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Abstract

We study stationary equilibria in a sequential auction setting. A seller runs

a sequence of standard Ąrst-price or second-price auctions to sell an indivisible

object to potential buyers. The seller can commit to the rule of the auction and

the reserve price of the current period but not to reserve prices of future periods.

We prove the existence of stationary equilibria and establish a uniform Coase

conjectureŮat any point in time and in any stationary equilibrium, the sellerŠs

proĄt from running sequential auctions converges to the proĄt of running an

efficient auction as the period length goes to zero.

1 Introduction

Consider the standard Ąrst-price or second-price auction setting with a seller, a single

indivisible object, and multiple buyers whose values are independently drawn from
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a common distribution. It is well known that, under a regularity condition of the

distribution function, the standard auction with a properly designed reserve price

maximizes the sellerŠs revenue among all mechanisms (Myerson (1981) and Riley and

Samuelson (1981)). One of the key underlying assumptions for this result is the sellerŠs

ability to commit to her mechanism, speciĄcally, the ability to withhold the object if

no bidders place bids exceeding the reserve price. Of course, this assumption is not

always realistic, and it is common practice to hold new auctions for unsold objects.

A theoretical investigation of the dynamic aspect of this problem necessitates the use

of dynamic games, and this literature has proceeded in natural directions: reducing

the set of mechanisms to consider, exempliĄed by Skreta (2006, 2016) and Doval and

Skreta (2022), or characterizing attainable equilibrium revenues under a reasonable

class of mechanisms as in Liu, Mierendorff, Shi, and Zhong (2019). It is fair to say

that characterizing the sellerŠs optimal revenues and selling mechanisms with limited

commitment without exogenously restricting equilibria, mechanisms, or horizons of

interactions remains an open question at present.

It is worth noting that a separate body of literature in economics has devel-

oped, motivated by the question of how a revenue-maximizing seller operates without

commitments. Coase (1972) argues that a price-setting monopolist would lose her

monopoly power and prices would drop quickly to her marginal cost if she can fre-

quently adjust prices. This idea, know as the ŞCoase conjecture,Ť has been conĄrmed

by Fudenberg, Levine, and Tirole (1985) and Gul, Sonnenschein, and Wilson (1986):

it holds in every stationary equilibrium in which the buyerŠs equilibrium strategy can

only condition on the current price offer. In the ŞgapŤ case, where the buyerŠs val-

ues are strictly higher than the sellerŠs marginal cost (with additional distributional

assumptions), all perfect Bayesian equilibria are stationary. In the Şno-gapŤ case,

Ausubel and Deneckere (1989) show that, under some mild distributional assump-

tions, the sellerŠs full-commitment revenue is achievable via non-Coasian equilibria

if she can change prices frequently. This literature offers deep insight into the role

of commitment in the classic price theory setting, where the trading mechanism is
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restricted to posting prices.

Understanding the working of the Coasian force in an auction setting with a

Ąnite number of buyers is obviously relevant. To Ąx ideas, consider the following

problem. In each time period until the object is sold, the seller posts a reserve

price and holds a standard auction (e.g., second-price auction or Ąrst-price auction).

Each buyer can either wait for a future auction or submit a bid no smaller than the

reserve price. Waiting is costlyŮboth the buyers and the seller discount at the same

rate. Within a period, the seller is committed to the rules of the auction and the

announced reserve price. The seller cannot, however, commit to future reserve prices.

The sellerŠs commitment power varies with the period length (or effectively with

the discount factor). As the period length shrinks, the sellerŠs commitment power

diminishes. This limit is of great theoretical interest. In the gap case, McAfee and

Vincent (1997) show that the seller cannot obtain a revenue strictly higher than that

from an efficient auction in the limit, thus extending the analysis of Fudenberg et al.

(1985). ConĄrming the Coase conjecture in no-gap auctions is the task of this paper.1

We establish the following strong form of Coase conjecture: the sellerŠs proĄt from

running sequential auctions with reserve prices converges to the revenue of running

an efficient auction as the period length goes to zero, uniformly for all symmetric

stationary equilibria and all posteriors, thus generalizing the uniform Coase conjecture

of Ausubel and Deneckere (1989). Our analysis closely follows Ausubel and Deneckere

(1989).

The paper is organized as follows. Section 2 deĄnes the model and introduces

basic assumptions. Section 3 states the result. Section 4 contains the proof. Section

5 concludes with open questions.

1Milgrom (1987) analyzes a continuous-time version of the problem with explicit restrictions on
the strategy space. This exercise is quite different, and the formal discrete-time foundation is still
needed, as is well understood from the bargaining problem. McAfee and Vincent (1997) provide an
example of a Coasian equilibrium for the no-gap case under the uniform distribution of types, which
will be a building block for our general existence proof.
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2 Model

A seller (she) wants to sell an indivisible object to n potential buyers (he). Buyer i

privately observes his own valuation for the object vi ∈ [0, 1]. We use (vi, v−i) ∈ [0, 1]n

to denote the vector of the n buyersŠ valuations, and v ∈ [0, 1] to denote a generic

buyerŠs valuation. Each vi is drawn independently from a common distribution with

full support, c.d.f. F (·), and a continuously differentiable density f (·) such that

f(v) > 0 for all v ∈ (0, 1). The highest order statistic of the n valuations (vi, v−i) is

denoted by v(n), its c.d.f. by F (n), and the density by f (n). The sellerŠs reservation

value for the object is constant over time and we normalize it to zero.

Time is discrete and the period length is denoted by ∆. In each period t =

0, ∆, 2∆, . . . , the seller runs a second-price auction (SPA) with a reserve price. The

case of Ąrst-price auction or a mixture of Ąrst-price and second-price auctions over

time can be treated in the same way with a period-by-period payoff-equivalence ar-

gument. To simplify notation, we often do not explicitly specify the dependence of

the game on ∆. The timing within period t is as follows. First, the seller publicly

announces a reserve price pt for the auction run in period t, and invites all buyers

to submit a valid bid, which is restricted to the interval [pt, 1]. After observing pt,

all buyers decide simultaneously either to bid or to wait. If at least one valid bid

is submitted, the winner and the payment are determined according to the rules of

the second-price auction and the game ends. If no valid bid is submitted, the game

proceeds to the next period. Both the seller and the buyers are risk-neutral and have

a common discount rate r > 0. This implies a discount factor per period equal to

δ = e−r∆ < 1. If buyer i wins in period t and has to make a payment πi, then his

payoff is e−rt (vi − πi), and the sellerŠs payoff is e−rtπi.

We assume that the seller has limited commitment power. She can commit to the

reserve price that she announces for the current period: if a valid bid is placed, then

the object is sold according to the rules of the announced auction and she cannot

renege. She cannot commit, however, to future reserve prices: if the object was not

sold in a period, the seller can always run another auction with a new reserve price in
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the next period. She cannot promise to stop auctioning an unsold object, or commit

to a predetermined sequence of reserve prices.

We denote by ht = (p0, p∆, . . . , pt−∆) the public history at the beginning of t > 0 if

no bidder has placed a valid bid up to t, and write h0 = ∅ for the history at which the

seller chooses the Ąrst reserve price.2 Let Ht be the set of such histories. A (behavior)

strategy for the seller speciĄes a Borel-measurable function pt : Ht → P [0, 1] for each

t = 0, ∆, 2∆, . . ., where P [0, 1] is the space of Borel probability measures endowed

with the weak∗ topology.3 A (behavior) strategy for buyer i speciĄes a function

bi
t : Ht × [0, 1] × [0, 1] → P [0, 1] for each t = 0, ∆, 2∆, . . ., where we assume that

bi
t(ht, pt, vi) is Borel-measurable in vi, for all ht ∈ Ht, and all pt ∈ [0, 1], and that

supp bi
t(ht, pt, vi) ⊂ {0} ∪ [pt, 1], where Ş0Ť denotes no bid or an invalid bid.

We consider perfect Bayesian equilibria (PBE), and we will focus on symmet-

ric weak Markov (or stationary) equilibria. Weak-Markov equilibria are deĄned as

follows:

Definition 1. An equilibrium (p, b) ∈ E(∆) is a weak-Markov (or stationary) equi-

librium if the buyersŠ strategies only depend on the reserve price announced for the

current period.

3 Existence and Uniform Coase Conjecture

Following Ausubel and Deneckere (1989), we impose the following assumption. It is

not needed for existence, but is used to extend Coasian conjecture to our auction

setting.

Assumption 1. There exist constants 0 < M ≤ 1 ≤ L < ∞ and α > 0 such that

Mvα ≤ F (v) ≤ Lvα for all v ∈ [0, 1].

2We do not have to consider other histories because the game ends if someone places a valid bid.
3We slightly abuse notation by using pt both for the sellerŠs strategy and the announced reserve

price at a given history.
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In any equilibrium of the discrete time game, all buyers play pure strategies that

are characterized by history-dependent cutoffs. This is captured by the following

Lemma which establishes the Şskimming property,Ť an auction analog of a result by

Fudenberg et al. (1985). Its proof is standard and thus omitted.

Lemma 1. [Skimming Property] Let (p, b) ∈ E(∆). Then, for each t = 0, ∆, 2∆, . . .,

there exists a function βt : Ht × [0, 1] → [0, 1] such that every bidder with valuation

above βt(ht, pt) places a valid bid and every bidder with valuation below βt(ht, pt) waits

if the seller announces reserve price pt at history ht.

We now state the result:

Proposition 1. 1. (Existence) A stationary equilibrium exists for every r > 0 and

∆ > 0.

2. (Uniform Coase Conjecture) Suppose Assumption 1 holds. For every ε > 0,

there exists ∆ε > 0 such that for all ∆ < ∆ε, all x ∈ [0, 1], and every sym-

metric stationary equilibrium (p, b) of the game with period length ∆ and a

truncated distribution F (v|v ≤ x) on [0, x] , the sellerŠs proĄt associated with

this equilibrium, Π∆ (p, b|x), is bounded above by (1 + ε) ΠE (x), where ΠE (x)

is the sellerŠs proĄt from the efficient auction under this truncated distribution.

The second part of the proposition shows that the sellerŠs proĄt in every sym-

metric stationary equilibrium converges to the proĄt of the efficient auction.4 The

convergence is uniform, in the sense that Π∆ (p, b|x) /ΠE (x) → 1 uniformly for all

x ∈ (0, 1].

4Notice that in contrast to the Coase conjecture for one buyer, Proposition 1.(ii) does not show
that the initial reserve price p0 converges to zero. This is in fact not the case in the auction setting
as was noted by McAfee and Vincent (1997). However, reserve prices for t > 0 converge to zero
which is sufficient for the convergence of equilibrium proĄts to the proĄt of an efficient auctionŮthe
counterpart of the Coase conjecture in the auction setting.
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4 Proof

We adopt Ausubel and Deneckere (1989)Šs notation and assume that the types of

the bidders are i.i.d. draws from U [0, 1]. We denote the type of buyer i by qi. The

valuation for each type is given by the function v(q) := F −1(q). Assumption 1 implies

that the same condition also holds for v(q) and corresponds to the assumption made

in DeĄnition 5.1 in Ausubel and Deneckere (1989). In the following we will use that

F is continuous and strictly increasing (as in Ausubel and Deneckere (1989) we could

relax this even further to general distribution functions but this is not necessary for

the purpose of the present paper).5 Since the proof of Proposition 1 follows closely

the approach of Ausubel and Deneckere (1989), we emphasize the parts of the proof

of Ausubel and Deneckere (1989) that need to be modiĄed for the case of n ≥ 2.

4.1 Proof of Proposition 1.(i)

In a weak-Markov equilibrium, the buyersŠ strategy can be described by a function

P : [0, 1] → [0, 1]. A bidder with type qi places a valid bid if and only if the announced

reserve price is smaller than P (qi). Given that v is strictly increasing, Lemma 1

implies that P is non-decreasing.

Also by Lemma 1, the posterior of the seller at any history is described by the

supremum of the support, which we denote by q. If all buyers play according to P ,

the sellerŠs (unconditional) continuation proĄt for given q is6

R(q) : = max
y∈[0,q]

✂ q

y

v(z)d
[

nzn−1 − (n − 1)zn
]

+ P (y) n (q − y)yn−1 + e−r∆R(y) (1)

Let Y (q) be the argmax correspondence and deĄne y(q) := sup Y (q). Because

the objective satisĄes a single-crossing property, Y (q) is increasing and hence single-

5In Ausubel and Deneckere (1989) the valuation is decreasing in the type. We deĄne v to be
increasing so that higher types have higher valuations.

6Dividing the RHS by qn and replacing R(y) by ynR(y) would yield the conditional continuation
proĄt. The unconditional version is more convenient for the subsequent development.
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valued almost everywhere. If Y (q) is single-valued at q the seller announces a reserve

price S(q) = P (y(q)) if the posterior has upper bound q.

The buyersŠ indifference condition for the case that Y (q) is single-valued so that

the seller does not randomize, is given by:

v(q) − P (q) = e−r∆



v(q) −
(y(q))n−1

qn−1
S(q) −

1

qn−1

✂ q

y(q)

v(x)dxn−1

]

. (2)

If the seller randomizes over Y (q) according to some probability measure µ, then

v(q) − P (q) = e−r∆



v(q) −

✂
Y (q)

{

yn−1

qn−1
P (y) +

1

qn−1

✂ q

y

v(x)dxn−1

}

dµ(y)

]

, (3)

which may require that µ depends on P (q).7

We will be looking for left-continuous functions R and P such that (1) and (2)

are satisĄed. If this is true for all q ∈ [0, q̄], then we say that (P, R) support a weak-

Markov equilibrium on [0, q̄]. The goal is to show the existence of a pair (P, R) that

supports a weak-Markov equilibrium on [0, 1]. As in Ausubel and Deneckere (1989),

we can show that the sellerŠs continuation proĄt is Lipschitz-continuous in q.

Lemma 2. [cf. Lemma A.2 in Ausubel and Deneckere (1989)] If (P, R) supports

a weak-Markov equilibrium on [0, q̄], then R is increasing and Lipschitz continuous

satisfying

0 < R(q1) − R(q2) ≤ n(q1 − q2)

for all 0 ≤ q2 < q1 ≤ q̄.

7In the following, we give details for the case that the seller does not randomize and refer to
Ausubel and Deneckere (1989) for the discussion of randomization by the seller.
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Proof. First, we show monotonicity:

R(q1) =

✂ q1

y(q1)

v(z)d
[

nzn−1 − (n − 1)zn
]

+ P (y(q1)) n (q1 − y(q1))(y(q1))
n−1 + e−r∆R(y(q1))

≥

✂ q1

y(q2)

v(z)d
[

nzn−1 − (n − 1)zn
]

+ P (y(q2)) n (q1 − y(q2))(y(q2))
n−1 + e−r∆R(y(q2))

>

✂ q2

y(q2)

v(z)d
[

nzn−1 − (n − 1)zn
]

+ P (y(q2)) n (q2 − y(q2))(y(q2))
n−1 + e−r∆R(y(q2))

= R(q2)

To show Lipschitz continuity, notice that the revenue from sales to types below q2

in the continuation starting from q1 is at most R(q2) and the revenue from types

between q2 and q1 is bounded above by P (q1)(q
n
1 − qn

2 ).8 Hence

R(q1) − R(q2) ≤ P (q1)(q
n
1 − qn

2 )

≤ (qn
1 − qn

2 )

≤ n(q1 − q2)

Using this Lemma, we can show that an existence result for [0, q̄] can be extended

to the whole interval [0, 1].

Lemma 3. [cf. Lemma A.3 in Ausubel and Deneckere (1989)] Suppose (Pq̄, Rq̄) sup-

ports a weak-Markov equilibrium on [0, q̄], then there exists (P, R) which supports a

weak-Markov equilibrium on [0, 1].

8Suppose by contradiction that for the posterior [0, q1], the expected payment that the seller can
extract from some type q ∈ [q2, q1] is greater or equal than P (q1). In order to arrive at a history
where the posterior is [0, q1], the seller must have used reserve price P (q1) in the previous period.
But then all types in [q, q1] would prefer to bid in the previous period because they expect to make
higher payments if they wait. This is a contradiction.
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Proof. We extend (Rq̄, Pq̄) to some [0, q̄′]. DeĄne

Rq̄′(q) = max
0≤y≤min¶q̄,q♢

✂ q

y

v(z)d
[

nzn−1 − (n − 1)zn
]

+ Pq̄(y) n (q − y)yn−1 + e−r∆Rq̄(y)

with yq̄′(q) as the supremum of the argmax correspondence. Moreover, we deĄne

Pq̄′(q) by

v(q) − Pq̄′(q) = e−r∆



v(q) −
(yq̄′(q))n−1

qn−1
Pq̄(yq̄′(q)) −

1

qn−1

✂ q

yq̄′ (q)

v(x)dxn−1



 .

For q̄′ = min
{

1, n

√

q̄n + (1 − e−r∆)Rq̄(q̄)
}

, the constraint in the maximization in the

deĄnition of Rq̄′(q) is not binding and moreover

Rq̄′(q) = max
0≤y≤q

✂ q

y

v(z)d
[

nzn−1 − (n − 1)zn
]

+ Pq̄′(q) n (q − y)yn−1 + e−r∆Rq̄′(y)

For y ∈ [q̄, q] we have

✂ q

y

v(z)d
[

nzn−1 − (n − 1)zn
]

+ Pq̄′(q) n (q − y)yn−1 + e−r∆Rq̄′(y)

≤qn − yn + e−r∆Rq̄′(q)

≤(1 − e−r∆)Rq̄(q̄) + e−r∆Rq̄′(q)

≤(1 − e−r∆)Rq̄′(q) + e−r∆Rq̄′(q)

≤Rq̄′(q).

In the Ąrst step, we have used that the payments v(z) and Pq̄′(q) are less than or equal

to one. In the second step, we have used that q̄′ = min
{

1, n

√

q̄n + (1 − e−r∆)Rq̄(q̄)
}

;

since q̄ ≤ y ≤ q ≤ q̄′, this implies qn − yn ≤ (1 − e−r∆)Rq̄(q̄). The third step uses

Rq̄(q̄) = Rq̄′(q̄) and that Rq̄′ is increasing. Thus (Pq̄′ , Rq̄′) supports a weak-Markov

equilibrium on [0, q̄′]. Since Rq̄(q̄) > 0, a Ąnite number of repetitions suffices to extend

(Pq̄, Rq̄) to the entire interval [0, 1].
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To complete the proof, we follow Ausubel and Deneckere (1989) by replacing the

lower tail distribution on the interval [0, q̄] by a uniform distribution. For the uniform

distribution, a weak-Markov equilibrium can be constructed explicitly. In the auction

case, this has been shown by McAfee and Vincent (1997). Therefore, Lemma 3 implies

that for the modiĄed distribution with a uniform part at the lower end, a weak-Markov

equilibrium exists. The Ąnal step is to show that the functions (P, R) that support

the equilibrium for the modiĄed distribution converge to functions that support a

weak-Markov equilibrium for the original distribution as q̄ → 0.

Proof. [Proof of Proposition 1.(i)] As in Ausubel and Deneckere (1989), we consider

a sequence of valuation functions

vη(q) =











v(q), if q ≥ 1
η

v


1
η

)

ηq, otherwise.

This corresponds to the original distribution except that on the interval [0, 1/η], we

have made the distribution uniform. McAfee and Vincent (1997) show that there

exist (P̃1/η, R̃1/η) that support a weak-Markov equilibrium on [0, 1/η]. Hence, by

Lemma 3, for each η = 1, 2, . . ., there exists a pair (Pη, Rη) that supports a weak-

Markov equilibrium on [0, 1]. As in Ausubel and Deneckere (1989), we can assume

that Pη converges point-wise for all rationals to some function Φ(s), s ∈ Q ∩ [0, 1]

and taking left limits we can extend this limit to a non-decreasing, left-continuous

function P : [0, 1] → [0, 1]. Also, by Lemma 2, after taking a sub-sequence, we may

assume that (Rn) converges uniformly to a continuous function R. We have to show

that (P, R) supports a weak-Markov equilibrium for v. But given Lemma 2 and 3,

only minor modiĄcations are needed to apply the proof of Theorem 4.2 from Ausubel

and Deneckere (1989).
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4.2 Proof of Proposition 1.(ii)

Before we begin with the proof, we note that in contrast to the case of one buyer

analyzed by Ausubel and Deneckere (1989), the Ąrst reserve price in a continuation

game where the sellerŠs posterior is vt need not converge to zero as ∆ → 0.9 Nev-

ertheless, we obtain the Coase conjecture because prices fall arbitrarily quickly as

∆ → 0. On the buyer side, the strategy is described by a cutoff for the reserve price.

A buyer places a bid if and only if the current reserve price is below the cutoff. The

Markov property of the buyerŠs strategy implies that the cutoff only depends on the

buyerŠs type, it is independent of time and of the history of previous reserve prices. As

∆ → 0, the equilibrium cutoff of a buyer with type v converges to the payment that

this type would make in a second-price auction without reserve price. Also reserve

prices decline arbitrarily quickly so that the delay of the allocation vanishes for all

buyers as ∆ → 0. Therefore, the sellerŠs proĄt converges to the proĄt of an efficient

auction.

We want to show that the proĄt of the seller in any weak-Markov equilibrium of

a subgame that starts with the posterior [0, q], converges (uniformly over q) to ΠE(q)

as ∆ → 0. The proof consists of two main steps. The Ąrst step shows that for any

type ξ ∈ [0, 1], any ∆ > 0, and any weak-Markov equilibrium supported by some

pair (P, R), the expected payment that the seller can extract from type ξ is bounded

by ξn−1P (ξ). We prove this by showing that the expected payment conditional on

winning is bounded by P (ξ).

Lemma 4. Let (P, R) support a weak-Markov equilibrium in the game for ∆ > 0.

Suppose that in this equilibrium, type ξ ∈ [0, 1] trades in period t, let the posterior in

period t be qt ≥ ξ, and denote the marginal type in period t by q+
t ≤ ξ. Then we have

P (ξ) ≥

✂ ξ

q+

t

v(x)
dxn−1

ξn−1
+



q+
t

)n−1

ξn−1
P (q+

t ), ∀ξ ∈ [0, 1],

9For the uniform distribution, this was already noted by McAfee and Vincent (1997).
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and hence

R(q) ≤

✂ q

0

P (x) dxn, ∀q ∈ (0, 1].

Proof. For q+
t = ξ the RHS of the Ąrst inequality becomes P (q+

t ) = P (ξ). Hence it

suffices to show that ✂ ξ

q

v(x)dxn−1 + qn−1P (q)

is increasing in q. For q > q̂ we have

✂ ξ

q

v(x)dxn−1 + qn−1P (q) −

✂ ξ

q̂

v(x)dxn−1 − q̂n−1P (q̂)

=qn−1P (q) − q̂n−1P (q̂) −

✂ q

q̂

v(x)dxn−1

Using (2), we have

qn−1P (q) − q̂n−1P (q̂)

=


1 − e−r∆
)

qn−1v(q) + e−r∆

✂ q

y(q)

v(x)dxn−1 + e−r∆ (y(q))n−1 P (y(q))

−


1 − e−r∆
)

q̂n−1v(q̂) − e−r∆

✂ q̂

y(q̂)

v(x)dxn−1 − e−r∆ (y(q̂))n−1 P (y(q̂))

=


1 − e−r∆
) 

qn−1v(q) − q̂n−1v(q̂)
)

+ e−r∆


(y(q))n−1 P (y(q)) − (y(q̂))n−1 P (y(q̂))
)

+ e−r∆

✂ q

q̂

v(x)dxn−1 − e−r∆

✂ y(q)

y(q̂)

v(x)dxn−1
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and hence

qn−1P (q) − q̂n−1P (q̂) −

✂ q

q̂

v(x)dxn−1

=


1 − e−r∆
) 

qn−1v(q) − q̂n−1v(q̂)
)

+ e−r∆


(y(q))n−1 P (y(q)) − (y(q̂))n−1 P (y(q̂))
)

−


1 − e−r∆
)

✂ q

q̂

v(x)dxn−1 − e−r∆

✂ y(q)

y(q̂)

v(x)dxn−1

=e−r∆



(y(q))n−1 P (y(q)) − (y(q̂))n−1 P (y(q̂)) −

✂ y(q)

y(q̂)

v(x)dxn−1



+


1 − e−r∆
)

✂ q

q̂

v′(x)xn−1dx

Proceeding inductively, we get

qn−1P (q) − q̂n−1P (q̂) −

✂ q

q̂

v(x)dxn−1 =
∞
∑

k=0

e−k∆


1 − e−r∆
)

✂ yk(q)

yk(q̂)

v′(x)xn−1dx > 0,

where yk(·) denotes the function obtained by applying y(·) k times. This shows the

Ąrst inequality.

For the second inequality, notice that the RHS of the Ąrst inequality is the payment

that the seller can extract from type ξ if ξ wins the auction. This is bounded by P (ξ)

as the Ąrst inequality shows. The sellerŠs proĄt if the posterior at time t is q, therefore

satisĄes

R(q) ≤

✂ q

0

e−r(T (x)−t)P (x)dxn,

where T (x) denotes the trading time of type x in the weak-Markov equilibrium. This

implies the second inequality.

For the second step, Ąx the distribution and the corresponding function v and

deĄne vx : [0, 1] → [0, 1] for all x ∈ (0, 1].

vx(q) :=
v(qx)

v(x)
.
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Using HellyŠs selection theorem, we can extend this deĄnition to x = 0, by taking the

a.e.-limit of a subsequence of functions vx. Denote by EwM(∆, x) the weak-Markov

equilibria of the game with discount factor ∆ and distribution given by vx where

x → 0. Slightly abusing notation we write (P, R) ∈ EwM(∆, x) for a weak-Markov

equilibrium that is supported by functions (P, R). We show that there is an upper

bound for P (1) that converges to the expected payment in a second price auction

without reserve price as ∆ → 0, and the convergence is uniform over x.

Lemma 5. Fix v(·). For all ε > 0, there exists ∆ε > 0 such that for all ∆ ≤ ∆ε, all

x ∈ [0, 1], and all (P, R) ∈ EwM(∆, x),

P (1) ≤

✂ 1

0

vx(s) dsn−1 + ε.

Proof. Suppose not. Then there exist sequences ∆m → 0 and xm → x̄ such that for

all m ∈ N, there exist equilibria (Pm, Rm) ∈ EwM(∆m, xm) such that for all m,

Pm(1) >

✂ 1

0

vxm
(s) dsn−1 + ε.

By a similar argument as in the proof of Theorem 4.2 of Ausubel and Deneckere

(1989), we can construct a limiting pair (P , R), where P is left-continuous and non-

decreasing, Pm converges point-wise to P for all rationals, and Rm converges uniformly

to R. Obviously, we have

P (1) ≥

✂ 1

0

vx̄(s) dsn−1 + ε.

Left-continuity implies that there exists q̄ < 1 such that

P (q̄) ≥

✂ q̄

0

vx̄(s) dsn−1 +
ε

2
. (4)

Using an argument from the proof of Theorem 5.4 in Ausubel and Deneckere
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(1989), we can show that

R(1) ≥

✂ 1

q̄

P (s) dsn + ΠE(q̄) ≥ ΠE(1) + (1 − q̄)
ε

2
,

where we have used (4) to show the second inequality. Hence, we have

Rm(1) → R(1) ≥ ΠE(1) + (1 − q̄)
ε

2
. (5)

But this implies that there must exist a type q̂ > 0, a time t > 0, and m̄ such that

for all m > m̄,

Tm(q̂) ≥ t.

where Tm(·) is the trading time function in the weak-Markov equilibrium supported

by (Pm, Rm). To see this, note that delay for low types is needed to increase the

sellerŠs revenue beyond the revenue from an efficient auction.

With this observation, we can conclude the proof using a similar argument as in

Case I of the proof of Theorem 5.4 in Ausubel and Deneckere (1989). From Lemma

4 we know that the maximal expected payment conditional on winning that a buyer

of type q has to make in equilibrium is given by Pm(q). This implies that

Rm(1) ≤

✂ 1

q̂

Pm(z)dzn + e−rtRm(q̂).

In the limit we have

R(1) ≤

✂ 1

q̂

P (z)dzn + e−rtR(q̂). (6)

On the other hand, the same argument that we used to obtain (5) yields

R(1) ≥

✂ 1

0

P (z)dzn. (7)
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Combining (6) and (7) we get

✂ q̂

0

P (z)dzn ≤ e−rtR(q̂),

which implies

R(q̂) >

✂ q̂

0

P (z)dzn,

since t > 0. But Lemma 4 implies the opposite inequality which is a contradiction.

Using this Lemma, we can show that for a given v(·), the difference between the

continuation proĄt at [0, q] and ΠE(q), divided by v(q) converges uniformly to zero.

Lemma 6. Fix v(·). For all ε > 0, there exists ∆ε > 0 such that for all ∆ ≤ ∆ε, all

x ∈ [0, 1], and all (P, R) ∈ EwM(∆, 1),

R(x)

xn
− ΠE(v(x)) ≤ εv(x).

Proof. The statement of the Lemma is equivalent to the statement that for all ε > 0,

there exists ∆ε > 0 such that for all ∆ ≤ ∆ε, all x ∈ [0, 1], and all (P, R) ∈ EwM(∆, x),

R(1|vx) − ΠE(1|vx) ≤ ε. (8)

This equivalence holds because truncating and rescaling the function v(·) leads to the

following transformations:

R(x|v)

xn
= v(x)R(1|vx),

ΠE(v(x)) = v(x)ΠE(1|vx).

To show (8), we combine Lemmas 4 and 5, and use that P (z|vx) = vx(z)P (1|vz·x) to
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get for all x ∈ [0, 1],

R(1|vx) ≤

✂ 1

0

P (z|vx)dzn

=

✂ 1

0

vx(z)P (1|vx·z)dzn

≤

✂ 1

0

vx(z)

✂ 1

0

vx·z(s)dsn−1 + ε



dzn

=

✂ 1

0

✂ 1

0

vx(sz)dsn−1



dzn + ε

✂ 1

0

vx(z)dzn

≤

✂ 1

0

✂ z

0

vx(s)
dsn−1

zn−1



dzn + ε

= ΠE(1|vx) + ε

This allows us to complete the proof of Proposition 1.(ii).

Proof of Proposition 1.(ii) Translated into the notation of the paper, Lemma

6 implies that for a given distribution function F , for all ε̃ > 0, there exists ∆ε̃ > 0

such that for all ∆ ≤ ∆ε̃, all v ∈ [0, 1], and all weak-Markov equilibria (p, b) ∈

EwM(∆), we have

Π∆(p, b|v) ≤ ΠE(v) + ε̃v.

Recall that by Assumption 1, there exist 0 < M ≤ 1 ≤ L < ∞ and α > 0 such

that Mvα ≤ F (v) ≤ Lvα for all v ∈ [0, 1]. This implies that the rescaled truncated

distribution

F̃x(v) :=
F (vx)

F (x)
,

for all v ∈ [0, 1] is dominated by a function that is independent of x:

F̃x(v) ≤
Lvαxα

Mxα
=

L

M
vα.
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Next, we observe that the revenue of the efficient auction can be written in terms

of the rescaled expected value of the second-highest order statistic of the rescaled

distribution:

ΠE(v) =

✂ 1

0

vsF̃ (n−1:n)
v (s)ds.

If we deĄne F̂ (v) := min
{

1, L
M

vα
}

and B :=
✁ 1

0
sF̂ (n−1:n)(s)ds, then given F̃x(v) ≤

L
M

vα we can apply Theorem 4.4.1 in David and Nagaraja (2003) to obtain ΠE(v) ≥

Bv > 0 for all v ∈ [0, 1]. If we chose ε̃ sufficiently small we have

ε̃ ≤ Bε,

⇐⇒ ε̃v ≤ Bεv,

=⇒ ε̃v ≤ εΠE(v),

⇐⇒ ΠE(v) + ε̃v ≤ (1 + ε)ΠE(v).

This implies that

Π∆(p, b|v) ≤ (1 + ε)ΠE(v)

for all ∆ ≤ ∆ε := ∆ε̃ for ε̃ sufficiently small.□

5 Concluding Remarks

The paper establishes the Coase conjecture for no-gap auctions, hence Ąlling a gap

in the literature. While the concept of weak-Markov equilibrium in this paper draws

from the bargaining literature, a limitation of our analysis is that it focuses on sym-

metric equilibria. The extent of the restriction imposed by weak-Markov equilibrium

is explored in Liu et al. (2019), where, among other things, it is shown that the

Coasian force is robust for a broad class of distribution functions. Characterizing the

sellerŠs achievable revenues without restricting trading mechanisms in the no-gap case

is still an open question, even with only one bidder.
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