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Abstract

We review the nascent field of matching with incomplete information and its
connections to other areas of research. We also discuss open questions and argue

that cooperative solution concepts offer new perspectives for applications.
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1 Introduction

The rapid growth of scholarly papers and practical applications in matching theory
signifies one of the most notable achievements in microeconomics in recent years. The
prevalence and flexibility of matching models are evident, as demonstrated in this hand-
book. They serve as both descriptive frameworks facilitating empirical analysis and
policy evaluations, and as normative tools aiding in the design and improvement of

market mechanisms.

1.1 Reduced-form Solution Concepts

The rising popularity of matching models is undoubtedly driven by the abundance of
their applications. Many practical economic interactions can be formulated as matching
problems and analyzed using tools of matching theory. Nevertheless, we should not
overlook the key role played by useful solution concepts, such as competitive equilibrium,
pairwise stability, and the core. It is worthwhile to first understand the conceptual
and methodological development of the basic ideas of matching theory under complete
information, which will help us identify the primary issues as we embark on research
involving incomplete information.

Two key factors contribute to the prominence of these solution concepts. First, they
have normative appeals. Without dwelling on the obvious, it’s worth noting that the
desirability of the concept of stability is underscored by a number of studies, including
Roth (1991) among others. Secondly, these solution concepts offer a simple reduced-
form approach to modeling complex strategic interactions. To illustrate this, consider
the alternative non-cooperative equilibrium model for the marriage problem of Gale
and Shapley (1962), where individuals can meet, date, marry, divorce, remarry, and so
on. Formalizing this model necessitates many explicit assumptions regarding strategic
interactions: how people meet, who proposes marriage, whether married individuals
exit the market, and if they stay, their subsequent interactions with others, etc. These
assumptions are highly context-dependent, and without a deep empirical understanding
of the problem at hand, our modeling choice may well be speculative. Additionally, this

approach can be too flexible and its predictions too sensitive to modeling assumptions.



Setting aside these modeling challenges, applying a non-cooperative model of mar-
riage is far from straightforward. Its complexity hinders its applicability. Thus, it’s
not surprising that applications of a non-cooperative model of marriages aren’t as
widespread as the reduced-form approach featuring the solution concepts of compet-
itive equilibrium or pairwise stability. Nevertheless, it is important to acknowledge the
value of these non-cooperative models, especially when their assumptions are plausible
for the intended applications. Furthermore, they provide explicit strategic foundations
for the reduced-form approach. This is consistent with the influential Nash program.
For a fair understanding of reduced-form concepts, it’s useful to recognize that the
fundamental non-cooperative solution concept of Nash equilibrium is also in reduced
form, which does not explain how an equilibrium emerges from explicit strategic in-
teractions, and a large literature is devoted to foundations for Nash equilibrium, often
resorting to non-equilibrium evolutionary or adaptive processes.! With this in mind, a
non-cooperative equilibrium foundation for the reduced-form concepts of stable or com-
petitive equilibrium matching shouldn’t be seen as the only benchmark; it’s essential to

also recognize and appreciate viable non-equilibrium processes.

1.2 Incomplete Information

A fundamental dimension that is often missing from our analysis of matching markets
is information: players are uncertain about one another’s preferences, and they are
asymmetrically informed of payoff-relevant parameters. Information asymmetry po-
tentially has a significant impact on the efficiency and surplus distributions. While
there is no reason to believe that incomplete information is inherently non-cooperative,
non-cooperative game-theoretical models are traditionally thought to be the best way
to analyze imperfect and incomplete information. This is because these models pre-
cisely define the game forms and strategies for privately informed players, allowing
the analysts to easily formulate players’ inferences about uncertainty. Although non-
cooperative models post no conceptual challenges, their flexibility and complexity, as
mentioned earlier, are amplified in the presence of incomplete information, and, as we

know from our experiences with signaling and bargaining models, their predictions are

1See, for example, Kandori, Mailath, and Rob (1993) and the references therein.



particularly sensitive to modeling choices. Not surprisingly, while imperfect and incom-
plete information has transformed economics research, most of our models are limited
to simple environments for tractability, such as two-player games with one-sided in-
complete information, etc.? Expanding these models to encompass multiple players or
multiple-sided incomplete information, or both, involves a challenging balance between
tractability and making reasonable assumptions.

Given these considerations, reduced-form cooperative models of incomplete infor-
mation should be more appealing to consider, but limited progress has been made
in matching problems and more general games. In his seminal contribution, Wilson
(1978) defines and studies the core of an exchange economy. Since then, considerable
efforts have been dedicated to theoretical questions, especially in the context of exchange
economies, see, e.g., Forges, Minelli, and Vohra (2002), Glycopantis and Yannelis (2006),
and Forges and Serrano (2013) for reviews. Referring to the literature of cooperative
games with incomplete information, Aumann and Heifetz (2002) comment that “this
area is to this day fraught with unresolved conceptual difficulties.” Surprisingly, prac-
tical applications, sometimes the best guides for theory building, have received little
to no attention. Two-sided matching is an ideal platform for studying both theoretical
and applied questions in cooperative analysis of incomplete information.

As alluded to earlier, there are two intervening tasks for developing a reduced-form
solution concept or about any concept, regardless of information. Let’s focus on the
central concept of pairwise stability. The first task is on defining the criteria for sta-
ble outcomes and the second is on the attainability and practical plausibility of these
outcomes. The latter can be demonstrated either by centralized ways of implement-
ing stable outcomes or through decentralized interactions. Gale and Shapley (1962) is
an exceptional paper in the sense that it scores high on both: it defines an appealing
notion of pairwise stability and provides an algorithm that identifies a stable outcome
for a given preference profile. The algorithm, commonly known as the deferred accep-
tance algorithm, is very useful in market design research and practices. A modified

version of the algorithm considered by Crawford and Knoer (1981) bears a resemblance

2The seminal papers of adverse selection by Akerlof, Spence, Rothschild and Stiglitz are not game-
theoretic. Subsequent non-cooperative game-theoretical formulations make their assumptions and
analysis precise; see, e.g., Lofgren, Persson, and Weibull (2002). These problems are special cases
of two-sided matching, see Myerson (1995) for some additional discussions.



to real-world labor market adjustment processes, adding to the appeal of the algorithm
and the concept of stable matching itself. Although the concept is only partially sat-
isfactory if the stringent implementation criterion of strategy-proofness is considered
(Roth, 1982), it is shown that in a preference revelation game induced by the deferred
acceptance algorithm, stable outcomes can be obtained as Nash equilibria in undomi-
nated strategies (Roth, 1984).> With incomplete information, the matter is much more
complicated. It would be ideal to replicate the achievement of Gale and Shapley (1962)
and the endeavors of subsequent papers. However, it’s worthwhile to underscore that
defining a reasonable solution concept for an environment with incomplete information

and identifying its plausible, practical implementations are not one and the same.

1.3 Overview

We first discuss the preference revelation game approach of incomplete-information
matching in Section 2. This approach has its roots in the traditional mechanism design
literature. This branch of the literature has progressed in roughly three directions.
The first direction explores implementability of complete-information stable matching
in environments of incomplete information without proposing new solution concepts.
The second direction modifies the preference revelation game and defines stability as
non-cooperative solutions of the modified game. The third direction studies equilibria of
the non-cooperative games of incomplete information induced by well-known algorithms
designed to implement the complete-information stable matching.

There are many plausible and practically useful ways to incorporate incomplete in-
formation into a matching model. In Section 3, we introduce canonical one-to-one,
two-sided matching models under various informational assumptions. These cover sce-
narios both with and without transfers. We assume that players maximize their ex-
pected utility. In the context of complete information, the defining criteria for stability
are individual rationality and immunity to pairwise blocking. Establishing these criteria
under incomplete information is a natural and vital step toward developing new solution
concepts. Both individual and pairwise deviations are conditional on observed matching

outcomes, as seen in applications like marriage or the labor market, regardless of the

3This result is strengthened by Ma (1995) to rematching-proof Nash equilibria of all mechanisms
that select stable matching outcomes.



presence or lack of informational friction. However, with incomplete information, the
incentives for deviations and the presumed stable matching outcomes, where deviation
incentives are absent, both convey information. This establishes a feedback loop leading
to endogenous information for a stable matching. This is a new conceptual issue to deal
with.

Section 4 delves into a prior-free approach to address the endogenous information
of stable matching. The key idea is to eliminate matching outcomes that display clear
deviations for all plausible beliefs. After these outcomes are excluded, the support
of players’ beliefs becomes more constrained; they must assign positive probabilities
only to states aligning with outcomes that haven’t been eliminated. These restricted
beliefs permit us to further disqualify additional matching outcomes, culminating in
an iterative or a fixed-point definition of stability. The detailed configuration of the
definition is crucially dependent on the informational assumptions of the model, such
as what players can observe, leading to different variants for various applications.

Under complete information, pairwise stability and competitive equilibrium are out-
come equivalent. However, an apparent conceptual difference exists: in a competi-
tive equilibrium, players are price takers and disregard potential partners’ incentives,
whereas in a stable matching, deviating players must consent to the deviation and can
negotiate prices. When it comes to incomplete information, this conceptual difference
manifests through the information revealed by prices and incentives. For a more detailed
discussion of this issue, see Section 4.4.

Section 5 discusses a more refined Bayesian approach, in which players’ beliefs are ex-
plicitly formulated. This approach has the advantage of incorporating prior beliefs into
the analysis and is more consistent with traditional analyses of incomplete-information
games. Central to the approach is a criterion of rational counterfactual reasoning:
players must formulate beliefs for each counterfactual deviating scenario and behave
rationally in accordance with their beliefs. Restrictions are imposed to formulate the
consistency of prior and posterior beliefs. Unlike non-cooperative games with fully
specified strategies on a game tree, these restrictions take a reduced form and open up
cooperative analysis of matching markets to a wealth of ideas for belief-based refine-
ments.

We conclude in Section 6 with other research directions and discuss their connections



with the approaches reviewed earlier in the article. We also present some open questions,

both theoretical and applied ones.

2 The Preference Revelation Game Approach

Following in the footsteps of Roth (1982), Roth (1984), and the mechanism design
theory, a natural approach to matching problems with incomplete information is to
consider direct preference revelation games. Roth (1989) considers a setting where each
agent is uncertain about the preferences of others and reports his own preferences. The
mechanism then translates these reported preferences into matching outcomes. He inves-
tigates whether state-by-state complete-information stable matching can be achieved in
an equilibrium of this Bayesian game. The result is negative: in general, interim imple-
mentation of ex post stable matching outcomes is impossible. Roth (1989) also considers
the deferred acceptance algorithm for reported preference profiles and shows that it is
a dominant strategy for the proposing side to report truthfully, reminiscent of the com-
plete information environment. Ehlers and Massé (2015) adopt this approach, examin-
ing the direct preference revelation game induced by stable mechanisms—mechanisms
that ensure stable matching for every reported preference profile. They consider many-
to-one matching and an ordinal version Bayesian Nash equilibrium.* They show that
reporting strategies constitute a Bayesian Nash equilibrium if and only if the reported
profile for any true profile in the support of the common prior form a Nash equilibrium
under complete information. Thus, only the support of the common prior is relevant.
If all players on one side of the market always agree on their preferences for all states
in the support of the prior, then truth-telling is a Bayesian Nash equilibrium. Ehlers
and Massé (2007) examine a similar model and focus on truth-telling equilibria.
Fernandez, Rudov, and Yariv (2022) examine the preference reporting game induced
by the deferred acceptance algorithm and focus on the case where the non-proposing
side’s preference is identical across states. The incomplete information concerns the non-

proposing side’s uncertainty about the proposing side’s preferences. Their main message

4A strategy profile is an ordinal Bayesian Nash equilibrium if it is a Bayesian Nash equilibrium for
every utility representation in the preference revelation game induced by the mechanism and a common
prior.



is that salient properties of complete-information stable matching are not robust to the
introduction of incomplete information.

Chakraborty, Citanna, and Ostrovsky (2010) extend the direct preference revela-
tion approach in several ways. In a school choice context, they consider a setting in
which schools have uncertainties about students’ qualities, and while students’ prefer-
ences over schools are known, they are unaware of their own qualities. Each school
receives a private signal about a student’s quality. Schools’ preferences over students
are “interdependent” through their signals. Each school submits a message to the
mechanism, which outputs a random matching outcome. Each player receives a private
message from the mechanism regarding the matching outcome and can then engage in
one round of pairwise rematching, with schools making offers. This is a dynamic game
to which existing solution concepts apply. They call a matching mechanism stable if the
induced game admits a perfect Bayesian equilibrium with truthful reporting of types in
the reporting stage and without rematching on the equilibrium path in the rematching
stage. They show that such matching mechanisms exist if players only observe their own
matches, but they don’t necessarily exist if players observe the full matching outcomes.
Chakraborty, Citanna, and Ostrovsky (2015) also consider rematching that involves a
group of schools and students.

Yenmez (2013) takes a mechanism design approach to matching with transfers and
considers ex ante, interim, and ex post notions of blocking, where a pair of agents can
rematch, abandoning the mechanism or its outcome. The interim notion was previously
studied by Dutta and Vohra (2005) for an exchange economy, known as the credible core,
which says that blocking players’ incentives must be confirmed by each other in a fixed
point fashion; see Forges, Minelli, and Vohra (2002) for a survey of incentive-compatible
core in the exchange economy with incomplete information. Dizdar and Moldovanu
(2016) study matching with multiple-dimensional types and show that implementing
efficient matching in ex post equilibria requires constant surplus sharing rules. However,
the paper does not address the question of stability.

Chen and Sénmez (2006) experimentally study a students-schools matching problem
where students are uncertain about each other’s preferences. They examine how this
uncertainty affects truthful reporting and efficiency, conditional on reported preferences,

across three mechanisms: the top trading cycles mechanism, the Gale-Shapley mecha-



nism, and the Boston mechanism. This experimental approach is further explored by
Pais and Pintér (2008) and Pais, Pintér, and Veszteg (2011).

The preference revelation game approach has the advantage of directly addressing
the question of implementing a solution concept. This approach is particularly benefi-
cial for normative market design problems. However, it also presents several challenges.
First, the game form may appear ad hoc and inherently non-cooperative. One could
argue that various alternative game forms, especially dynamic games involving infor-
mation exchange, might also be considered.” However, evaluating and measuring the
performance of existing mechanisms that assume incomplete information away is cer-
tainly valuable for the practical design and analysis of markets. Second, the usual
treatment of direct revelation games doesn’t adequately consider pairwise deviations,
particularly during the preference revelation stage. Roth (1989) demonstrates that, in
a man-optimal matching mechanism, a coalition of men can benefit from jointly misre-
porting their types, even when truth-telling is the dominant strategy for each individual
man. This problem isn’t unique to matching, and some proposed solutions reintroduce
non-cooperative games into the direct revelation game (see, for instance, the seminal
work of Holmstrém and Myerson (1983) in the context of collective choices). Third, in
the special case of complete information (where the type space is assumed to be a sin-
gleton), while the Bayesian incentive compatibility in the revelation game might seem
straightforward, the practical implementation might not. This raises questions about
practical implementations under incomplete information.

In the remainder of the article, we will discuss various other approaches and review
several criteria for stable matching with incomplete information, highlighting recent

developments. To substantiate the discussion, we first formally define the model.

>The question arises as to whether there is a canonical mechanism; see Sugaya and Wolitzky (2021)
for a more general communication revelation principle in multiple-stage games for sequential equilib-
rium.
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3 Canonical Matching Models with Incomplete In-

formation

The set of players is N = I U J, where ¢ € [ is a worker and j € J is a firm. Each player
n € I UJ has a type 0,, € O,,. If worker ¢ and firm j match together with a transfer p
from the firm to the worker, worker i’s ex post payoff is a;;(#) + p and firm j’s ex post
payoff is b;;(6) — p. We shall write a;;(0) and b;;(0) as i’s and j’s payoffs from being
alone, respectively. In this chapter, we shall assume that a;; and b;; depend on ¢ only
through (6;,0,), a;; depend on 6 through 6; and b;; depend on ¢ through 6;. We denote
the matching game with incomplete information by I' = (0, I, J, a, b).

If © = {0} is a singleton, the matching game has complete information. We denote
this complete-information game by I'? = ({6}, 1, J, a,b).

If ©; = {6;} is a singleton, the game has one-sided incomplete information, where
the firms’ types are commonly known. We denote the one-sided incomplete information
game as ['% = (6; x {0}, 1, J,a,b).

A Bayesian game of incomplete information should also specify prior distributions
of types. Let 62 € A(O©) be player n’s prior, which is assumed to have a full support for
notational simplicity. We will write the corresponding Bayesian game as (T, 8°). We
write the Bayesian game with one-sided incomplete information as (I'”, 3°).

The cooperative game with incomplete information does not specify individual strate-
gies. These are the advantages discussed in the previous sections.

A matching outcome is (u,7), where p : I U J — I U J specifies who each player
is matched with so that u;, € J U {i}, u; € T U{j}, and p; = j iff p; = i, and
7:1UJ — T C R specifies the transfers each player receives such that 7, + 7,,) =0
for n € N. There are two special cases. If the set of transfers is T = {0}, the model is
a matching without transfers and with cardinal utility; if T = R, there is no restriction
on transfers.

It is also useful to consider stabilized matching outcomes where private types are
revealed within each matched pair. For instance, it’s more plausible that a married
couple would observe each other’s type, despite potentially having uncertainty about

people outside of their marriage. A stable marriage outcome should account for this
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feature. However, this assumption might not be as relevant when studying stable initial
allocations in labor markets or other assignment problems. We call a matching game
in which a player observes their matched partner’s type I' and T”. The notation is

summarized in Table 1.

the set of workers

the set of firms

the set of profiles of types, with a typical element 6 = ((6;)icr, (05);cs)
worker i’s payoff from matching with firm j

firm j’s payoff from matching with worker i

a matching outcome with transfer

the matching game (0,1, J,a,b)

the matching game with complete information of 8, ({0},1,J,a,b)

the matching game with firms’ types 6; known, (0, x {6;},1, J,a,b)

the matching game where players observe each other’s type in a matched pair

—~ > ~
TI S Chy
~ o~

L
& = 3
.y

&

the matching game I’ where firms’ types 6 are known
the Bayesian matching game with priors 2 € A(©)
the Bayesian matching game with priors 2 € A(©; x {6;})

Q%“C]
Bl
w L

Table 1: Notation in this article

The complete-information game is well understood.

Definition 1. A matching outcome (u,7) of I'Y is individually rational if, for all
1€l and 5 € J,

i (0) +7; >0,

bu(;(0) +7; = 0.

We say (i,j,p), wherei € I, j € J, and p € T, blocks (1, T) if

aij(0) +p > ay@)(0) + 74,
bij(0) — p > bug);(0) + 7.

We call (i,7,p) a blocking pair with transfer if it blocks (u, 7). A matching outcome

of I'? is stable if it is individually rational and there does not exist a blocking pair.

Remark 1. The concept of pairwise stability is agnostic about how the putative match-
ing (i, 7) arises, how a pair of players (i, j) meet each other, and how they figure out
the transfer p together. The concept tests a putative outcome against all possible pair-

wise deviations. This simplicity is the advantage of this reduced-form concept. Some
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of the features here are not unique to stability. For example, the non-cooperative con-
cept of Nash equilibrium doesn’t specify how players arrive at an equilibrium outcome
(even though players’ contemplation of all possible unilateral deviations from a putative
equilibrium outcome appear much more straightforward than pairwise deviations). An
intuitive justification of considering all possible pairwise blockings is that the market is
frictionless, and hence blocking opportunities can be easily identified and carried out.
Incomplete information acts as a friction, constraining the ability of players to identify

blocking opportunities. O

Remark 2. Individual rationality is synonymous with the absence of unilateral devi-
ations; pairwise blocking is synonymous with bilateral deviations. Basically, a stable
outcome is one that withstands unilateral and bilateral deviations. The semantics seem

more important than they should be. We will come back to this point later. O

Remark 3. Deviations are conditional on an observed matching outcome. Under in-
complete information, a new conceptual issue arises. Since deviation incentives rely on,
and hence reveal, players’ private information, the absence of such deviations—which
defines a stable situation—should also reveal information. A matching outcome is stable
with respect to this information, refining the incentives for deviations. This feedback
loop shapes stable outcomes. Given this complication, the first obvious question to ask
is: what constitutes a stable situation? Just as in the case of complete information, a
stable matching should be tantamount to an immunity to unilateral and pairwise devi-
ations. Thus, formulating unilateral and pairwise deviations is key to the development.
How a putative matching outcome is formed in the first place is a different question.

This contrasts with the preference revelation game approach. O

4 A Prior-Free Approach to Stable Matching

We start with Liu, Mailath, Postlewaite, and Samuelson (2014) (henceforth LMPS).
They consider the following setting. First, there is one-sided incomplete information.
Second, in a putative match, a matched pair of players observe each other’s private
information. The paper thus considers the matching game T”. This means we are

looking at stable situation in which matching has been formed and stabilized for a
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while, such as marriage or some labor markets where players do not want to deviate
even after observing their partners’ types. (We consider the extension of LMPS to I'?’
and I" in Section 4.5.)

LMPS formulates a theory of stable matching by taking a prior-free approach. With-

out pinning down the exact belief, they ask: can we determine what cannot be stable?

4.1 An Example

Assume that there are three workers and three firms. The matching values are given
by a;;(0;,0;) = %Qﬁj and b;;(0;,0;) = %91-0]-. Additionally, assume a;; = b;j; = 0. (The
observable characteristics of ¢ and j do not affect payoffs in this example). There is no
restriction on transfers. Firms’ types 6; = (2,4,5) are commonly known. A worker’s
type can be either 1, 2, or 3. For simplicity, assume that workers’ types are from a
permutation. That is, there is exactly one worker of each type: 1, 2, and 3. Consider

the following matching arrangement:

;11131 2

0; 24| 5
0]21] =2
Table 2

For example, the firm of type 4 is matched with the worker of type 3 and pays the
worker 2. The payoff of each player associated with this matching arrangement is given
in Table 3.

Qi (3) + 7 118 3
0; 113 2
g, 2141 5
T 02| -2
b +75 [ 1] 4] 7
Table 3

A complete-information stable matching, with supermodular surplus functions, should
be assortative. The matching arrangement cannot be stable under complete informa-

tion. Indeed, the only blocking pair involves worker type 2 and firm type 4. Together,
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they can create a surplus of 8, but their payoffs in the candidate matching sum to only
7. They can walk away together and split the surplus in a way that makes both better
off. Can they still form a blocking pair under incomplete information about workers’
types? The worker of type 2 observes the type the firm.® For the worker of type 2 to be
happy with the deviation, the transfer p needs to be such that 4 +p > 3, i.e., p > —1.

However, the firm does not know the worker’s type. What if the worker’s type is
not 2 but 1, a lower type? In this case, the matching arrangement and the associated

payoffs, from the firm’s eyes, are as follows:

ai,u(z’) -+ T 218105
0; 213 1
7, 2[4 5
T 0]2] -2
bﬂ(j)j + Tj 214145
Table 4

The firm of type 4 cannot distinguish Table 4 and Table 3. We emphasize that these
are the only two possible scenarios for the firm because it observes its own worker’s
type 3. In Table 4, firm type 4 and worker type 1 together can produce a surplus of 4
and their payoff in this matching sums up to 4.5, so they cannot both benefit from a
deviation. Indeed, worker type 1 would deviate with firm type 4 if the transfer to the
worker were such that 2+ p > 0.5, i.e., p > —1.5.

When the worker is truly type 2, as in Table 3, we conclude that the type 2 worker
would prefer to deviate with the firm if p > —1. So we have a problem: if the type 2
worker favors this deviation, the type 1 worker favors it even more. So it appears that
the blocking pair cannot form if the firm is uncertain about the worker’s type.

Being uncertain about Table 3 and Table 4, a Bayesian firm needs to form a belief
about the worker’s type and make decisions accordingly. But the belief here should be
endogenous. It is unclear what should the firm’s belief should be and how we determine
it. This is the question addressed by Liu (2020). LMPS instead takes an approach that

avoid taking a stance on beliefs.

SHowever, the worker does not know the payoff of the firm because he does not observe the type of
the worker who is matched with the firm.

15



To see their idea, let’s look at the scenario of Table 4. To assess the plausibility of
this scenario, the firm of type 4 should analyze not only its own incentive to deviate but
also the incentives of other firms. To this end, consider the type 5 firm and the type 2
worker in Table 4. They will block if there is complete information because they can
produce a surplus of 10 together, exceeding what they obtain in this putative matching.
Under incomplete information, type 5 firm doesn’t have to worry about the worker’s
type—the worker’s type cannot be worse than 2 because the type 5 firm has already
matched with the type 1 worker and can observe the worker’s type—there is exactly
one worker whose type is 1. If the worker’s type is 3, then it is even better for the type
5 firm. So in the alternative scenario of Table 4, the type 5 firm can form a blocking
pair with the type 2 worker, despite the firm’s uncertainty about the worker’s type.
Therefore, Table 4 cannot describe a stable matching.

The argument presented in the previous paragraph reflects the thinking of a type 4
firm. This firm deduces that the scenario in Table 4 cannot be deemed “stable” due to
the deviation involving the type 5 firm and the type 2 worker. Hence, the firm should
deduce that it should rule out Table 4. The only viable scenario is Table 3, in which
the firm should deviate with the type 2 worker.

Therefore, the fundamental idea boils down to the following. If a firm is think-
ing of an alternative scenario, the firm should assess whether that scenario is “stable,”
i.e., whether there is a deviation from it. If there is a deviation regardless of players’
uncertainty, this scenario should be ruled out. If there is no clear deviation, this sce-
nario should be tentatively retained. Furthermore, everyone in that alternative scenario
should also check whether there are clear deviations in further scenarios that they cannot
distinguish from the alternative scenario, and everyone should anticipate that everyone

else is making this calculation in every possible scenario they cannot rule out...and so
forth.

4.2 TIterative Stability

We will now associate the observable matching outcome (1, 7) with the type profile 6.
With some abuse of terminology, we will continue to refer to (u, 7,0) as a (full) outcome

of the matching game.
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The key to defining stability is to identify when a deviation—either unilateral or
bilateral—occurs. With incomplete information, uncertainty in both unilateral and
bilateral deviations should be treated systematically on the same grounds. This is
not easy to do as information is endogenous. LMPS assumes that firms know their
own workers’ types in a putative stabilized matching, therefore individual rationality in
the incomplete-information game is the same as individual rationality in the complete-
information game. This assumption is not only useful for simplifying the formulation

but also helps us prove strong results.

Definition 2. A full matching outcome (u,7,0) is individually rational if
(i) Qip(i) (0) + 1 > au(0),
(i) b#(j)j(e) +75; 2 bjj<0)-

Definition 3. Fiz a set of full matching outcomes .. A full matching outcome (u, 7,0) €
Y. is clearly blocked with respect to ¥ if there is a worker-firm pair (i,j) together with
a transfer p € T such that:

(i) ai;j(0) + p > ain@y(0) + 75, and

(i) E, [bi;(-)] = p > bug);(0) + 75 for any p € A(©), where

(ii.a) (p,7,0") € X,
O =0 €0 (iib) 0, = 0., : (4.1)
(IIC) (Zij(gl) +p> Qi (4) (9,) + 7Ty

Let’s parse this definition. Condition (i) describes worker i’s incentive to deviate
with firm j at a price p. Since worker ¢ knows his own type 6; and firms’ types are
commonly known, the deviation is the same as in complete information. Condition (ii)
pertains to firm j’s deviation: firm j does not know worker ¢’s type; the firm uses a
belief p € A(O') to evaluate workers’ types (not only worker i) and this belief only
assigns positive probability to @' that satisfies the following requirements: (ii.a) says
that firm j thinks that the possible set of states (u, 7, 0') has to stay in ¥, which is the
constraint we start with. (ii.b) says that firm j observes the type of his own worker
w(j), so @' cannot contradict with what he knows. (ii.c) says that firm j knows that

worker ¢ must benefit from the deviation.
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Remark 4. For the exposition of condition (ii) in Definition 3, the following three

statements are mathematically equivalent:

E, (b3 ()] = p > byu(;;(0) + 75 for any p € A(O); (4.2)
bij(el) —p > b‘u(J)]((g) + 7']' fOI' any (9/ — @/, (43)
(g}leig,{bz’j(el) —p} > b (0) + 75 (4.4)

A potential misunderstanding from (4.3) and (4.4) is that firms evaluate the worst-case
scenario, instead of maximizing expected utility. One may even attempt to impose
exogenous restrictions on p in (4.2), which is particularly problematic (see, e.g., Alston
(2020) and Bikhchandani (2017) for further elaborations). It is important to realize
that the operation in Definition 3 is a building block that will be iterated to define a
solution concept of stability. The correct interpretation is that LMPS does not take a
stance on the exact belief the firm should have—firms’ uncertainty in a stable matching
should be endogenous, as we have argued before. Any ad hoc assumption on beliefs at
this stage will endanger the consistency of the solution concept. This logic shouldn’t
be a complete surprise if one is familiar with the formulation of never-best responses in
iterated elimination of strictly dominated strategies (see Bernheim (1984) and Pearce
(1984)). O

Remark 5. LMPS examines the game faj, so individual rationality is straightforward.
If T'% is considered, then the uncertainty faced by the uninformed firms again should
be endogenous, with respect to which individual rationality should be defined. It is
problematic to impose exogenous restrictions in the definition of individual rationality.

We shall come back to this issue later. O

A full matching outcome (u,7,6) € ¥ has a clear unilateral deviation (i.e., a viola-
tion of individual rationality) or a clear bilateral deviation (i.e., being clearly blocked)
irrespective plausible beliefs should never be considered stable. We summarize this

property below.

Definition 4. A full matching outcome (u,7,0) € ¥ is never stable with respect to

Y if it is not individually rational or is clearly blocked with respect to 3.
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We will iterate this definition. The idea is that to start with the largest set of
outcomes X°, removing from X0 that are never stable according to the definition above
to obtain X! (e.g., the blocking identified in the scenario of Table 4 in Section 4.1).
With a smaller set of outcomes X!, the plausible beliefs for firms are refined through
(ii.a) in Definition 3, and hence firms and workers can engage in deviations that are not
possible before (e.g., the blocking identified in the scenario of Table 3 in Section 4.1).

This process will terminate when no further removal is possible.

Definition 5. Let 3° be the set of all full matching outcomes. For k > 1, let
DL YA {(M,T,(g) € X1 (u, 7,0) is never stable w.r.1. Zk_l}.

The stable set of matching outcomes for incomplete information is $°° = N LF.

Remark 6. The formulation in Definition 5 is a slight variation of LMPS stable sets.
In LMPS, X represents the set of all individually rational outcomes, while ¥ is deter-
mined by the iterative removal of clearly blocked outcomes. The two formulations are
of course equivalent, but Definition 5 has the benefit of avoiding confusion and enabling

a more transparent extension to I'%7. ]

The iterative definition in LMPS offers an algorithm to compute the incomplete-
information stable set: in each round, all clearly blocked matching outcomes are re-

moved. The iterative concept has a fixed-point characterization.

Definition 6. A set of full matching outcomes E is self-stabilizing if no (u,7,0) € E

s never stable with respect to E.

The fixed-point notion of self-stabilizing sets connects stability concepts under com-
plete information and incomplete information. The LMPS stable set >°° contains
complete-information stable matching. Furthermore, it is a useful technique: to prove
a certain outcome (u, 7,6) is in X, it suffices to construct a self-stabilizing set E' that

contains it.

Theorem 1. (i) A singleton set {(u,7,0)} is self-stabilizing if and only if (u,7,0) is
complete-information stable for T°. (ii) If E is a self-stabilizing set, then E C £°°. (iii)
3% is the largest self-stabilizing set.
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4.3 The Implications of LMPS Stability

The formulation and characterization developed in previous sections apply to general
transfer space, in particular, the no-transfer case T = {0}. To derive sharper results, it

is useful to allow unrestricted transfers and impose restrictions on payoff functions.

Assumption 1. T = R so transfers are unrestricted.

Assumption 2. (1) Qi = b“ = 07 (11) aij(ﬁi,ﬁj) = a(@i,ﬁj), bw(GZ,Q]) = 6(9“9]) for

some functions a and b that are strictly supermodular and strictly increasing on ©; x ©;.

Theorem 2. Suppose Assumption 1 and Assumption 2 hold. Then any (u,7,0) € 3°°

is ex post efficient.

Remark 7. Ex post efficiency under supermodularity implies positive assortativity.
However, Theorem 2 does not reduce »*° to the set of complete information stable
matchings. This is because firms continue to face uncertainties about the workers they
do not employ, and therefore competition is not intense enough to equate transfers with
those in a complete information stable matching.

To eliminate these residual uncertainties, certain strong conditions are needed; for
instance, that the workers’ types are permutations (i.e., there is a one-to-one mapping
between 0; and 6 for any 07,607 € ©;). Given this assumption, if different firms have
different types, it follows from Theorem 2 that the types of workers will be identified
from the firms they match, and we obtain complete information stable matchings (of
course, unmatched workers, being always of low type, cannot have their types perfectly
identified).

More subtly, if different workers have different types (even if different firms don’t
have different types), then the prices will reveal enough information to distinguish high-
type workers from low-type workers. As a result, ¥X°° is precisely the set of complete-

information stable matchings. For more details, please refer to LMPS. O]

Remark 8. The proof resembles the iteration process demonstrated in the example.
It starts with the lowest possible type in workers’ type space, and show that if some
worker has this type, this worker cannot be matched with a better firm than higher-type

workers. [
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Remark 9. LMPS also shows that if payoff functions are submodular and positive,
stable matchings with incomplete information are negatively assortative. The payoff

assumptions in this result and Theorem 2 can be slightly relaxed. O]

4.4 Competitive Equilibrium

LMPS also defines a notion of competitive equilibrium. As a benchmark, let’s first
introduce the well-understood competitive equilibrium notion under complete informa-
tion. A price matrix P is defined as a mapping P : I x J — R, and we also append
P;; = Pj; = 0 to this definition. A price P;; indicates the payment a firm j has to make
to the worker ¢ if they match. Importantly, if ¢ and j are not matched together, i.e.,
w(i) # j, the price P,; will be an off-path price, but it is still relevant because it will be

the only price for ¢ and j decide to deviate and rematch.

Definition 7. A complete-information price-taking matching outcome (u, P) is a com-

petitive equilibrium for I'? if
1. aiy@(0) + Py > aij(0) + Py for anyi € I and j € J U {i}.

2. bugyj (0) — Pugjy; = bij (0) — Py for anyi € TU{j} and j € J.

The key postulates of a competitive equilibrium are price-taking behavior and each
player’s ability to deviate without necessitating the partner’ consent. Effectively, each
pair (i, 7) is traded as a unit of an indivisible commodity.

Under complete information, if (i, P) is a competitive equilibrium, then (u, 7), where
7; = Piuu) and 7; = —P,;);, is a stable matching for I'%; conversely, if (u,7) is stable,
there exist P such that P;,; = 7, and P,;; = —7; such that (x, P) is a competitive
equilibrium. LMPS extends this concept to ™.

Definition 8. A price-taking matching outcome (u, P,0) € ¥ is never competitive
w.r.t. ¥ for ™ if
(1) ai;(0) + Pyj > aip@)(0) + Py for somei € I and j € JU{i} or
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(ii) B, [bij ()] = Pij > bu(j);(8)+ Puy; for some j € J, i € IU{j}, and any p € A(O'),

where

there exists a price matriz P’ such that

(ii.a) (u, P, 0') € W,

(ii.b) ‘9:;(]') = 0u(i);

(ii.c) Bj; = Pyj and Pi’,u(i/) = Py for alld' € 1.

0'=:0€06: (4.5)

The restrictions on © deserve elaboration. Conditions (ii.a) and (ii.b) in (4.5) have
the same interpretations as their counterparts in (4.1); Condition (ii.c) in (4.1) is not
needed here because only price-taking unilateral deviation is considered in a competitive
equilibrium. Condition (ii.c) in (4.5) is a new addition. It captures firm j’s observation
about the price matrix: the deviating firm observes the prices that involves itself P,
(both on and off path); the firm also observes all on-path prices P, (which is the same
as in the case of stability); the firm doesn’t observe off-path prices for parities that it
is not involved with.

These features of the definition of competitive equilibrium make it directly compa-
rable with stability.

Definition 9. Let U° represent all price-taking matching outcomes (u, P,0) . Fork > 1,
let

VLRSS A {(M,P, 0) € W51 (u, P,0) is never competitive w.r.t. \I/k’l}
P> = O, Uk
We call U the set of competitive outcomes.
There is a fixed point definition.

Definition 10. A set of price-taking matching outcomes ¥ is competitive if no price-

taking matching outcome (u, P,0) € ¥ is never competitive w.r.t. V.

One can easily verify that competitiveness, as defined in Definition 9 and Defini-
tion 10, generalizes the concept of competitive equilibrium in a complete information

matching game (see Definition 7).
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Theorem 3. (i) A singleton set {(u, P,6)} is competitive if and only if (u, P) is a
competitive equilibrium for T, (ii) If E is competitive, then E C ¥, (iii) U™ is the

largest competitive set.

Conceptually, the more important result is that stability is a refinement of compet-

itive equilibrium in the incomplete information matching game ™.

Theorem 4. For any (u, 7,0) € ¥£°°, there exists a price matriz P with P, = 7; and
Pujy; = —7j foralli € I and j € J such that (u, P,0) € ¥*.

The result contrasts with commonly understood insights. It is also intuitive. With
incomplete information, a pairwise deviation allows two players to negotiate a price; the
information revealed by the incentive of accepting this price facilitates the deviation. In
contrast, in a price-taking competitive equilibrium, prices are fixed; limited information
revelation hinders unilateral deviation, and hence more outcomes can be sustained as
an equilibrium. It can be shown that any self-stabilizing set > can be entirely extended
into a competitive set ¥. However, the permissive iterative definition indeed play a role

in the result. We shall return to this point in Section 6.1.

4.5 Extensions

In this section, we discuss the prior-free approach to stability in I'* and I'. By now, it
should be clear why LMPS does not take a stance on the exact beliefs players have in a
stable matching. Their focus on T means that individual rationality is ex post. Let’s
see what happens if we go from T” to I%. If firms do not know their own workers’
types, the notion of individual rationality is no longer given by Definition 2. If iteration
is used to refine the possibility of blocking opportunities (bilateral deviations), iteration
should also be used to refine the notion of individual rationality (or more precisely, the
absence of unilateral deviations). Several papers that follow LMPS’s iterative approach
have attempted to define individual rationality using the worst-case belief. This will
lead to a more permissive concept; we have offered related comments in Remark 4 and
Remark 5.

Recall that stability is defined as immunity to both unilateral and bilateral devia-
tions. All we need to do is to incorporate both deviations in the iterative process and

treat them on the same ground. The following material is new to the literature.
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Definition 11. A matching outcome (u,7,0) € X has a clear unilateral deviation
with respect to X if

(i) there exists i € I such that a;,;)(0) + 7; < ai(0), or

(ii) there exists j € J such that E, [bu(j)j(')] +7; < b;;(0) for all p € A(O), where

(ii.b) @y (0") + 75 > a;(0") forallie I

@,:{Q,EQ: (iLa) (u,7.0) € 3, }

Let U(X) denote the subset of X obtained by removing all matching outcomes from %

that have clear unilateral deviations with respect to X2, i.e.,
UX) :={(u,7,0) € X: (u,7,0) has no clear unilateral deviations w.r.t. ¥} .

Does the definition of U(X) capture the individual rationality of firms? We think not.
That’s why we avoid using the terminology of individual rationality in the definition.
Nevertheless, the existence of a clear unilateral deviation is obviously a wiolation of

individual rationality.

Definition 12. For any set of matching outcomes ¥, a matching outcome (u,7,0) € ¥
has a clear bilateral deviation with respect to X if there is a worker-firm pair (i, 7)
together with a transfer p € R such that:

(i) ai;j(0) + p > ain6y(0) + 75, and

(ii) E, [bi;(-)] —p > E, |:bu(j)j(‘):| +7; for all p € A(O'), where

o={yeo: BWWTHER -
(ii.b) ai(0) + p > @@ (@') + 7

Let B(X) denote the subset of X that is obtained after removing from ¥ all matching

outcomes that have clear bilateral deviations with respect to %, i.e.,
B(Y) :={(p,7,0) € ¥ : (u, 7,0) has no clear bilateral deviations w.r.t. X}.  (4.6)

Remark 10. It is useful to pause and return to the issues clarified in Remark 4. It’s

clear that
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E,[bi;(-)] —p>E, |:b“(j)j('>:| + 7; for any p € A (©) (4.7)
is equivalent to
bij(ﬁl) —p> bu(j)j(el) + Tj for any 0/ € @/, (48)

but they are different from the following two expressions:

. bi:(1)} —p > mi b .~ (0 - f cA((O : 49

;/Iélg,{ J()} p e’mel(gl'{ #(j)j( )}—I—TJ or any p (@) (4.9)

. bz - > b (0 - A @, ' 410

(Jr/nelél’{ ]()} p g{leae)g{ M(])]( )}—1—7'] or any p € ( ) ( )

The last expression might have an intuitive behavioral interpretation. []

We first define sets of matching outcomes that do not have unilateral or bilateral

deviations.

Definition 13. For any set of matching outcomes X3, let S(X) be the subset of matching
outcomes in X that have neither clear unilateral nor clear bilateral deviations, i.e.,

S(X):=UX)NB(X). We say ¥ is self-stabilizing if S(X) = X.
We leave the reader to prove the following claims:

Theorem 5. (i) X is self-stabilizing if and only if U(X) = X and B(X) = X.
(ii) A singleton set {(u,7,0)} is self-stabilizing if and only if (u,,0) is stable for I'?.
(iii) if both X1 and Xq are self-stabilizing, then %1 U Xy is self-stabilizing. (iv) there

exists a largest self-stabilizing set.

The largest fixed point can be identified via the following procedure. Let ¥g be

the set of all matching outcomes. For all k > 0, let X1 := S(¥F) and define X :=

2 . Xk, We leave the reader to check that X is the largest self-stabilizing set, which
we will refer to as the stable set for I'%7.

We obtain the operator S by applying B and U simultaneously and then we iterate

S. We can also apply B and U sequentially. We claim without proof that the order
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of eliminations does not matter: as long as both U and B appear in the tail of the
sequence, we can apply U and B to Y in an arbitrary order to obtain the largest fixed
point. One such sequence is as follows. For all k > 0, let X%**1 := U(X?*) and for all
k> 1, let ¥2¢ = B(X%*~1). Define ¥ = N2, ¥,

The implications of this solution concept remain open. We do not know under what
conditions assortative matching can be obtained.

If there is two-sided incomplete information, modifications are needed for both clear
unilateral and bilateral deviations. Take unilateral deviations as an example. Workers
also face uncertainties, and therefore, they need to take into account firms’ incentives.
This back-and-forth referencing makes the problem a non-trivial fixed-point problem.
This complexity can be resolved by considering beliefs more explicitly, see, e.g., Liu
(2023). Chen and Hu (2023) attempted an extension of LMPS stability to two-sided
incomplete information, where individual rationality is defined with respect to the worst-

case scenario.

4.6 Epistemic Foundations

The new solution concepts we've reviewed thus far clearly possess epistemic appeal.
Formal epistemic languages would help elucidate the connection between stability, be-
liefs, and rationality in these concepts. There are two approaches. The first approach
is to formalize a non-cooperative game and invoke the epistemic language of individual
rationality. The other is to formulate a notion of cooperative rationality.

Pomatto (2022) models pairwise deviations explicitly as dynamic games. Starting
with a putative matching outcome, workers make offers to firms, and firms respond by
accepting or declining the offers they receive. For the putative matching to be stable,
no workers should make offers (or they anticipate their offers to be rejected by firms).
The paper adopts an extensive-form rationalizability approach. In this framework, each
player interprets their observations under the assumption that they arise from rational
behavior as much as possible. This concept is iterated upon to establish a common
strong belief in rationality, as detailed in Battigalli and Siniscalchi (2002). Pomatto
(2022) shows that this iteration leads to the same LMPS stable set, but interestingly,

they differ in their finite-order iterations.
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Wang (2022) takes a different epistemic approach. He formulates the epistemic state
space and defines a notion of pairwise rationality. He defines rationalizable stability us-
ing an iterative process and provides an epistemic justification using a common strong
belief of pairwise rationality. The paper introduces a belief refinement similar to Liu
(2020) and shows that rationalizable stability is outcome equivalent to a correlated no-
tion of Bayesian stability (without a common prior). The equivalence between pairwise
rationality and pairwise stability echos the equivalence between rationalizability and

correlated equilibrium in non-cooperative games, suggesting a deeper connection.

5 A More Refined Bayesian Approach

To formulate a Bayesian theory of stable matching, our primary concern is understand-
ing the beliefs players hold. The iterative approach only pins down these beliefs in
special cases of full revelation. To develop a coherent theory, we must consider the
beliefs corresponding to each scenario of deviation as well as those in scenarios with-
out any deviations. Both kinds of beliefs are endogenously determined. Liu (2020)
introduces an indirect approach termed the “Kreps—Wilson program.” Our focus in this
review covers the general two-sided incomplete information problem (T", 60), which is a

special case of Liu (2023).

5.1 Bayesian Stability

Let Z be the set of all matching outcomes (1, 7). A matching is a function M : © — Z.
A pairwise deviation is represented by (u,T,1,j,p), indicating that i and j deviate
from the matching outcome (i, 7) with a transfer p between them. A scenario of bi-
lateral deviation is (u, 7,1, j,p,0) while the perceived scenario of player n € {i,j} is
(w0, 7,%,7,p,0,). A scenario of unilateral deviation is (u, 7,1,0) or (i, 7,7,6). Let ¥} and
%32 be the perceived scenarios of unilateral and bilateral deviations, respectively. Define
¥, as ¥} U X2, Each player n must have beliefs 8. : ©1 — A(©) and 82 : ¥2 — A(O).
We write 3, : L UX2 — A(O) as the piecewise function that agrees on 3. and 32 on
their respective domains. The basic requirement is that player ¢ assigns probability 1 to

his own type 6; and M~!(z) after each outcome z that is possible under M. We refer to
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3L as player n’s on-path belief and 32 as player n’s off-path belief. Lastly, we refer
to a matching-function-belief configuration (M, ) as an assessment, following Kreps
and Wilson (1982).

Definition 14. An assessment (M, 3) is individually rational if, for all scenarios

of unilateral deviations (u,7,1,0) and (u,7,7,80), the following conditions hold:

Y

Eﬁi(umiﬂi)[azﬂ(i)(') + 7] aii(0:);
Egt(r oo buni () + 751 = bj5(6;).

1
J

Definition 15. A scenario of bilateral deviation (p,T,1,7,p,0) is a blocking scenario
of (M, B) if the following conditions are satisfied:

E,B?(,u,’r,i,j,pﬂj) [bZJ<) - p] > E,B?(,u,’r,i,j,pﬂj) [bM(J)J<> + Tj] .

If (p,7,1,7,p,0) is a blocking scenario, we say the bilateral deviation (u,T,1,7,p) is

viable.

Definition 16. An assessment (M, 3) is Bayesian stable if it is individually rational

and devoid of any blocking scenarios.

A matching game has private value if, for every i € I, j € J, and 0 € O, there
exist functions a; : ©; — R and b; : ©; — R such that a;;(0) = @;(0;) and b;;(0) =
b;(#;). In this particular case, the concept of Bayesian stability coincides with complete-

information stability.

Theorem 6. For a private-value matching game, an assessment (M, [3) is Bayesian
stable if and only if M(0) is a stable matching outcome of 'Y for every § € ©.

Remark 11. The matching function M : © — Z specifies deterministic outcomes.
Modeling stochastic matching functions is a matter of notation. This idea is an analog
of the correlated equilibrium. For each player n € N, let S, be the set of payoff-irrelevant
signals. We write S = [],,en S, and 6=0xS39. Player n’s prior is given by BZ € A(@)
A correlated matching is a function M : 6 — Z. Given this, it is straightforward to
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define belief systems and Bayesian stability. The introduction of S is useful. Indeed,
for a fixed ©, we can look at stable matchings generated by M : © x § — Z over all
possible S and all Bz € A(O x S) such that their marginals on © coincide with a given
prior /82 € A(O). Therefore, S captures the uncertainties observed by the agent but
not observed by the analysts who use an enlarged type space and solution sets to model

their ignorance. This interpretation is adopted, e.g., in Liu (2009). ]

5.2 Weak and Strong Consistencies

The plain-vanilla notion of Bayesian stability presented in Definition 16 does not have
strong restrictions, as the beliefs can be rather arbitrary. Furthermore, these beliefs are
not constrained by prior beliefs. Additional restrictions can be imposed.

For all bilateral deviations (p, 7,1, j, p), let us define “deviating sets”

Diﬁ(% T, i,j,p) = {9i : Egg(u,r,i,j,p,ei)[aij(') + p] > Eﬁ?(,u,f,i,j,p,@i)[aiu(i)(') + Tz]} ;
D]B(:U’J Tvi7j7p) = {9] : EB?(M,T,i,j,p,@j)[bij(.) - p] > Eﬂ?(uﬁ,i,j,p,@j)[bli(j)J(') + Tj]} .

Both deviating sets can be empty. They represent, respectively, the types of players
1 and 7 that stand to benefit from the bilateral deviation. If both deviating sets are

non-empty, then the bilateral deviation (u, 7,1, 7,p) is viable.

Definition 17. An assessment (M, 3) is weakly consistent if, for any scenario of

bilateral deviation (u, 7,1, j,p,0), the following conditions hold:

B?(Ma77iajap> Qz) = B? (| ({91} X Df(“77->iajap) X G—ij) N M_l(:uaT)) ;
B i gip,05) = B (1 ({6,} x DY 7.4,5,p) x ©-i5) N M (, 7))

Notice that Bayes’ rule places no restriction if the conditional set is empty. Weak
consistency imposes restrictions on beliefs, even when there is no blocking scenario,
because it restricts the beliefs under which a blocking scenario is evaluated. If 6 €
D = (DZ-B(,u, T,0,7,D) XDf(,u, 7,0, J,p) X O_ij) N M~ (u,7) # 0, then both i and j gain
from the deviation. Weak consistency says that, in state 6, the beliefs of ¢ and j assign
probability 1 to D, so both believe that both gain from the deviation. Not limited to
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first-order beliefs as it may appear, weak consistency implies that, in 6, both believe
that both believe both gain from the deviation, ad infinitum. In epistemic jargon, D is
a “self-evident” common knowledge event. Definition 16 does not satisfy this common
knowledge property.

The following example, which is adapted from Liu (2023), demonstrates the restric-

tion of weak consistency.

Example 1. Consider a two-player matching game with no transfer, so T = {0}. Player
1 is the worker and player 2 is the firm. Each player has two types: ©, = {0}, 62}.
There is a uniform common prior 89 = 59 € A(©). Players’ payoffs from not matching
with each other are always 0. Players’ payoffs from matching together, (a12(), b12(0)),

are dependent on their types 0 = (61, 65) as follows:

0 0;
01| 1,1 1,-2
02 | —2,—2| =2, -2

This configuration means that, for instance, players 1 and 2 receive payoffs of 1 and —2,
respectively, from the partnership if their types are 6 = (9%, 9%) Consider the matching
function that specifies an autarky for every state, and a belief system [ which assigns
equal probabilities to the opponent’s two types in all scenarios of bilateral deviations.
The only bilateral deviation is for the two players to match, which we denote as .
We denote a scenario of deviation by (&,6). Therefore, player 1 of type ] prefers the
deviation, but player 1 of type 67 and player 2 of both types prefer not to deviate (as
their expected payoff from the deviation is negative). Therefore, having autarky in
every state is Bayesian stable. However, player 1 prefers the deviation if and only if
his type is 01, i.e., D?(§) = {#'}. This incentive is understood by player 2 of both
types and the relevant belief for player 2’s decision of joining the bilateral deviation
should condition on this fact. That is, player 2 should assign probability 1 to player 1
being 6}, instead of equal probability to #} and 67, in any of his two perceived scenarios
of deviation, which is captured by weak consistency. Given this belief, player 2 of 6}
will join the deviation with player 1 of 1. Therefore, weak consistency implies that

(6,61,03) is a blocking scenario. It can be shown that the only matching that is part of
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a weakly consistent and stable assessment is the following:

Z 03

67 | match | autarky

62 | autarky | autarky

So weak consistency identifies the more intuitive outcomes in this game. O

Example 2. Consider the example above, but the payoffs from matching together are
modified as follows:
0, 0;
01| 1,1 | —2,-2
07 | =2, -2 | =2, -2

It is easy to check that having autarky in every state with a uniform belief is Bayesian
stable and weakly consistent.

However, it is quite intuitive that in this common-interest game, the two players can
form a partnership in (61, 63). For instance, player 1 of type #} can make the following
statement to player 2: “I am 91, and if you are 0;, let’s form a partnership. You should
know that if you are 63, I benefit from the partnership if and only if my type is 6}, so
you should trust that I am ;. My question is whether you are #3.” Similarly, player
2 of type 63 can make the following mirroring statement to player 1: “I am 63, and
if you are 6}, let’s form a partnership. You should know that if you are 67, I benefit
from the partnership if and only if my type is 65, so you should trust that I am 6. My
question is whether you are #}.” The two statements are “mutually reassuring” in the
sense that conditional on that the opponent is the cooperative type, a player benefits
from carrying out the stated plan if and only if he himself is the cooperative type, which
reassures the cooperative opponent. The existence of such mutual reassurance means

that it is plausible that the two players collectively deviate to form a partnership in
(61, 63). O

Definition 18. We say D; C ©; and D; C ©; are mutually reassuring with cer-
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tainty for a bilateral deviation (p, 7,4, ,p) if (D; X D; X ©_;) " M~ (pu, 7) # 0 and

() ({0} x Dj x ©_5) N M~ (u,7) # 0

D; = (0i: (i) Egolai;()|({0:} x Dj x ©_i5) N M~ (p, 7)) +p :
> Egolaiu()I({0:} x Dj x ©O_i5) " M~ (p, 7)] + 7

() ({0} x Dix©_y;) N M~ (u,7) # 0

(i) Ego[bi;()({6;} x Dix©_i;) N M~ (u, 7)] = p ,

> B [0, ()] ({05} Di x ©_i;) N M, 7)] + 7

Dj = 9]'1

where Eﬂg and Eﬁ? are the expectation operators with respect to the prior beliefs B? and

5?, respectively.

Definition 19. An assessment (M, ) is strongly consistent if the following two
conditions are satisfied:

(i) it is weakly consistent;

(ii) of there exist mutually reassuring sets with certainty D; and D; for (u,7,1,7,p),
then

(D] (1,74, §p) X D} (7,4, 5. p) X O—5) N M (1, 7) # 0.

Liu (2023) also introduces a strong consistency concept that does not require that
({0:}xD;xO©_; ;) NM " (p, 7) # 0 and ({8} x D;xO_;;)NM (1, 7) # 0 in Definition 18,
but make restrictions on EB? and Eﬂg when they are conditioned on zero-probability
events.

Example 2 shows that weak consistency and strong consistency have very different
implications, but this hinges on two-sided incomplete information. In matching games

with one-sided incomplete information, they coincide.

Theorem 7. An assessment (M, ) is weakly consistent for the game (I'%, 5°) if and

only if it is strongly consistent with certainty for the game.

The key for this result is the observation that if type 6; is commonly known, then

Dl (p,7,i,5,p) = {‘9i P Eg2 (00 @i () + 0] > Bz 00 @i () + Tz]}
= {97, . aij(QZ—, 93) +p > aw(i)(ei, 9#(1)) + Ti} .
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5.3 Implications of Stability and Consistency

Liu (2023) defines a condition called comonotonic differences that is intuitive for match-

ing problems.

Definition 20. A matching game has comonotonic differences ifEq, [a;;(0;,0;) — aij(6;,0;)]
and Eg,, [b;(0s,0;) — byj(0y,0;)] are comonotonic on ©; and on ©; for any two pairs

(i,7) € I x J, (7',5") € {U{j}) x (JU{i}), and any expectation operators Eg, over

Oy fori' € I and Eg, over Oy for j' € J.

The condition of comonotonic differences is always satisfied in a complete-information
matching game I'Y. There are two important special classes of matching games with
comonotonic differences. A matching game I' has one-sided interdependence if ei-
ther there is no restriction on b;; but there exist functions A; : ©, — R and constants
Aj; such that

aij<0i76j) = AZ(91> + AQJ for all 7 € I, j eJu {Z}, and 6 € @,

or symmetrically, there is no restriction on a;; but there exist functions B; : ©; — R

and constants Bj; such that
bij(gi,gj) = BJ(QJ) + Bz/] for all] S J, 1elU {]}, and 0 € ©.
A matching game I" has separable values if

aij(Qi,Qj) Al(ez) + A;](HJ) for all i € ], ] eJU {Z}, and 0 € @,
bij(Qi,Qj) = B]<(9]> + 32](90 for allj € J, 1elU {]}, and 0 € ("),

where A;: ©; = R, B;j: ©; = R, A, : ©; - R and Bj; : ©; — R, and A}, and Bj}; are
constant.
Liu (2023) show that all weakly consistent and stable assessments satisfy the follow-
ing
z € argmax Y E°(u,(2',-)|M'(2)) for any z € M(©). (5.1)
Z€Z  neluJg

for games with one-sided interdependence. Further, all strongly consistent and stable
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assessments satisfy (5.1) for games with comonotonic differences if a belief independence
condition holds. The property captured in Equation (5.1) can be understood from an
outside observer’s perspective. The observer, who starts with a prior [, observes the
outcome z, and believes in the theory of stability we reviewed here, will update his
assessment of type distribution to 3°(-|M~'(z)). If Equation (5.1) holds, then the
observer will not be able to recommend a rematching to improve the total surplus,
without changing the information structure. Liu’s result does not rely on the observer’s

knowledge of 3°, M, or the exact payoff functions.

6 Further Research and Open Questions

6.1 Other Solution Concepts

Stability and competitive equilibrium are two different ways of looking at a match-
ing problem. With complete information, the two solution concepts are equivalent,
but competitive equilibrium is especially simple and useful for economic analysis (e.g.,
Becker (1973) and Chiappori (2017)). The equivalence is no longer valid under In-
formational asymmetry as we discussed in Section 4.4, where we see that an iterative
notion of competitive equilibrium is refined by iterative stability. A Bayesian notion
of competitive equilibrium is easy to define. We will define it as the counterpart of
weak consistency; different belief-based refinements can be used. A price matrix P is a

mapping P : I x J — R, and we also append F;; = P;; = 0 to this notion.

Definition 21. A matching M : 0 — (u, P) is a (rational expectations) competitive
equilibrium if the following holds for all 0 € © and (u, P) = M(0):

(i) Egolaiu@ M~ (1, P)] + Py > Egolay| M~ (1, P)] + Py for alli € I and j €
JU{i};

(ii) Eﬁg[bu(j)ﬂM*l(,u, P)] — Puj); > Eﬁg[bij|M*1(,u, P)] — Py for all j € J and
ieIU{j}.

The concept satisfies individual rationality. Notice also that only the “on-path
belief” 8°(:|M~'(u, P)) is utilized in the definition, because a unilateral deviation does
not require mutual agreement. This definition generalizes the notion of a competitive

equilibrium under complete information.
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A stable matching outcome does not specify a price for an unmatched pair, while a
competitive matching outcome does specify a price for every pair. The observability of
the full price matrix may seem to suggest that prices in a competitive equilibrium match-
ing reveal more information than on-path prices in a stable matching. On the other
hand, flexible off-path prices allow for more information revelation. Understanding the
difference between them requires taking into account the incentives and information
embedded in their defining criteria. Indeed, Liu (2020) demonstrates that there is no
clear way of comparing stability and competitive equilibrium under incomplete infor-
mation. Different belief-based refinements could change the conclusion, and might even
restore the equivalence. In addition, different informational environments such as no
aggregate uncertainty (either permutation as in Section 4.1 or a continuum economy)
might make the comparison easier.

The idea described in Section 5 can be useful for defining other solution concepts in
the context of incomplete information. In a two-sided matching market with complete
information, the core is equivalent to pairwise stability. However, this equivalence breaks
down under incomplete information. A coalition involving more than two players can
reveal more information than pairwise deviations, even when rematches occur only in
pairs. This holds true even in situations with one-sided incomplete information, as
demonstrated by Liu (2020) using four-player examples. In general, the core refines the
concept of pairwise stability.

The concept of von Neumann-Morgenstern stable sets is another significant solu-
tion concept, characterized by both internal and external consistencies. Gretschko and
Wambach (2022) applied this concept to the study of the principal-agent problem,
where agents have private information. Here again, the idea is to explicitly model
beliefs within the solution concept. This reduced-form approach intuitively captures
equilibria in dynamic contracting games with renegotiation.

The long history of cooperative game theory is marked by the development of many
insightful solution concepts, almost always for games with complete information, such
as Shapley values, bargaining solutions, and the nucleolus. These concepts, however, are
different as they do not explicitly model deviations by coalitions. It would be interesting
to investigate how to further develop these insights under incomplete information and

whether and how endogenous belief formation outlined in Section 5 can be useful. It
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is curious that these concepts have not been widely used in the study of matching
problems. For further reading, see Myerson (1984) and Gul and Pesendorfer (2020).

6.2 Information Acquisition

Information acquisition is natural in the context of incomplete information. Immorlica,
Leshno, Lo, and Lucier (2020) consider information acquisition in a school matching
problem, and they define a notion of stability, which captures individual optimization
given others’ choices. Thus, their concept is similar to a competitive equilibrium. Its
conceptual difference with stability has been discussed above. Pairwise or group de-
viations would open up new possibilities. For example, one might consider a group
deviation in which a school subsidizes students’ information acquisition. These applied
theory questions have not been addressed.

Maxey (2021) and Kloosterman and Troyan (2020) for the study of information ac-
quisition in a market design setting. Relatedly, Lee and Schwarz (2017) and Echenique,
Gonzalez, Wilson, and Yariv (2022) investigate the role of interviews as a means of

preference discovery.

6.3 Applications

Many economic problems can be modeled as matching. We consider transfers in our
canonical models Section 3, but more generally players can sign complicated incentive
contracts when they match with each other (see, e.g., Liu (2023) for explorations). The
solution concepts in Sections Section 4 and Section 5 capture stabilized market inter-
actions. The following feedback information loop plays a crucial role in shaping stable
outcomes: the prevailing outcomes inform about the incentives and disincentives for
deviating from them, and this information in turn shapes the outcomes. This infor-
mation perspective is a difference between our approach and familiar cooperative or
non-cooperative equilibrium models, which opens up a wealth of new applications and
sheds new light on well-studied ones.

Markets with adverse selection are an example in point. For instance, if a sepa-
rating contract prevails in an insurance market, policyholders will reveal their types.

Competing insurance companies or new entrants will then take advantage of this infor-
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mation and offer full coverage contracts tailored to specific types, thus destabilizing the
separating outcome. Therefore, the framework of Rothschild and Stiglitz (1976) is not
suitable for analyzing stable insurance markets. These familiar applications, previously
analyzed in non-cooperative models, warrant further investigation. We foresee that the
stable matching with incomplete information will become valuable in a wide range of
applications.

It’s worth noting that this approach differs from the posterior implementation dis-
cussed by Green and Laffont (1987), which does not incorporate endogenous belief
formation through the information feedback loop. Similarly, the consideration of sta-
bility under incomplete information offers an alternative perspective on collusion-proof
mechanism design, in contrast to Laffont and Martimort (1997). This goes well beyond

matching problems.

6.4 Implementation

As mentioned in the introduction, we should be interested in both the properties that
define stabilized matching outcomes and the processes that lead to them. There are
several different approaches. In the definition of a matching function M : © — Z, we
do not impose a Bayesian incentive compatibility condition, as contrast to the prefer-
ence revelation approach discussed in Section 2. The Bayesian incentive compatibility
condition provides a one-shot implementation of stable matching and serves as a de-
sirable selection criterion of stable matchings, so the results proved without incentive
compatibility is robust. However, this approach is valid for special cases, such as when
the preferences of firms being independent of workers’ private types; in general, there is
a conflict between stability and incentive compatibility, so existence is not guaranteed.

On the other hand, the one-shot direct revelation game associated with incentive
compatibility is too restrictive for the purpose of having stability as a way of capturing
stabilized decentralized interactions. As a reduced-form concept, (M, ) abstracts the
underlying process; thus, the incentive compatibility of M omits valuable information.
Defining a more suitable notion of incentive compatibility remains an open question.
One idea is to expand the outcome space to incorporate essential information regarding

the underlying processes (for example, the time it takes to settle a matching is impor-
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tant, as we have experienced from dynamic screening problems). Alternatively, if we
were to maintain a one-shot implementation through conventional incentive compati-
bility on M, the concept of stability would likely require modification, possibly to make
it more permissive by refining the blocking conditions.

Other approaches include a Nash program for incomplete information games, i.e.,
implementation of a reduced-form concept through non-cooperative games. Research in
this area is currently quite limited and appears non-existent in the context of matching.”
Although the Nash program under complete information is well-developed, the proposed
strategic foundations often rely on ad hoc extensive-form games and are constrained to
highly specific setups. A more promising approach is to explore adjustment processes
that describe how a particular matching market might work. For a complete-information
problem, Roth and Vate (1990) consider an adjustment process, where, in each round,
a single blocking pair of players is selected to rematch. They show that starting from
any unstable matching, there is a path of pairwise rematching that terminates at a
stable matching outcome. In a random rematching process where every blocking pair is
selected with positive probability in each round, convergence to a stable matching will
occur with probability 1.

Chen and Hu (2020) consider a random matching process under incomplete infor-
mation, in which a player’s initial information, modeled as a partition, is subsequently
refined through their observations: a new partner’s type in a rematch, rematch of other
players, and the tentative lack of rematch. In their formulation, a rematching occurs if
two players can clearly block the prevailing matching outcome as in Section 4.2. They
show that the process converges to a prior-free notion of stable matching that incor-
porates partitional information of the firms, which generalizes LMPS. Lazarova and
Dimitrov (2017) consider a model where a pair is eligible for rematch if there is a state
in the support of their beliefs in which both benefit from the rematch (i.e., they evaluate
pairwise deviations using the most optimistic belief). Once they rematch, they observe
each other’s type and update their belief about others’ types based on this new observa-

tion. The optimistic belief incentivizes players to learn the types of others through their

"For instance, Okada (2012) explores bargaining foundations of the signaling core for an exchange
economy with incomplete information, and Kamishiro, Vohra, and Serrano (2022) investigates the
sequential core.
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temporary matches, making incomplete information transient. Lazarova and Dimitrov
(2017) give conditions the rematching paths to terminate, and show that the resulting
matching outcome must be complete-information stable. The use of optimistic beliefs
to evaluate matching opportunities is in contrast with Chen and Hu (2020), where re-
match opportunities are evaluated using the most pessimistic beliefs. In both papers,
the support of beliefs, rather than the exact beliefs, matters. Chen and Hu (2022) in-
corporate belief updating into the adaptive matching process of Chen and Hu (2020),
which provides a foundation for the stability of Liu (2020).

Agranov, Dianat, Samuelson, and Yariv (2021) experimentally studied a decentral-
ized matching process with transfers, in which agents can propose to others. After being
accepted, they learn their match payoffs and consequently their partners’ types. They
observe that stable matching is difficult to achieve, especially under incomplete informa-
tion and submodular payoffs. Even under supermodularity and complete information,
subjects are unable to figure out the transfers associated with stable matching.® Agra-
nov, Dianat, Samuelson, and Yariv (2021) use complete-information stability as their
theoretical benchmark, because players in their experiment learn their partners’ types
through tentative matches. Although their results appear negative for the concept of
stability, the critical questions remain as to whether repeatedly playing the same match-
ing games, especially experiencing the roles of different types, will help subjects converge
to stable matching outcomes.

The matching processes described above are specific. It is an open question of
how to model a large class of reasonable matching processes and understand when and
where they converge, particularly in cases where incomplete information is not transient.
LMPS shows that under supermodularity /submodularity assumptions, incomplete in-
formation unravels, starting from the lowest type to the highest. It remains to see how
this mechanism established with a reduced-form concept unfolds in dynamic market

interactions.

8See also He, Wu, Zhang, and Zhu (2023) for the difficulty of achieving stability in an experimental
study of complete-information matching.
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6.5 Dynamic Games of Matching

While we advocate for the utilization of reduced-form concepts like stability and com-
petitive equilibrium, it is important not to dismiss non-cooperative frameworks when we
have a good understanding of the institutions or market mechanisms governing certain
markets.

There is a distinctive literature that incorporates search frictions to models of labor
markets and macroeconomics. This “search-and-matching” literature has been mostly
about steady state of equilibrium interactions under complete information. For models
of incomplete information, see, e.g., Gonzalez and Shi (2010), Guerrieri, Shimer, and
Wright (2010), Lauermann (2013), and more recently, Ferdowsian (2023). The focus,
however, is not on pairwise blocking and stability. The connection between this litera-
ture and the cooperative approach, for both the frictionless limit and away from it, is
still not well understood.

Several papers have successfully integrated non-cooperative games with reduced-
form concepts, effectively leveraging the strengths of both approaches. This line of
research holds the potential to be a very promising area of applied theory. Li and
Rosen (1998) study unraveling in the presence of incomplete information. Individual
workers” productivities are initially unknown and only become public in the second
period. Given the aggregate uncertainty about whether there are enough productive
workers compared to firms and the discontinuity of competitive equilibrium prices, both
workers and firms might contract with each other before the productivities of workers
become known, which can be ex post inefficient.

In the work by Damiano and Li (2007), the focus shifts to a revenue-maximizing
monopolistic matchmaker who employs pricing strategies to sort agents into different
markets. The paper establishes conditions for equilibria to exist, where each market is
exclusively composed of a single type of male and a single type of female participants.
Damiano and Li (2008) consider matching coordinated by two competing matchmak-
ers who create two markets with entry fees and women and men self-select into these
markets. The paper shows that for the matchmakers, there is no pure strategy equi-
librium if they set their prices simultaneously. However, if they move sequentially and

the distribution of types is sufficiently diffused, a pure strategy equilibrium does exist.
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They identify environments in which the first mover serves the lower quality matching

market.
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