest discovery would be
achieved by prioritizing alternatives according to the prior probabilities. The uniqueness result
rules out coordinated or specialized explorations even when the prior distribution is spread out
or the reward from the good alternative increases over time.

Somewhat counterintuitively, the coordination failure can be mitigated if the deadline is short
relative to the set of alternatives so that no single player can exhaustively explore all alternatives.
The mutually greedy competition of the benchmark model remains an equilibrium, but there are
a continuum of equilibria with two phases: a competition phase in which the mutually greedy
strategy profile is played to equalize the posteriors of a subset of alternatives, followed by a coor-
dination phase in which the two players divide and prioritize this set. In the coordination phase,
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players no longer have incentives to pre-empt each other because the set of alternatives with
the highest posterior induced by the competition phase is large relative to the remaining time.
Therefore, competition creates the condition for coordination. If the deadline is long, the most
promising alternatives left from the competition stage will be exhausted before the deadline, and
players will pre-empt their opponents in advance, unraveling the coordination phase.

When a “strong” player (she) has the capacity to explore more alternatives per unit time,
the weak player (he) still explores alternatives with the highest posterior, but the strong player
explores alternatives with unequal posterior and her strategy is no longer a greedy best response.
The weak player always covers the same set of alternatives as the strong one, but he never
explores any alternative with cumulative probability one, even if he can do so by focusing on
a smaller set of alternatives. In other words, the weak player conducts an extensive exploration
instead of an intensive exploration. We show that an edge in exploration capacity gives the
strong player a disproportionately large payoff advantage due to an endogenous information
advantage. When the exploration capacity is more asymmetric, the good alternative is discov-
ered earlier in the first-order stochastic sense; nevertheless, the pre-emption incentive continues
to play a non-vanishing role in slowing down discovery even when the weak player’s capacity
is vanishingly small.

We also study the strategic exploration game when more players enter the race in Supplemen-
tary Appendix. In the unique symmetric equilibrium, the players expand the set of alternatives
to explore to equalize the posterior probabilities, just as in the benchmark setting. We show that
the good alternative is discovered earlier with more players in the first-order stochastic domi-
nance sense. However, there exist asymmetric equilibria with asymmetric payoffs even though
the players are ex ante identical. Instead of competing over the same set of alternatives, the
players specialize in different segments of alternatives in different groups.

Related literature

The paper connects several branches of active research. Optimal exploration of an unknown area
is a well-known problem in operations research and computer science.! This literature has so far
neglected the game-theoretic aspects of explorations. We do not consider the path dependence
intrinsic to exploring physical locations and we assume away switching costs. In our model,
the alternatives can be research ideas, scientific experiments, business opportunities, etc., all of
which are of economic interest.

Although the underlying mechanisms are very different, our definition of “pre-emption” is
not inconsistent with that in well-known pre-emption models, for example, Fudenberg and Tirole
(1985), Hendricks and Wilson (1992), Abreu and Brunnermeier (2003), and Hopenhayn and
Squintani (2011). Players make only a single irreversible pre-emption decision in these timing
games, while they make such a decision for each alternative in our model. More importantly,
we introduce prioritization among multiple alternatives to the pre-emption motive, and their
strategic tension opens up new research questions.

1. It has applications in navigation algorithms and robotics, where inefficiency typically arises from the path
dependence of exploration of physical locations. See, for example, the surveys by Kleinberg (1994) and Megow et al.
(2012).
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Fershtman and Rubinstein (1997) study a discrete-time finite-alternative search problem with
pre-emption. As their analysis demonstrates, the discrete problem is intractable beyond a uni-
form prior. Under the uniform prior, however, the prioritization motive does not exist.> Matros
et al. (2019) consider a discrete-time continuum-alternative variant of Fershtman and Rubinstein
(1997), but assume away the pre-emption motive, and find a qualitatively different equilibrium
in pure strategies.® Bavly et al. (2022) consider a static search model where players have pri-
vate information about the viability of different routes. Hence, these papers do not capture the
dynamic trade-off between prioritization and pre-emption.

Chatterjee and Evans (2004) embed a two-alternative model of treasure hunting in a dynamic
R&D game with Poisson bandits. Klein and Rady (2011) analyse a continuous-time model of
a negatively correlated bandit, in which one of the two arms contains a prize and two players
share a common value instead of competing with each other. Again, there is no pre-emption—
prioritization trade-off in these two papers, but both their models and ours feature a negatively
correlated bandit.

The canonical models of strategic experimentation by Keller et al. (2005) and Bolton and
Harris (1999) capture a trade-off between exploration and exploitation in a multiple-player set-
ting and are useful in many economic applications.* Most models in this literature feature a
one-armed bandit, with one risky alternative and one safe default option, thus abstracting away
the rich set of alternatives to explore and precluding interesting learning, search, and innova-
tion processes in many applications. By eliminating aggregate uncertainties and facilitating the
analysis of randomization, the multiple-player continuum-armed bandit formulated in this paper
overcomes some of the analytical difficulties associated with finite-armed bandit problems that
are largely intractable even when the arms are independent.

The strategic exploration game can also be viewed as a contest in which players choose
what project to explore over time. Existing models in the literature of contests often study effort
choices on a given project; see, for example, Siegel (2009) and Fu et al. (2015) for recent devel-
opments.> Our model also differs from Hotelling’s spatial competition models, for example,
Osborne and Pitchik (1986) and Ottaviani and Sgrensen (2003), in that the good alternative (or
location) is fixed, the topology of the alternatives is payoff-irrelevant, and the players choose
which alternatives to explore dynamically.

2. MODEL

In this section, we formulate the strategic exploration game.

2. Fershtman and Rubinstein (1997) allow players to choose their search capacities. They discuss the case where
exactly one alternative has a different probability of success from the rest and make the observation that, under some
parameter values, this alternative cannot always be searched first.

3. They assume a uniform distribution, but this assumption is not the driving force. Instead, their model features
a Bertrand-style competition so that the rent is dissipated completely. Their uniqueness fails, however, without the
restriction to symmetric or Markovian strategies. Matros and Smirnov (2016) and de Roos et al. (2018) look into variants
of this model with observable actions and with/without coordination.

4. See Manso (2011) and the literature on contractual arrangements for experimentation. See Horner and
Skrzypacz (2016) for a survey.

5. The literature also studies optimal design of effort-maximizing contests; see, for example, Moldovanu and

Sela (2001, 2006) and Che and Gale (2003) for static problems and Bimpikis et al. (2019) and Halac et al. (2017) for
dynamic problems. Akcigit and Liu (2015) study the incentive of concealing negative findings from competitiors in
R&D contests. Optimal design with strategic exploration will be an interesting direction for future research.
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2.1. Set-up

Two players explore a continuum of alternatives x € X := [0, 1] of which at most one is good.
The prior distribution of the good alternative is given by a bounded density f that is strictly
positive almost everywhere. Therefore, the prior probability that the good alternative exists is
T = | v f(x)dx € (0, 1]. The continuum of alternatives is an idealization of a large discrete
set, and so two alternatives labelled 0.1 and 0.101 may not give similar outcomes.

The players explore over time horizon [0, T'] without observing each other’s explorations,
where T > 1. Each player faces a capacity constraint: he can explore up to a unit (Lebesgue)
measure of alternatives per unit time. With some abuse of notation, we also let 7 denote the set
[0, T'] when no confusion arises.

The first player to find the good alternative exclusively claims a payoff of 1—and the two
split it equally in the case of simultaneous discovery. In all other cases, their payoffs are 0.
There is no temporal discounting.® Once the good alternative is found, the discovery is publicly
announced and the game is over (equivalently, we may assume that the discovery is private but
it removes the reward from the good alternative). In Supplementary Appendix, we consider the
extension where each player finds out whether an alternative is good gradually through a Poisson
process instead of instantaneously.

2.2. Strategy

We shall define strategies to describe how the players explore the alternatives over time. The
strategy space demands a new and formal treatment because the intuition of “exploring one
alternative each period” inherited from a discrete problem does not extend to a continuum
of alternatives in continuous time.” Our definition of strategies exploits two ideas: the out-
come function approach overcomes the indeterminacy of continuous-time strategies and the
distributional approach handles the randomization.

2.2.1. Pure strategy. A pure strategy o : T x X — {0, 1} specifies whether an alternative
is explored by a certain time: an alternative x € X is explored at or before t € T if o (¢, x) = 1.

Definition 1. A functiono : T x X — {0, 1} is a pure strategy if it satisfies the following four
conditions:

(1) Initial condition: ¢ (0, -) = 0;

(2) Monotonicity and right-continuity: o (-, x) is non-decreasing and right continuous for all
x € X;

(3) Measurability: o (¢, -) is measurable for all 7 € T,

(4) Capacity constraint: fx (o(t,x) —o(s,x))dx <t — s forall intervals [s,z] C T.

The four conditions correspond to intuitive requirements for exploration activities.® The ini-
tial condition states that none of the alternatives has been explored at the beginning of the

6. The equilibrium construction of the benchmark model remains valid even if there is discounting. In
Supplementary Appendix, we consider time preferences to capture a growing reward from the good alternative.

7. First, this measure-preserving bijection between continuous time and the continuum of alternatives is not
tractable. Second, a desirable definition should apply to an abstract set of alternatives, but the existence of measure-
preserving bijections is not always guaranteed, let alone equilibria in such bijections. Third, the strategy should specify
the set of alternatives explored at each moment in time. To avoid an uncountable union of measurable sets over time, we
specify the outcome function that determines exploration activities.

8. Simon and Stinchcombe (1989) point out the indeterminacy of the continuous-time strategy when it is written
as a function of histories (including a player’s own past actions). In our setting where the opponent’s exploration is
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game. The monotonicity condition requires that, once an alternative has been explored, it is
explored by any future time as well. The right-continuity property, similar to that of a cumu-
lative distribution function, guarantees that the time at which an alternative x € X is explored
7(x) := min{¢ : o (¢, x) = 1} is well defined. The measurability condition further requires that
7 : X — T be a measurable function and 7! (1), the set of alternatives to be explored at time
t, be a measurable set. It is the induced map 7! that instructs how the player should actually
search.’ Lastly, the capacity constraint describes how quickly a player can explore the space of
alternatives. The maximum measure of alternatives explored per unit time is normalized to 1.
We identify a strategy o up to a stationary null set of X.

2.2.2. Distributional strategy. We define distributional strategies to capture randomized
explorations of a continuum of alternatives in continuous time. A distributional strategy p :
T x X — [0, 1] specifies the probability that alternative x € X is explored by time ¢ € T. It is
the evolution of the cumulative distributions of outcomes. One should not confuse this notion
with that of Milgrom and Weber (1985).10

Definition 2. A function p : T x X — [0, 1] is a distributional strategy if it satisfies the
following conditions:

(1) Initial condition: p (0, -) = 0;

(2) Monotonicity and right-continuity: p(-, x) is non-decreasing and right continuous for all
x € X;

(3) Measurability: p(z, -) is measurable for all t € T

(4) Capacity constraint: fx (p(t,x) — p(s,x))dx <t — s forall intervals [s, 7] C T.

The four conditions extend naturally from pure strategies. A distributional strategy p reduces
to a pure strategy if p (¢, x) € {0, 1} as one can see by comparing Definitions 1 and 2.

Unlike a pure strategy, a distributional strategy specifies the cumulative probability of
exploring each alternative but not the path of exploration. We prove a representation theorem
(Theorem 7) that shows the outcome equivalence between distributional strategies and mixtures
of pure strategies, which provides an instruction for players to randomize over the paths of
exploration. We relegate the representation theorem, which relies on weak measurability and the
Gelfand—Pettis integral, to Appendix A.8.

Remark 1 (Interpretations of randomization). There are two more interpretations for the ran-
domized strategies in addition to literal randomization. Randomized strategies can be viewed
as the uncertainty entertained by the opponent.!! Alternatively, they can be interpreted as the
cumulative resources spent on each alternative, which we formalize in Supplementary Appendix.

unobservable, the alternatives available for exploration for one player at each moment depend on his own exploration
history. We overcome this issue by defining a strategy indirectly through an outcome function.
9. The set of alternatives explored thus far {x : 6 (t,x) =1} = |J s€[0,1] T_I(S) is measurable. Our outcome

function approach circumvents the measurability of such an uncountable union of measurable sets when =1 is defined
directly as in discrete problems.

10. Abreu and Gul (2000) and Hendricks et al. (1988) use distributions to describe randomization in continuous-
time games. In contrast to the one-dimensional distribution of stopping times in prior work, the distributional strategy in
this paper takes into account a continuum of alternatives.

11. See, for example, Aumann (1987) for an exposition.
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2.3.  Payoff

We compute the expected payoff of each player in a profile of distributional strategies. Let
—i denote player i’s opponent. Given a profile of distributional strategies (p;, p—;), player i’s
expected payoff u; (p;, p—;) is

1
/X/Tf(x)(l — p_i(t,x))dpi(t, x)dx + 3 /x f(x) Z Api(t, X)Aip_i(t,x)dx. (1)

teD,

The first term in equation (1) is player i’s expected payoff from discovering the good alternative
before his opponent. It reflects the probabilities of three events: alternative x is good with prob-
ability f(x), the opponent —i has not explored it yet with probability 1 — p_; (¢, x), and player
i explores that alternative instantaneously with probability d; p; (¢, x), where the time integral is
the Lebesgue—Stieltjes integral with respect to the non-decreasing and right-continuous function
t— pi(t,x)."?

The second term in equation (1) is player i’s expected payoff from simultaneously dis-
covering the good alternative with his opponent. For each x, the set D, C T is the at most
countable set of discontinuity points of both p; (-, x) and p_; (-, x). The function A,p; (¢, x) :=
pi(t,x) — p;i(t~, x) is the jump measure of the distributional strategy p;(-, x) on T, where
pi(t~, x) = limyy, pi (s, x). At alternative x, the probability of simultaneous discovery is
Zl D, A pi(t, x)A;p_;(t, x). The integral over X is well defined as the integrand can be written
as the limit of measurable functions.

2.4. The one-player problem

Consider a useful benchmark of the single-player problem, which is equivalent to exogenously
fixing p = 0 for the other player in the two-player game. The incentive for pre-emption is absent
in this case. There are many payoff-equivalent optimal search strategies. A greedy strategy is a
distributional strategy that maximizes the myopic expected payoff at each moment in time, that
is, it prioritizes the most promising alternatives according to the prior distribution. It will be a
relevant benchmark for the competitive environment.'3

For each y € [0, 00), let h(y) = A({x : f(x) > y}) be the measure of alternatives whose
prior densities are at least y, where A is the Lebesgue measure. Therefore, / is non-increasing
and left continuous with limy_, 1o #(y) = 0 and 4 (0) = 1. Intuitively, a greedy strategy explores
alternatives sequentially according to their densities from the highest to the lowest. Formally, for
any x € X,

I it = h(f (),
it < h(f()M),

0
p(t,x) = _
LR ey e (et h(F ).

h(f (x)) = h(f(x)*)

where h(f(x)") :=limy, sv) h(y). This greedy strategy p says that, when the prior density
is constant over a positive measure set, the player randomizes uniformly over this set. This
is clearly not the unique greedy strategy. When such a positive-measure set does not exist,
p specifies a deterministic exploration strategy and hence is uniquely determined.

12. The Lebesgue-Stieltjes measure is obtained from pu ((s, 1]) := p; (¢, x) — p; (s, x) forall0 <s < < 1.
13. A non-greedy strategy will not be robust to discounting or to a perturbation of the other player’s strategy with
uniform randomization, p (¢, x) = €t forall x € X and ¢ € T, where € > 0 is small.
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Example 1. Consider a symmetric probability density function

£ 4x  ifx <1,
x)=[4—4x ifx > 1.
Then we have
=[5
and
pln =g F ==

What might appear counterintuitive is that two alternatives {%, %} are explored at the same

time ¢ > 0, but it takes exactly one unit of time, instead of half units, to fully explore the unit
interval X = [0, 1]. Intuitively, the capacity is divided so that the speed of exploration is halved.

3. EQUILIBRATION OF PRE-EMPTION AND PRIORITIZATION

We shall derive the unique Nash equilibrium of the strategic exploration game. A profile of
distributional strategies (p;, p—;) is a Nash equilibrium if u;(p;, p—;) > u;(p], p—;) for each
i € {1, 2} and distributional strategy p;.

We shall argue that, due to pre-emption motives, no player can play a pure strategy in a Nash
equilibrium. Facing any pure strategy p_;, player i can stay “one step ahead” of his opponent by
exploring at time ¢ what his opponent will explore at time 7 + €. When € is close to 0, player i’s
payoff from this response is close to 7 and his opponent’s payoff is close to 0. Thus, player —i’s
payoff is O in the putative equilibrium. However, the opponent —i can always imitate player
i’s equilibrium strategy to guarantee a strictly positive payoff. Therefore, both players must
randomize in any equilibrium.

But how should players randomize in general? They must consider not only the myopic
value of each alternative (measured by its posterior density) but also the option value (which is
determined by how intensively his opponent will explore certain alternatives in the future). The
trade-off between prioritization and pre-emption thus emerges.

3.1. Belief updating

Belief updating is essential to characterizing equilibrium randomization. With prior density f and
the opponent’s distributional strategy p_;, player i’s posterior density that x is a good alternative
right after ¢ is

g—i(t’x) = (l - p—i(tax))f(x)' (2)

We call g_; (¢, x) player i’s (unnormalized) posterior distribution over X at time 7. We use the
subscript “—i” because the posterior conditions only on the strategy of player —i. Note that
the posterior does not take player i’s own exploration into account; his posterior belief will be
degenerate for alternatives that he has explored (see Supplementary Appendix for the case where
exploration reveals the state only through gradual arrivals of conclusive signals.)

The initial condition of the distributional strategy in Definition 2 implies that g_; (0, x) =
f(x). The monotonicity condition entails that the posterior g_; (¢, x) is non-increasing in ¢ for
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A distributional strategy p_; (a) and the posterior g_; (b), at a fixed time

each x € X. Intuitively, as the opponent —i explores more alternatives over time, the poste-
rior distribution is pushed lower and lower. Figure 1 illustrates the relationship between the
distributional strategy, prior distribution, and posterior distribution.

We observe that the posterior equals the flow payoff when the probability of simultaneous
discovery is zero. In that case, the expected payoff reduces to

ui(pi, p—i) = /X/T(l — p_i(t, %)) f(X)d; pi(t, x)dx = /X/Tg_[ (t, x)d; p;(t, x)dx. 3)

Intuitively, the flow payoff of exploring alternative x at time ¢ is the probability that x is good and
the opponent has not explored it yet. A sufficient condition for zero probability of simultaneous
discovery is that either p; or p_; is t-continuous.

3.2. Levelling strategy

We shall construct a candidate equilibrium strategy such that the equilibrium posterior g; (¢, x)
levels the prior f(x) over time as illustrated in Figure 2. As such, we shall call it the levelling
strategy.

We first pin down the highest posterior as a function of time. By the definition of posterior
distribution in equation (2), player —i’s strategy p_; and its induced posterior g_; follow

g—i(t: 'x)

4
() @

p—i(tax) =1-

for all r € T and x € X. We call a function g : T — [0, sup f] the levelling function if it
satisfies

/X (1 - %) L=z (x)dx =t )
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FIGURE 2
The posterior g; (¢, x) levels the prior f(x) over time

for all # € [0, 1] and g(t) = O for ¢+ > 1. We then define the levelling strategy p: 7 x X —
[0, 1] in terms of the levelling function as

_ 8()

pt,x) = (1 ~ —)1 230 (%) ©)

f(.x) {(f(x)=g®)}

forallt € T and x € X. As the integrand on the left-hand side of equation (5) equals p, equation
(5) corresponds to the binding capacity constraint in Definition 2. Therefore, by comparing
equations (4) and (6), we know that the posterior induced by p at ¢ achieves its maximum g(t)
on{x € X : f(x) > g(¢)}. Therefore the levelling strategy p levels the prior f over time.

Lemma 1. The levelling function g exists and is unique, absolutely continuous, convex, and
strictly decreasing on [0, 1]. The levelling strategy p is a well-defined distributional strategy.

With some abuse of notation, we write the posterior density induced by the levelling strategy
attime zas g(t, x) := (1 — p(z, x)) f(x) and call it the levelling posterior at r. We reiterate that
it is player i’s levelling strategy p that levels player —i’s posterior g.

We demonstrate the relationship between the levelling strategy, the prior, and the levelling
posterior in Figure 3, and illustrate the implementation of exploration over time Figure 4, where
0, p describes how intensive an alternative x is explored at time ¢.

3.3.  Unique equilibrium

We shall show that the symmetric levelling strategy profile is the unique Nash equilibrium of the
strategic exploration game, and then discuss its economic implications.

Theorem 1. The strategy profile (p, p) is the unique Nash equilibrium.

The proof is contained in Appendix A.3. The fact that (p, p) is an equilibrium follows from
its construction. Since the levelling strategy is z-continuous, the flow payoff of exploring an
alternative equals the posterior. The equilibrium strategies are mutually greedy in that each
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FIGURE 4
Exploration over time according to the levelling strategy p. (a) Contour plot of the intensity of exploration & p. (b)

Discretized realization of exploration

player will explore only alternatives x with the highest posterior/myopic payoff at each time
t, g(t), induced by the opponent’s strategy to maximize his own myopic value of discovery.
While myopic best responses are determined solely by the posterior beliefs (the prioritization
motive), dynamic best responses in addition take into account the option value of exploration,
or how quickly posteriors decline (the pre-emption motive). The levelling posterior of the most
promising alternatives declines at the same rate, so the myopically optimal levelling strategy is
indeed dynamically optimal against the opponent’s levelling strategy.

A coordinated exploration prioritizes alternatives according to the prior density without
pre-emption (i.e. the greedy exploration of the one-player problem described in Section 2.4, but
with a combined capacity of 2). The strategic motives distort the equilibrium exploration in two
ways from the coordinated exploration. First, the players prioritize the most promising alterna-
tives a posteriori but not a priori. They explore many a priori less promising alternatives before
exhausting the more promising ones. Second, the players pre-empt each other by duplicating
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the opponent’s exploration in an extreme way. From start to finish, each player explores only
the alternatives that his opponent could have already explored. Due to the two distortions, the
equilibrium discovery time first-order stochastically dominates, that is, is slower than, the coor-
dinated counterpart. The instantaneous probability of discovery by one player at ¢ equals the
highest posterior g(¢). Therefore, the probability that a discovery is made by time ¢ is

P(l):/0 2g(s)ds. @)

For uniqueness, we note that the levelling strategy p guarantees a payoff of 7 /2 regardless of
the opponent’s strategy, that is, both players can guarantee half of the total payoff. Therefore,
it suffices to find, against each non-levelling strategy, a deviation with a payoff above 7 /2. As
shown in Figure 2, the levelling strategy explores at full capacity such that the posterior or flow
payoff decreases uniformly over time. For any other strategy, there must exist an interval of time
over which the posterior declines faster for one set of alternatives and slower for another. One
can then modify the levelling strategy to pre-empt that strategy by prioritizing the former set at
the expense of the latter, in the spirit of the “one-step-ahead” strategy to achieve a higher payoff.
We conclude this section by highlighting the robustness of the model.

Remark 2 (Robustness to modeling details). The model is parsimonious to capture the essence
of the strategic trade-off between pre-emption and prioritization, independent of some modeling
details. Theorem 1 continues to hold verbatim in the following environments: (1) the first discov-
erer enjoys a larger but not exclusive share of the prize, or payoff sharing is arbitrary in the case
of simultaneous discovery, because in both cases the unique equilibrium strategy is #-continuous;
(2) the space of alternatives is multidimensional, because of the one-to-one correspondence
between the levelling function and the levelling strategy (of course, actual exploration activities
depend on the space of alternatives); and (3) the players value the weighted sum of prizes from
multiple (or from a continuum of) independent and identically distributed good alternatives.

Remark 3 (Robustness to time preferences). The equilibrium in levelling strategies in
Theorem 1 is robust to the introduction of exponential discounting, but we do not know
its uniqueness. In many applications, the reward is increasing in time. For example, a tech-
nology may become safer and more reliable over time, and its premature exploitation may
sometimes lead to adverse outcomes. This corresponds to a strictly increasing reward function
p: [0, T] — R.. When a player discovers the good alternative at time ¢, he enjoys a payoff of
p(t). Without competition, players would prefer waiting to exploring a premature technology.
Nevertheless, in Supplementary Appendix, we show that the equilibrium in Theorem 1 is the
unique Nash equilibrium even in this case. The result demonstrates the payoff effect and infor-
mation advantage behind the strategic trade-off between pre-emption and prioritization. If an
early exploration leads to a discovery, the player enjoys the current payoff but eliminates the
possibility of a later discovery that can be much more valuable. However, if early explorations
fail, the player can pre-empt his opponent in future explorations by concentrating his capacity
on the remaining alternatives. We show that the information advantage dominates the payoff
effect so that the players cannot coordinate on delayed explorations. Moreover, they reap the full
information advantage by prioritizing the most promising alternatives a posteriori. Therefore,
the unique equilibrium features the mutually greedy levelling strategy.

Remark 4 (Multiple players). The equilibrium in levelling strategies can be extended to an envi-
ronment with more than two players, where the players expand the set of alternatives to explore
in such a way that equalizes the posterior probabilities. In Supplementary Appendix, we show
that this is the unique symmetric equilibrium and that the good alternative is discovered earlier
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Two distributions f7 and f>, where f> is more even than f. (a) Prior density functions. (b) Pushforward measures

with more players in the first-order stochastic dominance sense. However, there exist asymmet-
ric equilibria with asymmetric payoffs even though the players are ex ante identical: instead of
competing over the same set of alternatives, the players form different groups that specialize
in different segments of alternatives; competition occurs within groups and coordination occurs
across groups.

3.4. Impact of prior beliefs

We study how the prior distribution affects the equilibrium exploration, and show that the good
alternative is discovered more quickly if the prior is less evenly distributed.

With the probability of the existence of the good alternative 7 fixed, we vary the evenness
of the prior distribution. Let / be the Lebesgue measure. For any prior distribution f, let 1 o f~!
be the pushforward measure over R... Note that 1 o f~'(R,) = A([0, 1]) = 1, so the pushfor-
ward measure is a probability measure of the prior density. Its expectation is fR+ ydio f~! =
f[o, 1 f(x)d2 = x. For example, if the good alternative is uniformly distributed over X, then
f(x) is a constant and 1 o f~! assigns probability 1 to a single point. This is the case where the
good alternative is most evenly distributed over X = [0, 1]. We can then capture the evenness of
a prior distribution by its pushforward measure. Figure 5 illustrates the partial order of evenness.

Definition 3. Let f; and f, be two prior distributions. We say that f, is more even than f; if
Ao fl_' is a mean-preserving spread of 4 o fz_l.

The good alternative is discovered more quickly if the prior distribution is less even. The
players concentrate their exploration, which increases pre-emptive duplications but prioritizes
more promising alternatives. We show that the prioritization effect dominates.

Theorem 2. If f, is more even than fi, then the distribution of the equilibrium discovery time
associated with f, first-order stochastically dominates that associated with f\; that is, the good
alternative is discovered earlier with fi than with f5.

The comparative statics is intuitive given our equilibrium characterization but it is not
obvious a priori. One may have anticipated Theorem 2 since it also applies to coordinated
exploration. We would like to highlight our result that the players cannot coordinate on less
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duplicative explorations regardless of the prior distribution. A priori, one might expect the play-
ers to specialize in distinct sets of alternatives to speed up equilibrium exploration when the
prior distribution is more even. It would be more difficult to coordinate when the prior is less
even because of the strengthened incentives to prioritize the most promising alternatives. We
have shown, however, that such coordination is impossible for any prior distribution. By ruling
out all possible coordination, our equilibrium characterization makes it straightforward to prove
the monotonicity in discovery time.

4. EXTENSIONS

Having analysed the strategic exploration in the simplest setting, we shall extend the analysis to
two settings of interest. These extensions are by no means exhaustive, but they will demonstrate
how the strategic trade-off between pre-emption and prioritization plays out in richer settings of
search and learning. Additional extensions with stochastic learning, multiple players, and time
preferences can be found in the Supplementary Appendix.

4.1. Short deadlines

The model assumes that the deadline is sufficiently long so that a player can exhaustively explore
all alternatives. Theorem 1 shows that coordination is impossible to attain. Can a short deadline
T < 1 make coordination possible? The answer is in the affirmative but there is a limit to the
scope of coordination.

We start developing the intuition from the mutually greedy strategy profile over [0, T'].
Suppose that players level each other’s posteriors up till 7 — € for some small € > 0. At this
moment, each player faces a set of unexplored alternatives with the highest posteriors. Since
T < 1, this set is large relative to the remaining time €, which is very short. The two play-
ers can divide the set into two disjoint segments, one for each player to search exclusively. No
player has the incentive to pre-empt his opponent anymore, as long as his own segment contains
enough alternatives to explore before the deadline. Therefore, competition creates the condition
for coordination. But coordination cannot be followed by another round of competition, because
the pre-emption incentive will unravel the phase of coordination. This line of argument suggests
that an equilibrium play consists of two phases: a phase of competition for a sufficiently long
period of time followed by a phase of coordination.

We must also complement the above reasoning with the following two observations. First, the
mutually greedy strategy profile is still an equilibrium in which the players level their posteriors
till the deadline, completely crowding out the coordination phase. This equilibrium does not
unravel backward from the deadline simply because, if his opponent uses the levelling strategy,
a player has no incentive to use a different strategy. For the same reason, in an equilibrium with
two phases, a player does not have the incentive to enter the coordination phase unilaterally
even if the competition phase has created a sufficiently large set of alternatives with the highest
posterior.

Second, for long deadlines, there does not exist an equilibrium with a coordination phase as
shown in Theorem 1. The reason is that, at any point in time ¢ < 1, the remaining alternatives
(let alone the alternatives with the highest posterior) are few relative to the remaining time and,
hence, there would not be enough alternatives for the two players to split. Suppose to the contrary
that there were a coordination phase, both players would exhaust their exploration of the most
promising alternatives before the deadline, and they would have no choice but to continue to
explore less promising alternatives; however, a player would covertly explore his opponent’s
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segment early on. Therefore, the pre-emption incentive unravels the coordination phase under
long deadlines.

Theorem 3. For the strategic exploration game with deadline T < 1, there exists T*(T) €
[0, T') such that the following properties are satisfied.:

(1) If (p1, p2) is a Nash equilibrium, then there exists t* € [T*(T), T] that divides the
equilibrium play into two phases:

(a) Competition: for all t € [0, t*], pi(t,) = pa(t, ) = p(t, ), that is, players play the
levelling strategy.

(b) Coordination: forallt € (t*,T1, if p;(T, x) — p;(t*, x) > Othen g_;(t,x) = g(t*) and
p_i(T,x) — p_i(t*, x) = 0, that is, players explore only alternatives with the posterior
g(t*) and they do not duplicate each other’s search after t*.

(2) Foranyt* € [T*(T), T], there exists a Nash equilibrium (p;, p2) that satisfies (a) and (b)
above.

Furthermore, limy_ T*(T) = 1.

The proof in Appendix A.5 characterizes the critical threshold as

T*(T) = min [t el0,T]: / %lf(x)zg(,)dx > 2(T — I)] . ®)

Since limy_, T*(T) = 1, the coordination phases in all equilibria vanish as the deadline
approaches 1, when each player can exhaust all alternatives. Since T*(T) < T, there must
be a continuum of equilibria with a coordination phase with transition times t* € [T*(T), T).
The equilibrium with transition time t* = 7*(7T') has the longest coordination phase. The lev-
elling equilibrium (with transition time * = T') has the most duplicated search. Property (b)
in Theorem 3 does not uniquely determine a distributional strategy, because there are multiple
ways to partition alternatives with the posterior g(¢*) into two segments and players’ searches
over their own segments are flexible.
We shall use the uniform distribution to demonstrate the role of deadlines.

Example 2. Suppose f = 1. Then the levelling strategy p is given by p(z, x) = t.

e For long deadlines T > 1, the unique equilibrium is the levelling equilibrium (p, p) by
Theorem 1.

e For very short deadlines T € (0, %], the transition to coordination can start immediately
T*(T) = 0. The two extremes are the equilibrium with * = 0 (coordination starts immedi-
ately) and the equilibrium with t* = T (the levelling equilibrium). The fact that 7*(7T) = 0
and hence equilibrium coordination can start immediately is a knife-edge case, which, by
Theorem 3, only occurs when the prior density plateaus for a set of alternatives with a mea-
sure of at least 27, so that the two players do not need to compete over the course of the
game.

e For moderately short deadlines T € (%, 1), the earliest transition time is 7*(T) = 2T — 1.
To see this, note that in the equilibrium where players use the levelling strategy till 7*(7),
the set of alternatives X will be divided equally between the two players for them to explore
over the remaining time 7 — 7*(T'). In the competition phase prior to 7*(T'), each player
has explored a measure of %T* (T) in each segment, leaving a measure of % - %T*(T) for
the player. Therefore, T — T*(T) = % - %T*(T) and, hence, T*(T) = 2T — 1.
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The strategy profile (p, ap) (a) and the corresponding posterior densities (b), at a fixed time

Notes: In this example, player 2 is half as capable as player 1, thatis, a = 1/2.

4.2. Asymmetric capacity

In this section, we analyse the strategic trade-off between prioritization and pre-emption under
asymmetric capacity and uncover a number of new interesting implications veiled in the
symmetric problem. We shall assume a long deadline 7 > 1 as in the benchmark model.

The two players have different capacities: player 1 can explore measure 1 of alternatives per
unit time but player 2 can explore only measure a € (0, 1]. Player 1 (the “strong” player, she) is
more capable or more resourceful than player 2 (the “weak” player, he) at exploration. We refer
to a as player 2’s capacity. Thus, player 2’s distributional strategy p5 : T x X — [0, 1] should
satisfy the new capacity constraint

/(pg (t,x) — p5(s,x))dx <a(t—s) forall[s,t]CT 9)
X
as well as the first three conditions in Definition 2.

4.2.1. Unique equilibrium. We first introduce the equilibrium strategy of the weak player.
Consider a distributional strategy p5 of the weak player p5 (¢, x) = ap(t, x) for all ¢ € [0, 1]
and x € X. The corresponding posterior g(z, x) = (1 — ap(t, x)) f (x) decreases uniformly just
like the levelling strategy but at a slower speed. The fractional strategy a p, however, no longer
levels the posterior, and explores any given alternative only with probability a by ¢+ = 1. Figure 6
demonstrates the distinction of p and ap.

In the unique equilibrium with asymmetric capacity, the strong player plays the levelling
strategy p and the weak player plays the fractional strategy a p. To develop an intuition for this
candidate equilibrium, we explain how it is related to the unique equilibrium in the symmetric
case.

First, although the two players differ in their capacity for exploration, they randomize over
the same expanding set of alternatives. This results from the pre-emption motive: if the weak
player concentrates on a smaller set of alternatives, the strong player can pre-empt him by
exploring this set more intensively. Consequently, the weak player cannot explore the same set
of alternatives as intensively as the strong player. In the candidate equilibrium, the weak player
never explores any alternative with probability more than a, although a priori player 2 can choose
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to explore a subset of them with probability greater than a..'* Therefore, the pre-emption motive
drives the weak player to conduct extensive, but not intensive, explorations.

Second, unlike the symmetric case, the asymmetric capacity drives a wedge between the
myopic payoff and the dynamic option value of exploration for the strong player. Although the
weak player cannot equalize the posterior faced by the strong player over the common support
as shown in Figure 6, the induced posterior declines uniformly at a constant rate by the con-
struction of a p. The equal option values make the strong player’s levelling strategy dynamically
optimal, but not myopically optimal. Nevertheless, the strong player’s levelling strategy p and
its induced levelling posterior make the weaker player’s extensive exploration both myopically
and dynamically optimal, as in the symmetric case. To summarize, the strong player’s strategy
is levelling but not greedy, while the weaker player’s strategy is greedy but not levelling.

Theorem 4. The profile of distributional strategies (p, o.p) gives the unique Nash equilibrium
outcome of the game with asymmetric players. Player 1’s equilibrium payoff is (1 — %a)n and
player 2’s equilibrium payoff is %an.

‘We note that the strong player is able to explore all alternatives at t = 1, so the weak player’s
exploration activities afterward are irrelevant. Therefore, the equilibrium outcome is uniquely
pinned down by (p, ap) even if we want to assume that the weak player continues to search
aftert = 1.

The strong player enjoys a disproportionately larger share of the payoff, (2 — a) : a than
of the capacity, 1 : a. It is as if player 1 monopolizes a fraction 1 — a of the total surplus and
then splits the remaining fraction evenly with player 2. For example, if the strong player is
twice as fast as the weak player o = % the payoff share is (%, }t). The strong player’s payoff
is three times as much as the weak player’s. By comparison, in a three-player game in which
the more resourceful player is split into two equal selves, the payoff share will be (%, _%, _%) in
the symmetric three-player equilibrium (see Supplementary Appendix for the extension). The
excess payoff of player 1 beyond the sum of her two selves is due to the pooled information of
the two: knowing which alternatives have been explored by herself, player 1 does better as one
big player than as an ensemble of smaller selves who may duplicate each other’s explorations.

The connection between the asymmetric case and the symmetric case is as follows. For every
strategy p3 of player 2, define p, := pj /a. It is easy to verify that p, : T x X — [0, 1/a] sat-
isfies the four conditions of Definition 2. It differs from a distributional strategy in its codomain
[0, 1/a] instead of [0, 1]. We shall call p, : T x X — [0, 1/a] a normalized strategy. Players’
payoffs from the strategy profile (p1, p5) can be rewritten as payofts from (p1, p,) as follows:

ui(p1, p5) =1 —a)x + aui(p1, p2); (10

uz(p3, p1) = auz(pa, p1)- 1

Therefore, the payoff functions under asymmetric capacity are increasing affine transformations
of those with a normalized strategy of player 2. Thus, the game with asymmetric capacity is
strategically equivalent to the game with a normalized strategy, and the existence and unique-
ness of the Nash equilibrium in the game with asymmetric players will follow from the existence
and uniqueness in the game with normalized strategies. But the latter game is not quite the same

14. If we model each alternative as a Poisson process with the arrival rate controlled by resource allocated to the
alternative as in Supplementary Appendix, the weak player would cover as many alternatives as the strong player, but
would spend less of the resources on each alternative.
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as the symmetric game because of the codomain of the normalized strategy p»; that is, it is not a
priori clear that p,(1, -) = 1 in equilibrium. This gap is closed using the following proof strategy.
We decompose the maximization over normalized strategies into two components: the (normal-
ized) probability of exploration by the end of the game p,(1, -), and the dynamic implementation
of the exploration given this probability. We show that, for any probability of exploration, a
generalized levelling strategy is optimal for player 2, and his payoff is uniquely maximized at
p2(1,-) = 1 given the levelling strategy.

4.2.2. Discovery time. We now investigate how equilibrium exploration depends on the
asymmetry in capacity and show that the asymmetry speeds up the process of discovery. We
fix the total capacity to 2 (as in the symmetric case), and vary the asymmetry between the two
players. Formally, let y € [1, 2) and consider the strategic exploration game in which the strong
player has capacity y and the weak player has capacity 2 — y € (0, 1].

We compute the distribution of discovery time in the unique equilibrium under asymmetric
capacity. Applying a change of variables in Theorem 4, we know that the strong player plays
p1(t,x) = p(yt, x), which levels the posterior g(yt), and the weak player plays p, (¢, x) =
1%7 p(yt, x), which does not level the posterior. For t > 1/y, the strong player has exhausted
all alternatives so the probability of discovery by tis P, (t) = =. Fort € [0, 1/y ], the probability
of discovery by ¢ is given by

P, (1) = /X (fx) =8y D)) Y poyzzpdx + (2 —p)tg(y o).

The two terms correspond to a hypothetical sequential exploration. The first term is the proba-
bility of discovery by the strong player if she were to level the posterior before the weak player
explored anything. The second term is the probability of discovery by the weak player if he were
to expend his cumulative capacity (2 — y )¢ on the levelled posterior.

Because the strong player always levels the posterior with all her capacity, the remaining
capacity of the weak player replicates some of her explorations. As the strong player enjoys a
larger share of capacity, there is less duplication and thus a faster discovery time. This property
is illustrated in Figure 7 and formally established in Theorem 5.

Theorem 5. The distribution of discovery time is decreasing in y in the first-order stochastic
dominance sense.

As the strong player controls almost the total capacity, the duplication effect vanishes but
the equilibrium discovery remains discontinuously slower than the coordinated exploration
(Figure 7) due to the pre-emption motive. To avoid pre-emption by the weak player, the strong
player must randomize exploration according to the levelling strategy even as y — 2. The ran-
domization prevents her from prioritizing the most promising alternatives, either a priori or a
posteriori, and thus slows down discovery compared to the fastest, coordinated exploration.'”

4.2.3. Endogenous capacities. The exact characterization of equilibrium payoffs in
Theorem 4 facilitates the study of capacity investment in an augmented game. Suppose that
player i can choose a capacity a; at a constant marginal cost ¢; before entering the strategic
exploration game, where player 2 faces a higher marginal cost ¢; > ¢; > 0. It follows from

15. Nonetheless, there is no discontinuity in payoffs. Indeed, when the strong player controls the total capac-
ity, all exploration strategies are optimal. As in many known results, discontinuity is often due to different orders of
convergence. In our analysis, we take the limit of asymmetry in the model that is the patient, no-discounting limit.
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Distribution of discovery time for the coordinated exploration and equilibria with different divisions of capacity

Theorem 4 that, for a; > a,, the two players’ equilibrium payoffs from the strategic explo-
ration game (before paying the cost) are (1 — %a)n and %an, respectively, where a := ay/a;.
Therefore, the equilibrium capacities (a7, a3) satisfy the following conditions:

an

*
@) € argmax,, - (1 — 2—) T —cioq,
aq

* a2
a, € argmaxazzo — | T — C0).
20!1

It can be shown that a* = ¢1/c;. Player 1 earns a strictly positive net profit (1 — ¢ /c;)7, while
player 2 dissipates his return from exploration through capacity investment. In the limit of ¢; =
¢z > 0, both players’ net payoffs are zero.

If the cost of investment is ¢; (@;)?, where ¢, > ¢; > 0, then a similar line of argument shows
that o™ = (cl/cz)%. The two players’ net payoffs are (1 — %(cl/cz)%)n > 0 and i(cl/cz)%n >
0, respectively. In the limit of ¢; = ¢, > 0, both players’ net payoffs are %n > 0.

Research personnel is a major component of exploration capacity in applications such as the
technology race between superpowers, and migration of research personnel is one way in which
capacity can change. Although the number of researchers can be assumed to be relatively stable,
researchers migrate from one country to the other. To this end, suppose that the total exploration
capacity is 1 and the weak player has a fraction 6 < % of the total capacity. By Theorem 4, the

weak player’s equilibrium payoff share is %1%. The elasticity of his payoff share with respect to

his capacity share is ﬁ > 2. Thus, migration always has an outsized impact on the weak player.
For the strong player, the elasticity of her payoff share with respect to her own capacity share
1—-0is m, and unit elasticity is attained when her capacity share is % Hence, although

the strong player always benefits from the migration of researchers, the scale depends on her
existing capacity.
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5. CONCLUSION

This paper studies the pre-emption—prioritization trade-off in a strategic exploration game. The
model features a special multiple-armed bandit problem with correlated arms and competing
players. We achieve tractability by formulating a continuous-time model with a continuum of
alternatives, where randomization is described by the evolution of cumulative distributions of
outcomes.

We show that mutually greedy competition eliminates the possibility of coordinated explo-
rations. This is the case even when the reward from the good alternative is growing (Section
I of Supplementary Appendix). However, if there is a deadline to the game, mutually greedy
competition can create the condition for coordination explorations. If there are many players,
equilibrium coordination can happen across coalitions of players (Section II of Supplementary
Appendix). The analysis can also be extended to the case where each alternative is modelled by
a Poisson process (Section III of Supplementary Appendix). While the empirical relevance of
our theoretical predictions awaits further investigation, the model and the analytical tools from
this paper will be useful for studying other applications.

APPENDIX
A. Proofs
A.1. Proof of Lemma I

Proof. Since g is a constant function on ¢ > 1, it suffices to prove the lemma on ¢ € [0, 1].
For y € [0, sup f1], let

h(y) IZ/X (1 — %}C)) l{f(x)zy}(x)dx. (A.1)

For x € X, the integrand (1 — ﬁ)l{f(x)zy}(x) is decreasing in y and strictly so for f(x) >
y, which has positive measure for y < sup f. Thus, A is strictly decreasing. In addition, the
integrand is continuous, and therefore 4 is continuous by the dominated convergence theorem.
The convexity of /4 also follows from that of the integrand.

The function 4 is continuous and strictly decreasing with 2(0) = 1 and A (sup f) = 0. There-
fore, there exists a unique, continuous, and strictly decreasing function g = h~! that solves
equation (5). Since £ is strictly decreasing, its inverse g is also convex. The absolute continuity
of g follows from its continuity and convexity.

We verify that p is a well-defined distributional strategy. It is straightforward to check that
p satisfies the initial condition. The function (x, y) — (1 — %)1{ f(x)=y} 1S continuous and
decreasing in y. Together with the continuity and monotonicity of g, this property implies that
p is continuous in ¢ and satisfies the monotonicity and right-continuity condition. The function
is also measurable in x and hence p satisfies the measurability condition. Finally, p respects the
capacity constraint by equation (5). O

A.2. Auxiliary game

To prove the theorems that characterize equilibria in the benchmark model and its extensions, we
first develop some general tools. We define an auxiliary game called the timing game in which
players’ strategy is the timing of exploration, but not the probability of exploration by the end of
the game.
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A.2.1. The timing game and levelling strategies. Consider two functions Ap; : X —
[0, 17and Ap, : X — [0, 1/a] for some a € (0, 1] such that [, Ap;dx =T where T < 1.'° We
interpret Ap;(x) as the probability that x is explored before the deadline. To accommodate the
asymmetric case, we allow the probability of exploration of the weak player to have an enlarged
domain.

Definition 4 (Timing game). For 7 < 1 and (Ap;, Ap»), the timing game is a game in which
player 1 plays a distributional strategy, player 2 plays a normalized strategy subject to terminal
condition p; (T, -) = Ap;(-), and the payoff function is given by equation (1).

The timing game is a constant-sum game since the sum of payoffs depends only on the
probabilities of exploration.

For any timing game, we define Appi, := min{Ap;, Apy} and t* := fx Apmindx € [0, T].
We define the levelling strategy in a timing game, which generalizes the levelling strategy for
the benchmark case T = 1 and Ap;, Ap, = 1.

Definition 5 (Levelling strategy in timing game). Function g : [0, t*] — [0, sup, f Apmin] is the
levelling function if

2 )
/ (Apmm(x) ) {f (X) Apmin ()= (1)} (x)dx =t forallt e [O,l ]
X Fx)
Function p : [0, t*] x X — [0, 1] is the levelling strategy if

8(1)
JF(x)

Lemma 2. The levelling function g exists and is unique, absolutely continuous, convex, and
strictly decreasing. The levelling strategy p is a well-defined strategy on [0, t*].

p(t,x) = (Apmm(x) ) ) Apmn(0)=3(0) (x)  forallz € [0, and x € X.

Proof. If Apmin = 0, t* = 0 so the unique g(0) = 0 satisfies the lemma trivially and so does the
levelling strategy p (0, -) = 0. Otherwise, Appmin, #Z 0so t* > 0. For y € [0, sup f Apmin], let

h(y) iZ/X(APmin(X) I )) 1 £ () Apmin(x)= v} (X)d X (A2)

For x € X, the integrand (Apmin(x) — ﬁ)l{f(xmpm(x)zy}(x) is decreasing in y and strictly
so for f(x)Apmin(x) > y, which has positive measure for y < sup f Apmin. Thus, £ is strictly
decreasing. In addition, the integrand is continuous, and therefore 4 is continuous by the
dominated convergence theorem. The convexity of /4 also follows from that of the integrand.

The function 4 is continuous and strictly decreasing with 4(0) = ¢* and A(sup f Apmin) =
0. Therefore, there exists a unique, continuous, and strictly decreasing function g := h~! that
solves equation (5). Since h is strictly decreasing, its inverse g is also convex. The absolute
continuity of g follows from its continuity and convexity.

We verify that p is a well-defined distributional strategy. It is straightforward to check that
p satisfies the initial condition. The function (x, y) > (Apmin(x) — ﬁ)l{ £() Apmin () >y} 1S CON-
tinuous and decreasing in y. Together with the continuity and monotonicity of g, this property
implies that p is continuous in ¢ and satisfies the monotonicity and right-continuity condition.

16. This T is not the same as the deadline of the original strategic exploration game, which can be strictly larger
than 1.
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The function is also measurable in x and hence p satisfies the measurability condition. Finally,
p respects the capacity constraint by the definition of g in Definition 5. O

We extend g to (t*, T] at value 0. With a slight abuse of notation, we call a strategy
p 10, T] x X — [0, 1] levelling if p|jo+xx = p. It is obvious that a ¢-continuous levelling
strategy exists.

A.2.2. Equilibria of timing game. We show that the equilibria of the timing game are the
levelling strategy profiles.

Theorem 6. Strategy profile (p1, p2) is an equilibrium of the timing game if and only if py and
p2 are both levelling.

Overview. A levelling strategy profile is a Nash equilibrium of the timing game because
it maximizes the myopic payoff, just as in the benchmark model. For the timing game, we
generalize the posterior distribution as g; (¢, x) := f(x)(Apmin(x) — pi(t, x)).

All equilibria are levelling strategy profiles due to three lemmas. Lemma 3 states that, in
equilibrium over [0, t*], each player can search only over the set of alternatives, which we call
the upper contour set of f Apmin, that the levelling strategy randomizes over. Otherwise, his
payoff against the levelling strategy will be lower than his equilibrium payoff.

Lemma 4 is key to Theorem 6. It states that, in equilibrium, the posterior declines fastest on
the upper contour set. If instead the posterior declined slower in some subset of the upper contour
set than in another subset for a period of time, the opponent could devise a modified levelling
strategy that searches the former in place of the latter just before the period, and vice versa just
after the period. The modification generalizes the “one-step-ahead” strategy in Section 3. The
opponent’s strategy would then pre-empt the player’s strategy and yield a higher payoff than the
levelling strategy, which cannot be true in equilibrium in a constant-sum game.

Lemma 4 has two useful implications. Corollary 1 establishes the t-continuity of the equi-
librium strategy on [0, t*]. If the posterior were discontinuous over some alternatives at some
point, the posterior of all alternatives in the upper contour set would have to decline discontin-
uously. This would violate the capacity constraint. By applying Lemma 4 twice, we then obtain
Corollary 2: the decrease in the posterior must be equal across the upper contour set.

Lemma 5 computes the equilibrium posterior within the upper contour set. As the decrease
in the posterior is constant across the set of alternatives according to Corollary 2, the posterior is
pinned down by the capacity constraint and the initial condition, which is exactly the levelling
posterior defined by the levelling strategy.

Proof of Theorem 6. The payoff function can be written as

u; (pi, p—i)
1
= / / S = p_i)dipidx + 5/ f Z Api Arp_idx
xJT X teD,
1
- / S~ Apmin) Apidx + / / F Apuin = p-)dypidx + 5 / £ ApiApids
X XJT X

teD,

< / f(l - Apmin)Apidx +/ / f (Apmin - P:,) dtpidx;
X XJT
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where the inequality follows from an identity of Stieltjes integral

/p:,»dzpi + Z Apidip-i = / p—idipi.
T

teD, T

Note that the integrand in the second utility term motivates the more general definition of the
posterior distribution.

We verify that any levelling strategy profile (p;, py) is a Nash equilibrium. Suppose that
p—i is levelling. Over [0, #*], it is t-continuous and hence g~, = g_;. The posterior g_; is
maximized at value g on H. Therefore, the levelling strategy p;, which searches only on H,
attains the maximum myopic payoff. Over (¢*, T'], the posterior is maximized at value 0 on
{Apmin = Ap—;}. Therefore, the levelling strategy p;, which searches only on {Apmin < Ap;},
attains the maximum myopic payoff.

Formally, for x € X, let x, € A(T) be the Lebesgue—Stieltjes measure induced by p; (-, x).
Then «, ([0, ¢]) = p; (¢, x). Forany t € T, we have

/ %, ([0, t])dx :/ pi(t,x)dx =t, (A3)
X X

where the last equality follows from the capacity constraint of the distributional strategy p;.
Thus, |, « ¥xdx € A(T) is the Lebesgue measure by the Caratheodory extension theorem. For
any p;, the payoff from [0, #*] is bounded by that of p;:

| [ senapars [ [ aoapa
X J[0,t%] X J[0,r%]
2// g(t)dr,dx
X J[0,t*]
:/ g(t)d (/ dex)
[0,7%] X
= / g()dt
[0,1*]

=// g(t)d,pidx, (A4)
x J10,]

where the first equality is by the definition of Lebesgue—Stieltjes integration and the second
equality follows from Fubini’s theorem. The payoff from (¢*, T'] follows a similar inequality
from the same argument.

Since p; attains the maximum myopic payoff for all ¢ € [0, T], it is a best response to p_;.
The equilibrium payoff is

i (pis ps) = / F(Apr — Apmn) Apidix + / / gd pdx
X x J10,r]
1
_ / F0~ Apuia) Apidx + 3 / F(Apmin)d
X X
1
_ / f ((1 — Apmin)Ap; + 5(Apmm)z) dx. (A5)
X

All equilibria must give the same payoffs because the timing game is a constant-sum game.
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For t € [0, t*), denote H(?) :={x € X : f(x)Apmin > g(t)} as the upper contour set of f.
For t = t*, define H (t*) := limyy,« H (s). We denote its complement by HE (1) :== X\H(¢). O

Lemma 3. Let (p1, p2) be a Nash equilibrium. Then, for all ty € [0,t*] and i € {1,2},
pi(to, x) = 0 for x € HE (ty) almost everywhere.

Proof. The statement for #y = 0 follows from the initial condition. Suppose that there exist a
time 1y € (0, t*] and a positive-measure set A C H (tp) such that p; (o, x) > 0 for all x € A.
Then the payoff of player i against a -continuous levelling strategy of player —i is strictly below
the equilibrium payoft:

ui(pi, p—i) — ui(pi, p—i)

//g i(t, x)d; p;i(t, x)dx—//g(t x)d,; p; (t, x)dx
— [ [ssenapenar— [ [ a0dpe.ndx

= /A/[O,zo] (g-i(1,x) = §(1)) dipi(t, x)dx
< 0.

The second equality is due to the Fubini argument in equation (A.4). The weak inequality fol-
lows from g_;(¢,x) < g(¢) forallt € T and x € X, and the strict one from the supposition that
g_i(t,x) < g(t) forallt <1y and p;(ty, x) > Oforall x € A. O

Fori € {1,2},t € T,and x € X, denote g; (™, x) := limyy, g (s, X).

Lemma 4. Let (py, p2) be a Nash equilibrium. For0 <ty <t; <t, <t*andi € {1,2},

8i(tr, xa) — gi(t; , xa) = gi(t2, xp) — &i(t; , xB)

for xq € X and xg € H (ty) almost everywhere.

Proof. For x4 € HC(t;) almost everywhere, Lemma 3 implies g; (f2, x4) — gi(t; , x4) = 0 and
hence the inequality follows from the monotonicity condition.

Suppose that there exist positive-measure sets A C H(#;) and B C H(f) such that
8i(tr, xa) — 8i(t; , x4) < gi(t2,xp) — gi(t; , xp) forallx, € A, xp € B.Note that f Appin > 0
on A U B. Without loss of generality, assume that g;(#,, xA) gi (tl_ ,Xa) <a < gi(t,xp) —
gi(t;, xp) for some a < 0, essinfaup f Apmin > 0, and fA fB > 0; if this is not the case,
replace the sets by some positive-measure subsets. Fix € € (O 1). We proceed in two steps.

Step I: A modified levelling strategy.

Lete := (t; —tp)e > 0.Lete; > Obeasolutionto g(t; — €1) — g(t)) = g(t) — g(t> + €2).
For sufficiently small ¢, it exists and is unique by the continuity and monotonicity of g. In
addition, 0 < | — € and 1, + €, < t*. The left- and right-differentiability of g from Lemma 2
imply that €,0, g(f) = €20,"§(t2) + 0(€). Let Ayt := [t; — €1, 1] and Asf = [, 1 + €2].

Consider the following modified levelling strategy p_;, which, compared to the levelling
strategy, explores A at the expense of B over A ¢, and vice versa over Ajt.

Ift € Aqyt, let

(x) = plt, x)—l—w, if x € A;
B p(t — €1, x), if x € B.
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Ift € (11, 1), let

plt, x) + W, ifx € A;
p(t, x) — 8=e)=g) = if » ¢ B.

ﬁ*i(t’ x) = {
fx)
Ift € Ast, let

p(tr + €, x), ifx e A;
p_(t,x) _ g(tl_;l(i;g(tl) + g(’?&f(t)’ ifx € B.

ﬁ—i(tax) = [

Ifxg AUBort ¢ [t —e,tp + 6], let p_;i(t, x) := p(t, x).

Note that the modified strategy p_; is a strategy for player —i, and that, in particular, it
satisfies the capacity constraint because [, % = /3 % It can be verified to be ¢-continuous.

Step 2: Payoffs from the modified levelling strategy.

Observe that the difference in strategies is d;p_; — d;p = —%d,g onAand d,p_; —dip =
lfd,g on B over At, and vice versa over A,t. It is zero otherwise. The utility difference of the
modified levelling strategy compared to the levelling strategy, u_; (5_;, pi) — u—i(p_i, pi), is

1 / _ 1 _ 1 _ 1 _
- [ = gid;gdx +/ —/ gid;gdx +/ —/ gidigdx —/ —/ gid;gdx.
/A Flat PN A fSan P

(A.6)
For the first term in equation (A.6), we perform a change of variable to get

1
_/Af(x) X gi(t,x)dg(t, x)dx

1
= —¢ gi(t1 —s€1)0, gty — sep)dsdx
/A Fx) Jion !

1
= —615,_§(l1)A mgi(lf,x)dx +o(e),

where the second equality is due to the dominated convergence theorem. The equation states
that, over the short time interval A;¢, both g; and 6, g_; can be taken as constants with respect
to time. The same can be applied to the other three terms.

The payoff difference u_; (p_;, pi) — u_;(p—;, p;) can thus be written as

1 1 )
) (/A Fn S0 _/B f(x)g"(’l_”‘)d’“) €15, 8(n)
g Y ‘-

y (/A Finy 0 /B FG) g‘(tz’x)dx) €0, (1) + 0(e)

1 1
= (—/A 7@ (gi(12, %) — gi (17, x)) dx +/B 7@ (8i (12, %) — i1y, %) dx)
x 0 g(h)er + o(e).
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By supposition,
1 1
—/A o) (8i(r2, %) — gi (e, x)) der/B o) (8112, ) = i1, 1))

1 1
> _“/A o™ +”/B o
=x0.

Therefore, there exists € > 0 sufficiently small such that, against p;, the modified levelling strat-
egy p; yields a strictly higher payoff than levelling strategy does, which guarantees the maximin
payoff. O

The first corollary below establishes the t-continuity of the equilibrium strategy on [0, #*].
According to Lemma 4, the posterior decreases fastest on the upper contour set H. If the strategy
were discontinuous, the posterior for those alternatives would have to decline discontinuously,
which would violate the capacity constraint.

Corollary 1. In any Nash equilibrium, player i’s strategy p; is t-continuous on [0, t*].

Proof. The statement for t = 0 follows from the monotonicity and right-continuity condition,
and the statement for ¢ = r* is without loss of generality because the set {x € X : p; (t*, x) —
pi((t*)~, x) > 0} is null. It is trivial for x € HC (¢) because p; (¢, x) = 0 by Lemma 3.

Suppose there exists positive-measure set B C X such that p;, or equivalently g;, is not #-
continuous on (0, *) x B. Without loss of generality, there exist b < 0 and € € (0, t*) such that
B C H(e¢) and, for all x € B, there exists ¢, € (e, t*) satisfying

gitx,x) — gi(t,,x) <b.

The compactness of [€, t*] implies that, for any 6 > 0, there exist ¢, ts € (e, t*), where ty < ts
and 75—t s < 0, and a positive-measure subset Bs C B such that

gi(ts, x) — gi(ty,x) < b.

Lemma 4 implies that p; (t5, x) — p;(t;, x) = —b/f (x) forall x € H (), a positive-measure set.
The capacity constraint implies that

0= / pi(ts, x) — pi(ts, x)dx > / pi(ts, x) — pi(ty, x)dx > / — " dx,
X H(e) Hee fx)

which yields a contradiction as ¢ | 0. O
Corollary 2. In any Nash equilibrium, for 0 < t; < t, < t*,
gi(t2, xa) — &i(t1, x4) = gi(t2, xp) — gi(t1, xp)

for x4, xg € H(t)) almost everywhere.

Proof. Assume thatt, < t*. Foranyt € (t1, 1), H(t;) C H(t). Lemma 4 thus gives the equality

gi(tza xA) - gi(tpr) = gi(IZa xB) - gi(taxB)
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for x4, xg € H(t;) almost everywhere. The statement is obtained by taking a countable sequence
t 1 t1, noting that g; is t-continuous by Corollary 1. The boundary case #, = ¢* follows similarly
by taking a countable sequence , 1 *. U

Lemma 5. In any Nash equilibrium, fori € {1,2} andt € [0, t*], gi(¢t,x) = g(t) for x € H(t)
almost everywhere.

Proof. Once the statement is proven for ¢ € (0, t*], it extends to the endpoint t = 0 because of
the monotonicity and right-continuity condition.

For t € (0, t*], define g;(¢) := SUP e p (s 8i (t,x) — gi(t*, x). The t-continuity of g; on
[0, t*] x X implies that g;(¢*) = 0. Corollary 2 with #, = #* implies that

gi(t,x) —gi(t*, x) = g(t) (A7)

for all x € H(t) almost everywhere.
We now derive the right-derivative 9,7 g;. For 0 < #; < 1, < 1, the capacity constraint yields

fh—1 =/ pi(t2,x)—ﬂi(l1,x)dx+/ pi(tz, x) — pi(t1, x)dx
H(ty) H(t)\H (t1)

) i dx gi(l‘z,x) _gi(tla-x)
= — i — &i - ¢
(8:(02) = &) ) S () /H(tz)\H(tl) F ) )
dx dx
s . A8
< — (&) — &i(n)) (/H(m f(x) +/H(tz)\H(t1) f(x)) Y

The inequality is due to Lemma 4. Rearranging terms, we have

gi(n) — & (1) ( dx dx )“ 2()
0 - - - - b
= h—th = /H(z]) fx) * »/H(tz)\H(tl) fx) = |H (1) -

where the third inequality is due to the definition of H. The function g; is Lipschitz and thus
absolutely continuous on (0, 1).

Take 1, | ;. Since H(f;) | H(#) in the set-inclusion sense, the dominated convergence
theorem states that | H (t;)\ H (t;)| | 0. The second term in equation (A.8) is dominated by

/ lgi(t2, x) — gi(tl’x)|dx - 18:(2) — & (t)| |H(22)\H (21)] = oty — 11).
H(0)\H (1)

f) - g (3(n +1)
The right-derivative of g; is thus given by

gi(t) — &) _/ dx
B H(1) f(x)

07 g:() = lim
t gl( 1) it t— 1

Since g also satisfies the first two lemmas and the two corollaries, an analogous calculation
shows that

I dx — ats.
a0 = [ L5 =aEw.

Therefore, g = g; + C for some constant C € R. The boundary condition at t =¢* is
lim;y; i (¢) = g(t*) = 0, which implies that C = 0.
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On H(t*) ={x € X : Apmin(x) > 0} almost surely, the other boundary condition at
t =g "(f(x) Apmin(x)) < t* shows that

gi(t*,x) = 1}31 8i(s,x) — g(t,x) = f(X)Apmin(x) — f(x) Apmin(x) = 0.
This establishes the desired result. ]

Lemmas 3 and 5 imply that, for all r € [0, t*], g; (¢, -) = g(¢, -) almost everywhere. There
exists a full measure set over which the equality holds for all ¢ € [0, 1] N Q. Theorem 6 then
follows from the monotonicity and right-continuity condition.

A.3. Proof of Theorem 1

It is sufficient to consider strategies and deviations p that satisfy p(1, x) = 1 forall x € X. These
strategies explore all alternatives for sure and do so at full capacity by ¢ = 1. For any strategy p;
that does not satisfy the restriction, there exist multiple strategies p;’s that satisfy it with p; > p;
by exploring the alternatives with higher probability and/or earlier. Since the payoff is monotonic
in p;, we have u; (p;, p—;) > u;(p;, p—i) so it is sufficient to consider these deviations only.

If u;i(p}, p—i) > ui(pi, p—i), then p; is a profitable deviation for i so (p;, p—;) cannot be
an equilibrium. Otherwise, p! does not change player i’s payoff u; (p;, p_;) = u;(p;, p—i). The
added/expedited explorations by p; do not lead to any additional probability of discovery so p!
does not change opponent —i’s payoff either. Formally, the sum of the changes in the payoff
equals the change in the probability of discovery

(i(pis p—i) = wi(pi, p-0)) + (u—i(pjs p—i) = u_i(pi, p-))
= [ A= i) (i) = 7 0)

from integration by parts for the Lebesgue—Stieltjes integral. Since p’ > p, the change in —i’s
payoff is non-positive and the change in total probability is nonnegative. Zero change in i’s pay-
off thus implies zero change in —i’s payoff. If (p;, p—;) is an equilibrium, then so is (p;, p—;).
The multiplicity of p; will then imply the multiplicity of equilibria within the restricted class
of strategies. By contraposition, uniqueness within this class of strategy profiles will imply
uniqueness for all profiles.

For this class, the strategic exploration game is a timing game with 7 =1, Ap; = Ap, =1,
and a = 1. The equilibria are levelling strategy profiles by Theorem 6. Since t* = 1, there is no
degeneracy on (t*, 1], so the levelling equilibrium is unique.

A.4. Proof of Theorem 2
We first show a technical lemma.

Lemma 6. Let vy and v, be continuous, strictly decreasing, and convex functions from [0, 1] to
R, with v1(1) = v,(1) = 0 and fol v1(s)ds = fol vy(s)ds. Let Ufl and v;l be their respective
inverses, with the extension of value 0 outside of their domains. Then fot v1(s)ds > fot vy (s)ds
forallt € [0, 1] if and only iffoZ vfl(y)dy < foz v;l(y)dyfor all z e R,

Proof. We prove the inequality fot v1(s)ds < fot vy (s)ds for all t € T under the hypothesis that
Jy 07 )y = [ 05" (v)dy for all z € R, The converse is analogous.
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Since v,,, m € {1,2}, is strictly decreasing and convex, it has a strictly negative derivative
almost everywhere on (0, 1). Performing the integration by parts and then a change of variables,
we have

/ v (s)ds = tv, (1) —/ sdv, (s) = to, () + /00 v,;l(y)dy. (A.9)
0 0 O (1)

Taking t = 1 (and hence v,,(¢) = 0), we obtain

1 e’}
/ Om(s)ds = / o ()dy. (A.10)
0 0

Equations (A.9) and (A.10) combine to yield

t 1 o (1)
/ 0 (8)ds = tv, (1) +/ O (s)ds —/ v,;l (y)dy. (A.11)
0 0 0

Thus, the desired inequality holds on the set S :={t € T : v1(t) = v,(¢)} because it follows
from equation (A.11) that

t 01 (1)
/ (01(5) — v2(s))ds = / (03" () — o7 ())dy < 0.
0 0

The set S is closed by the continuity of v; and v,, and it contains ¢ = 1 by assumption. The
inequality holds trivially at # = 0. Denote S* := S U {0}.

For any ¢ ¢ S*, define two endpoints 7 := max{s € $* : s < r}and7 := min{s € $*: s > r}.
They are well defined because S* is closed. The difference v;(s) — v2(s) has the same sign over
(¢, ) by continuity, so its integral fot/ (v1(s) — v2(s))ds is monotonic over the same interval.
As the desired inequality holds at the endpoints, it holds over the entire interval, and at ¢ in
particular. O

Proof of Theorem 2. Let g, be the equilibrium levelling function for prior f, and h, be its
inverse, m € {1, 2}, where

hw(y) = /X (1 - %) 11, 0=y (X)dx. (A.12)

As the probability of simultaneous discovery is zero, the flow probabilities of discovery are 2g;
and 2g,, respectively. The desired conclusion is fot 2g1(s)ds > fot 2g,(s)ds for all t € Y. Since
g1 and g satisfy the assumptions of Lemma 6, it suffices to show that their inverses satisfy
Jo i()dy < [y ha(y)dy Vz € Ry. By equation (A.12), the Fubini theorem, and then a change
of variables, the integral can be written as

z z y
i (y)dy = / / (1—— 17,01 (2 y)dxdy
/0 0 e\ ful)) T
= 1_ m(X)>y X,y y X

00 pz y 1

= 1— =) 1> ,v)dydio f~

/0 /0 ( w) (w=y}(w, y)dydi. o f,
oo

:/ I(u), Z)d}, o m_l,
0
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where the integrand is given by

I(w,z) = [i
2

The result follows because (-, z) is an increasing concave function and 4 o fl_l is a mean-
preserving spread of 4 o f{l. O

A.5. Proof of Theorem 3

We first define the set of transition times as
g(1)
o(T) := Ite[O,T]:/—l =sndx > 2(T —1t)
f(x) fx)=g()

Lemma 7. 6(T) is a non-degenerate closed interval containing T. Moreover, min6(T) — 1 as
T — 1

Proof. By the definition of g, time ¢ belongs to #(T) if and only if

/1f<x)zg<z)dx > 2T —1.

The left-hand side is right contmuous and increasing in ¢ because g is continuous and decreasing.
It attains A{f > g(T)} =T + f o 1 4(=zrydx > T att = T. The right-hand side is contin-
uous and decreasing in ¢ and attains 7 at t = T. Therefore, 6 is a non-degenerate closed interval
containing 7.

Moreover, for any fixed ¢ € (0, 1), the left-hand side is strictly less than one but the right-hand
side is strictly larger than one for sufficiently large 7. The second statement then follows. O

Proof of Theorem 3. We define the lowest transition required by Theorem 3 as

g(t)

T*(T) := minO(T) = min [t e[0,7T]: 700

< Lrwzgndx = 2(T — t)]

Therefore, (T) = [T*(T), T] by Lemma 7.
We first show the second part of the theorem. For t* € [T*, T], define

. Y g(t")
xp := inf x/:/ = Ll iyszendx =T —t* ¢ ;
1 [ 0 f( ) fx)=g(t*) ]

X2 := sup {x/ : /1 () 1050 dx = t*] .
f(x)

We have x; < x; by the definition of 7*. Recall that H(¢) = {x : f(x) > g(¢)} is the upper con-
tour set of g. We write X; := (0, x1) [ H(¢) and X, := (x2, 1) (] H(¢). Therefore, X; (| X, =
#.Fori =1,2and ¢ € (t*, T], define

pi(t x) — [p([* )C) + T t* (1 —p(t* X)) le (S Xi;
(@, x), if x € X;.
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It is straightforward to verify that p; is a well-defined distributional strategy. We write

5i(x) = pi(T’ x) - pi(t*a'x)'

By the definition of X;, if J;(x) > 0, then g(t*) = g_;(¢, x) for all r > ¢* and J_;(x) = 0.
Moreover, it is an equilibrium because both players maximize the myopic payoff.

We now show the first part of the theorem. We argue that such an equilibrium exists only if
t € [T*(T), T]. If the players compete during [0, r*] and coordinate during (¢*, T'] in an equi-
librium, the capacity constraint must be binding because, fori = 1,2 and ¢ € [0, T], there exists
some alternative with a positive myopic return. We then have

2T — 17) = / 51 ()L, oy 0dx + / 520V Ly, oy 0dx

< / 01(0) 1 fx)=g(dx + / 02()1 f(x)=z(ydx

t*

if(( ;161 =01 7(0=gandx + / e )152()6)>01f(X)>g(t*)dx
*

i(( ;lf(x)>g(t*)dx
where the equality follows from the binding capacity constraint, the first weak inequality holds
because in the coordination phase d; (x) > 0 implies that f (x) > g(¢*), the second weak inequal-
ity follows from the levelling strategy over [0, t*], and the last inequality holds because in the
coordination phase J;(x) > 0 implies that 5_; = 0. Therefore, t* > T*(T') by the definition of
T*(T).

We prove that all equilibria take the prescribed form using the timing game. For equilib-
rium (p1, p2), define Ap; := p (T, -) and Ap, := po(T, -). We first restrict attention to strategies
that exhaust the capacity [ Apidx = [ Aprdx = T. Consider the timing game with deadline 7,
(Ap1, Apy), and a = 1. Since the strategies are feasible in the timing game, they are not prof-
itable deviations in (p;, p2), which is thus an equilibrium of the timing game. Theorem 6 gives
the equilibrium payoff of the timing game as

1
u; =/ f (Api — ApminAp; + > (Apmin)z) dx, (A.13)
X

where Appmin := min{Ap;, Ap,}. The integrand is the utility from exploring x. It is C! and con-
cave in Ap; (x). The marginal utility f(x)(1 — Apmin(x)) is common among both players, and
decreasing in both Ap;(x) and Ap_; (x).

We show by contraposition that (Ap;, Ap,) is an equilibrium in a game in which the players
choose Ap; that exhausts the capacity and receive the timing-game payoff in equation (A.13).
Without loss of generality, suppose that player 1 has a profitable deviation Apj in this game. Let
p; be a strategy of player 1 corresponding to (Ap;, Apy). Since the timing game is a constant-
sum game, p; guarantees the maximin payoff in equation (A.13). Thus, p; is a profitable
deviation in the game with deadline 7, contradicting the equilibrium (p;, p»).

We obtain the equilibria of the game of Ap’s by computing the best response correspon-
dence. For fixed Ap_;, player i faces a concave maximization problem subject to the capacity
constraint fX Ap;dx = T. Therefore, for any equilibrium (p;, p;), there exists the shadow
value of capacity 4; > 0 such that the first-order condition holds: 1; = f(x)(1 — Apmin(x)) for
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Ap;(x) € (0, 1), and the complementary slackness conditions hold: 4; > f(x)(1 — Apmin(x)) if
Api =0,and Z; < f(x)(1 = Apmin(x)) if Ap;(x) = 1.
We show that the shadow value equalizes for the two players. [

Lemma 8. 1, = 4,.

Proof. Without loss of generality, suppose 1; > 1, > 0. For x € X such that f(x) < 4y, the
marginal payoff is strictly below 4; and hence Ap;(x) = 0. For x € X such that f(x) > 4, we
claim that Ap,(x) > Ap;(x). Suppose that Ap;(x) > Ap,(x). We have Ap,(x) > 0; otherwise,
the marginal utility is above the shadow cost for player 2: f(x) > 4; > 5. Since Ap;(x) >
Apr(x) > 0, the complementary slackness condition gives 41 < f(1 — Appmin) = 42, a con-
tradiction. Alternatives in {x : f(x) > A;} have a positive measure because player 1 explores
only this set. With Ap; =0 < Ap,on{x: f(x) < A;}and Ap; < Apon {x: f(x) > A}, the
capacity constraintis 7 = [}, Apjdx = ff>).l Apidx < ff>/h Aprdx < T,acontradiction. [J

Let A > 0 be the common shadow value.
Lemma 9. If f(x) < 4, then Api(x) = Apa(x) = 0. If f(x) = 4, 1 = f(x)(1 — Apmin(x)).

Proof. If f(x) < A, the marginal payoff is strictly less than the shadow value f(x)(1—
Apmin(x)) < f(x) < 4 and hence Ap;(x) = Apr(x) =0. If f(x) > 4, we show the equal-
ity by contraposition. Suppose A < f(1 — Apmin(x)). Then Api(x) = App(x) =1, but
then f(x)(1 — Apmin(x)) =0 < 1, a contradiction. Suppose 4 > f(x)(1 — Apmin(x)). Then
Api(x) = Apyr(x) = 0, but then f(x)(1 — Apmin(x)) = f(x) > 4, a contradiction. O

The equilibrium strategy profile of the game of Ap’s is then given by Theorem 6. Define
t* = f Apmindx € [0, T]. On [0, t*], the players level f Apmin = f — A. Since 1 is a constant,
the strategy is equivalent to levelling f itself. At t*, the posterior satisfies g(t*) = f(x)(1 —
pi(t*, %)) = F)(1 — Appin(x)) = 4 on {x : f(x) > 4}. For such x, p(t%, x) = p(t*, x) =
Apmin(x) implies p; (T, x) — p;(t*,x) =0 for at least one i. It follows that p;(T,x) —
pi(t*, x) > 0 implies p_;(T, x) — p_;(t*, x) = 0. Moreover, p;(T, x) — p;(t*, x) > 0 implies
g-i(t,x) = fx)(A = p_i(t, x)) = f(O)A = Apmin(x)) = 4 = (™).

Since we have verified that the equilibria of the game of Ap’s remain equilibria in the game
with deadline 7, it remains to rule out (p;, p;) in which some strategy does not exhaust the
capacity. Following the discussion in Appendix A.3, (p1, p2) is an equilibrium only if its full-
capacity version (p|, p5) is also an equilibrium that gives the same payoffs. However, in such
an equilibrium (p7, p}), the myopic payoff is strictly positive and, hence, no (p, p») gives the
same payoffs. The proof of Theorem 3 is completed.

A.6. Proof of Theorem 4

The idea of the proof of Theorem 4 is to normalize the strategy of the weak player to obtain a
timing game, and then maximize his payoff over the probability of exploration.

For every strategy p5 of player 2, define p, := pJ /a. Itis easy to verify that p : T x X —
[0, 1/a] satisfies the four conditions of Definition 2. It differs from a distributional strategy in its
codomain [0, 1/a] instead of [0, 1]. We shall call p, : T x X — [0, 1/a] a normalized strategy.
Players’ payoffs from the strategy profile (p;, p5) can be rewritten as payoffs from (p;, p») as
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follows:
un(pr, pf) = /x /T (1 — aps(t, x)) F()dypr (1, X)ddx

+ %/Xf(x) Z Aip(t, x)Arapo(t, x)dx

teD,

—(-a) /X /T FEdipr (1, x)dx
1— s d; ,x)d
+a/X/T( pa(t, X)) (Vs (1, x)dx
+%/Xf(x)zA,pl(t,x)A,pz(t,x)dx

teD,

= (1 —a)r + aui(p1, p2)- (A.14)

ur(pf, p1) = /X /T o (1= pr(t, %)) F)dupat, x)dx

+ %/Xf(x) > Api(t, 1) Aupa(t, x)dx

teD,
= auy(p2, p1). (A.15)

Therefore, the payoff functions under asymmetric capacity are increasing affine transformations
of the payoff functions with a normalized strategy of player 2. Thus, the game with asymmetric
capacity is strategically equivalent to the game with a normalized strategy.

We first argue that the candidate is a Nash equilibrium in the normalized game. The strong
player 1 has the same set of strategies in the normalized game as in the benchmark game. Since
the profile is a Nash equilibrium in the benchmark, she has no profitable deviation in the nor-
malized game. The weak player 2 has no profitable deviations by the myopic argument because
of the levelling posterior g;. Both players enjoy maximin payoff z /2.

We continue to show the uniqueness of the equilibrium. Let us consider strategies that
exhaust the capacity p;(1,-) = 1. Among those strategies, any equilibrium of the normalized
game is an equilibrium of the timing game with the corresponding normalized probability of
exploration py(1, ), thatis, a timing game with T = 1, Ap; = 1, Ap, = p»(1, -),and a € (0, 1].
Theorem 6 implies that the equilibria of this timing game are the levelling strategy profiles, and
the weak player’s equilibrium payoff is

. I .
uz(p1, p2) = / f ((1 —min{l, Ap2})Apy + 3 min{1, Apz}z) dx.
X
Consider the function of Ap,(x):
. L. 2
(1 —minfl, Ap2}) Apy + 5 min{l, Apa}”.

It is maximized on Ap,(x) € [1, 1/a]. If Ap, > 1 for a positive-measure set, the capacity con-
straint implies that Ap, < 1 for another positive-measure set, which yields a strictly lower
payoff. Therefore, the equilibrium payoff of the normalized game 7 /2 can only be achieved with
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Ap, = 1 almost everywhere with the corresponding levelling profile (p, p), which is unique
because t* = 1.

Since the equilibrium is unique among strategies that exhaust the capacity, it is also unique
among all normalized strategies following the discussion in Appendix A.3.

A.7. Proof of Theorem 5

It suffices to show that P, () is increasing in y for all € T'. By differentiating equation (5) with
respect to time, we obtain

—1
gt =— (/X f(x)_llif(X)>§(t)}dx) .

The Lipschitz term due to the changing domain of integration vanishes because 1 — 558 )) =0on
e X:flx) =g

As the levelling function g is absolutely continuous, the probability of discovery, P, (¢), is
absolutely continuous with respect to y, and for y -almost everywhere,

0y Py (t) = —18'(y f)/ L=z mdx —tg(yt) + 2 —y)*g' (y1)
X

! gy
— 1 xX)>a(y dx— —]_ >3 dX—(Z—y)t)
Jx £ p00250mdx (/x Je=ern x flr) Y0=E00)

(yt—Q2—=7)n)

S SO N pzg0mdx
. 2(y — 1)t?

Jx FOO =z mdx
2 09

where the third equality follows from equation (5).

A.8. Implementation of distributional strategy

We introduce a probability space (Q, F, P) to describe randomization. In addition, weak mea-
surability is used to accommodate continuous time and continuous space, and the Gelfand—Pettis
integral is used, which extends the Lebesgue integral to functional spaces.'”

Definition 6. A mixed strategy on a probability space (Q, F, P) is a function o : Q x T X
X — {0, 1} that satisfies the following conditions:

(1) Initial condition: o (w, 0, -) = 0 for all w € Q;

(2) Monotonicity and right-continuity: o (, -, x) is non-decreasing and right continuous for all
weQandx € X;

(3) Measurability: mapping x + o (-, ¢, x) € L?(Q) is weakly measurable for all z € T;

(4) Capacity constraint: fx (c(,t,x)—0(,s,x))dx <t — s forall intervals [s, ] C T, where
the integral is the Gelfand—Pettis integral.

17. See Talagrand (1984) for an exposition.
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The initial condition and the monotonicity and right-continuity condition are the realization-
by-realization generalizations of their counterparts in Definition 1 of pure strategies. The
measurability condition and the capacity constraint in Definition 6 for mixed strategies, how-
ever, are weaker than their counterparts. They must hold when averaged over any measurable
event in Q that has a positive probability under [P, but not necessarily at each w € Q. If Q is a
singleton, a mixed strategy reduces to a pure strategy as defined in Definition 1.

With realization @ € Q, an alternative x € X is explored at or before time ¢ € T if and only
if o (w, t, x) = 1, analogously to the pure strategy case. The stochastic time at which alternative
x is searched is a random variable on Q given by 7 (w, x) = min{z : ¢ (w, t, x) = 1}.

Theorem 7.

(1) For every mixed strategy o : Q x T x X — {0, 1} on a probability space (Q, F,P), the
Sfunction p, defined by p(t, x) == E[o (-, t,x)] fort € T and x € X, is a distributional strat-
egy that represents o; that is, the probability of an alternative x € X being explored by
t € T under o is p(t, x).

(2) For every distributional strategy p, there exists a probability space (Q, F, P) and a mixed
strategy o : Q x T x X — {0, 1} that implements p, that is, E[o (-, t, x)] = p(t, x) for all
teTandx € X.

Proof. The first part of Theorem 7 follows directly from the definitions of the weak measurabil-
ity and the weak integral, so its proof is omitted. We show the second part by construction. By
the Kolmogorov extension theorem, there exists a probability triple (2, F, P) in which random
variables r, ~ U (0, 1) are i.i.d. across x € X. Define candidate mixed strategy o (®, t, x) :=
L (@)<p@.0) (@, t, x). By construction, it satisfies the initial condition and the monotonicity and
right-continuity condition, and implements the search density.

Fix t € [0, 1]. We shall show that x — o (-, 1, x) € L?>(Q) is weak-integrable over the
Lebesgue measure with integral |, « P(t, x)dx. The dual space of L?(Q) is isomorphic to itself
by the Riesz representation theorem. Every element Z € L?(Q) operates on Y € L*(Q) via
ZY =E[ZY].

Since o (-, x,1) € {0, 1}, its variance is bounded by 1/4. The pairwise independence of
{o(-,t,x): x € X} implies that {o (-, 7, x) — p(t, x) : x € X} is an orthogonal set in L,(Q2). By
the Bessel theorem, we have that for, any countable collection {x,},

oo 2
Lz 3 EZ G L) ot

2
WartoCrn] 2 2 EEEGL = oGm0,

n=1

which implies that E[Z(a (-, t, x) — p(t,x))] = 0,0or E[Zo (-, t, x)] = E[Z]p(¢, x), everywhere
except on a countable set. Therefore, the function o (w, ¢, -) is weakly measurable and has weak
integral | v P (t, x)dx, satisfying the capacity constraint. 0

The following example shows that the mixed-strategy implementation is not unique.

Example 3. Under the Lebesgue probability space on Q = [0, 1], both mixed strategies
o1(®, x,1) = Lifrac(x—w)<r} and 02(®, x, 1) := L{frac(x+0)<s}» Where 1 denotes the indicator func-
tion and frac(y) = y — |y] denotes the fractional part of y, implement the same distributional
strategy p (¢, x) = t. Intuitively, according to the mixed strategy o}, a player searches to the right
starting from x = w, where w is drawn uniformly from the interval [0, 1], and continues at x = 0
after reaching x = 1, while according to o, a player searches in the other direction starting from
the same starting point. The two mixed strategies correspond to the same uncertainty faced by
the opponent.
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