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Abstract

We study stationary equilibria in a sequential auction setting. A seller runs
a sequence of standard first-price or second-price auctions to sell an indivisible
object to potential buyers. The seller can commit to the rule of the auction and
the reserve price of the current period but not to reserve prices of future periods.
We prove the existence of stationary equilibria and establish a uniform Coase
conjecture—at any point in time and in any stationary equilibrium, the seller’s
profit from running sequential auctions converges to the profit of running an

efficient auction as the period length goes to zero.

1 Introduction

Consider the standard first-price or second-price auction setting with a seller, a single

indivisible object, and multiple buyers whose values are independently drawn from
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a common distribution. It is well known that, under a regularity condition of the
distribution function, the standard auction with a properly designed reserve price
maximizes the seller’s revenue among all mechanisms (Myerson (1981) and Riley and
Samuelson (1981)). One of the key underlying assumptions for this result is the seller’s
ability to commit to her mechanism, specifically, the ability to withhold the object if
no bidders place bids exceeding the reserve price. Of course, this assumption is not
always realistic, and it is common practice to hold new auctions for unsold objects.
A theoretical investigation of the dynamic aspect of this problem necessitates the use
of dynamic games, and this literature has proceeded in natural directions: reducing
the set of mechanisms to consider, exemplified by Skreta (2006, 2016) and Doval and
Skreta (2022), or characterizing attainable equilibrium revenues under a reasonable
class of mechanisms as in Liu, Mierendorff, Shi, and Zhong (2019). It is fair to say
that characterizing the seller’s optimal revenues and selling mechanisms with limited
commitment without exogenously restricting equilibria, mechanisms, or horizons of
interactions remains an open question at present.

It is worth noting that a separate body of literature in economics has devel-
oped, motivated by the question of how a revenue-maximizing seller operates without
commitments. Coase (1972) argues that a price-setting monopolist would lose her
monopoly power and prices would drop quickly to her marginal cost if she can fre-
quently adjust prices. This idea, know as the “Coase conjecture,” has been confirmed
by Fudenberg, Levine, and Tirole (1985) and Gul, Sonnenschein, and Wilson (1986):
it holds in every stationary equilibrium in which the buyer’s equilibrium strategy can
only condition on the current price offer. In the “gap” case, where the buyer’s val-
ues are strictly higher than the seller’s marginal cost (with additional distributional
assumptions), all perfect Bayesian equilibria are stationary. In the “no-gap” case,
Ausubel and Deneckere (1989) show that, under some mild distributional assump-
tions, the seller’s full-commitment revenue is achievable via non-Coasian equilibria
if she can change prices frequently. This literature offers deep insight into the role

of commitment in the classic price theory setting, where the trading mechanism is



restricted to posting prices.

Understanding the working of the Coasian force in an auction setting with a
finite number of buyers is obviously relevant. To fix ideas, consider the following
problem. In each time period until the object is sold, the seller posts a reserve
price and holds a standard auction (e.g., second-price auction or first-price auction).
Each buyer can either wait for a future auction or submit a bid no smaller than the
reserve price. Waiting is costly—both the buyers and the seller discount at the same
rate. Within a period, the seller is committed to the rules of the auction and the
announced reserve price. The seller cannot, however, commit to future reserve prices.
The seller’s commitment power varies with the period length (or effectively with
the discount factor). As the period length shrinks, the seller’s commitment power
diminishes. This limit is of great theoretical interest. In the gap case, McAfee and
Vincent (1997) show that the seller cannot obtain a revenue strictly higher than that
from an efficient auction in the limit, thus extending the analysis of Fudenberg et al.
(1985). Confirming the Coase conjecture in no-gap auctions is the task of this paper.!
We establish the following strong form of Coase conjecture: the seller’s profit from
running sequential auctions with reserve prices converges to the revenue of running
an efficient auction as the period length goes to zero, uniformly for all symmetric
stationary equilibria and all posteriors, thus generalizing the uniform Coase conjecture
of Ausubel and Deneckere (1989). Our analysis closely follows Ausubel and Deneckere
(1989).

The paper is organized as follows. Section 2 defines the model and introduces
basic assumptions. Section 3 states the result. Section 4 contains the proof. Section

5 concludes with open questions.

IMilgrom (1987) analyzes a continuous-time version of the problem with explicit restrictions on
the strategy space. This exercise is quite different, and the formal discrete-time foundation is still
needed, as is well understood from the bargaining problem. McAfee and Vincent (1997) provide an
example of a Coasian equilibrium for the no-gap case under the uniform distribution of types, which
will be a building block for our general existence proof.



2 Model

A seller (she) wants to sell an indivisible object to n potential buyers (he). Buyer i
privately observes his own valuation for the object v* € [0, 1]. We use (v¢,v™%) € [0, 1]"
to denote the vector of the n buyers’ valuations, and v € [0, 1] to denote a generic
buyer’s valuation. Each v* is drawn independently from a common distribution with
full support, c.d.f. F(:), and a continuously differentiable density f (-) such that
f(v) >0 for all v € (0,1). The highest order statistic of the n valuations (v, v™") is
denoted by v™, its c.d.f. by F™, and the density by f™. The seller’s reservation
value for the object is constant over time and we normalize it to zero.

Time is discrete and the period length is denoted by A. In each period t =
0,A,2A, ..., the seller runs a second-price auction (SPA) with a reserve price. The
case of first-price auction or a mixture of first-price and second-price auctions over
time can be treated in the same way with a period-by-period payoff-equivalence ar-
gument. To simplify notation, we often do not explicitly specify the dependence of
the game on A. The timing within period t is as follows. First, the seller publicly
announces a reserve price p; for the auction run in period ¢, and invites all buyers
to submit a valid bid, which is restricted to the interval [p;, 1]. After observing py,
all buyers decide simultaneously either to bid or to wait. If at least one valid bid
is submitted, the winner and the payment are determined according to the rules of
the second-price auction and the game ends. If no valid bid is submitted, the game
proceeds to the next period. Both the seller and the buyers are risk-neutral and have
a common discount rate r > 0. This implies a discount factor per period equal to
§ = e < 1. If buyer ¢ wins in period ¢ and has to make a payment 7, then his
payoff is e " (v' — 7%), and the seller’s payoff is e "'’

We assume that the seller has limited commitment power. She can commit to the
reserve price that she announces for the current period: if a valid bid is placed, then
the object is sold according to the rules of the announced auction and she cannot
renege. She cannot commit, however, to future reserve prices: if the object was not

sold in a period, the seller can always run another auction with a new reserve price in



the next period. She cannot promise to stop auctioning an unsold object, or commit
to a predetermined sequence of reserve prices.

We denote by h; = (po, pa, - - -, Pi—a) the public history at the beginning of ¢ > 0 if
no bidder has placed a valid bid up to ¢, and write hg = () for the history at which the
seller chooses the first reserve price.? Let H; be the set of such histories. A (behavior)
strategy for the seller specifies a Borel-measurable function p; : H; — P[0, 1] for each
t =0,A,2A,..., where P|0,1] is the space of Borel probability measures endowed
with the weak* topology.®> A (behavior) strategy for buyer i specifies a function
b : Hy x [0,1] x [0,1] — P[0,1] for each ¢ = 0,A,2A,..., where we assume that
bi(hg, pi,v') is Borel-measurable in o', for all hy € H;, and all p; € [0, 1], and that
supp bi(hg, ps,v*) C {0} U [ps, 1], where “0” denotes no bid or an invalid bid.

We consider perfect Bayesian equilibria (PBE), and we will focus on symmet-
ric weak Markov (or stationary) equilibria. Weak-Markov equilibria are defined as

follows:

Definition 1. An equilibrium (p,b) € £(A) is a weak-Markov (or stationary) equi-
librium if the buyers’ strategies only depend on the reserve price announced for the

current period.

3 Existence and Uniform Coase Conjecture

Following Ausubel and Deneckere (1989), we impose the following assumption. It is
not needed for existence, but is used to extend Coasian conjecture to our auction

setting.

Assumption 1. There exist constants 0 < M < 1 < L < oo and a > 0 such that
Muv* < F(v) < Lv® for allv € ]0,1].

2We do not have to consider other histories because the game ends if someone places a valid bid.
3We slightly abuse notation by using p; both for the seller’s strategy and the announced reserve
price at a given history.



In any equilibrium of the discrete time game, all buyers play pure strategies that
are characterized by history-dependent cutoffs. This is captured by the following
Lemma which establishes the “skimming property,” an auction analog of a result by
Fudenberg et al. (1985). Its proof is standard and thus omitted.

Lemma 1. [Skimming Property] Let (p,b) € E(A). Then, for each t = 0,A,2A, ...,
there exists a function By : Hy x [0,1] — [0,1] such that every bidder with valuation
above By(hy, py) places a valid bid and every bidder with valuation below By(hy, py) waits

if the seller announces reserve price p; at history hy.
We now state the result:

Proposition 1. 1. (Existence) A stationary equilibrium exists for everyr > 0 and
A > 0.

2. (Uniform Coase Conjecture) Suppose Assumption 1 holds. For every e > 0,
there exists A. > 0 such that for all A < A., all x € [0,1], and every sym-
metric stationary equilibrium (p,b) of the game with period length A and a
truncated distribution F(vlv < x) on [0,z], the seller’s profit associated with
this equilibrium, 112 (p,blx), is bounded above by (1 + &) I1Z (z), where I1¥ (x)

is the seller’s profit from the efficient auction under this truncated distribution.

The second part of the proposition shows that the seller’s profit in every sym-
metric stationary equilibrium converges to the profit of the efficient auction. The
convergence is uniform, in the sense that IT® (p, b|x) /I (x) — 1 uniformly for all
x € (0,1].

4Notice that in contrast to the Coase conjecture for one buyer, Proposition 1.(ii) does not show
that the initial reserve price py converges to zero. This is in fact not the case in the auction setting
as was noted by McAfee and Vincent (1997). However, reserve prices for ¢ > 0 converge to zero
which is sufficient for the convergence of equilibrium profits to the profit of an efficient auction—the
counterpart of the Coase conjecture in the auction setting.



4 Proof

We adopt Ausubel and Deneckere (1989)’s notation and assume that the types of
the bidders are i.i.d. draws from U0, 1]. We denote the type of buyer 7 by ¢'. The
valuation for each type is given by the function v(q) := F~1(¢q). Assumption 1 implies
that the same condition also holds for v(q) and corresponds to the assumption made
in Definition 5.1 in Ausubel and Deneckere (1989). In the following we will use that
F ' is continuous and strictly increasing (as in Ausubel and Deneckere (1989) we could
relax this even further to general distribution functions but this is not necessary for
the purpose of the present paper).® Since the proof of Proposition 1 follows closely
the approach of Ausubel and Deneckere (1989), we emphasize the parts of the proof
of Ausubel and Deneckere (1989) that need to be modified for the case of n > 2.

4.1 Proof of Proposition 1.(i)

In a weak-Markov equilibrium, the buyers’ strategy can be described by a function
P :[0,1] — [0,1]. A bidder with type ¢' places a valid bid if and only if the announced
reserve price is smaller than P(q%). Given that v is strictly increasing, Lemma 1
implies that P is non-decreasing.

Also by Lemma 1, the posterior of the seller at any history is described by the
supremum of the support, which we denote by ¢. If all buyers play according to P,

the seller’s (unconditional) continuation profit for given ¢ is®

y€[0,q]

R(q) : = max /qv(z)d {nz”_l —(n— 1)2”} +Py)n(g—y)y" " +e ™ R(y) (1)

Let Y (gq) be the argmax correspondence and define y(q) := sup Y (q). Because

the objective satisfies a single-crossing property, Y (q) is increasing and hence single-

°In Ausubel and Deneckere (1989) the valuation is decreasing in the type. We define v to be
increasing so that higher types have higher valuations.

6Dividing the RHS by ¢" and replacing R(y) by y™R(y) would yield the conditional continuation
profit. The unconditional version is more convenient for the subsequent development.



valued almost everywhere. If Y (q) is single-valued at ¢ the seller announces a reserve
price S(q) = P(y(q)) if the posterior has upper bound gq.
The buyers’ indifference condition for the case that Y(q) is single-valued so that

the seller does not randomize, is given by:

v(g) = P(q) = e [U(Q) — MS(q) _ /q v(x)dac”1] . (2)

If the seller randomizes over Y (gq) according to some probability measure yu, then

o)~ Pl = ot~ [ AT L [Mowar )| o
v(g) (4 q y
which may require that p depends on P(q).”

We will be looking for left-continuous functions R and P such that (1) and (2)
are satisfied. If this is true for all ¢ € [0, g], then we say that (P, R) support a weak-
Markov equilibrium on [0, g]. The goal is to show the existence of a pair (P, R) that
supports a weak-Markov equilibrium on [0, 1]. As in Ausubel and Deneckere (1989),

we can show that the seller’s continuation profit is Lipschitz-continuous in gq.

Lemma 2. [c¢f. Lemma A.2 in Ausubel and Deneckere (1989)] If (P, R) supports
a weak-Markov equilibrium on [0,q|, then R is increasing and Lipschitz continuous
satisfying

0 < R(q1) — R(g2) < nlq1 — g2)

forall0 < g < q <q.

“In the following, we give details for the case that the seller does not randomize and refer to
Ausubel and Deneckere (1989) for the discussion of randomization by the seller.



Proof. First, we show monotonicity:

Ry = [ o

q

(q2)

2"t — (n— 1)2”-

nz"' —(n— 1)2’”_

et — (n— 1)2”_

+ P(y(q))n (g1 — y(@) (@) + e "> Rly(q))
+ P(y(g2)) n (@1 — y(a))(y(@)" " + e " R(y(q))

+ P(y(g2)) n (g2 — y(a2))(y(@2))" " + e "> R(y(q2))

2/y1 v(z)d
o
= R(q2)

To show Lipschitz continuity, notice that the revenue from sales to types below ¢
in the continuation starting from ¢; is at most R(q2) and the revenue from types

between ¢, and ¢; is bounded above by P(q1)(q} — ¢3).® Hence

R(q1) — R(g2)

IN

P(q1)(q — a3)

qr — q3)

VAN

IN

n(q1 - CI2)

]

Using this Lemma, we can show that an existence result for [0, ¢] can be extended
to the whole interval [0, 1].

Lemma 3. [cf. Lemma A.3 in Ausubel and Deneckere (1989)] Suppose (FPy, Rg) sup-
ports a weak-Markov equilibrium on [0, q], then there exists (P, R) which supports a

weak-Markov equilibrium on [0, 1].

8Suppose by contradiction that for the posterior [0, ¢1], the expected payment that the seller can
extract from some type ¢ € [ga2,¢1] is greater or equal than P(q;). In order to arrive at a history
where the posterior is [0, q;], the seller must have used reserve price P(g;) in the previous period.
But then all types in [g, ¢1] would prefer to bid in the previous period because they expect to make
higher payments if they wait. This is a contradiction.



Proof. We extend (Rj, P;) to some [0, ¢']. Define

Ry(¢) = max /q v(z)d [nz”_l —(n— 1)z”} + Py(y)n(qg—y)y" ' + e_’"ARq(y)

0<y<min{q,q}

with yz(¢) as the supremum of the argmax correspondence. Moreover, we define
Py(q) by

For ¢ = min {1, \”/ a*+ (1 — e—TA)Rq(q)}, the constraint in the maximization in the
definition of Rz (q) is not binding and moreover

Rz (q) = max /qv(z)d [nz"_1 —(n— 1)2"} + Py(g)n(qg—y)y" ' +e " Ry(y)

0<y<q y

For y € [q, q] we have

<(1—e"™)Ry(q) + ¢ "Ry (q)
<(1—e ") Ry(q) + e Ry(q)
<Rg(q).

In the first step, we have used that the payments v(z) and Py (q) are less than or equal
to one. In the second step, we have used that ¢ = min {1, (“‘/(7” +(1- e_TA)Rq(q_)};
since ¢ < y < ¢ < ¢, this implies ¢" — y" < (1 — e "™)R4(q). The third step uses

R;(q9) = Ry(q) and that Ry is increasing. Thus (Py, Ry) supports a weak-Markov
equilibrium on [0, ¢']. Since Rz(¢) > 0, a finite number of repetitions suffices to extend

(P;, R;) to the entire interval [0, 1]. O

10



To complete the proof, we follow Ausubel and Deneckere (1989) by replacing the
lower tail distribution on the interval [0, ¢] by a uniform distribution. For the uniform
distribution, a weak-Markov equilibrium can be constructed explicitly. In the auction
case, this has been shown by McAfee and Vincent (1997). Therefore, Lemma 3 implies
that for the modified distribution with a uniform part at the lower end, a weak-Markov
equilibrium exists. The final step is to show that the functions (P, R) that support
the equilibrium for the modified distribution converge to functions that support a

weak-Markov equilibrium for the original distribution as ¢ — 0.

Proof. [Proof of Proposition 1.(i)] As in Ausubel and Deneckere (1989), we consider

a sequence of valuation functions

. 1
U(q)> 1fq Z ﬁ

v,(q) =
v (%) nq, otherwise.

This corresponds to the original distribution except that on the interval [0,1/n)], we
have made the distribution uniform. McAfee and Vincent (1997) show that there
exist (P /n,fil /y) that support a weak-Markov equilibrium on [0,1/n]. Hence, by
Lemma 3, for each n = 1,2,..., there exists a pair (P,, R,) that supports a weak-
Markov equilibrium on [0,1]. As in Ausubel and Deneckere (1989), we can assume
that P, converges point-wise for all rationals to some function ®(s), s € Q N0, 1]
and taking left limits we can extend this limit to a non-decreasing, left-continuous
function P : [0,1] — [0, 1]. Also, by Lemma 2, after taking a sub-sequence, we may
assume that (R,,) converges uniformly to a continuous function R. We have to show
that (P, R) supports a weak-Markov equilibrium for v. But given Lemma 2 and 3,
only minor modifications are needed to apply the proof of Theorem 4.2 from Ausubel
and Deneckere (1989). O

11



4.2 Proof of Proposition 1.(ii)

Before we begin with the proof, we note that in contrast to the case of one buyer
analyzed by Ausubel and Deneckere (1989), the first reserve price in a continuation
game where the seller’s posterior is v; need not converge to zero as A — 0. Nev-
ertheless, we obtain the Coase conjecture because prices fall arbitrarily quickly as
A — 0. On the buyer side, the strategy is described by a cutoff for the reserve price.
A buyer places a bid if and only if the current reserve price is below the cutoff. The
Markov property of the buyer’s strategy implies that the cutoff only depends on the
buyer’s type, it is independent of time and of the history of previous reserve prices. As
A — 0, the equilibrium cutoff of a buyer with type v converges to the payment that
this type would make in a second-price auction without reserve price. Also reserve
prices decline arbitrarily quickly so that the delay of the allocation vanishes for all
buyers as A — 0. Therefore, the seller’s profit converges to the profit of an efficient
auction.

We want to show that the profit of the seller in any weak-Markov equilibrium of
a subgame that starts with the posterior [0, q], converges (uniformly over q) to 11 (q)
as A — 0. The proof consists of two main steps. The first step shows that for any
type £ € [0,1], any A > 0, and any weak-Markov equilibrium supported by some
pair (P, R), the expected payment that the seller can extract from type £ is bounded
by £"71P(€£). We prove this by showing that the expected payment conditional on
winning is bounded by P(§).

Lemma 4. Let (P, R) support a weak-Markov equilibrium in the game for A > 0.
Suppose that in this equilibrium, type & € [0, 1] trades in period t, let the posterior in
period t be ¢, > &, and denote the marginal type in period t by ¢ < &. Then we have

1 ]3”_1 ;‘ nl
P(¢) 2/ v(x)d + a!) P(g),  V¢elo1],

—1 —1
qj éﬁn gn

9For the uniform distribution, this was already noted by McAfee and Vincent (1997).

12



and hence

R(q) < /Oq P(x)dx", Vq € (0,1].

Proof. For ¢ = & the RHS of the first inequality becomes P(g;") = P(£). Hence it

suffices to show that c
/ v(x)de"t +q" " P(q)
q

is increasing in ¢q. For ¢ > ¢ we have
3 3
[ vt @) - [ @ - )
q q
q
" Pla) @) - [ oy
q
Using (2), we have

" 'P(q) — ¢"'P(Q)

y(q)
= (1) (¢ Mo(@) = Mo(@) + ¢ ((W(@)" ™ Ply(0) = (@) Py(@))
y(q)
e A v(z)da" "t —e A v(x)dz™ 1
i / () )

13



and hence

P - P@) - [ o)
= (1) (4 a) — 7 0(@) + e (0l0) Plula) — (@)™ Plu@)
q y(9)
— (1 — e_m) / v(x)ds" ™ — e_m/ v(z)dz™ !

(@
y(q)

— (@) Plta) - @)™ P - |

y(q)

U(x)dx"_1>

Proceeding inductively, we get

o .
" 'P(q) — " P(G) — /qv(x)dx”_l =Y e (1 - e_m) /y ? v ()" tdr > 0,
q k=0 yk
where y*(-) denotes the function obtained by applying y(-) k times. This shows the
first inequality.
For the second inequality, notice that the RHS of the first inequality is the payment
that the seller can extract from type ¢ if £ wins the auction. This is bounded by P(§)
as the first inequality shows. The seller’s profit if the posterior at time ¢ is ¢, therefore

satisfies .
Rlg) < [ 0@ 0P,
0

where T'(x) denotes the trading time of type x in the weak-Markov equilibrium. This

implies the second inequality. O

For the second step, fix the distribution and the corresponding function v and
define v, : [0,1] — [0, 1] for all = € (0, 1].

14



Using Helly’s selection theorem, we can extend this definition to x = 0, by taking the
a.e.-limit of a subsequence of functions v,. Denote by E¥M (A, x) the weak-Markov
equilibria of the game with discount factor A and distribution given by v, where
xr — 0. Slightly abusing notation we write (P, R) € E“M (A, z) for a weak-Markov
equilibrium that is supported by functions (P, R). We show that there is an upper
bound for P(1) that converges to the expected payment in a second price auction

without reserve price as A — 0, and the convergence is uniform over .
Lemma 5. Fiz v(:). For all e > 0, there exists A. > 0 such that for all A < A., all
x €[0,1], and all (P, R) € E*M(A, ),

P(1) < /1 vp(s)ds" ! + €.

Proof. Suppose not. Then there exist sequences A,, — 0 and x,, — = such that for
all m € N, there exist equilibria (P,,, R,,) € E*M(A,,, 1,,,) such that for all m,

1
P,(1) >/ VU, (8)ds" ™ + e
0

By a similar argument as in the proof of Theorem 4.2 of Ausubel and Deneckere
(1989), we can construct a limiting pair (P, R), where P is left-continuous and non-
decreasing, P,, converges point-wise to P for all rationals, and R,,, converges uniformly

to R. Obviously, we have

1

P(1) > / vs(s) ds"! + .
0

Left-continuity implies that there exists ¢ < 1 such that

q

P(g) > /O va(s) ds" + . (4)

Using an argument from the proof of Theorem 5.4 in Ausubel and Deneckere

15



(1989), we can show that

R(1) 2 [ Plo)ds"+ 8@ = 1801) + (1~ )5,

where we have used (4) to show the second inequality. Hence, we have
— €
Rp(1) = R(1) = TT%(1) + (1 = g)5- (5)
But this implies that there must exist a type ¢ > 0, a time ¢ > 0, and m such that

for all m > m,
Tn(§) > t.

where T,,,() is the trading time function in the weak-Markov equilibrium supported
by (P, R,). To see this, note that delay for low types is needed to increase the
seller’s revenue beyond the revenue from an efficient auction.

With this observation, we can conclude the proof using a similar argument as in
Case I of the proof of Theorem 5.4 in Ausubel and Deneckere (1989). From Lemma
4 we know that the maximal expected payment conditional on winning that a buyer

of type ¢ has to make in equilibrium is given by P,,(¢). This implies that

Ro(1) < / P (2)ds" + e R (d).

In the limit we have

1

R(1) < [ P +o R G) (6)
g

On the other hand, the same argument that we used to obtain (5) yields

R(1) 2/0 P(z)dz". (7)

16



Combining (6) and (7) we get

which implies

since t > 0. But Lemma 4 implies the opposite inequality which is a contradiction. [J

Using this Lemma, we can show that for a given v(-), the difference between the

continuation profit at [0, q] and T1¥(g), divided by v(q) converges uniformly to zero.

Lemma 6. Fiz v(-). For all e > 0, there exists A. > 0 such that for all A < A., all
z €[0,1], and all (P, R) € E¥M(A,1),

Rygf) — 1% (v(x)) < ev(x).

Proof. The statement of the Lemma is equivalent to the statement that for all ¢ > 0,
there exists A, > 0 such that forall A < A, allz € [0,1], and all (P, R) € E¥M(A, x),
R(1|v,) — T¥(1jv,) < e. (8)

This equivalence holds because truncating and rescaling the function v(-) leads to the

following transformations:

R(z|v)

= v(x)R(1vs),

1T (v(z)) = v(2)IT* (1]v,).

To show (8), we combine Lemmas 4 and 5, and use that P(z|v,) = v.(2)P(1|v,..) to

17



get for all z € [0, 1],

R(1|v,) §/0 P(z|v,)dz"

_ /Olvx(z)P(Hvx.z)dz”

< /0 1 Ve (2) ( /0 1 Vp.o(8)ds" ™ + g> dz"
= /01 </01 vx(sz)ds"_1> dz" + 5/01 v (2)dz"
< /01 (/OZ vz(s)is:_:) dz" +¢

=115 (1|v,) + ¢

This allows us to complete the proof of Proposition 1.(ii).

Proof of Proposition 1.(ii) Translated into the notation of the paper, Lemma
6 implies that for a given distribution function F, for all £ > 0, there exists Az > 0
such that for all A < Az all v € [0,1], and all weak-Markov equilibria (p,b) €
EWM(A), we have
12 (p, blv) < 11 (v) + &v.

Recall that by Assumption 1, there exist 0 < M <1 < L < oo and a > 0 such
that Mv* < F(v) < Lv* for all v € [0,1]. This implies that the rescaled truncated

distribution
~ _ F(vx)

I<U) T F(.ﬁl]) )

for all v € [0, 1] is dominated by a function that is independent of z:

. Lo*x® L
F(v) < - e
W) < e =
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Next, we observe that the revenue of the efficient auction can be written in terms
of the rescaled expected value of the second-highest order statistic of the rescaled

distribution: .
HE(U)—/ vsFE ) (5)ds.
0

If we define F(v) := min{l, ﬁvo‘} and B := fol sE=1m)(s)ds, then given Fj(v)
ﬁva we can apply Theorem 4.4.1 in David and Nagaraja (2003) to obtain IT¥(v)

Bv > 0 for all v € [0, 1]. If we chose ¢ sufficiently small we have

<
>

€ < Be,
— v < Bev,
—  &v < ell®(v),
— TF@)+év < (145 (v).

This implies that
12 (p, blv) < (1+ )15 (v)

for all A < A, := A: for € sufficiently small.(]

5 Concluding Remarks

The paper establishes the Coase conjecture for no-gap auctions, hence filling a gap
in the literature. While the concept of weak-Markov equilibrium in this paper draws
from the bargaining literature, a limitation of our analysis is that it focuses on sym-
metric equilibria. The extent of the restriction imposed by weak-Markov equilibrium
is explored in Liu et al. (2019), where, among other things, it is shown that the
Coasian force is robust for a broad class of distribution functions. Characterizing the
seller’s achievable revenues without restricting trading mechanisms in the no-gap case

is still an open question, even with only one bidder.
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