JOURNAL OF HARDWARE AND SYSTEMS SECURITY

EXERTvV2: Exhaustive Integrity Analysis for
Information Flow Security with FSM Integration

Jiaming Wu, Student Member, IEEE and Domenic Forte, Senior Member, IEEE, University of Florida

Abstract—Hardware information flow analysis detects security
vulnerabilities resulting from microarchitectural design flaws,
design-for-test/debug (DfT/D) backdoors, and hardware Trojans.
Though information flow violations can be manifested through a
multitude of possible ways, prior research has only focused on
detecting the existence of such vulnerabilities and no approach
has been proposed to exhaustively activate all vulnerable points
and reduce false positives. In this paper, we propose EXERTv2,
a novel analysis framework that combines ATPG, SAT, and
FSM analysis as well as FSM integration to detect information
flow violations and perform exhaustive analysis that reports the
complete set of integrity-violating input patterns for vulnerable
control points. Compared with the original version of EXERT,
the significant contribution of EXERTv2 is its algorithm for
integrating FSMs, which simplifies the process of constraining
multiple FSMs. The FSM analysis and integration, in particular,
consider the behavior of all the FSMs in the design as a whole,
which can be performed offline and helps resolve scalability
limitations in prior approaches while remaining exhaustive.
We also demonstrate EXERT’s usage in the application of
fault injection vulnerability analysis and attacks. As a proof-of-
concept, EXERTYV2 is evaluated on multiple Trojan benchmarks
from Trust-Hub and two additional ciphers. It detects rare
Trojan triggers (activation probability ~ 1.4243e-70), generates
all activation patterns within minutes, and shows a 15x to 110x
faster run time compared with Cadence Jasper Security Path
Verification (SPV). EXERT is also applied to a larger RISC-V
benchmark to identify instruction sequences with and without
fault injection that result in privilege escalation.

Index Terms—information flow tracking, hardware Trojan,
pattern generation

I. INTRODUCTION

S the semiconductor industry moves from vertical to

horizontal supply chains, modern computing hardware
is often designed and fabricated in discrete locations by third
parties with different levels of trust. As a result, hardware
security threats might occur at any point, from functional
specifications to manufacturing and finally in-field usage [1].
The system-on-chip (SoC) design and fabrication flow involves
the following major parties: third-party intellectual property
(IP) Vendors (e.g., ARM, Rambus, etc.), SoC design houses
(e.g., Qualcomm, Apple, etc.), commercial CAD tool providers
(e.g., Cadence, Synopsys, etc.), and contract fabs/foundries
(e.g., TSMC, GlobalFoundries, etc.). Untrusted third parties
involved in a horizontal supply chain have full access to
hardware IPs and can possibly modify them during design
or fabrication. Such intentional malicious modifications are
often referred to as hardware Trojans [2]. Even though some

Jiaming Wu and Domenic Forte are with the Electrical and Computer
Engineering (ECE) Department, University of Florida, Gainesville, FL, USA.
Manuscript received XXX; revised YYY

parties are trustworthy. such as CAD tool providers, synthesis
and optimization processes can also introduce unintentional
design flaws that make hardware assets vulnerable.

Recent research has discovered multiple forms of attacks
that utilize the vulnerabilities of modern processors and SoCs
to perform malicious operations, steal valuable assets, and
hijack control flows. For example, Spectre [3] exploits tim-
ing side-channels to speculatively perform actions that leak
private data from memory. Meltdown [4] exploits architectural
design vulnerabilities to break the memory isolation and allow
unauthorized access to memory data. Design for Test (DfT)
structures allow external and direct access to certain nets
within an SoC which adds additional vulnerabilities to the
system [5]. As modern processors and SoCs are the cores
of electronic devices, such attacks performed on chips can
effectively leak private information, leak proprietary software,
recover secret keys, and allow remote access to control our
increasingly networked devices [6]. Another concern is that
intentional vulnerabilities can be added to SoCs through
hardware Trojans from third-party IP (3PIP) vendors as they
do not share the same level of trust. These hardware Trojans
are designed by adversaries to be difficult to detect which
results in stealthy backdoors that leak important information
or act as a killswitch. These backdoors can remain undetected
for years, creating huge risks for technology companies, banks,
and even military defense systems.

To mitigate such issues, there is a significant need to
develop scalable frameworks that detect micro-architectural
flaws as well as hardware Trojans for application in pre-
silicon and post-silicon stages. Further, we emphasize that
such a framework should be capable of performing exhaustive
analysis. First, exhaustiveness is the only way to completely
eliminate all flaws and achieve a secure system. For example,
exhaustive patterns search the entire state of activation vectors
that trigger stealthy (difficult to activate) hardware Trojans.
By exhaustively checking all paths and patterns, design and
verification engineers can even remove false positives. Second,
exhaustion can help to better quantify how vulnerable a system
is. For example, existing tools often find a single counterex-
ample that demonstrates a vulnerability. If an engineer knows
that this pattern will never appear in real-time, it might provide
the designer with a false sense of security because other
patterns were not identified. Moreover, through exhaustion,
one can compare the security of two systems/designs and
identify the better one based on the number and/or complexity
of triggering patterns. Third, recent research is exploiting Al
to find vulnerabilities, generate test patterns, perform fuzzing
tests, etc [7]. A well-known bottleneck in Al, particularly

JOURNAL OF HARDWARE AND SYSTEMS SECURITY

deep learning, is data. That is, a neural network may need
hundreds of thousands of samples to converge. Exhaustive
pattern generation can obtain the sufficient amount of data
needed to train Al-based approaches. Besides, exhaustive
patterns can allow design and verification engineers to check
if all vulnerable control patterns can ever appear in real time
which confirms a true vulnerability. As the fact that not all
activation vectors are possible to occur in run-time, if the
limited patterns never appear then it might provide the designer
with a false sense of security. Last but not least, the exhaustive
patterns can be used post-silicon by real-time monitors that
filter illegal input patterns/sequences during execution. When
such patterns are generated, the system can respond to avoid
a security issue, e.g., through zeroization of sensitive data,
system reset, etc.

In this paper, we propose EXhaustive IntEgRiTy Analysis
(EXERT), a SAT and IFT (information flow tracking)-based
approach that produces a complete set of I/O patterns given
a netlist under test and target assets. Finite state machine
(FSM) analysis and automatic test pattern generation (ATPG)
method are also involved to make EXERT more scalable. Also,
EXERT is extended to version 2 with FSM integration module.
Through EXERTV2, it is possible to generate all patterns that
trigger a Trojan and cause confidentiality/integrity issues in
processors and other IPs. Our contributions are summarized
as follows:

o We propose an exhaustive pattern generation framework
based on SAT and IFT. The novelty of our approach
is that we decompose sequential data-paths with fan-in
cones and generate exhaustive patterns without false pos-
itives at each level during backward propagation based on
IFT techniques. Also, unlike other previous techniques,
our approach can work with DfT-inserted netlists.

« We utilize offline FSM extraction techniques to analyze
the information flows and the input patterns driving them
in FSMs. FSM extraction is performed only once based
on the interaction analysis (Section III-B) of registers.
This helps avoid the state explosion problem and makes
EXERT’s pattern generation scale.

o To improve FSM analysis for solving multiple FSM
interaction scenarios, we expand EXERT to version 2
(v2). FSM integration techniques (Section III-E) are used
to handle the analysis of all the FSMs in the design as a
whole. This allows EXERT to handle additional ciphers,
Subterranean, and SAEAES.

o We introduce the fault injection testing framework ex-
panded from EXERTv2 which generates fault injection
points with corresponding patterns causing an integrity
violation. We experimentally perform a fault injection at-
tack on RISC-V privilege escalation utilizing this frame-
work.

o We experimentally run EXERT on multiple sequentially
triggered Trojan benchmarks with different target designs
from Trust-hub. Our proposed technique can efficiently
and exhaustively detect Trojan trigger patterns for se-
quential Trojans with triggering probability as low as
1.4243e-70. We also compare the run time of the pro-

posed framework with the state-of-the-art commercial
tool, JasperGold. Our experiments show that it is more
than 15 times faster than Cadence Jasper Security Path
Verification (SPV) [13].

o For further demonstration of scalability and application
scope, we test EXERT and the fault injection testing
framework on a 25k+ gate RISC-V processor to generate
instruction sequences that lead to privilege escalation.

The rest of the paper is organized as follows. In Section II,

we give the necessary background and related work. In Sec-
tion III, we discuss our proposed EXERT framework and its
complexity while Section IV shows EXERT’s application to
fault injection analysis. Section V analyzes the results from
our framework on benchmarks with very complex sequential
triggers. Finally, Section VI provides a conclusion and direc-
tions for future work.

II. PRELIMINARY AND RELATED WORK
A. Threat Model

In this section, we briefly review the threat model of IC
supply chains and present how our framework can address
common threats (Hardware Trojans and malicious design
flaws) under certain assumptions. We assume that potential ad-
versaries can insert Hardware Trojans at any stage of IC supply
chains including during the use of third-party IPs (3PIP), third-
party EDA tools or vendors (3P-EDA), and external design
expertise. Additionally, the synthesis and optimization process
can unintentionally introduce design flaws. We assume that
the Hardware Trojans and design flaws are of extremely low
activation probability and hard to activate through purely func-
tional testing. We also assume we can obtain a list of interest
points that are potential asset points to activate Hardware Tro-
jans and design flaws by using existing testability measurement
tools. For example, SCOAP [14] and COTD [15] test for
malicious signals by measuring the controllability and observ-
ability of all signals and further utilizing clustering analysis
based on testability reports, imprecise IFT [16] allows a quick
profile of potential information flow security vulnerabilities
that identifying security violation points [17]. Under these
assumptions, our framework relies on access to the synthesized
gate-level netlist and any points of interest specified by a user
for analysis, generating the exhaustive patterns that activate the
points of interest. In this paper, we aim to present that these
patterns certainly help designers understand how privileged
asset points are accessed and explore the violation of integrity.

B. Information Flows Tracking (IFT)

IFT is a well-formulated formal method for verifying se-
curity properties with confidentiality or integrity violations.
Many projects have utilized IFT to build verification frame-
works (e.g., GLIFT. [8], RTLIFT. [9], and SecVerilog [10],
etc.). GLIFT assigns a label (tainted or not) to the target bit of a
design under test and models how a single data bit propagates.
Such assignments provide the foundation for modeling how
a single data bit tangles with other labeled bits. RTLIFT
improves upon GLIFT to provide tracking information flows in
a higher level of abstraction. Another verification framework

JOURNAL OF HARDWARE AND SYSTEMS SECURITY

TABLE I
COMPARISON BETWEEN EXISTING METHODS AND PROPOSED EXERT. 4/ (X) DENOTES THAT A METHOD DOES (DOES NOT) POSSESS A FEATURE.

Previous Work GLIFT [8] RTLIFT [9] SecVerilog [10]

Trojan Activation [11]

IFS Verification [12] EXERT (v2)

Target Taint bit in netlist Taint bit in RTL Taint bit in RTL ~ Rare branch activation Malicious observation, control point Malicious control point activation
Methods Taint labeling Taint labeling ~ Dynamic labeling Model checking, ATPG ATPG-based IFT ATPG-based IFT,SAT, FSM
Scan-chain required N/A N/A N/A vV N/A
ATPG mode N/A N/A N/A Full-sequential Partial-scan N/A
Exhaustive X X X X X v
Scalable Overhead Overhead v X X v
Multipe FSMs N/A N/A N/A No No No (Yes)

SecVerilog extends Verilog with information flow flags that
support comprehensive, precise reasoning about information
flows at compile time [10]. It adds a timing tag to Verilog
through a type system to verify the security of the tim-
ing information flow offline. SecVerilog takes Verilog code
with security labels as input. Once a target design passes
verification, security labels are removed and normal Verilog
code is generated. The generated Verilog code complies under
information flow policies defined by SecVerilog yet without
any overhead constraining code.

Existing IFT methods tend to take a qualitative approach
and only enforce binary security properties. In previous work,
a binary answer (yes or no) is provided regarding the flow
of information between design elements. Nevertheless, GLIFT
and RTLIFT also suffer from overhead in producing the
shadow logic for their propagation of security tags. SecVerilog
does not have such overhead as it generates information flow
policy-defined RTL, but it requires the designer to hard-code
information flow policies when adding labels to variables
for each specific security policy. In [12], Nahiyan et al.
proposed the framework of backward propagation-based IFT
and utilized commercial ATPG tool Tetramax (Synopsys) [18]
to generate potential patterns for propagating information flow.
However, this work only generates a single pattern (which may
be a false positive) and suffers from scalability issues due
to sequential ATPG reliance. The summarized comparison of
these works with our proposed framework is shown in Table I.

C. Boolean Satisfiability (SAT)

SAT approaches are formal methods for finding an assign-
ment of Os and Is to a Boolean function’s variables which
make it evaluate to 1. In order to utilize SAT to verify the
functions of a circuit, the circuit must first be transformed
into formulas that can be handled by SAT solvers. SAT-
based ATPG [19] turned out to be a robust alternative to
classical structural ATPG algorithms [20]. The number of
unclassified faults can be significantly reduced using SAT-
based ATPG. However, previous SAT-based ATPG algorithms
can only be applied to combinational logic as the timing
nature of sequential logic is not transformable to a Boolean
representation. The robustness attribute of SAT-based ATPG
algorithm is therefore not applicable to sequential pattern gen-
eration. By transforming combinational logic into a Boolean
formula and further conjunctive normal form, the solution of
this CNF(conjunctive normal form) represented SAT problem
is a valid test pattern. Such serial transformations are infeasible
for sequential logic because of the timing nature. Thus, the
robustness attributes of SAT-based ATPG algorithm is not
applicable to sequential pattern generation.

D. Jasper Gold Security Path Verification (SPV)

Commercial CAD/EDA tools are also equipped with infor-
mation flow tracking capabilities. The Cadence Jasper Security
Path Verification (SPV) App [13] is a formal verification tool
that takes the design (RTL/gate-level) to prove whether a
secured area can be accessed through paths or not. It proves the
leakage with mathematical certainty and a detailed waveform
of how security assets are leaked if a path is detected. Based
on its own path-sensitization technology, it finds paths that
propagate data from sources and destinations the user provides.
However, the path-sensitization technology is not pattern-
driven and requires hard coding of the policies to use it. In
Section V, we show that this is more than one to two orders
of magnitude slower than EXERT.

E. Finite State Machines (FSMs)

For convenience, an FSM is typically represented as a
directed graph where each vertex represents a state and each
edge represents the transition from the current state to the
next state.Transition conditions consist of an input pattern for
creating a valid transition in an FSM from its initial state to its
final state. While FSMs can be modeled as graphs in high-level
description, their physical implementation in low-level netlists
is a set of registers with combinational logic and feedback nets
connecting them. Tools have been developed in the prior work
to convert gate-level netlist descriptions into FSM graphs [21].
We make use of these open-source tools to aid EXERT.

F. Exhaustive Analysis

Exhaustive analysis, also known as exhaustive search or
exhaustive testing, is a method of evaluating or exploring
all possible options systematically and comprehensively. Ex-
haustive testing guarantees that all detectable faults will be
detected [22]. Exhaustiveness implies every possible solution
or outcome is examined or tested to ensure that no valuable
information or potential solution is neglected. In EXERT,
the integrity violations are validated by the exhaustiveness of
activating patterns.

III. EXERT FRAMEWORK

The objective of this paper is to develop a framework
called EXERT, which analyzes the integrity violations of any
malicious points and generates exhaustive patterns to activate
such violations. Our proposed framework is the first approach
that could perform exhaustive analysis while maintaining scal-
ability. EXERT framework aims to perform integrity analysis
statically on a synthesized netlist with quantitative patterns

JOURNAL OF HARDWARE AND SYSTEMS SECURITY

‘ RTL J l
IFT A

!

Datapath Fanin | SaTSoiver

nalysis ‘ Register Sgtal Analysis

hether IF Interaction
reaches Pl Analysis

Intermediate

Points of
‘ Interest l A . [FEI
Analysis
= FSM
Exhaustive g
Patterns ‘ Register ,S l
—_—

Fig. 1. Block diagram of EXERT framework.

to support our analysis from input ports to internal nets.
In contrast to existing quantitative information flow tracking
tools, such as Qflow [23] and QIF-Verilog [24], which perform
confidentiality analyses with quantitative leaked information at
compile time. EXERT takes the target netlist! of the design
and points of interest as input, then outputs the malicious
points and their propagation patterns. Our target points of
interest can be either Trojan’s triggering nets or any poten-
tial malicious point that violates an integrity policy (e.g.,
modifying an asset through an unauthorized input port). The
overall EXERTvV2 framework is shown in Figure 1, which
introduces an additional module of FSM integration based on
the original framework of EXERT. The EXERTv2 framework
primarily consists of five modules: IFT analysis, interaction
analysis, fan-in analysis, FSM analysis, and FSM integration.
Starting from synthesis, the target design is verified first with
our IFT analysis module. This analysis operates in a cycle-
based manner, systematically examining the information flow
at each clock cycle until it reaches the primary inputs. During
every clock cycle, the Interaction analysis module is invoked,
responsible for classifying the registers present in that specific
cycle. Depending on the results of the Interaction analysis,
either the Fan-in analysis or the FSM analysis will be invoked.
The Fan-in analysis aims to generate exhaustive patterns on
data-path asset points while the FSM analysis aims to generate
propagating patterns by analyzing a group of registers as
FSMs. Besides, by introducing FSM integration, multiple
FSMs are integrated and analyzed as a whole by consolidating
the state transitions and states of individual FSMs. The detailed
explanations of each module are shown in the subsections
below.

A. Information Flow Tracking Analysis

As shown in Algorithm 1 and illustrated in Figure 1, the
first step of EXERT is IFT analysis which performs a taint
propagation from the asset points of interet to the inputs. IFT
analysis takes the nets of interest and target gate-level netlist as
input, and reports the register control points and primary input
control points which potentially represent the existence of
information flows that violate an integrity policy. Our proposed
analysis first takes the net of interest as the starting point and

'Our framework analyzes designs at the gate level instead of RTL because
the synthesis process may introduce vulnerabilities due to optimization of
don’t cares [25], DfT insertion [5], etc. Nevertheless, EXERT can analyze
RTL after it is synthesized into a netlist.

Algorithm 1 IFT Backward Propagation Algorithm

Input: Nets of interest, gate-level netlist;
Output: Register control points, Primary input control points;
1: start point FF level: F'Flevel — 1
2: for all Asset in Nets of interest do
FaninReg <— {}
FaninReg at FFlevel «+— fanin(Asset, F Flevel)
FaninPI at FFlevel +— fanin(Asset, F'Flevel)

3
4
5
6: while FlaninReg exists do
7:
8
9

invoke Interaction Analysis
Update Asset: Asset = FaninReg
: FFlevel +=1
10: FaninReg at FFlevel «— fanin(Asset, F Flevel)
11: FaninPI at FFlevel <— fanin(Asset, F Flevel)
12: append RegisterControlpoints <— FaninReg
13: append PrimarylInputControlpoints < FaninPIl

14: return RegisterControlpoints, PrimaryInputControlpoints

(@ (b)

Fig. 2. Interaction analysis showing how IFT propagates backward through
levels of registers: (a) without feedback nets, registers are classified as data-
path registers; and (b) with feedback nets, the registers connected by feedback
nets are classified as FSM state registers.

records all fan-in registers and fan-in primary inputs (lines 3 to
5 in Algorithm 1). When fan-in registers exist, the interaction
analysis module is invoked to determine which set of registers
these fan-in points belong to. Next, the nets of interest are
updated with fan-in registers (lines 8 to 9) and keep looking for
fan-ins in the prior level of flip-flops (FFs) (lines 9 to 11) until
the complete set of control points with all their corresponding
FF levels are recorded.

B. Interaction Analysis

This module, which is invoked in IFT analysis, takes the
whole netlist as input and targets the feedback nets in a
design for classification. In Section II-E, we discussed that an
FSM’s physical implementation is a set of state registers with
feedback nets connecting them (see Figure 2). The objective
of interaction analysis is to classify registers into datapath and
FSM register sets to better analyze them with fan-in analysis
and/or FSM analysis described in Sections III-C and III-D.
This allows for tracking information flows with better perfor-
mance. Simply tracking information flows in FSMs inevitably
results in a loop or reverse flow. The registers in Figure 2(a)
are classified as data-path registers since there are no feedback
nets connected. Figure 2(b) shows the feedback nets and
associated FSM/state registers in red. Note the interaction
analysis will only be performed once and is conducted offline.
This further promotes efficiency in EXERT.

C. Fan-in Analysis

In this section, we describe the fan-in analysis module
applied on the data-path registers that were identified by
interaction analysis in Section III-B. It aims to generate
exhaustive patterns on data-path asset points (classified by

JOURNAL OF HARDWARE AND SYSTEMS SECURITY

b A \
N Propagation Path
0 4 .

“\. Control point
: T\

dIntermediate Pattern

Primary Input Pattern
>
@
@
13
°
=3
ES

2 clock cycle
pattern

0

l g
1% clock cycle
pattern l

Fig. 3. Tllustration of fan-in analysis. The red cross denotes the target asset
point of interest. Yellow crosses denote the detected control points. The
intermediate patterns match every control point detected.

interaction analysis) with scalable effort. Our fan-in analysis
is capable of tracking information flows through integrity
verification and generating complete sets of patterns that
propagate them. The fan-in analysis engine is based on the
concept of decomposing a sequential circuit into cascading
combinational circuits by tracking the fan-in cone of every
asset point. As illustrated in Figure 3, the two-stage data path
is decomposed into three cascading combinational cones. The
inputs of the decomposed combinational circuit are the control
points set of the output, which is the target asset point. The
control point set will give us a new asset point set in the next
level of registers and keep looking for fan-in cones until no
more control points are detected. During the fan-in analysis,
SAT engines [26] and ABC synthesis [27] are utilized to
generate intermediate patterns while AIGer [28] compresses
and constrains them. AlGer is fast and scales effectively for
creating and manipulating circuits at each cycle [29].

1) Pattern-Driven Information Flow Tracking

The proposed fan-in analysis module is presented in Algo-
rithm 2 and illustrated in Figure 3. The algorithm first takes
the netlist under test and target asset point (e.g., red cross
in Figure 3) as inputs. Then, it looks for fan-in registers of
the asset point and extracts the combinational block with fan-
in registers as inputs and asset point as output using Design
Compiler (Procedure I of Algorithm 2). Given the fan-in
registers from IFT analysis (see Section III-B), it shows
if there are information flows from fan-ins to target asset;
hence, there may exist a set of patterns to propagate them
(see Intermediate Pattern in Figure 3). Next, the extracted
combinational block is transformed into CNF and fed into
a SAT engine to generate the complete set of patterns that
propagate the information flow (Procedure II in Algorithm 2).
At this point, the list of control points that present information
flows and the intermediate patterns driving them are reported.
With the IFT analysis (see Section III-B) detecting control
points at the next level, this procedure will keep being invoked
until no more fan-in registers are detected, i.e., where our
analysis reaches primary inputs. The patterns generated at
every cycle make up the exhaustive pattern sequence as the IFT
analysis aborts. The patterns generated here expand our IFT
analysis with propagating patterns which makes our analysis
a pattern-driven information flow framework. In order to keep
our algorithm exhaustive but still scalable, the intermediate
patterns generated at each level need compression and con-

Algorithm 2 Fan-in Cone Extraction and Analysis

Procedure I: Fan-in Cone Extraction
Input: Gate-level netlist, Asset point, fan-in register set from Interaction
analysis;
Output: Combinational block in RTL, Asset Control Points
1: for all register in fan-in Register set do
2: Create Primary Input at register
3: Create Primary Output at T'arget Asset
4: Re-synthesis — Combinational block in RTL
5: return Combinational block in RTL
Procedure II: SAT-based Pattern Generation
Input: RTL file, Asset point
Output: Intermediate Patterns;
1: Transform RTL into CNF format — CNF expression
: Feed to SAT solver — SatisfyingPattern
repeat
CNF expression <— Addclause(Satis fyingPattern)
SAT(C'N Fexpression) — SatisfyingPattern
append IntermediatePatterns < SatisfyingPattern
until SatisfyingPattern = ()
return Intermediate Patterns
Procedure III: Constrain and Compress
Input: Intermediate Patterns
Output: Exhaustive Primary Input Patterns, Compressed Block in AlGer,
Asset Control Points
1: Classify patterns into Primary Input Control Point Patterns and Register
Control Point Patterns
: for Primary Input Control Point Patterns do
Stored as exhaustive Patterns at current F' Flevel
for Register Control Point Patterns do
Construct in AIGer formate as constraints for next F'Flevel
1 AIGer(IntermediatePattern, Constraints)— Delete invalid in-
termediate patterns
: AIGer — Exhaustive Patterns
: return Exhaustive Patterns at current F Flevel, AIGer at current
FFlevel

A

A

[N

00

Fig. 4. State explosion with the growth of register level. At the first level,
only 2 paths are detected. At the second level, 4 paths are detected. At the
n-th level, 2™ paths are detected.

straining so that invalid/reproduced patterns can be discarded
(see Procedure IIT of Algorithm 2). This procedure is necessary
to discard the false positive information flows without their
associated propagating patterns.

2) Preventing State Explosion

As the number of state variables in the system increases,
the size of the system state space grows exponentially. This
is called the “state explosion problem” [30]. As illustrated in
Figure 4, the number of paths that represents the information
flow grows exponentially with register depth, with 2 paths in
the first level and 4 more in the second level. This makes
our pattern-driven information flow tracking a state explosion
problem as tracking information flows performs is similar in

JOURNAL OF HARDWARE AND SYSTEMS SECURITY

Cycle #1

Sequential

Composition Compression

at Cycle #2

Fig. 5. AlGer Compression and constraints. At every cycle, the intermediate
patterns at the control points are compressed in AIGer format. By sequentially
compositing in the next cycle, invalid intermediate patterns are discarded.

—— # of Paths without Aiger

| —e— # of Patterns with Aiger
—O— # of Patterns without Aiger
50 1 —m— # of Paths with Aiger

Number of Paths and Patterns

& ”&6 ”7‘6
Levels of FFs

Fig. 6. Plots of path/pattern growth with FF level.

complexity as tracking paths. In order to make EXERT more
scalable, we compress the intermediate patterns and paths at
every level to analyze them as a whole in AlGer format. As
illustrated in Figure 5, after generating the intermediate pat-
terns, the patterns recognized in fan-in cones are compressed at
every level and sequentially composed for the next level. As
a pattern-driven information flow analysis framework, paths
without valid propagating patterns are discarded.

3) Time Complexity Analysis

With our compression and constraining in AIGer, our anal-
ysis is more scalable compared to an uncompressed one.
As shown in Figure 6, since paths in the former levels are
analyzed as a whole, the newly detected paths in every level
of the register grow linearly instead of exponentially. Let m be
the number of paths in a single level of registers and N as the
level of registers. To search all flows, the timing complexity
without compression is O(m?”) while the timing complexity
with the proposed AlGer compression is O(NN), which shows
a significant reduction in complexity. The number of patterns
detected is also reduced. That is, AIGer compression and
composition reduce patterns that were valid in the previous
level of control points but actually become invalid in the next
level of registers. For example, this can be seen in Figure 3.
We may detect multiple intermediate patterns at the first level
of FFs, which represent the states of current control points.
However, some of the intermediate patterns may not be valid
as these states of control points may not be reachable in the
next level of fan-in analysis.

4) Space Complexity Analysis

In Section III-C3, timing complexity is analyzed to prove
how patterns are reduced with our AIGer compression. In this
section, space complexity is analyzed to validate the scalability

Asset point

@

Initial State

/om/" 00 .;"\1rd\".,

/ / \0/0)
11 e — 10

0
— o1 "

Final State
State(s) of interest

(b)

Fig. 7. Example of FSM analysis where two registers A,B denote the state
variables and X/Y denote the two inputs. (a) Netlist level abstract of the FSM
with a valid sequence of patterns; and (b) Extracted graph of the FSM with
4 states made of A,B and 6 state transitions made of X/Y .

of our approach. Let m denote the number of registers in
a single level of FFs. As illustrated in Figure 5, because
the AlGer compression only compresses the current level of
intermediate patterns to the next level, the number of fan-in
blocks utilized and stored in memory is only 2m. Therefore,
the space complexity of the approach with AIGer compression
is indeed O(m). That is, the space complexity of this approach
is linear with respect to the number of registers in a single
level of FFs (also the fan-in blocks in a single level of FFs),
indicating that it is scalable and can handle larger designs
efficiently.

D. FSM Analysis

In Section III-B, our interaction analysis module classifies
registers into datapath set and FSM set. In order to modulate
the information flows in feedback nets (also referred to as the
FSM registers set), we model the feedback nets along with
their connected registers together as FSMs. The FSM analysis
aims to generate propagating patterns by analyzing a group of
registers as FSMs. Our FSM analysis module takes the netlist
and the set of registers (see Figure 7(a)) classified by our
interaction analysis (see Section III-C) as inputs and constructs
an FSM (see Figure 7(b)) that represents the behavior of the
register set over the course of the operation of the netlist in a
graph [21].

When an FSM register is detected during our information
flow analysis, EXERT will discard some information flows by
tracking its fan-ins. This is because if the register belongs to
an FSM, tracking its information flows through fan-ins will
inevitably result in a looping flow or path since every register
in an FSM is capable of reaching the others. Thus, we analyze
all the registers in the FSM to generate patterns as a whole. By
modeling FSM with a state transition graph, we can find the
sequences of patterns that will force an FSM to transition from
an initial state to a final desired control state at a higher level of
abstraction than the netlist itself. When combined with our fan-
in analysis, the “initial state” is defined from the register values
after reset, and the “final state” is defined for the ‘“control

JOURNAL OF HARDWARE AND SYSTEMS SECURITY

TABLE II
RESULTS OF EXERT ANALYSIS ON SEQUENTIAL TROJAN BENCHMARKS.

Trojan Payload # Patterns Length in Clock Cycles Time(sec)

Benchmark # Gates Trojan Trigger Activation Probability
AES-T1400(M) 513 Predefined sequence 8.8162¢-39
AES-T1400(Max) 1336 Predefined sequence <4.4750e-142
PIC16-T200(M) 2015 Counting predefined instructions 2.8231e-118
$38417-T100 5431 Comparator 1.4243e-70
MC8051-T400 2040 Predefined instruction sequence 2.7105e-20
Subterranean(M) 1446 Counting predefined patterns 1.4131e-124
SAEAES(M) 1521 Counter 2.6814e-66

Leaks keys 12 4 46.78
Leaks keys 600 400 4743.49
Manipulates instruction register 729 100 453.90
Manipulates scan mode 16 64 339.34
Manipulates flag registers 1 5 187.68
Leaks keys 81 100 567.56

Leaks keys 81 49 467.48

(b)

Fig. 8. Multiple FSMs integration: (a) FSMs in parallel; and (b) FSMs in
series

state(s) of interest” which enables the information flow in the
paths/patterns. In order to make the patterns exhaustive and
scalable, we always look for the shortest paths in the state
transition. Any looping paths or repeated states are discarded.
As illustrated in Figure 7, two paths are detected from the
initial state 0,0 to the final state 1,1; thus two pattern sequences
consisting of these state transitions are generated (Figure 7
shows one of the two sequences in red). The two sequences of
patterns will force the asset point to be 1 in the last clock cycle
while the state values in the other two clock cycles don’t matter
in our FSM modeling. The patterns in FSM state transitions
are also constrained along with intermediate patterns from fan-
in analysis as shown in Figure 1. The combined patterns are
compressed and moved to the next level of IFT analysis.
Note that alternative methods for generating patterns on
sequential circuits without DfT, such as sequential ATPG,
search for a sequence of test vectors through the huge space
of all test vector sequences. Such methods are not scalable
and our evaluation with Synopsys Tetramax [18] (not shown)
terminates as sequential depth increases due to an abort limit.

E. FSM Integration

Our FSM analysis detects FSMs in a design and provides
cycle-based patterns that propagate the information flows in a
single FSM. However, it becomes more challenging to track
patterns within a single FSM when multiple FSMs are detected
in parallel or in series. As our cycle-based information flow
analysis requires every pattern with a valid cycled tag, tracking

parallel FSMs individually could result in propagating patterns
with different clock cycles. In particular, a parallel interaction
occurs when both FSMs are in states that can potentially
make simultaneous transitions on the same input symbol. The
behavior of parallel FSMs can interact in complex ways and
it’s important to ensure that the clock cycles are synchronized
across all FSMs. In this context, it is necessary to develop
an intra-FSM analysis technique that can track the cycle of
propagation patterns across multiple FSMs. One approach
to addressing this issue is to develop an analysis technique
that considers the behavior of all the FSMs in the design
as a whole, rather than analyzing them individually. Thus,
we propose an algorithm that integrates multiple FSMs into
a single one to analyze them as a whole using the original
EXERT framework.

Algorithm 3 shows how we composite two FSMs into a
single one that can be applied to integrate multiple FSMs by
repeating the algorithm. As shown in the Figure 8, there are
two scenarios of the FSMs interaction: series (see Figure 8(b))
and parallel (see Figure 8(a)). The green and red colors denote
two FSM and the colored nets denote their corresponding
feedback nets. Our algorithm first identifies the interaction
scenario by the intersection nodes of two FSMs (line 1). If the
algorithm identifies series interaction (line 2), a series graph
composition function will be applied to composite two FSMs
in graph format at the intersection node (line 3 to 4). For
example, Figure 9 denotes the series composition of the two
FSMs in Figure 8(b). Let’s say we have two FSMs constructed
by four registers A,B and M,N. After we model the FSMs
with graphs and traditions, we always set the states 0,0 as our
initial states as well as the connecting point for series graph
composition since we assume that the FSMs are activated in
order and the initial state for every register is 0. We then
perform a Fan-in analysis at the intersection node register to
determine the state values of A and B that activate M and N to
be 0,0 (line 3). This means that the two FSMs are connected at
this point of states, and a transition will be added between the
activating state and the initial 0,0 state of the two FSM graphs.
Thus we have the two FSM graphs for series composition
by adding a transition between that activating state and the
initial 0,0 state of two FSM graphs. Then we can search for
all paths from “initial state” to “final state” in the merged
graph (red arrows denote one possible path) which gives us the
exhaustive sequence patterns. The resulting merged FSM states
will include all of the states and transitions from the original
FSMs without creating any new states or state transitions (line
5).

Otherwise, if the algorithm identifies parallel interaction
(line 6), merged FSM states are created for every pair of states

JOURNAL OF HARDWARE AND SYSTEMS SECURITY

Algorithm 3 FSM Integration Algorithm

Input: FSM1 states set A, FSM1 transitions set ¢, FSM2 states set B, FSM2
transitions set r, FSM intersection nodes set;

Output: Merged FSM states, Merged FSM transitions;

1: FSM interaction analysis: Identify the interaction scenario between FSM 1
and FSM2

2: if FSM interaction analysis is series then Construct FSM1 graph and

FSM1 graph;
Intersection nodes — Connecting states
Series composition of FSM1 and FSM2 with intersection nodes
Merged FSM states and transitions: (A + B,q + 1)

. else if FSM interaction analysis is parallel then

for all FSM states A and B do
Create merged FSM state C' == A X B

for all FSM transitions ¢ and r do
10: Create merged FSM transition z == q X r

11: Merged FSM states and transitions: (A x B,q X r)
12: return Merged FSM states and transitions

A

o

. N
[MN —xy—
N
N - Initial State

AB —XN—p

o—> 00—y

o—> 00

1.1 -~ — 10
11 0 v \ on 0/0
/ /
0 01 "1 - "~ il <f/m
T
o—>!) 00 F\1/o 0/1’_"(.’6'0\)\1/0
- A TR
’\‘ “:)‘/ it -_ _) Final s«a«el;1,1 " "'D\—l\/mo \,’
\ o J ‘A\/, J Y
0/1_(\ 51/\)‘_/1/1 n_““0/‘1‘_/\/0:\)‘_/1/1 P4

—

Fig. 9. Illustration of two series FSM composition in graph format based on
the intersection nodes. A,B and M,N denote the state register in Figure 8(b).
Solid nodes denote states of A, B; Dotted nodes denote states of M, N. Red
nodes denote the connecting states and red arrows denote one possible path.

(one from each of the two FSMs being composed)(line 7 to 8).
New transitions are added from the corresponding transitions
in the original FSMs for every pair of state transitions (line
9 to 10). Specifically, the resulting FSM will have a state set
that is the Cartesian product of the state sets of the original
FSMs and the new transitions set which is the concatenation
of the two transitions in the original FSMs. For example in
Figure 10, let’s say we have two FSMs A and B, and we are
composing them in parallel. Suppose FSM A has a transition
from state AO to Al with transition ¢, and FSM B has a
transition from state BO to B1 with transition r. If ¢ and r
can be simultaneously active (i.e., a parallel interaction), then
the algorithm will create a new merged state (A0, BO) and
add a transition from (AO, BO) to (A1, B1) on input pattern
(g,r). The resulting FSM will then transit to the merged state
(Al, B1), which matches the transition to Al in FSM A and
B2 in FSM B. If ¢ and r cannot be simultaneously active,
the merged transition is a two-clock-cycle pattern merged by
(g,7). Figure 10 shows the whole graph and transitions after
merge.

IV. APPLICATION IN FAULT INJECTION TESTING

Our EXERTV2 framework is expanded to the application of
fault injection attacks which allows designers to conduct in-
depth analyses of potential vulnerabilities from the viewpoint

IS ;A :’\

A1,BO — v A1,B1

Fig. 10. Illustration of two parallel FSMs merge into a single one by creating
merged states and making concatenation of transitions. A,B denote the state
registers in Figure 8(a). Solid nodes denote states of A; Dotted nodes denote
states of B.

Parallel

Reglsler Control

Points of
IFT Analysis Interest

Corresponding

Points) ——— Patterns at Fault
Injection Points
anarylnpul
Control Poin EXERT v2
Framework
Patterns at Patterns at
Fault Injection Insert Faults —t sy, FAUIS IS8 ed Primary Inputs Registers
Points Netlist —_—
—_—
Fig. 11. Overview of fault injection analysis expansion from EXERTv2

framework. The fault injection points are vulnerable control points reported
from the IFT Analysis module.

of attackers. The expanded framework is shown in Figure 11.
We utilize the IFT Analysis module (Section III-A) to report
the vulnerable points to the target interest point, which consists
of Register control points and Primary Input control points.
After locating these vulnerabilities, we designate them as the
target locations for fault injection. Then we insert faults to the
target netlist (shown in Figure 12), where additional inputs are
added at the register fault injection point. During re-synthesis,
the flip-flops situated at the register points where faults are
injected are removed along with any associated logic that
is no longer relevant, while the added inputs (Green Input)
and primary inputs (Grey Input) that have been intentionally
subjected to faults are retained in the design. This process aims
to prepare the target benchmark for our EXERTV2 framework
by introducing faults exclusively as the primary inputs because
our framework exclusively generates patterns for these primary
inputs. After this, the fault-inserted netlist along with the
target interest points are fed into our EXERTv2 framework
to generate corresponding patterns at primary inputs fault
injection ports and registers fault injection points.

V. EVALUATION

We applied our EXERT framework to generate exhaustive
patterns that trigger Trojans on multiple Trust-Hub bench-
marks [31] and that exploit escalation in a RISC-V processor.
Besides, EXERTV2 is applied on two additional ciphers as
multiple FSMs are detected during analysis. We used an
Intel(R) Xeon E5-2450L 32 cores CPU with 128GB memory
operating at 1.80GHz for synthesis and running EXERT.
Table II summarizes the Trojan benchmarks, their sizes, and
our results.

JOURNAL OF HARDWARE AND SYSTEMS SECURITY

X Asset Point

Fault Injection
Point at Register

p%e Fault Injection Point
at Primary Input

L~
Insert Fault &|
Re-synthesis
(I

Input retained from
Primary Inputs fault
point

Input added at
Register fault point

Fig. 12. Illustration of Inserting Faults. The red cross denotes the target asset
point of interest. The yellow cross denotes the fault injection point at the
registers. The purple cross denotes the fault injection point at the primary
inputs. Green input denotes inserted inputs at register fault injection points.
Grey input denotes primary inputs fault injection points.

A. AES-T1400

The first Trojan benchmark is AES-T1400. AES-T1400
Trojan’s trigger circuit is composed of a finite state ma-
chine (FSM) and it triggers when a sequence of plaintexts
is observed. After synthesis, the Trojan triggering module is
formulated in the netlist and the triggering condition is hard
to extract. By applying our framework, not only are the four
plaintexts detected but also the right sequence from the netlist
level of design.

In order to test the exhaustiveness and scalability of our
framework, we modify the triggering circuit of AES-T1400
and increase the predefined plaintext sequences. We also
incorporate more states into the triggering circuit up to eight
states and create 25 modified benchmarks (denoted with ‘(M)’
in Table II) by increasing the sequence length of predefined
plaintext. Nevertheless, we modified the sequence length to
400 cycles with 600 predefined patterns to test the worst-case
run time (denoted with Max), as a maximum of unrolling on
AES benchmark in prior work with commercial tools is 400
clock cycles [32]. Then we apply EXERT on all these AES-
T1400(M) Trojan benchmarks as well as AES-T1400(Max)
and record the run time. As illustrated in Figure 13(a) and
Table II, the run time shows a linear growth with the increase
of sequence length, along with a minor growth trend when
we increase the number of predefined patterns and keep the
length the same.

Besides, to better validate and quantify the scalability of
our framework, the maximum memory usage is recorded for
all AES-T1400(M) benchmarks. As illustrated in Figure 14(a),
the maximum memory usage remains approximately the same
level as we increase the size of the benchmark. In addition, the
maximum memory usage for AES-T1400(Max) is 1463.26Mb,
which is still scalable with a maximum of 400 cycles of
sequence. This is because our space complexity analysis shows

linearity with respect to the number of registers in a single
level of FFs. As the size of the circuit increases, the number of
registers and fan-in blocks may also increase, but in a single
level, the number of fan-in blocks should remain relatively
constant. Therefore, the EXERT approach remains linear with
respect to the overall size of the circuit, making it scalable
and able to handle larger and more complex designs.

B. PIC16-T200

PIC-T200 manipulates the instruction register of the PIC
microprocessor and is triggered by counting the number of
instructions executed. The Trojan payload of PIC-T200 is
triggered by a predefined instruction set read from the mi-
croprocessor’s RAM [33], which requires RAM initialization.
Therefore, in order to apply our EXERT framework on PIC-
T200 benchmark, we create a 4-bit input bus where the
microprocessor reads the instruction bits to bypass the RAM
initialization. Note that our current framework is not able to
read predefined RAM instructions and reading instructions
from primary input will not affect the correctness of pattern
generation. The maximum memory usage is also recorded in
Figure 14(b). The memory usage remains approximately the
same level as we increase the size of the benchmark, which
shows similar results with AES-T1400(M). This result further
validates that the space complexity of this approach is linear
with respect to the number of registers in a single level of FFs.

Note that our framework only detects the shortest activating
paths of the Trojan. In normal operation, the majority of
instructions will not trigger the counter and create don’t care
states in the Trojan’s activation paths. EXERT automatically
discards don’t care states as there is no information flow
to the malicious counter. Similar to AES-T1400, we modify
the Trojan triggering circuit size by changing the counter
overflow threshold and length of instruction set. We created
25 benchmarks (denoted by PIC16-T200(M)) and the run time
results are shown in Figure 13(b) and Table II. Once again,
linear growth is observed.

C. s38417-T100

Unlike previous benchmarks from Trust-Hub, s38417-T100
is scan-chain inserted netlist and the Trojan is triggered by
a sequential counter in functional mode. The s38417-T100
Trojan payload enables the scan enable signal of a part of one
scan chain in the functional mode which allows an adversary
to leak internal signal values. Scan chain testing utilizes
scan flip-flop to access any registers by shifting in any input
vector. However, such scan chain access creates additional
unauthorized information flows through a whole scan chain,
resulting in false positive control points. In order to apply
EXERT on designs with scan chain access while reducing false
positives from scan flip-flops, we discard the information flows
from the scan chains. In our analysis, we identify the scan-in
port of the scan flip-flop and discard its fan-in register as a
control point. Table II shows that all 16 triggering patterns are
detected in less than 6 minutes.

JOURNAL OF HARDWARE AND SYSTEMS SECURITY

l I—5o

-40

- 3
8 12 16 20 24

I
Num of Patterns

400
375
350
325
300

- 275

<

Te]

N~

Length of Sequence
6

[ce]

(a)

<t -

N -
[(e]
~
8 12 16 20

Size of Predefined Patterns

Bits of counter

- 250

- 225

- 200

(©)

10

400
3o
% 350
So
— 300
(@]
2«
o -250
o -200
6 7 8 9 10
Size of Instruction Set
(b)
300
< 275
. 250
[0]
T w 225
>
o
O 200
G
g © - 175
@ - 150
N~ -125
-100

8 12
Size of Predefined Patterns

16 20

(d

Fig. 13. Heatmap of runtime result (seconds): (a) AES-T1400(M); (b) PIC16-T200(M); (c) Subterranean(M); and (d) SAEAES(M).

D. MC8051-T400

We apply EXERT on another Trojan benchmark, MC8051-
T400, to further test its scalability on processor designs. The
Trojan in MC8051 is triggered when a specific sequence
of commands is executed and the Trojan payload disables
interrupt handling after activation. Similar to PIC16-T200,
MC8051-T400 also requires a RAM initialization to execute
instructions. EXERT successfully detects the predefined se-
quence of instructions. Note that MC8051-T400 is the largest
microprocessor benchmark on Trust-hub with more than 2000
gates. EXERT maintains scalability on two benchmarks with
similar triggering conditions while having huge differences in
benchmark size.

E. Subterranean Cipher

The Subterranean encryption benchmark is a cryptographic
algorithm that was developed as part of the NIST Lightweight
Cryptography Competition [34]. We apply EXERTv2 on the
Subterranean encryption benchmark as we detect two FSMs in
this cipher, including a control unit made of 6 registers and an
encryption core made of 257 registers that perform round and
duplex functions. In order to generate meaningful patterns, we
incorporate a counter-triggered Trojan into the subterranean

cipher and modify its counter size and instruction set as in
the prior section. The Trojan payload leaks one byte of keys
directly to the output. Our FSM analysis module in EXERTv?2
detects three FSMs (the Trojan activation counter makes the
third FSM), which are successfully integrated as a single one.
Our FSM integration module is performed offline which takes
148.85 seconds. The runtime results are shown in Table II and
Figure 13(c).

F. SAEAES Cipher

SAEAES (Short Authenticated Encryption with AES) is
another cryptographic algorithm that was developed as part
of the NIST Lightweight Cryptography Competition. The
SAEAES is based on SAEB and AES, which is a mode
of operation that extends a block cipher into authenticated
encryption cone [35]. We utilize the same technique to in-
corporate a counter-triggered Trojan into the subterranean
cipher and modify its counter size and predefined pattern set,
creating 16 modified benchmarks to test the runtime results.
Since we detect three FSMs, the SAEAES control FSM made
of 10 registers, an 8-round unit made of 512 registers that
perform keys schedule and expansion, and a key update FSM
made of 8 registers. EXERTv2 is used which takes 178.60
seconds for the integration of FSM. It takes more time in FSM

JOURNAL OF HARDWARE AND SYSTEMS SECURITY

Maximum memory usage(Mb)

-1250
<
) - 1200
O
g 1150
o Te}
o
: - .
o ©
o 1050
s
o~ 1000
C
[T}
|
[ee]
8 12 16 20
Num of Patterns
(@
Maximum memory usage(Mb)
- 1200

5

Bits of Counter
7 6

<
o)
S|ze of Instructlon set

~ 1100
| 1000
(b)

Fig. 14. Maximum memory usage result (Mb) for AES-T1400(M) and PIC16-
T200.

TABLE III
RESULTS OF EXERTV2 ANALYSIS ON RISC-V PRIVILEGE ESCALATION.

Benchmark Asset Point Sequential Length
RISC-V CSR 115 (Median)
Fault inserted RISC-V CSR 3

integration compared with the runtime of Subterranean Cipher
as three FSMs integration requires both series and parallel
compositions. The total runtime results are shown in Table II
and Figure 13(d).

G. RISC-V Privilege Escalation and Fault Injection Testing

EXERT can also generate patterns on much larger bench-
marks like RISC-V (25786 gates after synthesis, which can
further test EXERT’s scalability. To better establish a secure
hardware platform, RISC-V is designed with four privileged
levels (User, Machine, Supervisor, and Reserved level) that
aim to provide isolation between different components of
instruction stacks. Any attempts to perform operations not per-
mitted by the current privilege mode will cause an exception
to be raised [36] while only legal instructions could change
the privileged state. As each privileged state is encoded with
a Control and Status Register (CSR), we set the Machine

O = Trojan Path

- Trojan
Trigger

Payload
Plaintext[127:0}
S AES Encryption

Fig. 15. Activation paths of AES encryption module. The red line denotes
Trojan path and the green line denotes the valid encryption path.

Key[127:0] .

Output[127:0]

mode CSR as our asset to apply the EXERT framework
since Machine mode is supposed to have the highest level
of security. Our EXERT framework successfully detects more
than 76 control points that potentially break the isolation
policy between different levels of privileged states with 1769
patterns in 75 minutes. Note that such patterns cannot be
generated by sequential ATPG as the register depth exceeds
its abort threshold.

To perform the privilege-level escalation attack more easily,
we experimentally perform fault injection testing at vulnerable
points with our fault injection framework from Section IV.
By selecting two register control points as fault injection
locations, we successfully obtain two patterns of 3 clock cycles
that directly set the CSR registers and cause the privilege
escalation. The comparison of patterns generated with/without
fault injection is shown in Table III. Since the faults are
introduced at control register points situated in close proximity
(in terms of level distances) to the asset CSR, the associated
fault patterns exhibit significantly shorter sequential length
(number of clock cycles).

H. Run Time Comparison with Jasper Gold SPV

In this section, we apply Jasper Gold SPV on AES-T1400
and PIC16-T200 Trojan benchmarks to compare the run-time
result with EXERT. The AES-T1400 benchmarks consist of
Trojan paths and Valid paths. In JasperGold SPV, we set the
complete bus of key input ports as the source and one bit of the
output port as the destination to verify whether a sensitization
path exists for the Trojan paths. Figure 15 illustrates how we
apply JasperGold on the Trojan Path to validate a pattern.
However, as a policy-driven validation tool, JasperGold re-
quires us to hardcode the generated pattern as policy insertions
so that it can keep generating different patterns. The result
shows JasperGold takes 60.06 seconds to validate a path with
a single pattern. On the other hand, EXERT can generate all
12 patterns in only 46.78 seconds. As for PIC16-T200, Jasper
Gold requires 76.86 seconds to validate a single pattern on a
path while our EXERT framework only takes 453.90 seconds
to generate all 729 patterns. We also validate the patterns
of the Subterranean and SAEAES cipher to compare the
EXERTV2 runtime results. JasperGold takes 240.40 seconds to
validate a single pattern for Subterranean and 330.48 seconds
for SAEAES.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel framework called EXERT
which performs exhaustive analysis to report all patterns

JOURNAL OF HARDWARE AND SYSTEMS SECURITY

causing information flows without the need for white-box
knowledge of the IP. We have experimentally validated our
framework by applying it to Trojan benchmarks from Trust-
Hub as well as a large RISC-V processor benchmark. EXERT
exhaustively analyzes integrity violations and provides patterns
while remaining scalable.

Our initial EXERT framework utilizes FSM analysis to
revolve looping information flows in feedback nets [37].
However, these FSMs can interact with each other which re-
quires constraining them with graph transition modeling. With
EXERTv2, we propose the FSM integration algorithm that
analyzes multiple FSMS as a whole, reducing the complexity
of developing an intra-FSM constraining algorithm. Moreover,
as mentioned earlier, our EXERT framework also has the
potential for real-time applications. In future work, we plan to
use EXERT to build monitors that filter illegal patterns during
execution.

VII. DECLARATIONS

Ethical Approval Not applicable.

Competing Interests Not applicable.

Authors’ Contributions Authors A and B contributed text
and literature reviews to the paper. All authors reviewed the

paper.
Funding This research was partially supported by NSF
under award # 2016624 and AFOSR under Award ID FA8650-
20-C-1719.
Availability of Data and Materials Not applicable.

REFERENCES

[1] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE Design Test of Computers, vol. 27, no. 1,
pp. 10-25, 2010.

[2] X. Zhang and M. Tehranipoor, “Case study: Detecting hardware trojans
in third-party digital ip cores,” in 2011 IEEE International Symposium
on Hardware-Oriented Security and Trust, pp. 67-70, 2011.

[3] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-

burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,

“Spectre attacks: Exploiting speculative execution,” in 2019 IEEE Sym-

posium on Security and Privacy (SP), pp. 1-19, 2019.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,

J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,

“Meltdown: Reading kernel memory from user space,” in 27th USENIX

Security Symposium (USENIX Security 18), (Baltimore, MD), pp. 973—

990, USENIX Association, Aug. 2018.

[5] G. K. Contreras, A. Nahiyan, S. Bhunia, D. Forte, and M. Tehranipoor,
“Security vulnerability analysis of design-for-test exploits for asset
protection in socs,” in 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 617-622, 2017.

[6] R. Buhren, H.-N. Jacob, T. Krachenfels, and J.-P. Seifert, “One glitch
to rule them all: Fault injection attacks against amd’s secure encrypted
virtualization,” in Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, CCS °21, (New York, NY,
USA), p. 2875-2889, Association for Computing Machinery, 2021.

[7]1 S. Roy, S. K. Millican, and V. D. Agrawal, “Training neural network for
machine intelligence in automatic test pattern generator,” in 2021 34th
International Conference on VLSI Design and 2021 20th International
Conference on Embedded Systems (VLSID), pp. 316-321, 2021.

[8] W. Hu, D. Mu, J. Oberg, B. Mao, M. Tiwari, T. Sherwood, and
R. Kastner, “Gate-level information flow tracking for security lattices,”
ACM Trans. Des. Autom. Electron. Syst., vol. 20, nov 2014.

[91 A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner, “Register transfer

level information flow tracking for provably secure hardware design,”

in Design, Automation Test in Europe Conference Exhibition (DATE),

2017, pp. 1691-1696, 2017.

D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware de-

sign language for timing-sensitive information-flow security,” SIGARCH

Comput. Archit. News, vol. 43, p. 503-516, mar 2015.

[4

=

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
(28]
[29]
(30]
[31]

(32]

(33]
[34]

[35]

(36]
[37]

J. Cruz, F. Farahmandi, A. Ahmed, and P. Mishra, “Hardware trojan
detection using atpg and model checking,” in 2018 31st International
Conference on VLSI Design and 2018 17th International Conference on
Embedded Systems (VLSID), pp. 91-96, 2018.

A. Nahiyan, M. Sadi, R. Vittal, G. Contreras, D. Forte, and M. Tehra-
nipoor, “Hardware trojan detection through information flow security
verification,” in 2017 IEEE International Test Conference (ITC), pp. 1—-
10, 2017.

“Jasper security path verification app.” https://www.
cadence.com/en_US/home/tools/system-design-and-verification/
formal-and-static- verification/jasper- gold- verification- platform/.

L. Goldstein and E. Thigpen, “Scoap: Sandia controllabil-
ity/observability analysis program,” in I7th Design Automation
Conference, pp. 190-196, 1980.

H. Salmani, “Cotd: Reference-free hardware trojan detection and recov-
ery based on controllability and observability in gate-level netlist,” IEEE
Transactions on Information Forensics and Security, vol. 12, pp. 338—
350, 2017.

G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” in Proceedings of the
11th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS XI, (New York, NY,
USA), p. 85-96, Association for Computing Machinery, 2004.

W. Hu, A. Ardeshiricham, and R. Kastner, “Hardware information flow
tracking,” ACM Comput. Surv., vol. 54, may 2021.

“Testmax atpg:advanced pattern generation.” https://www.synopsys.com/
implementation-and- signoff/test-automation/testmax-atpg.html.

P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli, “Combinational
test generation using satisfiability,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 15, no. 9,
pp. 1167-1176, 1996.

S. Eggersglii, R. Wille, and R. Drechsler, “Improved sat-based atpg:
More constraints, better compaction,” in 2013 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 85-90, 2013.

T. Meade, J. Portillo, S. Zhang, and Y. Jin, “Neta: When ip fails,
secrets leak,” in Proceedings of the 24th Asia and South Pacific Design
Automation Conference, ASPDAC *19, (New York, NY, USA), p. 90-95,
Association for Computing Machinery, 2019.

L.-T. L.-T. Wang, “Chapter 3 - design for testability,” in Electronic
Design Automation (L.-T. Wang, Y.-W. Chang, and K.-T. T. Cheng, eds.),
pp. 97-172, Boston: Morgan Kaufmann, 2009.

L. M. Reimann, L. Hanel, D. Sisejkovic, F. Merchant, and R. Leu-
pers, “Qflow: Quantitative information flow for security-aware hardware
design in verilog,” in 2021 IEEE 39th International Conference on
Computer Design (ICCD), (Los Alamitos, CA, USA), pp. 603-607,
IEEE Computer Society, oct 2021.

X. Guo, R. G. Dutta, J. He, M. M. Tehranipoor, and Y. Jin, “Qif-verilog:
Quantitative information-flow based hardware description languages for
pre-silicon security assessment,” in 2019 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pp. 91-100, 2019.
A. Nahiyan, K. Xiao, K. Yang, Y. Jin, D. Forte, and M. Tehranipoor,
“Avfsm: A framework for identifying and mitigating vulnerabilities in
fsms,” in 2016 53nd ACM/EDAC/IEEE Design Automation Conference
(DAC), pp. 1-6, 2016.

“The glucose sat solver.” https://www.labri.fr/perso/Isimon/glucose/.
“Abc: A system for sequential synthesis and verification.” http://people.
eecs.berkeley.edu/~alanmi/abc/.

A. Biere, K. Heljanko, and S. Wieringa, “AIGER 1.9 and beyond,” Tech.
Rep. 11/2, Institute for Formal Models and Verification, Johannes Kepler
University, Altenbergerstr. 69, 4040 Linz, Austria, 2011.

“pyaiger: A python library for manipulating sequential and combinatorial
circuits..” https://github.com/mvcisback/py-aiger.

Z. Xin-feng, W. Jian-dong, L. Bin, Z. Jun-wu, and W. Jun, “Methods to
tackle state explosion problem in model checking,” in 2009 Third Inter-
national Symposium on Intelligent Information Technology Application,
vol. 2, pp. 329-331, 2009.

H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnerability
analysis and trust benchmarks development,” in 2013 IEEE 31st Inter-
national Conference on Computer Design (ICCD), pp. 471-474, 2013.
J. Rajendran, V. Vedula, and R. Karri, “Detecting malicious modifi-
cations of data in third-party intellectual property cores,” in 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1-6, 2015.
“Pic16f84a data sheet.” https:wwl.microchip.com/downloads/en/
DeviceDoc/35007b.pdf.

J. Daemen, P. M. C. Massolino, A. Mehrdad, and Y. Rotella, “The sub-
terranean 2.0 cipher suite,” JACR Transactions on Symmetric Cryptology,
vol. 2020, p. 262-294, Jun. 2020.

Y. Naito, M. Matsui, T. Sugawara, and D. Suzuki, “Saeb: A lightweight
blockcipher-based aecad mode of operation.” Cryptology ePrint Archive,
Paper 2019/700, 2019. https://eprint.iacr.org/2019/700.

“The risc-v instruction set manual.” https://riscv.org/wp-content/uploads/
2017/05/riscv-privileged-v1.10.pdf.

J. Wu, F. Fowze, and D. Forte, “Exert: Exhaustive integrity analysis for
information flow security,” in 2022 Asian Hardware Oriented Security
and Trust Symposium (AsianHOST), pp. 1-6, 2022.

