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SUMMARY

As global interest in renewable energy continues to increase, there has been a pressing need for
developing novel energy storage devices based on organic electrode materials that can overcome
the shortcomings of the current lithium-ion batteries. One critical challenge for this quest is to find
materials whose redox potential (RP) meets specific design targets. In this study, we propose a
computational framework for addressing this challenge through the effective design and optimal
operation of a high-throughput virtual screening (HTVS) pipeline that enables rapid screening of
organic materials that satisfy the desired criteria. Starting from a high-fidelity model for estimating the
RP of a given material, we show how a set of surrogate models with different accuracy and complexity
may be designed to construct a highly accurate and efficient HTVS pipeline. We demonstrate that
the proposed HTVS pipeline construction and operation strategies substantially enhance the overall
screening throughput.

INTRODUCTION

With the increasing interest in renewable energy sources, there has been a pressing need to develop novel energy
storage devices that can overcome the practical shortcomings of conventional Li-ion batteries >3, Especially, organic
electrode material-based energy storage devices have gained increasing attention as they possess a number of favorable
characteristics. First of all, organic materials can be synthesized from earth-abundant precursors such as C, H, O, or
N. Moreover, they do not utilize toxic heavy metals that cause serious environmental issues. Additionally, organic
redox-active material-based batteries have significant potential to substantially increase energy storage capabilities as
opposed to traditional inorganic material-based batteries .

One fundamental challenge in developing novel energy storage devices based on organic electrode materials is to rapidly
identify a subset of promising materials candidates that possess target redox potential (RP)—computed at the desired
fidelity—from a large set of candidate materials. Since there may be a huge number of candidate organic materials to be
screened and as the estimation of RP at the desired fidelity level may require a substantial amount of computational
resources per molecule, an exhaustive computational screening campaign is practically infeasible. Recently, several
studies have demonstrated the utility of machine learning (ML) models for predicting the structure-electrochemical
property relationships efficiently %8, For example, a fully-connected neural network (fcNN) with two hidden layers
accurately approximated the RP of molecules based on ten predictive features—the number of B/C/Li/O/H, the number
of aromatic rings, highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), HOMO-
LUMO gap, and electron affinity (EA)>. However, despite the predictive efficiency, such ML approaches have not
been systematically exploited in the context of an objective-driven computational screening campaign. Instead, their
application has mainly remained in prioritizing desirable materials for further evaluation based on the properties
predicted by ML surrogates.



One practical goal-driven approach for the effective selection of promising candidates is to build a high-throughput
virtual screening (HTVS) pipeline that consists of various mathematical or surrogate models with different fidelity and
computational cost. In general, such HTVS pipelines use computationally efficient models in earlier stages to efficiently
filter out samples that are unlikely to possess the desired property. The remaining samples are passed to the next stage
for further investigation based on higher fidelity models that are also computationally more costly. The molecules that
survive until the penultimate stage are assessed based on the highest fidelity model at the final stage for final validation.
The crux of an HTVS pipeline is to efficiently assign computational resources across different stages to maximize the
return-on-computational-investment (ROCI). Thanks to the capability to efficiently screen a large set of candidates,
HTVS pipelines have been widely used in various fields including biology 1011121314 " chemistry 13-16:17.18,19.20.21 "3pq

materials science 2223,

Conventionally, operational strategies for such HTVS pipelines in the past have relied on expert intuition, often
resulting in reasonable but sub-optimal screening performance. Recently, a mathematical optimization framework has
been proposed to address this limitation, where the screening policy is optimized for throughput and computational
efficiency?*. The central idea is to exploit the relationship between the predictive scores computed at different stages by
estimating the joint score distribution, based on which the screening threshold values are jointly optimized to maximize
throughput and accuracy while minimizing the computational resource requirement. It was shown that the optimized
screening policy improves the computational efficiency of the HTVS pipeline by a significant margin while effectively
achieving the objective of the screening campaign. While the optimization framework provides a systematic way of
designing effective operational strategies for general HTVS pipelines, which obviates the need for and reliance on
heuristic and suboptimal screening policies, this study assumed that the HTVS pipeline is already given and only
the screening policy needs to be determined. However, when such an HTVS pipeline does not yet exist and only
a computationally costly high-fidelity property prediction model is available, how should one construct the HTVS
pipeline? In other words, assuming that the given high-fidelity model will be placed at the end of the HTVS pipeline,
how should one design lower-fidelity surrogate models to be placed at earlier stages in the pipeline such that the overall
efficiency can be enhanced without deteriorating the screening accuracy? This HTVS pipeline construction problem
remains an open problem to date.

The objective of this study is two-fold. First, we aim to fill a critical gap in the current HTVS literature by proposing a
principled way of constructing an efficient HTVS pipeline from the ground up to meet the screening objective based on a
high-fidelity property prediction model. Second, we apply our proposed optimal HTVS design and operational strategies
to the problem of efficient and accurate screening of redox-active organic materials, an important materials screening
problem for designing next-generation energy storage devices. To accomplish this, we propose an effective strategy for
the construction of an HTVS pipeline, where the highest-fidelity RP predictor is based on a computational model via
density functional theory (DFT), and ML surrogates for the DFT computational model are constructed to enable the
trade-off between efficiency and fidelity. To be specific, we decompose the high-fidelity DFT model into four sequential
ML surrogate models, each of which computes intermediate properties, such as HOMO, LUMO, HOMO-LUMO
gap, and EA, that are needed to compute RP using the high-fidelity DFT model. The constructed sub-models form
the building blocks of the HTVS pipeline. Next, we learn five surrogate models that serve as different screening
stages in the pipeline, where each model predicts the RP using a combination of different (intermediate) properties,
at various complexity and fidelity. Furthermore, we also explore the use of “sub-surrogate” models that predict the
next available intermediate properties based on the features available at a given stage. The predicted properties are
used as “virtual” features for the surrogate models to improve the predictive accuracy. Finally, we generalize the HTVS
pipeline optimization framework >* such that the framework can be used to optimize the screening policy for identifying
materials whose RP is within a target range, instead of based on a minimum (or maximum) required RP. We rigorously
evaluate the performance of our optimized HTVS pipelines under various scenarios and demonstrate that they lead to
significant improvement over the baseline in terms of efficiency, accuracy, as well as consistency.

In the following section, we provide an overview of the proposed HTVS construction and optimization scheme for
detecting promising redox-active materials, followed by a comprehensive performance assessment and analysis results.
Further technical details of our proposed HTVS pipeline design and operational strategies can be found in the STAR
Method section.

RESULTS

Figure 1 provides an overview of the proposed scheme for the design and operation of efficient computational screening
campaigns to detect promising organic electrode materials. Formally, the operational objective of the campaign is to find
subset Y = {z | A < f (z € X) < Ay} that consists of promising redox-active materials whose RP f (z) computed
via the given high-fidelity DFT model f is within target screening range XA = [Ar, Ay], where the set X of all candidate
materials may be huge. We assume that the target screening range A is pre-specified by domain experts. Due to



the excessive computational complexity of the high-fidelity model f for RP, it is practically impossible to screen all
the materials based solely on the high-fidelity model f°>. In order to overcome this critical limitation, we propose a
two-phase computational campaign design scheme: First, we construct an HTVS pipeline structure by decomposing
the high-fidelity model f into four sub-models fi, fo,..., f4 and learning five machine learning-based surrogate
models g1, g2, . . . , g5 that serve as screening stages in the pipeline. Second, we identify the optimal screening policy
P = [)\T L ALUs - AN, U] for the constructed HTVS pipeline. For this purpose, we generalize the optimization

framework proposed in the previous study?* such that the framework can identify the optimal screening policy based on
the target screening range, not a screening threshold as in the previous study>*.

The first phase is illustrated in the left panel of Fig. 1. Given a high-fidelity computational model f with target screening
range XA = [Ap, Ay], the goal is to construct an HTVS pipeline that can efficiently screen all candidate materials
without degrading the accuracy. First, we decompose the high-fidelity DFT model f into four sequential sub-models f;,
1=1,2,...,4, each of which computes intermediate properties (e.g., HOMO, LUMO, HOMO-LUMO gap, and EA)
of a candidate material. Then, we cascade the sub-models to construct the skeleton structure of the HTVS pipeline.
Between sub-models f; and f; 11, we learn up to two surrogate models g; that predict the redox potential based on
available intermediate properties as features. For the second surrogate model between the sub-models f; and f;11, we
learn sub-surrogate models g;; that predict intermediate properties which will be computed via the following sub-model
and use the predicted intermediate properties as features to improve the predictive accuracy of the surrogate model g;.
As shown in Fig. 1 (left bottom), the resulting HTVS pipeline consists of five surrogate models, where surrogate model
g; is associated with screening stage .S; with screening policy A\; = [A; 1, A; v]. Each stage S; associated with surrogate
model g; or sub-model f; predicts the RP of all the samples (i.e., candidate materials) passed from the previous stage
S;—1. Then, S, discards the materials whose predicted potential is outside the screening range A; = [A; 1, A;,v] and
passes the remaining samples to the next stage for further evaluation. It should be noted that the use of a more complex
(and more complete) sub-model f; requires additional DFT computation to use features that were not available to f;
in the previous stages. In this manner, we can gradually narrow down the search space while continuing to compute the
intermediate features that are essential to computing RP at a higher fidelity for the candidate redox-active materials that
passed the previous screening stages.

In the second phase, we identify the optimal screening policy ¥* = [)\’1" LA U )\j‘\,fl’U] which is used for
making decisions in the respective screening stages as to whether to pass a given sample to the next stage for further
evaluation or discard it to save computations. To accomplish this, we generalize the original optimization framework
proposed in the previous study?*. The original framework >* was designed to pass candidate samples whose predicted
property score exceeds a given threshold value. In this work, we generalize the framework to identify the optimal
screening policy for computational screening campaigns, where each stage has a target screening range rather than a
minimum threshold (see STAR Methods section for further details). The proposed optimization framework takes a
two-step approach as shown in the right panel of Fig. 1. First, we estimate joint distribution p1 2 ...~ (y1, 92, .., YN)
of the RP values predicted via machine learning surrogate models or computed through the high-fidelity model. The
joint score distribution provides information on how the screening stages are interrelated. Then, based on the joint
score distribution pq 2, N (y1,Yy2,---,yn), we formulate the objective function and find the optimal screening policy
P* = [)\f’ LA U s )\7\771,U]- In that regard, we considered two practical scenarios in the current study. The
first case considered is when we want to maximize the throughput of the HTVS pipeline for a fixed computational
budget constraint C'. In the second case, the objective is to jointly optimize the throughput of the HTVS pipeline
and computational efficiency. For the second scenario, we introduce weight o € [0, 1] that determines the relative
importance between the relative reward 7 (¥, A1, A\y) and normalized cost function & (1), A, A\py).

In what follows, we provide comprehensive simulation results demonstrating the efficacy of the proposed HTVS
pipeline construction strategy and the performance of the optimized HTVS pipelines under various setups. Technical
details of the optimization framework are presented in the STAR Methods section.

Correlation analysis between RP values predicted by the surrogate models and the
high-fidelity model

For preliminary evaluation of the surrogate models and the proposed HTVS pipeline construction strategy, we computed
the Pearson’s correlation between the RP value computed via the high-fidelity model f and those predicted using the
surrogate models g;, 1 = 1,2, ...,5. We used the kernel ridge regression (KRR) model that effectively regresses the
response in general (see Section 1 in the supplementary material for the performance comparison of several different
machine learning models). We optimized the hyperparameters of each surrogate via a grid search based on 5-fold
cross-validation (see Section 2 in the supplementary material for further details on the optimized hyperparameters).
Note that we used all the materials to learn the surrogate models as our main focus is demonstrating the efficacy
of the proposed HTVS pipeline construction and operation strategy rather than designing the best surrogate models.



Nevertheless, for completeness, we also provide the performance evaluation results based on a strict 5-fold cross-
validation where only part of the dataset (i.e., 4 out of the 5 folds) is used for learning the surrogates (see Section 5 in the
supplementary material). As shown in Fig. 2, the correlation between the RP values computed by the surrogate model
g; and the high-fidelity model f gradually increased as the number of predictive features (hence also the total amount of
computation required to acquire the features) increased. For example, the correlation between the RP values predicted
via the first surrogate model g; that uses only the primitive features to the RP values computed via the high-fidelity
model f was 0.8572. The predicted HOMO, LUMO, and HOMO-LUMO gap via the sub-surrogate models g2 1, g2,2,
and g 3 helped improve the correlation of the second surrogate model g, to 0.8614. Similarly, the predicted EA via the
sub-surrogate model g4 1 helped improve the correlation of the surrogate model by 0.0179 to 0.9241. Finally, the last
surrogate model that utilizes all the chemical descriptors showed the highest correlation with respect to the high-fidelity
model f, which was 0.9933. These simulation results indicate that the proposed HTVS construction strategy can
effectively design surrogate models that correlate well with the given high-fidelity model, where each model strikes a
different balance between computational cost and fidelity. Given an ensemble of surrogate models, where models with
higher complexity may be used to attain higher fidelity predictions, we can maximize the screening performance by
building an HTVS pipeline comprised of the surrogates and designing an optimal screening policy?*.

Optimal computational campaign for selecting potential organic electrode materials with
minimum target redox potential (RP)

To evaluate the performance of the optimized HTVS pipeline, we first considered a realistic computational screening
scenario where the operational objective is to effectively select the organic redox-active materials whose RP computed
at high-fidelity is above target threshold 2.5 V vs. Li/Li* (i.e., A = [2.5 V, co V]) which is exhibited by many organic
cathode materials under a typical voltage window of 1 ~ 4 V vs. Li/Li*?>. The target threshold of 2.5 V was selected
as a boundary to eliminate candidates whose RP is too low for practical application as a cathode. While the target
potential may differ in different applications, the best corresponding screening policy can be automatically identified
through optimization as we demonstrate in what follows.

Optimized HTVS pipeline maximizing the throughput under computational budget constraint C'

Figure 3 shows the performance evaluation results of the optimized HTVS pipeline under a computational resource
constraint in seconds (z-axis) in terms of sensitivity, specificity, F1 score, and accuracy based on 5-fold cross-validation.
Sensitivity (recall) is a ratio of the detected potential candidates whose RP exceeds or is equal to the minimum target
threshold of 2.5 V to all the materials in the test dataset that satisfy the criteria. Specificity is defined as a ratio of
the true negative samples discarded by the HTVS pipeline to all negative samples. F1 score is a harmonic mean
between the positive predictive value (precision) and sensitivity. Lastly, accuracy (ACC) is the ratio of materials that are
correctly selected or discarded based on the target criteria. The shaded area along each performance curve (showing
the mean of the corresponding performance metric) depicts the standard deviation (4-0) of the metric based on 5-fold
cross-validation. As shown, the optimized HTVS pipeline effectively distributed a given computational budget over the
different stages to maximize the overall screening throughput (i.e., the number of promising redox-active materials
that meet the target criteria detected by the screening pipeline). On average, the optimized HTVS pipeline selected
all potential materials with only 84.11% of the original computational cost (6, 286, 056, blue vertical line) that would
be required for screening all the materials via the high-fidelity model f alone. Besides, 80% of potential materials
were detected with 58.62% of the original budget. Note that specificity was always 1 throughout all simulations as the
final stage (i.e., S¢) of the HTVS pipeline involved screening all potential redox-active materials reaching this stage
based on the high-fidelity model for final validation. In other words, the HTVS pipeline is configured such that no
negative sample would be included in the final screening result, as such samples would be discarded at the final stage if
they have not yet been discarded by the lower-fidelity surrogate models. We could observe a similar trend in accuracy.
Specifically, the accuracy reached 80.17% when only 46.73% of computational resources were given. The pipeline
achieved perfect accuracy at the cost of 5,287, 453 seconds (84.11% of the original cost) on average.

We also evaluated the performance at each stage in the optimized HTVS pipeline in terms of sensitivity, specificity,
F1 score, and accuracy based on 5-fold cross-validation (see Fig. S2 in the supplementary material). The sensitivity
of the screening stages tended to increase as the computational resource budget increased. For a given computational
budget, the sensitivity of S; was always greater than or equal to that of later stages S; for j > 4. This was due to
the structure of the HTVS pipeline, where the later stages processed only the materials delivered from the previous
screening stages. On the other hand, except for the final stage, the specificity tended to decrease as the available budget
increased. In other words, as the computational resource grew, the earlier screening stages allowed the later stages with
higher accuracy to get involved more actively in the screening campaign. As a result, the F1 score tended to increase
sharply at the beginning but the tendency to rise slowed down later on. The accuracy showed similar trends as the F1



score due to the same reason. The accuracy of the earlier stages eventually fell since they passed too many materials to
later stages for further evaluation, resulting in higher false-positive rates. Note that while the performance metrics of
the individual stages (esp., the earlier stages) showed relatively high fluctuations as the available computational budget
grew, the overall performance of the HTVS pipeline (i.e., S¢) changed gradually without abrupt changes. This implies
that the optimal screening policy may not be unique and there may be multiple different policies that lead to similar
screening performance.

Figure 4 shows the number of discarded materials at each stage in the optimized HTVS pipeline with respect to
an available computational budget (x-axis). Average results are shown based on 5-fold cross-validation. For easy
comparison, every subplot shows the trends at all six different stages, while only the curve that corresponds to a specific
stage is shown in a colored bold line. On average, the first stage S7 (left top, green dotted line), which predicts the
RP using only primitive features (such as the numbers of various atoms and aromatic rings), actively screened and
discarded a large number of materials when the available computational budget was limited. As the computational
budget increased, the number of materials discarded in the first stage decreased gradually, allowing subsequent stages
with higher accuracy to get involved in screening more actively. For example, the surrogate models discarded 75.09%,
4.62%, 0%, 0%, 0.21%, and 0.01% materials, respectively, when the available computational budget was 320, 452
seconds (only 5.1% of the original computational cost). With a computational budget of 5,287,453 seconds, the
screening stages eliminated 5.8%, 5.8%, 0.4%, 7.0%, 13.4%, and 3.4% materials, respectively. During the simulation,
stages S7 to Sg rejected 37.72%, 6.42%, 0.13%, 2.23%, 4.13%, and 0.95% of the screened materials on average,
respectively.

Joint optimization of HTVS pipeline for maximizing throughput while minimizing computational cost

Table 1 shows the performance evaluation results of the HTVS pipeline jointly optimized to maximize throughput while
minimizing the computational cost based on a 5-fold cross-validation. Three different values of o were considered,
and the average number of detected materials, total cost (in seconds), effective cost, sensitivity, specificity, F1 score,
and accuracy are shown. « € [0, 1] is a weight parameter that determines the balance between the throughput and
computational efficiency of the pipeline (see STAR Methods). The column “detected materials” shows the number
of materials in the final set Y obtained from screening. Total cost is the amount of time needed to screen the entire
input set X, and the effective cost is defined as the cost per detected material. As « increased from 0.25 to 0.75, the
number of selected materials whose RP value at high fidelity is greater than or equal to 2.5 V rose from 40.4 to 49.8 out
of 52 promising organic electrode materials. To be specific, on average, the pipeline picked 49.8 out of 52 promising
materials when o = 0.75 at an effective cost of 93,291. When a = 0.25, the optimized HTVS pipeline detected 40.4
samples at an effective cost of 85, 407. In terms of computational savings, although the total computational cost and the
effective cost grew when « increased from 0.25 to 0.75, the overall computational cost was nevertheless significantly
less than that of the original computational cost of 6, 286, 056 and the original effective cost of 120, 886, respectively.
Besides, other evaluation metrics, including accuracy, sensitivity, and F1 score noticeably improved when « increased.
Overall, for various values of «, the optimized HTVS pipeline results in good screening performance that sensibly
balances the screening throughput (i.e., in terms of the number of materials detected by the HTVS pipeline that satisfy
the target criteria) and the total computational cost.

Optimal computational campaign for selecting potential organic electrode materials whose
RP at the desired fidelity is within a target range

We next considered another practical scenario for a computational screening campaign, where the objective is to
efficiently detect promising redox-active materials whose RP computed at the desired fidelity is within a target range.
Theoretically, higher RP of organic cathode materials leads to a higher output voltage of a Li-ion cell. However, from a
practical perspective, the peak voltage could be constrained as it is closely related to the thermodynamic stability of the
organic electrolyte material. Based on our previous studies >/-26:27:28:29.30.31.32 "we selected 3.2 V vs. Li/Li* as the target
upper bound for the computational screening campaign. As a result, we aimed to optimize the HTVS screening pipeline
for screening materials whose RP values belong to a target range of [2.5 V,3.2 V].

Optimized HTVS pipeline that maximizes the throughput under computational budget constraint C'

Figure 5 shows the performance evaluation results of the optimized HTVS pipeline for screening materials whose RP
belongs to a target range, where the optimal screening policy aims to maximize the screening throughput under a given
computational budget constraint. As before, the average sensitivity, specificity, F1 score, and accuracy were obtained
from a 5-fold cross-validation and are shown in the figure as a function of the budget constraint (x-axis). The shaded
area around each performance curve indicates the standard deviation of the corresponding performance metric evaluated



on the five cross-validation datasets. As shown in Fig. 5, the screening policy optimized by the proposed optimization
framework that generalizes the original approach?* effectively allocated the available computational budget across
different stages of the HTVS pipeline. As a result, significant computational savings were achieved while maximizing
the throughput that is attainable at a given computational budget. On average, the optimized HTVS screening reduced
the computational cost by 14.22% compared to the original computational cost of 6,286,056 (in seconds) without
using a screening pipeline. When the computational budget is further reduced, the detection performance starts to
degrade but the optimized screening policy re-balances the budget across different screening stages to maximize the
ROCI nevertheless. For example, the optimized pipeline selected 80% of the promising organic electrode materials
at only 65.85% of the original cost. Note that the constructed HTVS pipeline always guarantees perfect specificity
(i.e., 1) by design. This is because the same high-fidelity model f, based on which the target RP is specified, is placed
at the end of the HTVS pipeline for the final validation of any material candidate that reaches the last stage. As a
result, the F1 score displayed a similar trend with respect to the computational resource constraint as the sensitivity.
In terms of accuracy, the HTVS pipeline trivially assured the accuracy of 0.5714, which is nothing but the proportion
of negative samples in dataset X’ containing all material candidates. The accuracy of the optimized HTVS pipeline
gradually increased as the available computational budget increased, attaining perfect accuracy at the computational
budget of 5,391, 914 (i.e., 85.78% of the original cost).

Next, we evaluated the performance of the individual stages in the optimized HTVS pipeline designed to detect organic
electrode materials whose RP belongs to the range of [2.5 V, 3.2 V] based on 5-fold cross-validation. Results are
shown in Fig. S3 in the supplementary material. We could observe a similar trend to the previous computational
campaign scenario (shown in Fig. S2). The sensitivity of the screening stages tended to increase as the computational
resource budget increased. Furthermore, for a given computational budget, the sensitivity of S; was always greater
than or equal to those of later stages S; (for j > 4). For example, stages S1, S, ..., S¢ achieved sensitivities of 0.9874,
0.8716, 0.8698, 0.8130, 0.6882, and 0.6882, respectively, when the available computational complexity was 3, 158, 898
(50.25% of the original computational cost). Again, we could observe that the specificity generally decreased (except
for the final stage) as the available budget increased. As a result, both the F1 score and the accuracy tended to sharply
increase at the beginning but eventually decreased later on.

Figure 6 shows the number of materials discarded at each stage when all candidate materials are screened by the HTVS
pipeline based on the optimized screening policy. Results shown in the figure have been obtained based on 5-fold
cross-validation. As can be seen in Fig. 6, as the available computational budget increased, the number of materials
discarded in the first stage S; decreased gradually. For example, the screening stages S, S, . . ., Sg discarded 66.72,
13.23, 0, 0.08, 1.17, and 0.4 candidate materials, respectively, when the available budget was only 272, 294 (4.33%
of the original computational cost). With a computational budget of 5,391,914 (85.78% of the original cost), the
average number of discarded candidate materials at stages S, Sa, . .., S¢ changed to 4.0, 4.2, 0.2, 3.2, 17.6, and 18.8,
respectively.

Joint optimization of HTVS pipeline for maximizing throughput while minimizing computational cost

Table 2 shows the performance evaluation results of the HTVS pipeline jointly optimized to maximize throughput
and minimize the computational cost. The optimal screening policy was predicted by our generalized optimization
framework and the results are obtained via 5-fold cross-validation. Performance trends were similar to the previous
scenario where the computational campaign aimed at detecting the potential materials whose RP values exceed the
minimum required threshold (i.e., [2.5 V, 00 V]) (see Table 1). As « increased, the quality metrics related to the
throughput of the HTVS pipeline improved at the cost of higher computational costs (i.e., total cost and effective
cost). When a was set to 0.25, the jointly optimized pipeline operated conservatively from the perspective of resource
utilization. To be specific, the optimized pipeline with o = 0.25 consumed 2, 923, 471 seconds to detect 23.4 promising
candidate materials among the 36 organic electrode materials in the test datasets whose RP belongs to the target range
of 2.5 V to 3.2 V. On the other hand, the optimized HTVS pipeline with o« = 0.75 detected, on average, 29.8 promising
candidates at a computational cost of 4,257,906. Overall, the HTVS pipeline operated using the jointly optimized
screening policy resulted in good screening performance that automatically balances throughput and screening cost for
a given value of a.

DISCUSSION

In this study, we designed optimal computational screening campaigns, where the operational objective is to efficiently
screen a given set of candidate materials to accurately detect promising cathodic organic electrode materials whose
RP-computed by a high-fidelity model-meets the desired condition. As the high-fidelity model of estimating RP, we
adopted the first-principles method, where we computed DFT using Schrodinger Jaguar3®, with PBEO3* functional and



6 — 31 + G(d, p) basis set¥. Based on this, we computed RP via the thermodynamic cycle suggested by Truhlar 3637,
Two screening scenarios were considered: (i) detection of candidate materials whose RP exceeds a minimum threshold;
and (ii) detection of materials whose RP belongs to a target range. At the core of the proposed scheme lies the strategy
for constructing an HTVS pipeline from a single high-fidelity model f by designing ML surrogate models, each of
which provides a unique trade-off between complexity and accuracy. Once the HTVS pipeline is constructed, the
optimal screening policy can be designed based on the optimization framework, originally proposed in the previous
study?* and generalized in the current study. As shown in Fig. 1, during the first phase of our proposed scheme, we
first decomposed the high-fidelity model f into four sub-components f;,i = 1,2, ..., 4, each of which computes an
intermediate property of a given material (i.e., HOMO, LUMO, HOMO-LUMO gap, or EA). Then, we cascaded them
to construct a skeleton structure of the HTVS pipeline. Based on the structure, we learned five ML surrogate models
that predict the RP with the intermediate descriptors available to them at the corresponding screening stage, where they
are placed. Surrogate model g; was associated with screening stage .S; with screening policy [A; 1, A; ] in order to
pass only those materials to the next stage S; that are likely to meet the desired condition at the last stage by the
high-fidelity model f. Since passing candidate materials to the next stage requires further computation, discarding
unpromising materials that likely will not meet the target condition can lead to significant computational savings.
Besides, we introduced the concept of “sub-surrogate” models that predict the next available descriptors and used the
predicted descriptors as virtual features to improve the predictive accuracy of the surrogate models. During the second
phase, we optimized the screening policy for the HTVS pipeline, where each stage is associated with a different ML
surrogate model. Specifically, we identified the optimal screening range [X[ L X{’U] for stage S; (i = 1,2,...,5),
which is expected to lead to the optimal performance of the entire HTVS pipeline. To this aim, we generalized the
screening policy optimization framework in the previous study?* to enable optimizing HTVS pipelines that screen
candidate materials based on whether the property of interest belongs to a target range and not just based on a required
minimum value.

For validation, we first optimized the constructed HTVS pipeline for a screening campaign whose operational goal
was to detect promising redox-active materials according to the target RP threshold set to 2.5 V. As shown in Fig. 3,
the optimized pipeline consumed 84.11% of the original computational resources to detect all promising redox-active
materials whose RP (evaluated at the desired fidelity using the high-fidelity model f) exceeds or is equal to the threshold
2.5 V. The HTVS pipeline consumed only 58.62% of the original computational cost to find 80% of the potential
materials. Next, we also optimized the screening policy for both throughput and computational efficiency. For different
values of « that were considered in this study, the pipeline detected 77.69% to 95.77% of the promising redox-active
materials that meet the target criterion, with an accuracy ranging between 86.19% and 97.38% and at an effective
computational cost between 85,407 and 93, 291.

The proposed approach was further validated for carrying out screening campaigns that aim to efficiently detect organic
redox-active materials whose RP (computed by the high-fidelity model f) is within the target range ([2.5 V, 3.2 V]).
We utilized the same HTVS pipeline structure that was used for the first computational screening campaign, but the
screening policy was optimized by the generalized optimization framework presented in this work. As shown in
Fig. 5, the optimized HTVS pipeline detected all promising organic electrode materials that meet the target criterion
by consuming only 85.78% of the original computational cost. We also assessed the performance by optimizing the
screening policy jointly for throughput and efficiency. When alpha was set to 0.75, the optimized HTVS pipeline
detected 29.8 potential candidates (i.e., 82.78% of all candidate materials in the test dataset whose RP is within the
target range) at a computational cost of 4, 257, 906. When « was set to 0.25, the optimized HTVS pipeline detected
65% of the targeted candidate materials at a cost of 2,923, 471.

Based on the correlation analysis results shown in Fig. 2, we further simplified the structure of the HTVS pipeline by
removing some of the surrogate models that are highly correlated to other surrogates in the original pipeline structure.
By assessing the optimal performance of the simplified HTVS pipeline, our goal was to investigate the impact of
reducing potential redundancies across screening stages on the overall throughput and efficiency. Specifically, we
discarded the first state .S; and the third stage S35 from the original HTVS pipeline structure and found the optimal
screening policy for the simplified pipeline [S2, Sy, S5, Sg]. Comprehensive evaluation results of this pipeline can be
found in the supplementary material (see Section 4). These results showed that discarding stages .S; and 53, which are
computationally very efficient and moderately correlated to the last stage Sg, which uses the high-fidelity model f, did
not significantly impact the performance of the optimized HTVS pipeline. Figure 2 shows that the scores computed
at stage 57 are highly correlated with the scores computed at S5 and so are the scores at S3 with those at .S, which
may be why removing these redundant stages from the HTVS pipeline did not affect the overall screening performance.
However, simplifying the HTVS pipeline structure reduces the dimensionality of the joint score distribution, which may
potentially improve the quality of the probability density estimation. Additionally, there may be other benefits such as
saving computations at “idle” stages, which do not actively sift out unpromising candidates but delegate the job to other



surrogate models by letting most materials pass through, and reducing the burden of training a larger number of ML
surrogates.

It is important to note that the computational screening campaign considered in this study has a fundamental performance
bound due to its setting. In the screening scenarios that we considered, it was assumed that the high-fidelity model f
will be used for final validation at the last stage of the HTVS pipeline in order to assess all candidate materials that
survive the penultimate stage. For example, suppose 80% of the candidate materials in the initial set X’ meets the
target criterion. If the HTVS pipeline perfectly sifts out the undesirable 20% and passes only the 80% with the desired
RP to the last stage that uses the high-fidelity model f for final validation, the total computational cost would be at
least 80% of the original computational cost that would be needed for screening the entire set X’ without a screening
pipeline and solely by f. In fact, the positive sample ratio in this study was relatively high for both the first and second
computational campaigns (i.e., 0.619 and 0.4286, respectively, which affects the maximum computational savings that
can be attained by taking the proposed HTVS pipeline construction and operation strategies. However, in real-world
screening campaigns (e.g., drug screening campaigns?!), the positive sample ratio tends to be very small. In such
cases, our proposed HTVS pipeline construction scheme and the optimal operation of the resulting pipeline can lead to
substantial computational savings virtually without any degradation of the screening accuracy. Screening scenarios
considered in a previous study>* demonstrate this potential. For example, we performed a strict 5-fold cross-validation
to evaluate the performance of our optimized HTVS pipeline when the target RP threshold was increased to 4.3 V.
In this case, only one out of 21 samples in the test dataset met the target criterion. The optimized HTVS pipeline
accurately detected the desired redox-active material at only 18.78% of the original computational cost (see Section 6
in the supplementary material).

While, in this study, we focused on the design and operation of an HTVS pipeline to efficiently screen an entire set of
candidate materials to identify a subset of promising organic electrode materials that possess the desired properties, it is
worth mentioning that there also exist a number of alternative methods proposed for the design or discovery of novel
materials*®%. For example, Bayesian optimization (BO) was used to efficiently search an immense compositional
materials space for hybrid organic-inorganic perovskites3®. This study demonstrated the potential advantages of BO for
discovering enhanced materials with optimized target properties in a data-scarce setting. The problem of designing
novel materials was tackled based on multiple design objectives in the presence of substantial model uncertainty and
limited data availability *. To efficiently explore the huge material design space, they adopted the widely popular
efficient global optimization (EGO) scheme*’ based on a multi-dimensional expected improvement (EI) criterion. By
taking a multi-task ANN-based EI approach, this study showed that the resulting scheme can significantly accelerate
the search for novel materials with enhanced properties.

In this study, we utilized the kernel ridge regression (KRR) model for building the surrogate models for predicting the
RP. Theoretically, one may be able to further enhance the screening performance of the HTVS pipeline by exploring
alternative ML models for the regression task and selecting the best model, although it is beyond the scope of the current
study. Potential future search directions include improving the predictive power of the surrogate models by employing
more powerful deep-learning models and incorporating additional highly structured descriptors or features, such as
Simplified molecular-input line-entry system (SMILES)*!, Self-Referencing Embedded Strings (SELFIES)*?, and
various molecular fingerprints+3:4443:46.47.48:49.50.51 that have been shown to be effective for various property prediction
tasks.

Limitations of the study

Similar to the HTVS pipeline optimization framework originally proposed in the previous study?*, the generalized
optimization framework presented in this study takes a two-step approach. First, we estimate the joint distribution of
all scores computed at different screening stages, which is crucial in evaluating the objective function. Then, based
on the joint score distribution, we formally define the objective function and find the optimal screening policy that
optimizes the given objective function using a differential evolution (DE) algorithm>2. However, accurate estimation of
the joint score distribution can be practically challenging when the available training data are limited and the HTVS
screening pipeline consists of a relatively large number of stages, which makes the distribution high-dimensional. Any
discrepancy between the true underlying distribution and the estimated distribution may affect the overall screening
performance, since the best screening policy that optimizes the objective function may not necessarily optimize the
performance for candidate materials whose scores may follow a different distribution. Furthermore, the discrepancy
between the true and estimated joint score distributions may lead to inaccurate estimations of the expected screening
cost. Consequently, the optimized screening policy predicted based on an inaccurate joint score distribution may lead to
the violation of the computational budget constraint or lead to a suboptimal distribution and utilization of the available
resources across screening stages. In the current study, we tried to alleviate the problem of potentially violating the



budget constraints by having each screening stage operate as follows. By default, each stage operates based on the
predicted optimal screening policy operators. However, each screening stage can discard molecules before predicting
their RP if the computational resource allocated to the stage is less than the total computational cost for screening all
molecules passed from the previous stage. The stage drops samples based on the RP predicted in the previous stage until
the expected computational cost for screening the remaining samples is within the allocated computational resources.
That is, the molecule with the lowest RP is discarded first.

AUTHOR CONTRIBUTIONS

Conceptualization, B.J.Y., S.S.J., and HM.W.; Methodology, B.J.Y., HM.W.,, and O.A.; Software, HM.W. and O.A.;
Validation, HM.W. and O.A.; Investigation, HM.W. and O.A.; Resources, HM.W., O.A., S.S.J., and B.J.Y.; Data
Curation, HM.W. and O.A.; Writing - Original Draft, HM.W. and O.A., Writing - review& Editing, HM.W., O.A.,
J.C.,S.S.J., and B.J.Y.; Visualization, H.M.W. and O.A.; Supervision, B.J.Y. and S.S.J.

Acknowledgement

This work was supported in part by the NSF Award under Grant 1835690.

DECLARATION OF INTERESTS

The authors declare no competing interests.



Figure 1: An overview of the proposed strategy for the design and operation of a high-throughput virtual
screening (HTVS) pipeline, whose primary objective is to efficiently detect promising organic electrode materials
whose redox potential (RP) computed via the high-fidelity DFT-based model f is within pre-specified target
range (A1, \y].

In the first phase (left panel), we decompose the high-fidelity model f into four sequential sub-models f1, fo, ..., f4,
computing intermediate properties that are needed to compute RP at high fidelity, to form a skeleton structure of
the HTVS pipeline. Then, we learn the surrogate models g;, « = 1,2, ..., 5 based on a different set of intermediate
properties to build screening stages with different fidelity (left panel). In the second phase (right panel), we find
the optimal screening policy ¥* = [\, Al yseees )‘*Nq,U} for the constructed HTVS pipeline via the generalized
optimization framework. '

Figure 2: Pearson’s correlation between the RP values computed by different models (i.e., the high-fidelity DFT
model f and the surrogate models g;, i = 1,2,...,5).

As shown, more computationally expensive surrogate models with a larger number of descriptors result in estimates
that better correlate with the RP computed by the high-fidelity DFT model. Also, note that the predicted descriptors via
the sub-surrogate model helped improve the regression performance.

Figure 3: Performance evaluation of the optimized high-throughput virtual screening (HTVS) pipeline based on
5-fold cross-validation.

The shaded area along each curve represents the standard deviation of the performance on the five cross-validation
datasets. The optimal screening policy maximized the throughput (i.e., the number of potential candidates whose RP
exceeds or is equal to the target threshold of 2.5 V) under the given computational budget constraint (z-axis). The
optimized HTVS pipeline effectively allocated the computational resource across the multiple screening stages, thereby
detecting all the potential candidates at only 84.11% of the original computational cost of 6, 286, 056 (blue vertical
line) which would be required if solely the high-fidelity model f were used for screening.

Figure 4: The number of discarded molecules at each screening stage for different amounts of available computa-
tional budget (z-axis).

The first stage S; (left top, green dotted line) that predicts the RP based only on primitive features filtered out a
significant proportion of candidates when the computational budget was tightly constrained. As the computational
budget increased, the number of molecules discarded at the first stage gradually decreased, allowing subsequent
higher-accuracy stages to get more actively involved in screening.

Figure 5: Performance evaluation of the optimized HTVS pipeline based on 5-fold cross-validation.

The goal is to detect promising redox-active materials whose RP is within the target range [2.5 V, 3.2 V]. The average
performance metrics are shown as a function of the total available computational budget (z-axis). The shaded area
along each performance curve represents the standard deviation of the performance on the five cross-validation datasets.
The optimized HTVS pipeline detected all promising materials that meet the target screening condition at only 85.78%
of the original computational cost (blue vertical line) that would be required for screening all materials solely based
on the high-fidelity model f. By design, the HTVS pipeline achieved perfect specificity regardless of the available
computational budget by utilizing the high-fidelity model at the end of the pipeline for the final validation of the
candidates.
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Figure 6: The number of molecules that were discarded at each stage (left) and passed to the next stage (right)
for the case when the target RP range was set to [2.5 V,3.2 V].

The results were obtained based on 5-fold cross-validation for different amounts of available computational budget
(z-axis). As before, when the computational budget was tightly constrained, the most efficient first stage Sy (top left,
green dotted curve) filtered out a significant number of materials and passed only a relatively few candidate materials
that are expected to satisfy the target criteria. In general, the number of molecules discarded in the first stage decreased
gradually as the computational budget increased, allowing subsequent screening stages with higher accuracy to get
more actively involved in screening.

« Detected materials  Total cost (seconds)  Effective cost (seconds)  Sensitivity ~ Specificity ~ F1 score ~ Accuracy

0.25 40.4 3,450, 440 85,407 0.7769 1 0.8714 0.8619
0.5 47.8 4,365,990 91, 339 0.9192 1 0.9574 0.95
0.75 49.8 4,645,890 93,291 0.9577 1 0.9782 0.9738

Table 1: Performance evaluation of the jointly optimized HTVS pipeline based on 5-fold cross-validation (target
RP threshold at the last stage set to 2.5 V).

As the weight parameter «,, which determines the balance between the throughput and computational efficiency,
increased from 0.25 to 0.75, all the throughput-related performance metrics tended to improve at the cost of higher
computational cost (i.e., increased total cost and effective cost). Overall, the optimized HTVS pipeline struck a good
balance between throughput and computational efficiency.

« Detected materials ~ Total cost (seconds)  Effective cost (seconds)  Sensitivity — Specificity F1 Accuracy
0.25 23.4 2,923,471 124,935 0.65 1 0.7689 0.85
0.5 29.2 3,921,249 134,289 0.8111 1 0.8892  0.9190
0.75 29.8 4,257,906 142, 883 0.8278 1 0.9003  0.9262

Table 2: Performance evaluation of the jointly optimized HTVS pipeline based on 5-fold cross-validation, where
the target RP range was set to [2.5 V,3.2 V].

As a increased, the overall throughput of the HTVS pipeline increased with the higher consumption of the computational
resources (i.e., increased total cost and effective cost). As before, the optimized HTVS pipeline struck a good balance
between throughput and computational efficiency.
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Materials availability

This study did not generate any physical materials.

Data and code availability

* All original code has been deposited at GitHub and is publicly available as of the date of publication. DOIs are
listed in the key resources table.

* Any additional information required to reanalyze the data reported in this paper is available from the lead
contact upon request.

Simulation environment

We evaluated the average time complexity of each surrogate model for RP computation of a candidate material on a
workstation equipped with Intel Xeon E5-2650 v3 and 64 GB memory. We utilized the differential evolution (DE)
algorithm? to optimize the screening policy for the HTVS pipelines considered in the work.

Data collection

In order to validate the proposed approach, we collected 109 organic electrode materials designed in previous stud-
ies>7:26:27:28.29.30.31.32 (see the supplementary information Dataset.xlsx). Figure S19 depicts representative organic
electrode materials—such as ketones?®, quinones?’, functionalized graphene flakes?®?°, boron-doped corannulenes°,

and boron-doped coronenes *! —considered in this study.

High-fidelity model for computing the redox potential of organic electrode materials
First-principles method

We computed DFT using Schrodinger Jaguar3?, with PBE0** functional and 6 — 31 + G(d, p) basis set®. After
geometry optimization using DFT, we compute the electronic features, such as HOMO, LUMO, HOMO-LUMO gap,
and EA.

Then, we used the thermodynamic cycle suggested by Truhlar3¢37 as described in Fig. S20 to calculate the RP. To
evaluate the reduction free energies at 298 K in the gas phase AG;{;, the vibrational frequencies were analyzed for
both the anionic and neutral states for all the organic species. To evaluate the solvation-free energies of the anionic and
neutral states (AGo (R™) and AGy (R), respectively) in the mixture of ethylene carbonate and dimethyl carbonate,
the Poisson—-Boltzmann implicit solvation model was used with a dielectric constant of 16.14. Using the thermodynamic

cycle in Fig. $20, the reduction free energy in solution phase (AG™! (R)) was calculated by:

sol

AGZZ? (R) = AG;: (R) + AGsol (Ri) - AC;so] (R) : (1)
Finally, the RP in the solution phase with respect to Li/Li* electrode was calculated based on the free energy change for
the reduction in the solution phase using,

AGHS (R
Eonni= (‘TSLOIF() + EH) — By, 2)

where 7 and F denote the number of electrons transferred and the Faraday constant (96, 485 C mol '), respectively.
Ey and Ej; correspond to the absolute potential of the hydrogen electrode (4.44 V), and the potential of the Li electrode
with respect to the standard hydrogen electrode (—3.05 V)3, respectively. In the previous studies, we showed that
this computational strategy produced RPs with staggering accuracy, within 0.3 V vs. Li/Li* relative to experimental
results 26:27:28:29.3031,32.56.57 Tp addition to the RP, the adiabatic electron affinity was calculated from the difference in
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energy between the organic molecules in their neutral state and in their anionic state. Additional details of the DFT
calculations used to predict the RP are found in the past studies 26-27-28.29:30.31,32,56.57

Estimating the time complexity of the high-fidelity model

Since our DFT dataset has been developed over multiple studies and under several different computational machines,
we needed a method to estimate the computational complexity (to calculate RP, as well as the input DFT features)
for all the molecules in our dataset in a fair and consistent manner. Therefore, for consistency, we performed the
necessary calculations on a single representative case, anthraquinone, and recorded the computational time. Using
the computational time for this case and the well-known scaling factor for standard DFT computational complexity
O(N?3)35 we estimated the computational complexity for the remaining cases accordingly. We included detailed
information on the time complexity for computing the properties of each molecule in the supplementary material.

Constructing the HTVS pipeline based on a high-fidelity DFT computational model
Cascading the high-fidelity computational model

As shown in Fig. S21 (right panel), the high-fidelity DFT computational model computes several features of a given
molecule in neutral and anionic states to compute the redox potential. In order to construct the skeleton structure
of the HTVS pipeline, we first decompose the high-fidelity model f into four computational modules f1, fa, ..., f1
and cascade them sequentially, as shown in the right panel of Fig. S21. For a given redox-active material, we first
compute the primitive features such as the number of C, B, O, Li, H, and aromatic rings via f;. Then, we perform
geometric optimization and thermochemistry calculations to compute the HOMO, LUMO, and HOMO-LUMO gap for
the material in a neutral state (f3). Next, we compute the EA of the material based on the available intermediate features
and geometrically optimized material in the neutral and anionic states via f5. Finally, we calculate the solvation-free
energies of the materials in both states to obtain the RP through f;.

Learning machine learning (ML) surrogate models that comprise the HTVS pipeline

Based on the skeleton structure of the HTVS pipeline as shown in the right panel of Fig. S21, we learned five surrogate
models to build screening stages, which will be placed between the sequential computational modules f1, fa,. .., fa.
The five surrogate models predict the RP using a different set of descriptors available to each surrogate model based on
its location in the HTVS pipeline. For example, surrogate model g; located right after f; predicts the RP based on only
the primitive descriptors. We introduce the concept of a “sub-surrogate” model that predicts the next descriptors not
yet available at the given stage (as they need additional computational modules) and use the predicted descriptors as
virtual features to improve the prediction accuracy of the surrogate models. For example, the second surrogate model
go located between g1 and f5 uses additional predicted features such as HOMO, LUMO, and HOMO-LUMO gap
predicted via sub-surrogate models g2 1, 92,2, and gs 3 in order to improve the prediction accuracy. Acquiring these
virtual features through ML-based sub-surrogate models is very cheap as it does not require any DFT calculations.
Table. S1 in the supplementary material shows the specification of all the (sub-)surrogate models trained in this study.
We use a KRR model that effectively regresses the response in general (see Section 2 in the supplementary material).

Generalized optimization framework for finding the optimal screening policy for materials
whose RP belongs to a target range

Estimating the joint distribution of the predictive scores from all screening stages constituting the HT'VS pipeline

Similar to the screening policy optimization framework originally proposed in the previous study*, the first step of the
generalized optimization framework for identifying the screening policy that can maximize the performance of a given
HTVS pipeline is to estimate the joint distribution p of the scores computed at different screening stages, each of which
is associated with a different model (i.e., machine learning-based surrogates g; and the high-fidelity model f). In this
study, we use parametric spectral estimation based on a multivariate Gaussian mixture model. Specifically, we estimate
the parameters of a bi-modal multivariate Gaussian distribution via the expectation-maximization (EM) algorithm>3.

Generalized framework for HTVS policy optimization under computational budget constraint

In this computational screening campaign scenario, we assume that the operational objective of screening is to maximize
the number of detected organic electrode materials whose RP, computed via a given high-fidelity model f, is within
a pre-specified target range [\, \y| under computational budget constraint C'. To this aim, we identify the optimal
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screening policy ¢¥* = [)\T’L, Al us--- >‘7V71,U] of the screening stages S;, 7 = 1,2,..., N — 1, where each stage is
associated with a machine learning (ML) surrogate model f;. Under the available computational budget C, the optimal
screening policy should maximize the size of the output set Y, which contains candidate materials whose RP belongs to
the target range [\, \y] when evaluated by the high-fidelity model f in the last stage Sy of the HTVS pipeline.

Let p (y1, Y2, - - .,yn) be a joint distribution of the RP values, where y is computed via the high-fidelity DFT model f
and y1, ..., yn—1 are computed by ML surrogate models g;, 2 = 1,2, ..., N — 1. In this study, we considereda N = 6
stage HTVS pipeline with 5 ML surrogate models. Let us denote the reward function r (A) according to screening
ranges A1y = [A1.1, A1, A2.L,- - ., Ay] of the screening stages S;, ¢ = 1,2,..., N, as follows:

AN AN-1,U,A1,U]
r(Ann) = / P (Y12, yn) dipdyz - dyn. 3)
[ALAN—1,L,-A1,1)
Note that r (A1, ) is proportional to the number of the potential candidate materials that are detected by the HTVS
pipeline by passing all screening stages.

We can find the optimal screening policy ¥* = [)\’1" LA U )\}k\rq,u] of the surrogate-based screening stages .S,
1=1,2,..., N — 1, maximizing |Y|, by solving the constrained optimization problem as follows:

Y = argmax 7 ([, A]) 4)
,‘/)G]RQ(N—I)
N
st Y alX| <C. 5)
i=1

|X;| is the number of candidate materials that passed the previous stages from S; to S;_1, defined as follows:

[Nic1,U:Xi—2,U,--,A1,U]
1Xi| = X // Prii—1 (Y1, Y2, -+ Yim1) dyrdys - - - dy;—1, (6)

[Ni—1,n,Ni—2,L,-sA1,L]

where p;.;_1 is a marginal score distribution of (y1, ya, . .., y;—1) obtained by marginalizing p over y;, ..., yn.

Generalized framework for HTVS policy optimization for throughput and computational efficiency

In this scenario, we jointly optimize the HTVS pipeline to maximize the throughput and minimize the computational
resource consumption. The optimal screening policy is obtained by solving the optimization problem as follows:

P* = argmin o ([, A]) + (1 — ) h ([, A]) . 7
PYERAN-1)

The weight parameter o € [0, 1] determines the relative importance between the relative reward function 7 ([¢0, A]) and
the normalized total cost function h ([¢», A]), which are defined as follows:

r([—00,00,...,00,A]) — r ([tp, A])

) = T T o0, 0o M) ®)
Jo p (yn) dyn — 7 (36, A])
- AN U ’ )
v Py (yn) dyn
_ 1 N
h ([, A]) = WZQ\XJ. (10)
v =1

Here, pyv is the marginal score distribution obtained by marginalizing p over y; to yn—_1.
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