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Abstract

The parameter space for any fixed architecture
of feedforward ReLU neural networks serves as
a proxy during training for the associated class
of functions – but how faithful is this represen-
tation? It is known that many different parame-
ter settings ✓ can determine the same function f .
Moreover, the degree of this redundancy is inho-
mogeneous: for some networks, the only symme-
tries are permutation of neurons in a layer and
positive scaling of parameters at a neuron, while
other networks admit additional hidden symme-
tries. In this work, we prove that, for any network
architecture where no layer is narrower than the
input, there exist parameter settings with no hid-
den symmetries. We also describe a number of
mechanisms through which hidden symmetries
can arise, and empirically approximate the func-
tional dimension of different network architec-
tures at initialization. These experiments indicate
that the probability that a network has no hid-
den symmetries decreases towards 0 as depth in-
creases, while increasing towards 1 as width and
input dimension increase.

1. Introduction

The success of deep learning relies upon the effectiveness
of neural networks in expressing a wide variety of functions.
However, it is generally impractical to explicitly write down
the function computed by a network, so networks of a given
architecture are described and learned via parameter vectors
(encompassing weights and biases). The space of param-
eter vectors serves as a convenient proxy for the space of
functions represented by a given network architecture, but it
is an imperfect proxy since it is possible for two different
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parameter vectors to map to the same function.

Indeed, for any fully connected neural network with ReLU
activation, it has been observed that the following transfor-
mations to the parameters are symmetries – i.e., they do not
change the function computed by the network (Rolnick &
Kording, 2020; Bui Thi Mai & Lampert, 2020):

• Permutation (P). Reordering the neurons in any hid-
den layer, along with the corresponding permutation
of the weights and biases associated with them,

• Scaling (S). For any neuron in any hidden layer, multi-
plying the incoming weights and the bias by any c > 0,
while dividing the outgoing weights by c.

Such symmetries can have important implications for
gradient-based learning algorithms that operate on param-
eters. Many authors have considered methods to optimize
neural networks accounting for scaling symmetries (see
e.g. Neyshabur et al. (2015)). While networks trained on
the same data from different initializations are far apart in
parameter space, they express similar functions; recent work
suggests that such networks may in fact be close in parame-
ter space if one accounts for permutation symmetries (see
e.g. Ainsworth et al. (2023)).

It remains unknown, however, in what cases permutation
and scaling are the only symmetries admitted by the param-
eters of a neural network, and how often there are other
hidden symmetries (formalization in Definition F.4). Rol-
nick & Kording (2020) prove that under certain conditions,
no hidden symmetries exist, and indeed that under these
conditions it is possible to reverse-engineer a network’s pa-
rameters up to permutation and scaling. Bui Thi Mai &
Lampert (2020) prove that for all architectures with non-
increasing widths, there exist parameter settings with no
hidden symmetries. Work by Grigsby et al. (2022b) on
the functional dimension of networks suggests that a wide
variety of hidden symmetries may exist depending on the
parameter setting.

Our key results in this paper are as follows:

• We prove (Theorem 4.1) that if all layers in a fully
connected ReLU network are at least as wide as the
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input layer, then there exists some setting of the param-
eters such that the network has no hidden symmetries.
Indeed, we show that a positive-measure subset of pa-
rameter space admits no hidden symmetries.

• We describe four mechanisms through which hidden
symmetries can arise (Subsection §5). In particular, we
prove (Proposition 5.1) that if the image of the domain
in a hidden layer is contained in a subspace of positive
codimension, then there is ambiguity in the neuron of
the next layer map.

• We experimentally estimate the functional dimension
of randomly initialized network parameter settings.
Our results suggest that the probability that a network
has no hidden symmetries decreases with depth, but in-
creases as input dimension and width increase together.

2. Related Work

Several important lines of work have considered the sym-
metries of the parametric representations of deep ReLU
networks and their implications for learning. One focus area
has been in designing optimization methods for neural net-
works that are invariant to scaling symmetries at individual
neurons. Approaches for achieving this goal have include
path normalization (Neyshabur et al., 2015), manifold op-
timization (Badrinarayanan et al., 2015), proceeding in a
different vector space (Meng et al., 2019), and projection
onto a normalized manifold (Huang et al., 2020).

Another fruitful direction of work has been in understand-
ing how permutation symmetries in parameter space affect
connectivity of the loss landscape. Kuditipudi et al. (2019)
consider when different parameter permutations of a trained
network are connected via piecewise linear paths in parame-
ter space with low loss. Brea et al. (2019) show that linearly
interpolating between different permutations of a network
leads to flat regions of the loss landscape. Several recent
works have shown that, if permutation symmetries are taken
into account, then it is possible to interpolate between net-
works trained from different initializations, while maintain-
ing a low loss barrier (Entezari et al., 2022; Ainsworth et al.,
2023; Jordan et al., 2023).

In Armenta & Jodoin (2021), the authors define and study
the moduli space of neural network functions using quiver
representation theory. This theory provides a framework
for extracting global symmetries of parameter space of a
network architecture from symmetries of the computational
graph and the activation functions involved (see also Ganev
& Walters (2022)), Armenta et al. (2023); Zhao et al. (2022)
build on these ideas to define neural teleportation algo-
rithms aimed at using symmetries in the loss landscape
to improve the efficiency of gradient descent in finding a
minimal-loss solution. In Kunin et al. (2021) the authors

argue that symmetries in the loss landscape have associated
conserved quantities that impact training dynamics.

A number of works have explicitly considered which sym-
metries are admitted by different ReLU networks. A number
of authors consider the relationship between the parameters
of a ReLU network and the geometry of its bent hyperplane
arrangement (aka fold set); Milli et al. (2019), Rolnick &
Kording (2020), and Carlini et al. (2020) use these proper-
ties to reverse-engineer the parameters of certain networks
up to permutation and scaling symmetries, and Bui Thi Mai
& Lampert (2020) proves that for certain architectures there
exist parameter settings without hidden symmetries. In par-
ticular, in Rolnick & Kording (2020), the authors provide
a geometric condition on the bent hyperplane arrangement
of a parameter ensuring that the parameters can be reverse-
engineered up to permutation and scaling, hence has no hid-
den symmetries. It follows nearly immediately that all depth
2 networks and a positive measure subset of any depth 3
network have no hidden symmetries. In Bui Thi Mai & Lam-
pert (2020), the authors prove that a positive measure subset
of parameters in every non-widening (n0 � n1 � . . . nd)
architecture has no hidden symmetries. In the present work,
we prove the complementary result that a positive measure
subset of parameters in every architecture whose hidden
layers are at least as wide as the input layer (that is, n0  n`

for all ` < d) has no hidden symmetries. An example of
a family of architectures for which the question of the ex-
istence of parameters without hidden symmetries remains
unresolved after the present work is an architecture of the
form (n0, n1, n2, n3, n4) with n0 < n1 and n2 < n0.

Grigsby et al. (2022b) study the functional dimension of a
network parameter setting – the dimension of the space of
functions that can be achieved by infinitesimally perturbing
the parameters – proving an upper bound on functional
dimension that we conjecture is achieved for almost all
parameter settings without hidden symmetries (cf. Lemma
F.6).

3. Notation and Background

We consider fully connected neural networks with ReLU
activation, denoting by (n0, . . . , nd) the architecture with
input dimension n0, hidden layer widths n1, n2, . . . , nd�1,
and output dimension nd.

Formally, let � : R
n

! R
n denote the function that

applies the activation function ReLU(x) := max{0, x}
component-wise. For an architecture (n0, . . . , nd), we
define a parameter space ⌦ := R

D where a parameter
✓ := (W 1

, b
1
, . . . ,W

d) 2 ⌦ consists of weight matri-
ces W

i
2 R

ni+1⇥ni and bias vectors b
i
2 R

ni for i =
0, . . . , d�1. Accordingly, D := �nd+

P
d

i=1 ni(ni�1+1).
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From a parameter ✓ we define a neural network function:

F✓ : R
n0

F
1
// Rn1

F
2
// . . .

F
d
// Rnd , (1)

with layer maps given by:

F
i(x) :=

⇢
�(W i

x+ b
i) for 1  i < d

W
i
x for i = d.

(2)

Note that for any ✓ 2 ⌦, F✓ is a finite piecewise-linear func-
tion – that is, a continuous function for which the domain
may be decomposed as the union of finitely many closed,
convex pieces, on each of which the function is affine.

Following notation in Definition 4 of Masden (2022), let
F(`) := F

`
� . . . �F

1 denote the composition of layer maps
from the domain, ending with the `th layer map, and let
F

(`) := F
d
� . . . � F

` denote the composition of the layer
maps ending at the codomain, beginning with the `th layer
map. In particular, F✓ = F

(`+1)
� F(`).

We refer to the components of F(`) as the neurons in the `th
layer. The pre-activation map z(`),i : R

n0 ! R associated
to the ith neuron in the `th layer is given by:

z(`),i(x) = ⇡i

�
W

`(F(`�1)(x)) + b
`
�
, (3)

where ⇡i : Rn` ! R denotes the projection onto the ith
component. Following Hanin & Rolnick (2019), we refer
to the zero-set of the pre-activation map for the ith neuron
in the `th layer as its associated bent hyperplane, Ĥ`

i
:=

z
�1
(`),i{0}.

The following notions from Rolnick & Kording (2020) (see
also Hanin & Rolnick (2019), Grigsby & Lindsey (2022),
and Masden (2022)), will play a crucial role in the proofs of
our results. A (ternary) activation pattern (aka neural code
or sign sequence) for a network architecture (n0, . . . , nd) is
an N–tuple s 2 {�1, 0,+1}N of signs for N =

P
d

i=1 ni

(Def. A.1). Each activation pattern determines a (frequently
empty) subset of R

n0 called its associated activation re-
gion. Informally, an activation region is the collection of
points x for which the pre-activation sign of a non-input
neuron matches the sign of the corresponding component
of s (Def. A.3, or Def. 1 of Hanin & Rolnick (2019) and
Def. 13 of Masden (2022).) A linear region of a finite
piecewise linear function is a maximal connected set on
which the function is affine-linear. A ReLU network map
F✓ : Rn0 ! R

nd for an architecture (n0, . . . , nd) is said
to satisfy the Linear Regions Assumption (LRA) (Def. D.2)
if each linear region is the closure of a single non-empty
activation region corresponding to a an activation pattern
with all nonzero entries.

Grigsby & Lindsey (2022) proved that for almost all pa-
rameters in any fixed architecture (n0, . . . , nd), the bent
hyperplane (zero set of the pre-activation output) associated

to a non-input neuron has codimension 1 (i.e., dimension
n0 � 1) in the domain.1

Moreover, it is proved in Masden (2022) that for almost
all parameters in any fixed architecture (n0, . . . , nd), the
intersection of k bent hyperplanes has codimension k in the
domain. Following Masden (2022), we shall call a network
whose bent hyperplanes satisfy this enhanced condition
supertransversal.2

It is proved in Theorem 2 of Rolnick & Kording (2020) that
if a supertransversal ReLU network map F✓ satisfies LRA,3
and each pair of bent hyperplanes associated to each pair
of neurons in each pair of adjacent layers has non-empty
intersection, then the network admits no hidden symme-
tries. Indeed, the authors detail an algorithm allowing the
parameters to be extracted from the local geometry of the
intersections, up to permutation and scaling.

Accordingly, we will say that a network map F✓ associated
to a parameter ✓ 2 ⌦ satisfies the transverse pairwise-
intersection condition, abbreviated TPIC, if its associated
bent hyperplane arrangement is supertransversal, and each
pair of bent hyperplanes associated to each pair of neurons
in each pair of adjacent layers has non-empty intersection.
See Figure 1.

4. Main Result

Theorem 4.1. Let (n0, . . . , nd) be a feedforward ReLU
network architecture satisfying (n0 = k)  n` for all `,
and let ⌦ denote its parameter space. A positive-measure
subset of ⌦ has no hidden symmetries.

Proof Sketch: A more explicit version of Theorem 2 of
Rolnick & Kording (2020), stated in Lemma D.15, tells us
that any network map F✓ satisfying TPIC and LRA on a
neighborhood of the intersections admits no hidden symme-
tries.

By Proposition D.13, TPIC is an open condition. That is,
any parameter satisfying TPIC has an open neighborhood of
parameters also satisfying TPIC. Lemma D.14 furthermore
tells us that any parameter satisfying LRA in a neighborhood
of the intersections has an open neighborhood on which
LRA is satisfied in a neighborhood of the intersections.

We proceed by induction on the depth, d. When d = 1,
there is nothing to prove, so our true base case is d =
2. In this case, we need only show that we can choose
a combinatorially stable parameter ✓ 2 ⌦ that satisfies

1Note that it may also be empty.
2The formal definition of supertransversality, given in Defini-

tion B.7, is stronger than what is stated here, but implies it.
3Note that (Rolnick & Kording, 2020) do not need the LRA

to be satisfied on the entire domain–only on a relevant subset for
their algorithm. See Section D in the Appendix.
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(i) supertransversality, (ii) each bent hyperplane from ` =
2 has non-empty intersection with each hyperplane from
` = 1, and (iii) LRA on a neighborhood of the pairwise
intersections.

Since the set of parameters ✓ satisfying (i) and (iii) has full
measure in ⌦, it is routine – though technical – to guarantee
that these conditions are satisfied once we find a single
parameter satisfying (ii). Details are given in the appendix.

To arrange that each bent hyperplane from ` = 2 has non-
empty intersection with each hyperplane from ` = 1, we
make use of so-called positive-axis hyperplanes. Generi-
cally, an affine hyperplane intersects each coordinate axis of
R

n on either the positive or negative side. A positive-axis
hyperplane intersects all coordinate axes on the positive side.
Equivalently, a positive-axis hyperplane is describable as the
zero set of an affine-linear equation with positive weights
and negative bias:

H := {~x 2 R
n
| ~w · ~x+ b = 0}

for ~w = (w1, . . . , wn) satisfying wi > 0 for all i and b < 0.

The important property of a positive-axis hyperplane is that
it has non-empty intersection with every origin-based ray
contained in the non-negative orthant, O�0

✓ R
n.

We now use the fact (Lemma C.4) that for almost all param-
eters ✓, the image under F 1 of almost every unbounded ray
in R

n0 is a ray in O
�0

✓ R
n1 (not necessarily based at the

origin). Since every affine hyperplane in R
n0 contains an

(n0 � 2)–dimensional sphere of unbounded rays, we can
ensure, by perturbing the parameters if necessary, that the
image of every hyperplane H

1
✓ R

n0 associated to F
1 has

non-empty intersection with any given positive-axis hyper-
plane H

2
✓ R

n1 with sufficiently high bias. We then apply
the following lemma, with G = F

1, H = F
2, to each pair

S = F
1(H1) for H1

✓ R
n0 a hyperplane associated to

the first layer map F
1 and S

0 = H
2
✓ R

n1 a sufficiently
high bias positive-axis hyperplane associated to the second
layer map F

2 to ensure that the the bent hyperplanes in
the domain, Rn0 , have non-empty pairwise intersection, as
desired.
Lemma 4.2. Let G : A ! B and H : B ! C be functions,
let F = H � G be their composition, and let S, S0

✓ B

be subsets of the intermediate domain. Then G
�1(S) \

G
�1(S0) is non-empty iff G(A) \ S \ S

0 is non-empty.

Proof. Immediate from the fact that

G
�1(S) \G

�1(S0) = G
�1 (G(A) \ S \ S

0) .

The inductive step in the construction of a combinatorially
stable depth d network from a combinatorially stable depth

d� 1 network satisfying TPIC is more intricate, but the key
idea is to notice that adding a layer to the network preserves
all previous bent hyperplanes and their intersections, so all
that is needed is to choose parameters for the final layer
ensuring that the new bent hyperplanes associated to the
final layer have non-empty pairwise intersection with the
bent hyperplanes from the penultimate layer.

This is where we will need to use one more key fact about
the images of activation regions under ReLU neural network
maps, which, when combined with Lemma 4.2 above, will
allow us to conclude that certain points of intersection be-
tween the images of hyperplanes in the penultimate layer
and hyperplanes associated to the final layer can be pulled
back to obtain points of intersection between the correspond-
ing bent hyperplanes in the domain:

Proposition 4.3. Let (n0, . . . , nd) be a ReLU neural
network architecture with (n0 = k)  n` for all `.
For almost all parameters ✓ 2 ⌦, if C ✓ R

k is an
activation region of F✓ with activation pattern sC =
(s1

C
, . . . , s

d

C
), then F✓(C) is a polyhedral set of dimension

min{dim(s1
C
), . . . , dim(sd

C
), k}.

Here, dim(s`
C
) refers to the number of +1’s in the binary

tuple that forms the activation pattern s
`

C
associated to the

output neurons of the `th layer map, F `, on the activation
region C (cf. Section A in the Appendix). The above propo-
sition has the following useful corollary, which allows us
to conclude that any points of intersection between (bent)
hyperplanes in the penultimate layer can be pulled back
faithfully to points of intersection between the correspond-
ing bent hyperplanes in the domain:

Corollary 4.4. Let (n0, . . . , nd) be a ReLU network archi-
tecture and ✓ 2 ⌦ as above. If C is an activation region of
F✓ with activation pattern satisfying dim(s`

C
) = k for all `,

then F✓ restricted to the interior of C is a homeomorphism
onto its image.

The linear regions assumption is satisfied for this construc-
tion because sufficiently many neurons from previous layers
are active, which implies that we can distinguish activation
regions (cf. Lemma 8 of Hanin & Rolnick (2019)). The sta-
bility of this construction on a closed subset of the domain
containing the pairwise intersections (Proposition D.12) fol-
lows from genericity and supertransversality, which allows
us to find a positive measure open neighborhood of ✓ that
also admits no hidden symmetries.

See Figure 1 for an illustration of what a bent hyperplane
arrangement produced by our construction looks like for
architecture (n0, . . . , n3) = (2, 5, 3, 3).
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Figure 1. An illustration of a bent hyperplane arrangement in the
domain R

n0 satisfying TPIC produced by our construction for a
ReLU network of architecture (2,5,3,3). The bent hyperplanes for
layers 2 (resp., 3) are represented with dark (resp., light) dashed
lines.

5. Mechanisms by Which Hidden Symmetries

Arise

For any feedforward ReLU architecture (n0, . . . , nd) with
at least one hidden layer (i.e. d � 2), the set of parameters
admitting hidden symmetries has positive measure (Grigsby
et al. (2022b)). There are numerous mechanisms by which
hidden symmetries can arise. We give a partial list below.

i. A stably unactivated neuron (Def. A.2). The positive
half-space in R

n` associated to a neuron of the layer
map F

`, for 1 < ` < d, could have empty intersec-
tion with F(`�1)(R

n0), the image of R
n0 under the

earlier layer maps. If this intersection remains empty
under small perturbations of the parameters defining
this neuron (while keeping the other neurons fixed),
such perturbations will not alter the function.
In particular, the image of R

n0 in any hidden layer
R

n` is contained in the closed positive orthant, so a
neuron whose associated half-space has (stably) empty
intersection with the positive orthant results in a hidden
symmetry. See Theorem 7.3 and Lemma 7.4 of Grigsby
et al. (2022b)) for a probabilistic lower bound on this
phenomenon, and Figure 2 for an illustration.

ii. A pair of neurons in consecutive layers that are never
co-active. As noted in Rolnick & Kording (2020), it is
possible for two neurons in adjacent layers of a network
to never be simultaneously active (cf. Definition A.5).
In such a case, the weight between these neurons is
generically able to be perturbed without changing the
function computed by the network. This is because

either (a) the upstream neuron is inactive, in which
case the downstream neuron receives zero input from
it regardless of the weight between them, or (b) the
downstream neuron is inactive, in which case it outputs
zero regardless of the input received from the upstream
neuron. See Figure 3.

iii. A ReLU of a later layer may collapse complexity con-
structed by earlier layers, negating the impact of the
parameters from those layers. One way this could hap-
pen is if multiple linear regions of F i�1

�. . .�F
1(Rn0),

1 < i < d are collapsed by one or more ReLUs in layer
F

i to form a single linear region (violating LRA). This
collapsing could erase the effect of parameters from
these earlier layers. See Figure 4.

iv. The (relevant part of the) image in a hidden layer may
be contained in a subspace of positive co-dimension.
Suppose, for 1 < i < d, the image of the domain in the
ith hidden layer, F i�1

� . . . � F
1(Rn0), is contained

in an affine-linear subspace A ⇢ R
ni of positive codi-

mension. Then for any neuron N of the (i+1)th layer,
denoting by H the associated oriented and co-normed
hyperplane in R

ni , there is a 1-parameter family of
oriented, co-normed hyperplanes {Ht} obtained by ro-
tating H around its intersection with A that all give
rise to the same map (Lemma F.7). See Figure 5.
Proposition 5.1 says that, given a neuron map of the
(k + 1)th layer, if the part of

Im(k) := F
k
� . . . F

1(Rn0)

where that neuron is nonnegative is contained in an
affine-linear subspace of Rnk of positive codimension,
then the hyperplane associated to that is not uniquely
determined.

Proposition 5.1. Let ⌘ : R
nk ! R

1 be a neuron
given by ⌘ = � � A for some fixed affine-linear map
A : ~x 7! ~x · nH � bH . Suppose

(a) there exists an affine-linear hyperplane S ⇢ R
nk

such that Im(k) \ {x | ⌘(x) � 0} ✓ S,

(b) the hyperplanes S and H are in general position
(c) no unbounded ray contained in Im(k) has a slope

that is orthogonal to ~nH 6= 0.

Then there is a 1-parameter family of (distinct) hyper-
planes {Ht}t in R

nk such that

⌘ � F
k
� . . . F

1 = fHt � F
k
� . . . F

1

where fHt : Rnk ! R is a neuron associated to the
hyperplane Ht (equipped with some suitable choice of
oriented conorm).

The proof of Proposition 5.1 is in F.1.
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H
`
1

F(`�1)(R
n0)

Figure 2. Illustration of mechanism (i) through which hidden sym-
metries arise. In the figure above we see R

n`�1 , the domain of
the hidden layer map, F `. The image (represented in shades of
orange) of Rn0 under the composition, F(`�1), of all previous
layer maps is always contained in the non-negative orthant. Since
the positive half-space of H`

1 misses the non-negative orthant, any
sufficiently small perturbation of H`

1 will have no impact on the
overall function.

Ĥ
`
i

Ĥ
`�1
j

Figure 3. Illustration of mechanism (ii) through which hidden sym-
metries arise. In the figure above we see two non-intersecting
bent hyperplanes from adjacent layers, pulled back to R

n0 , the
input layer. Because their intersection is empty, they admit a co-
orientation (pictured) for which they are never co-active. It follows
that the overall function has no dependence on the weight W `

ij

between them.

6. Experiments

We conducted an empirical investigation of hidden symme-
tries at various parameter settings. It is computationally
impractical to directly rule out the existence of hidden sym-
metries at a parameter using, e.g., the geometry of the bent
hyperplane arrangement. Accordingly, in our experiments
we rely on a relationship between the symmetries of a pa-
rameter and its functional dimension to probe the prevalence
of hidden symmetries for a variety of architectures.

Recall that the functional dimension dimfun(✓) of parameter

F(`�1)(R
n0)

H
`
1

Figure 4. Illustration of mechanism (iii) through which hidden
symmetries arise. The orange surface is the image of the domain
inside Rn`�1 . The blue hyperplane H`

1, which is oriented upwards,
is associated to a neuron of F `; everything below the blue plane is
zeroed out by the ReLU of this neuron. This neuron is not stably
unactivated, because the orange surface has nonempty intersection
with the positive half space above the blue plane. However, per-
turbing parameters that are only expressed in the part of the orange
surface below the blue plane does not change the output of the
neuron.

S

H

Ht

Figure 5. Illustration of mechanism (iv) through which hidden sym-
metries arise. If the image of Rn0 in a hidden layer Rn` is con-
tained in the affine-linear subspace S, replacing the neuron N de-
fined by hyperplane H with the neuron Nt defined by hyperplane
Ht (with a suitably scaled co-norm) yields the same function.

✓ is, informally, the number of linearly independent ways
the function F✓ can be altered by perturbing the parameter
✓. Following the formal Definition F.2, we can approximate
dimfun(✓) by evaluating the function F✓ at a finite subset
Z ⇢ R

n0 of points in input space, stacking the outputs into
a single vector of dimension |Z| · nd, and calculating the
rank of the Jacobian of this vector with respect to ✓. The
functional dimension dimfun(✓) is the supremum of this rank
over all sets Z. Intuitively, this is because we are evaluating
the number of coordinates of ✓ that independently affect
the value of the function F✓ at some point in its domain
(recognizing that some weights and biases may not have an
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Figure 6. For each of various network architectures, we approximate the distribution of functional dimensions as the parameter ✓ 2 ⌦
varies. Different plots show networks of different depths, while different colors in a plot correspond to varying the input dimension and
width n0 = n1 = · · · = nd�1. Black dots show the fraction of networks with full functional dimension (no hidden symmetries). We
observe that the proportion of networks with full functional dimension increases with width and decreases with depth. Insets in the figure
zoom in on certain multimodal distributions, showing that modes are spaced apart by approximately the width of the network.

effect on F✓ except on a limited subset of input space).

In our experiments, we consider networks with nd = 1, and
to approximate the functional dimension, we evaluate the set
of gradient vectors {r✓F✓(z)}z2Z over a finite subset of
m points Z = {z1, . . . , zm} ⇢ R

n0 in input space (we use
points sampled i.i.d. from the zero-centered unit normal).
Then, for m sufficiently large, we have:

dimfun(✓) ⇡ rank

0

B@

2

64
r✓F✓(z1)

...
r✓F✓(zm)

3

75

1

CA . (4)

We initialize networks with weights drawn i.i.d. from nor-
mal distributions with variance 2/fan-in, according to stan-
dard practice for ReLU networks (He et al., 2015; Hanin
& Rolnick, 2018), and biases drawn i.i.d. from a normal
distribution with very small variance (arbitrarily set to 0.01).
To improve the quality of the approximation in (4), we use
m sample points for m equal to 100 times the maximum
possible value for dimfun(✓), according to the upper bound
given in Grigsby et al. (2022b) (in Appendix G, we show
that our experimental conclusions are not dependent on the

choice of m). Note that our approach yields approximations
of dimfun(✓) which are also necessarily lower bounds to it;
in particular, any computed value that attains the theoretical
upper bound on dimfun(✓) is guaranteed to be accurate and
thus is consistent with the parameter admitting no hidden
symmetries.

In Figure 6, we plot the distribution of approximate func-
tional dimensions for networks with depth d = 4, 5, 6 and
with n0 = n1 = · · · = nd�1 equal to 5, 10, 15. For each
architecture, we consider 5000 different choices of ✓ 2 ⌦,
computing the fraction that lead to networks with a given
approximated functional dimension. Thus, we find that
for depth 4, the widths 5, 10, 15 result in respectively 25%,
48%, 66% percent of networks having the maximum pos-
sible functional dimension (marked with black dots in the
Figure), while for depth 6, the widths 5, 10, 15 result in
respectively 1%, 3%, 5% percent of networks having the
maximum possible functional dimension.

We observe that increasing the depth d (while keeping the
width fixed) results in a decreased probability of full func-
tional dimension, and thus the likely absence of hidden
symmetries (cf. Lemma F.6). By contrast, increased width
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(with n0 = n1 = · · · = nd�1, i.e. varying the input di-
mension and width together, while keeping depth fixed) is
associated with an increasing probability of full functional
dimension.

We offer the following explanations of possible drivers of
these observed phenomena. Increasing the depth increases
the variance and higher moments associated with properties
such as the activation of individual neurons (Hanin & Rol-
nick, 2018; Hanin, 2018), thereby increasing the likelihood
that functional dimension is decreased via mechanisms (i) or
(iii). By contrast, increasing the input dimension and width
increases the chance that the bent hyperplanes associated
with two neighboring neurons will intersect. (Intuitively,
this is because a hyperplane will intersect a bent hyperplane
unless the latter “curves away” in all dimensions, which
becomes exponentially unlikely as the dimension increases,
in the same way that the probability a matrix is positive def-
inite decays exponentially with dimension (Dauphin et al.,
2014)). However, further study is required, and it is worth
noting that a counteracting factor as the width increases may
be that the maximum functional dimension increases, so the
support of the distribution also increases and the probability
assigned to any individual functional dimension, including
the maximum, is less than it might be for a distribution with
smaller support.

We also note that the distributions of approximate functional
dimensions appear to approach smooth unimodal curves if
the probability of full functional dimension is low (as in the
Depth 6 plots), but are strongly multimodal when there is a
high probability of full functional dimension. In the inset
panels of the figure, we show zoomed-in versions of the up-
per ends of certain distributions, detailing the multiple peaks
in the distribution. We note that for each such multimodal
distribution, the peaks appear to be spaced by a value equal
to the width of the network. We note that of the mechanisms
we consider for hidden symmetries, mechanism (i) (a stably
inactivated neuron) should reduce functional dimension by
2⇥width (the number of incoming and outgoing weights of
the neuron), while (ii) (two neurons that are never co-active)
reduces functional dimension by one (the weight between
the neurons). Thus, neither of these mechanisms should
apply in this case, and mechanisms (iii) or (iv) may apply;
the phenomenon bears further investigation.

In Figure 7, we show the results of a similar set of experi-
ments, where the input dimension n0 is instead kept fixed at
5 as the widths n1 = n2 = · · · = nd�1 of the hidden layers
vary. While we again observe in this case that the prob-
ability of full functional dimension decreases with depth,
this probability slightly decreases with width, unlike the
previous scenario (Figure 6).

As in Figure 6, we again note that when the distributions
are multimodal, the gaps between the modes are spaced

according to the width n1 = · · · = nd�1.

7. Conclusions and Further Questions

We have performed both a theoretical and empirical inves-
tigation of the following question: How faithfully does the
parameter space of a feedforward ReLU network architec-
tures model its associated function class?

Our investigation centers on a relationship between well-
established symmetries of parameter space (operations on
parameters that leave the resulting function unchanged) and
the functional dimension of a parameter (informally, the true
dimension of the local search space for any gradient-based
optimization algorithm). It was established in Grigsby et al.
(2022b) that the functional dimension is inhomogeneous
across parameter space, but the prevalence of this inhomo-
geneity and specifics about its dependence on architecture
was previously unknown.

In the theoretical component of this work, we significantly
expand the collection of architectures containing parameters
with no hidden symmetries beyond the restricted classes
considered in Bui Thi Mai & Lampert (2020) and Rolnick &
Kording (2020). We also provide a partial list of geometric
mechanisms that give rise to positive-dimensional spaces of
hidden symmetries.

Our empirical investigation strongly suggests that the prob-
ability distribution on the functional dimension at initial-
ization is both interesting and architecture-dependent. In
particular, under standard assumptions on the probability
distribution on the parameters, the expected value of the
functional dimension appears to scale positively with width
and negatively with depth. It also appears to be multimodal
when the ratio of the width to the depth is high, with modes
separated by integer multiples of the width. Further in-
vestigation of these effects may help us understand which
mechanisms dominate in producing hidden symmetries, at
various depth vs. width scales.

In future work, we hope to investigate how functional dimen-
sion evolves during training, since parameters with lower
functional dimension are associated to lower-complexity
functions that are more likely to generalize well to un-
seen data. Since lower functional dimension corresponds to
higher-dimensional spaces of local symmetries, low func-
tional dimension should induce local flatness of the loss
landscape. Comparing this conjecture to recent work sug-
gesting that stochastic gradient descent favors flat minima
of the loss landscape,4 this could at least partially explain
any implicit regularization behavior of SGD for feedforward
ReLU neural network architectures.

4Critical points for which the Hessian of the loss has many
eigenvalues close to 0.
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Figure 7. This figure shows similar experiments as in Figure 6, but with input dimension fixed at 5 instead of equal to the width of hidden
layers. Here, we observe that the proportion of networks with full functional dimension decreases with depth as in Figure 6, while slightly
decreasing with width.
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A. Combinatorial/Geometric Background and Notation

Let
O

�0 := {(x1, . . . , xn) 2 R
n
| xi � 0 8 i}

denote the non-negative orthant in R
n. Letting

R
n

k
:= {(x1, . . . , xn) 2 R

n
| xk+1 = . . . xn = 0}

denote the initial coordinate k–plane, we will denote by

O
�0
k

:= O
�0

\ R
n

k

the distinguished k-face of the non-negative orthant which is obtained by intersecting with the initial coordinate k–plane.

Let ✓ 2 ⌦ be a parameter in the parameter space of a feedforward ReLU network architecture (n0, . . . , nd), and let F✓ be
defined as in Equations 1 and 2.

Letting z
`

i
= ⇡i(W `

x+ b
`) denote the ith component of the pre-activation output of the `th layer map F

` : Rn`�1 ! R
n`

of F✓, we denote its zero set by H
`

i
:= (z`

i
)�1

{0} ✓ R
n`�1 . Note that for almost all parameters, H`

i
is an affine hyperplane.

Accordingly, we associate to each layer map F
` the set

A
` = {H

`

1, . . . , H
`

n`
} ✓ R

n`�1 ,

which for almost all parameters is a hyperplane arrangement. In the course of the inductive proof of our main theorem, we
will need notation for the preimages of the hyperplanes in the previous layer:

À
` = {H̀

`

i
}
n`
i=1 :=

�
F

�1
`

�
H

`

i

� n`

i=1
✓ R

n`�2 .

and in the domain (the reader easily checks that the latter are precisely the bent hyperplanes defined in Equation 3):

Â
` = {Ĥ

`

i
}
n`
i=1 :=

n
F

�1
(`) (H

`

i
)
on`

i=1
✓ R

n0

A
` is said to be generic if for all subsets

{H
`

i1
, . . . , H

`

ip
} ✓ A

`
,

it is the case that H`

i1
\ . . .\H

`

ip
is an affine-linear subspace of Rn`�1 of dimension n`�1�p, where a negative-dimensional

intersection is understood to be empty.

A layer map F
` is said to be generic if A` is generic. A parameter ✓ or the corresponding network map F✓ is said to be

generic if all of its layer maps are generic.

It is well-established in the hyperplane arrangement literature (cf. Stanley (2007)) that generic arrangements are full measure.
It follows (Grigsby & Lindsey, 2022) that generic network maps are full measure in parameter space.

A.1. Decompositions of Polyhedral Sets

Recalling that a polyhedral set in R
n`�1 is an intersection of finitely many closed half spaces, a hyperplane arrangement

in R
n`�1 induces a polyhedral decomposition of Rn`�1 into finitely many polyhedral sets. The face structure on these

polyhedral sets gives the decomposition the structure of a polyhedral complex. By pulling back these polyhedral complexes
to the domain, Rn0 , and taking intersections, we inductively obtain the canonical polyhedral complex C(F✓) as follows.

For ` 2 {1, . . . , d}, denote by R
` the polyhedral complex on R

n`�1 induced by the hyperplane arrangement associated to the
`

th layer map, F `. Inductively define polyhedral complexes C
�
F(1)

�
, . . . , C

�
F(`)

�
on R

n0 as follows: Set C
�
F(1) = F

1
�
:=

R
1 and for i = 2, . . . ,m, set

C(F(`)) :=
n
S \

�
F(`)

��1
(Y ) | S 2 C

�
F(`)

�
, Y 2 R

`

o
.

Set C(F✓) := C(F✓ = F(d)). See Grigsby & Lindsey (2022) and Masden (2022) for more details.

11



Hidden Symmetries of ReLU Networks

It was proved in Grigsby & Lindsey (2022) that on a full measure subset of parameter space, the n0-cells of the canonical
polyhedral complex, C(F ), are the closures of the activation regions, and the (n0�1)-skeleton of C(F ) is the bent hyperplane
arrangement associated to F✓.

We will also need the following terminology and results (cf. Schrijver (1986)) pertaining to the structure of polyhedral sets.
See Grigsby & Lindsey (2022) and Grigsby et al. (2022a) for additional details.

A polyhedral set P ⇢ R
n is said to be pointed if it has a face of dimension 0. The convex hull of a set S ⇢ R

n is the
intersection of all convex subsets of Rn that contain S. A cone in R

n is a set C such that if x, y 2 C and �, µ � 0, then
�x+ µy 2 C. Let P and Q be polyhedral sets embedded in R

n. The Minkowski sum of P and Q is P +Q := {p+ q | p 2

P, q 2 P}. The characteristic cone of P , denoted Cone(P), is the maximal set {y | x+ y 2 P for all x 2 P} that also has
the structure of a cone. Note that a polyhedral set is unbounded iff its characteristic cone is non-empty. Moreover, every
polyhedral set P has a decomposition as the Minkowski sum of a bounded polyhedral set (polytope) PB and Cone(P ). If P
is pointed, we may take PB to be the convex hull of its 0–cells, cf. Theorem 8.5 of Schrijver (1986).

Definition A.1. A ternary activation pattern (aka ternary neural code or ternary sign sequence) for a network architecture
(n0, . . . , nd) with N neurons is a ternary tuple s 2 {�1, 0,+1}N . The ternary labeling of a point x 2 R

n0 is the sequence
of ternary tuples

sx :=
�
s
1
x
, . . . , s

d

x

�
2 {�1, 0,+1}n1+...+nd

indicating the sign of the pre-activation output of each neuron of F✓ at x.

Explicitly, letting F✓ be defined as in Equations 1 and 2, and x 2 R
n0 any input vector, and the pre-activation output z(`),i(x)

of the ith neuron in the `th layer at x is as in Equation 3, s`
x
=
�
s
`

1, . . . , s
`

n`

�
are defined by s

`

x,i
= sgn(z(`,i)(x)) (using

the convention sgn(0) = 0).

Moreover, for all parameters ✓ it follows immediately from the definitions that the ternary labeling is constant on the interior
of each cell of C(F✓), inducing a ternary labeling sC on each cell C of C(F✓) (Masden, 2022). If s`

x,i
 0 at an input vector

x (resp., s`
C,i

 0 on a cell C), we say that the ith neuron in the `th layer is off or turned off at x (resp., on C).

Definition A.2 (Grigsby et al. (2022b)). Fix a parameter ✓ 2 ⌦. A neuron (say it is the ith neuron of index `) is said to be
stably unactivated at ✓ if there exists an open neighborhood U ⇢ ⌦ of ✓ such s

`

x,i
(u)  0 for every x 2 R

n0 and every
u 2 U , where s

`

x,i
(u) denotes the corresponding coordinate of ternary coding with respect to the parameter u.

Definition A.3. The activation region of F✓ corresponding to a ternary activation pattern s is a maximal connected
component of the set of input vectors x 2 R

n0 for which the ternary labeling sx equals s.

Definition A.4. A ±-activation pattern is a ternary activation pattern in which every coordinate is nonzero, and a ±-
activation region is an activation region associated to a ±-activation pattern.

Note that any ±-activation region is an open set.

Definition A.5. Neuron i of layer ` and neuron j of layer `+1 are called never coactive if {x 2 R
n0 | s

`

x,i
= s

`+1
x,j

= 1} = ;.

Remark A.6. For generic, supertransversal (Definition B.7) networks, it follows from Grigsby & Lindsey (2022) that the
±-activation regions of C(F✓) are precisely the interiors of the n0–cells of C(F✓).

Definition A.7. For s = (s1, . . . , sd) 2 {�1, 0,+1}d a ternary d–tuple let

O
�0
s

:= {x 2 O
�0

| xi = ReLU(sixi)}

denote the face of the non-negative orthant consisting of points whose ith component is 0 when s
i
 0.

The following lemma is immediate from the definitions.

Lemma A.8. Let F be a ReLU neural network map of architecture (n0, . . . , nd), C(F ) its canonical polyhedral complex,
and C a cell of C(F ) with `th ternary label s`

C
. Then F(`)(C) is contained in O

�0
s
`
C

.

Definition A.9. The dimension of a ternary label s, denoted dim(s), is the dimension of the face O�0
s

. Equivalently, dim(s)
is the number of ‘+1’s in the tuple s.
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B. Transversality

Recall the following classical notions (cf. Guillemin & Pollack (2010) and Section 4 of Grigsby & Lindsey (2022)):
Definition B.1. (Guillemin & Pollack, 2010) Let X be a smooth manifold with or without boundary, Y and Z smooth
manifolds without boundary, Z a smoothly embedded submanifold of Y , and f : X ! Y a smooth map. We say that f is
transverse to Z and write f t Z if

dfp(TpX) + Tf(p)Z = Tf(p)Y (5)

for all p 2 f
�1(Z).

Definition B.2 (Definition 4.2 of Grigsby & Lindsey (2022)). Let C be a polyhedral complex in R
n, let f : |C| ! R

r be
a map which is smooth on all cells of C, and let Z be a smoothly embedded submanifold (without boundary) of Rr. We
say that f is transverse on cells to Z and write f tc Z if the restriction of f to the interior, int(C), of every cell C of C is
transverse to Z (in the sense of Definition B.1).

Note that we use the convention that the interior of a 0–cell is the 0–cell itself.

The definition above can be extended so that Z is the domain of a polyhedral complex in R
r. This was essentially carried

out in Masden (2022):
Definition B.3. (Masden, 2022) Let C be a polyhedral complex in R

n, let f : |C| ! R
r be a map which is smooth on all

cells of C, and let Z be a polyhedral complex in R
r. We say that f and Z are transverse on cells and write f tc |Z| if the

restriction of f to the interior of every cell of C is transverse to the interior of every cell of |Z| (in the sense of Definition
B.2).

Transversality for intersections of polyhedral complexes implies that each non-empty cell in the intersection complex has
the expected dimension. The following extension of the classical Map Transversality Theorem to polyhedral complexes is
immediate (cf. Grigsby & Lindsey (2022) Cor. 4.7, Masden (2022)):
Corollary B.4. Let C be a polyhedral complex in R

n, let f : |C| ! R
r be a map which is smooth on all cells of C, and let

Z be a polyhedral complex in R
r for which f tc Z . Then for every pair of cells C 2 C and Z 2 Z , f�1(Z) \ int(C) is a

(possibly empty) smoothly embedded submanifold of int(C) whose codimension in int(C) equals the codimension of Z in
R

r.

We use the standard convention that a manifold of negative dimension is empty. In particular, if f : |C| ! R
r and Z ✓ R

r

are transverse on cells as above, and C 2 C is a 0–cell, then f
�1(Z) \ C = ; for all cells Z of positive codimension.

Lemma B.5. Let C be a polyhedral complex with domain |C| ✓ R
n, and F : |C| ! R

r a map that is affine-linear on cells.
Then F (C) is a polyhedral complex in R

r.

Note that F (C) need not be imbedded, nor even immersed.

Proof. We begin by showing that the image, F (C), of a k–dimensional cell (polyhedral set) C 2 C is itself a polyhedral set
in R

r. By definition, C is the solution set of finitely many affine-linear inequalities. That is, there exists (for some m) an
m⇥ n matrix A and a vector b 2 R

n such that

C := {x 2 R
n
| Ax � b}. (6)

Let V = aff(C) be the k–dimensional affine hull of C and choose any point p 2 V . Noting that F is affine-linear on V , let
j denote the rank of F restricted to V .

Now choose an (affine) basis B = {v1, . . . , vk} for V whose final (k � j) vectors form a basis for the affine kernel of the
map F restricted to V . That is, all vectors v of the form

v = p+
kX

i=j+1

aivi

satisfy F (v) = F (p).

Let W = Span{v1, . . . , vj}. By construction,
F |V = F

0
� ⇡V!W
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can be realized as the composition of the projection map ⇡V!W : V ! W and an affine-linear isomorphism F
0 : W !

F (V ). It can be seen using the Fourier-Motzkin elimination method (cf. Sec. 12.2 in (Schrijver, 1986)) that the image of C
under ⇡V!W is a polyhedral set, and it is immediate that the image of a polyhedral set under an affine-linear isomorphism
is a polyhedral set. It follows that the image of C under F is a polyhedral set in R

r. The continuity of F ensures that if C 0 is
a face of C, then F (C 0) will be a face of F (C), so the image of |C| under F will be the domain of a polyhedral complex, as
desired.

Lemma B.6. Let C be a polyhedral complex in R
n, F : |C| ! R

r a map that is affine-linear on cells, and Z a polyhedral
complex in R

r. Let F (C) denote the polyhedral complex in R
r that is the image of C. If i : |F (C)| ! R

m is the inclusion
map, then i tc Z iff F tc Z .

Proof. Let C be a cell of C with image F (C) 2 F (C), and let Z 2 Z . We will show that when F (resp., i) is restricted to
int(C) (resp., to int(F (C))), F |int(C) t int(Z) iff i|int(F (C)) t int(Z).

In the following, choose an affine-linear extension of F to all of Rn and call it F |
Rn

. Note that any such extension can be
decomposed as a projection onto the affine hull of C followed by an affine isomorphism onto the affine hull of F (C), as
described in the proof of Lemma B.5. Let c := dim(C), c0 = dim(F (C)), and z = dim(F�1(Z)), z0 = dim(Z). Begin
by noting that i|int(F (C)) t int(Z) iff F (C) \ Z is a polyhedral set of dimension (c0 + z)� r iff either they have empty
intersection or the interiors of F (C) and Z have non-empty intersection and the affine hulls of F (C) and Z intersect in an
affine-linear space of codimension (r � c

0) + (r � z
0) (that is, of dimension (c0 + z

0)� r).

The statement that F |C t Z iff i|F (C) t Z is vacuous in the empty intersection case.

In the non-empty intersection case, the affine-linear map F restricted to int(C) is either a homeomorphism onto its image or
a linear projection map onto a set homeomorphic to its image, int(C)\ int(Z) 6= ; iff int(C)\ int(F�1(Z)). Moreover, the
rank-nullity theorem applied to F |

Rn

tells us that aff(F (C))\ aff(Z) has dimension (c0 + z
0)� r iff aff(C)\F

�1(aff(Z))
has dimension (c+ z)� n.

It follows that for all cells C of C and Z of Z , F |int(C) t Z iff i|F (C) t Z, and the statement follows.

Definition B.7 (Definition 11 of Masden (2022)). Let F be a ReLU neural network of depth d, and let the (i� 1)st layer
map, F i�1 : Rni�2 ! R

ni�1 (resp., the composition of maps from the ith layer map, F (i) : Rni�1 ! R
nd) be viewed as

maps that are affine-linear on cells of their respective canonical polyhedral decompositions, C(F i�1) (resp. C(F (i))). If, for
all 2  i  d, we have

F
i�1 tc C(F

(i)),

then we call F a supertransversal neural network.

Informally, we can think of supertransversality as the right generalization of the genericity condition for hyperplane
arrangements to bent hyperplane arrangements. Recall that a hyperplane arrangement is generic if every k–fold intersection
of hyperplanes in the arrangement is an affine linear subspace of dimension n � k. Analogously, it follows from the
definitions that every k–fold intersection of bent hyperplanes associated to a generic, supertransversal network intersect in a
(possibly empty) polyhedral complex of dimension n� k.

An important result proved in Masden (2022) (see also Theorem 3 of Grigsby & Lindsey (2022)) is the following:

Proposition B.8 (Lemma 12 of Masden (2022)). For any neural network architecture, the set of parameters associated to
generic, supertransversal marked neural network functions is full measure in parameter space, RD.

Definition B.9. Let s 2 (⌦ = R
D) be a generic, supertransversal (Definition B.7) parameter for a ReLU neural network of

architecture (n0, . . . , nd). We say that s satisfies the transverse pairwise intersection condition (TPIC) for all adjacent layer
maps if Ĥ`

i
tc Ĥ

`+1
j

6= ; for all i, j, `. That is, every pair of bent hyperplanes in adjacent layers has non-empty transverse
intersection.

In the language of Rolnick & Kording (2020) and Bui Thi Mai & Lampert (2020), a generic, supertransversal parameter s
satisfies the transverse pairwise intersection condition (TPIC) for all adjacent layer maps iff every pair of nodes in every pair
of adjacent layers of the dependency graph is connected by an edge.

14



Hidden Symmetries of ReLU Networks

C. Unbounded Solyhedral Sets and Sufficiently High-Bias Positive-Axis Hyperplanes

In order to choose parameters whose bent hyperplane arrangement satisfies (TPIC), we will need to establish some results
about the images of unbounded polyhedral sets under generic, supertransversal ReLU neural network layer maps. We will
also need to understand the intersections of these images with sufficiently high-bias positive-axis hyperplanes.

The following proposition ensures that the images of the nested unbounded polyhedral sets S1 ✓ S2 ✓ . . . ✓ Sd referenced
in the proof of the main theorem are unbounded in the layers of the neural network.

Proposition C.1. Let F✓ : R
n0 ! R

nd be a generic, supertransversal ReLU network map of architecture (n0 =
k, n1, . . . , nd) with n` � k for all `, and let S be an unbounded polyhedral set of dimension k in the canonical polyhedral
complex C(F✓). If the sign sequence sS = (s1, . . . , snd) associated to S satisfies s` = (+1, . . . ,+1| {z }

k

,�1, . . .� 1| {z }
n`�k

) for all

i  `, then F(`)(S) is an unbounded polyhedral set of dimension k contained in O
+
k
✓ R

n` .

Proof. The fact that F(`)(S) is a polyhedral set contained in O
�0
k

✓ R
n` is a consequence of Lemmas A.8 and B.5, so we

need only prove that its image is unbounded, of dimension k.

We will prove this by induction on `. When ` = 1, C(F✓) = C(A1) for the generic hyperplane arrangement A1 associated
to F

1. Since S is a pointed (since n1 � k) unbounded polyhedral set of dimension k, its boundary contains unbounded
1–cells (rays) Ri = {xi + tvi | t � 0} based at {xi} with slopes {vi}. Note that because A

1 is generic, each 0–cell xi is
a k–fold intersection of distinct hyperplanes from A

1, and each Ri is contained in a (k � 1)–fold intersection of distinct
hyperplanes from A

1. It follows that S has at least k unbounded facets, each contained in a different hyperplane of A1.
Reindex if necessary so k of these are H

1
1 , . . . , H

1
k

and then flip co-orientations so that the sign sequence on S is

s
1
S = (+1, . . . ,+1| {z }

k

,�1, . . .� 1| {z }
n1�k

).

We have chosen the first k neurons of F 1 to be “on” on (the interior of) S. This implies that if we let w1, . . . , wn1 be the
weight vectors and b1, . . . , bn1 the biases associated to F

1, we have wi ·xj + bi � 0 for all 1  i  k, with wi ·xj + bi = 0
iff xj 2 Hi.

As to the slopes {vi} of the unbounded 1–cells (rays) {Ri}, it is immediate that each {vi} 2 Cone(S) (cf. Schrijver (1986)),
and by reindexing if necessary we may assume {v1, . . . , vk} is a basis for Rn0=k since S has dimension k. Moreover, we
claim that wi · vj � 0 for all 1  i, j  k with wi · vj = 0 iff Rj ✓ Hi.

To see this claim, note first that if wi · xj + bi > 0, then xj 62 Hi, so Ri 6⇢ Hi. We also see that wi · vj � 0, since otherwise
there would be some t > 0 for which wi · (xj + tvj) = 0, contradicting the unboundedness of Ri. But wi · vj 6= 0 since
this would imply vj 2 Hi1 \ . . . \Hik�1 \ w

?
i

, which contradicts the genericity of A1.

If wi · xj + bi = 0, then xj 2 Hi and hence Rj ⇢ Hi iff wi · vj = 0, as desired.

Now let

W =

2

64
w

T

1
...

w
T

n`

3

75

be the matrix whose row vectors are the weight vectors {wi} associated to A
1 and let

V :=
⇥
v1 · · · vk

⇤
.

Then the ith column of WV is precisely the pre-activation image of the vector vi in R
n1 . Moreover, since A is generic,

each k ⇥ k minor of WV has rank k. We also just saw above that the initial k ⇥ k minor of WV is unaffected by the ReLU
activation, since all entries are � 0.

Since the post-activation rank of WV is the dimension of Cone(F 1(S)), we conclude that F 1(S) is unbounded, of
dimension k, as desired, and the base case is complete.

Now suppose S satisfies the assumptions and we know that F(`�1)(S) ✓ O
�0
k

✓ R
n`�1 is unbounded of dimension k.
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As in the proof of the base case, consider the unbounded rays Ri of F(`�1)(S), their basepoints xi, and their slopes
{vi} 2 Cone

�
F(`�1)(S)

�
. As before, assume that v1, . . . , vk gives a basis for the initial k–plane of R

n`�1 and let
w1, . . . , wn` be the weight vectors of F `, and let W be the matrix whose rows are w

T

i
and V the matrix whose columns

are vj . By exactly the same argument as before, we see that the initial k ⇥ k minor of WV is unaffected by the ReLU
activation, and since F

` is generic and super-transversal to all previous layer maps, each k ⇥ k minor of WV is rank k,
which–as before–implies that F(`)(S) = F

`(F(`�1)(S)) is also unbounded, of dimension k, as desired.

Corollary C.2. Let F✓ : Rn0 ! R
nd be a generic, supertransversal ReLU network map of architecture (n0 = k, n1, . . . , nd)

with n` � k for all `, and let S be a non-empty unbounded polyhedral set of dimension k in the canonical polyhedral
complex C(F✓). If the sign sequence sS = (s1, . . . , snd) associated to S satisfies s` = (+1, . . . ,+1| {z }

k

,�1, . . .� 1| {z }
n`�k

) for all

i  `, then F(`) restricted to the (non-empty) interior of S is a rank k affine-linear map, hence a homeomorphism onto its
image for all i  `.

Proposition C.3. Let S be a non-empty unbounded polyhedral set of dimension k in O
�0
k

✓ R
n`�1 , viewed as the domain

of a polyhedral complex that also contains all of its faces. Suppose H ✓ R
n`�1 is a hyperplane for which H tc S 6= ;. For

any n` � k, we can always find n` hyperplanes H1, . . . , Hn` satisfying:

i. Hi tc S 6= ;,

ii. the restricted hyperplane arrangement K = {K1, . . .Kn`} is generic, and

iii. the bounded subcomplex of the restricted hyperplane arrangement {K1, . . .Kn`} is non-empty and contained in the
interior of S .

Proof. Let H1 := H . Choose a point p 2 H\S in the (non-empty) interior of S , and a small open neighborhood N(p) ✓ S .
We can pick slight (non-generic) perturbations H2, . . . , Hn` of H so that p 2 Hi for all i. Since transverse intersection is
an open condition, we can by further perturbation insure that H2, . . . , Hn` still intersect S transversely. Because generic
hyperplane arrangements are dense and open in parameter space, we can by further perturbation insure that the restricted
hyperplane arrangement {K1, . . . ,Kn`} is generic in the initial coordinate k–plane R

n`
k

and that the bounded subcomplex
of this arrangement is contained in N(p), as desired.

Lemma C.4. Let F : Rn`�1 ! R
n` be a generic ReLU neural network layer map with associated co-oriented generic

hyperplane arrangement A, and let C(F ) = C(A) be the associated polyhedral decomposition of Rn. For almost all positive
weight vectors ~w 2 R

n` there exists a negative bias b 2 R such that the corresponding positive-axis hyperplane:

H := {~x 2 R
n` | ~w · ~x+ b = 0}.

has non-empty transverse intersection with F (C) for each unbounded n`�1–cell C in C(A) whose ternary labeling has
dimension � 1.

Proof. By an argument analogous to the one in the proof of Proposition C.1, we see that the image of any unbounded
polyhedral set C in C(A) of dimension d � 1 whose associated sign sequence sC has dimension dim(sC) (Definition A.9)
is an unbounded polyhedral set of dimension min(d, dim(sC)), hence contains an unbounded ray in the non-negative orthant
O

�0. But for every ray R contained in the non-negative orthant and every positive weight vector there exists a sufficiently
high negative bias such that the corresponding sufficiently-high bias positive-axis hyperplane intersects R. Since transverse
intersection is an open condition, we can perturb w slightly so this intersection is transverse.

Lemma C.5. Let B ✓ R
n be a bounded set, and let S ✓ R

n be any unbounded pointed polyhedral set of dimension n.
There exists ~v 2 Cone(S) such that the translate of B by ~v is in S. That is, there exists ~v 2 Cone(S) such that b+ ~v 2 S

for all b 2 B.

Proof. Let P be any polytope containing B and let V be its (finite) set of 0–faces, so P is the convex hull of V .
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It suffices to prove that when Cone(S) is non-empty and has dimension n (as is the case for any unbounded polyhedral set
S of dimension n), the set S +�Cone(S) is all of Rn. This will imply that P , being the convex hull of finitely many points,
can be realized as P 0 + w for P 0 the convex hull of finitely many points in S and w 2 �Cone(S).

But the fact that Rn = S + �Cone(S) follows immediately from the fact that there exist vectors v1, . . . , vn 2 Cone(S)
that form a basis for Rn.

The following result is well-known (cf. Stanley (2007)), but we include a proof here for completeness.

Lemma C.6. Let RD be the parameter space for a feedforward ReLU network architecture. There exists an algebraic set S
of positive codimension (and Lebesgue measure 0) such that every parameter ✓ 2 R

D
\ S is generic.

Proof. A parameter is generic iff each hyperplane arrangement associated to each layer map is generic. Since there are
finitely many layer maps, and the union of finitely many algebraic sets is an algebraic set, we need only prove that the
statement of the lemma holds for a parameter associated to a single layer map.

Classical results in linear algebra relating the solution sets of homogeneous and inhomogeneous linear systems tell us that
an arrangement of n` affine hyperplanes in R

n`�1 is generic iff the associated bias-free (central) hyperplane arrangement
has the property that every k–fold intersection of (non-affine) hyperplanes intersects in a linear subspace of codimension k

(where a linear subspace of codimension > n` is by definition empty).

The rank-nullity theorem tells us that this happens iff every weight matrix associated to a k–fold subset of the central
arrangement has full rank, min{k, n`�1}. Noting that the rank of a k ⇥ n`�1 matrix is the maximum m for which some
m⇥m minor has nonzero determinant, and the determinant is a polynomial equation in the matrix entries, we conclude that
away from an algebraic set the parameters are generic. Since a non-empty algebraic set always has positive codimension
(and hence Lebesgue measure 0), the conclusion follows.

Corollary C.7. Let ✓0 2 R
D be a generic parameter. There exists an open neighborhood U of ✓0 such that every parameter

✓ 2 U is generic.

Proof. An algebraic set is closed, hence its complement is open.

D. Linear Regions Assumption (LRA) and Transverse Parwise Intersection Condition (TPIC)

Definition D.1. A linear region of a continuous, finitely piecewise linear function f : Rn0 ! R
nd is any maximal connected

set S ⇢ R
n0 such that the restriction of f to S is affine-linear.

Note that each linear region is a closed set.

Definition D.2. Let T ✓ R
n0 be a union of the closures of ± activation regions for a ReLU network map F✓ : Rn0 ! R

nd .
F✓ is said to satisfy the Linear Regions Assumption (LRA) on T if each linear region of the restriction of F✓ to T is its
intersection with the closure of a single ±-activation region of F✓.

The following Lemma is an immediate consequence of the definition of LRA. (Compare Remark A.6.)

Lemma D.3. For a parameter that satisfies LRA on T ✓ R
n

0 as above, the intersection of T with the union of the bent
hyperplanes coincides with the domain of the (n0 � 1)-skeleton of the canonical polyhedral complex.

In order to deduce that there are no hidden symmetries on a positive measure subset of parameter space, it will be important
for us to know that the required LRA condition is satisfied not just for the construction we give in Section A but also on
a full measure subset of an open neighborhood of the associated parameter. We turn to establishing the foundations for
proving this now.

Recall the following definition and result (cf. Hanin & Rolnick (2019), Grigsby et al. (2022b)), which tell us that for most
pairs (✓, x) 2 ⌦⇥ R

n0 , each coordinate of the realized function F✓(x) is expressible as a polynomial in the coordinates of
the parameter and the input.

Definition D.4. Let ⌦ be the parameter space for ReLU network architecture (n0, . . . , nd). Denote by F : ⌦⇥R
n0 ! R

nd

the function F(✓, x) := F✓(x).
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Figure 8. An augmented computational graph for architec-
ture (2,3,3,1). The ordinary vertices are black, and the dis-
tinguished vertices are red. Black edges are labeled with
weights, and red edges are labeled with biases. A complete
path is one that ends at an output vertex and begins either at
an input vertex or at one of the distinguished vertices. In the
diagram above, we have blurred out vertices corresponding to
inactive neurons associated to an input vector x with ternary
label sx = (s1x, s

2
x, s

3
x) = ((�1, 0,+1), (+1, 0, 0), (+1)).

The open paths associated to this ternary label are the ones
in the diagram above with solid (non-dashed) edges. The
reader can check that there are three open, complete paths
�, �

0
, �

00 2 �x,⇤, whose monomials are m(�) = b
1
3W

2
13W

3
11,

m(�0) = b
2
1W

3
11, and m(�00) = b

3
1. There is a unique

open, complete path �1 2 �1, with monomial m(�1) =
W

1
31W

2
13W

3
11 and a unique open, complete path �2 2 �2,

with monomial m(�2) = W
1
32W

2
13W

3
11.

Lemma D.5 (Grigsby et al. (2022b), Lemma 3.4). Let ⌦ be the parameter space for ReLU network architecture (n0, . . . , nd).
Let ✓ 2 ⌦, and suppose x 2 R

n0 is in a ±–activation region for F✓. Then there is an open neighborhood of (✓, x) 2 ⌦⇥R
n0

on which each coordinate of F is a polynomial in the coordinates of ✓ and x.

Indeed, if ✓ is moreover a generic and supertransversal parameter and x 2 R
n0 is any point in the domain, it is well-known

that we can calculate this polynomial explicitly in terms of the ternary labeling on x and the parameters of ✓, cf. Lemma 8
of Hanin & Rolnick (2019). For completeness, we describe this process here. We first establish some notation, then describe
how the polynomial is calculated in Lemma D.9.
Definition D.6. The augmented computational graph G̃ for the feedforward ReLU network architecture (n0, . . . , nd) is the
graded oriented graph:

• with n` ordinary vertices and 1 distinguished vertex of grading ` for ` = 0, . . . , d � 1, and nd ordinary vertices of
grading d,

• for every ` = 0, . . . , d� 1, every vertex of grading ` is connected by a single oriented edge to every ordinary vertex of
grading `+ 1, oriented toward the vertex of grading `+ 1.

One obtains the augmented computational graph for an architecture from the standard computational graph for the architecture
by adding an extra marked vertex for each non-output layer, whose purpose is to record the bias term in each affine-linear
map. Accordingly, given a parameter ✓ one obtains a labeling of the edges of the augmented computational graph:

• the edge from the distinguished vertex of layer ` to the kth ordinary vertex of layer `+ 1 is labeled with b
`+1
k

, the kth
component of the bias vector for F `+1,

• the edge from the ith ordinary vertex of layer `� 1 to the jth ordinary vertex of layer ` is labeled with W
`

ji
.

Associated to every oriented path � is a corresponding monomial, m(�), in the parameters obtained by taking the product of
the parameters on the edges traversed along �. See Figure 8.
Definition D.7. Let ✓ 2 ⌦ be a generic, supertransversal parameter, and let x 2 R

n0 be any point in the domain, with
associated ternary labeling sx = (s1

x
, . . . , s

d

x
). A path � is said to be open at x for parameter ✓ if every node along � has

ternary labeling +1.
Definition D.8. Let G̃ be the augmented computational graph for the ReLU network architecture (n0, . . . , nd). A path � is
said to be complete if it ends at a vertex in the output layer and begins at either a vertex of the input layer or at one of the
distinguished vertices in a non-input layer. For ✓ 2 ⌦ and each 1  k  nd we will denote by

• �✓,k

x
the set of complete paths that are open at x for the parameter ✓ and end at the kth node of the output layer,
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• by �✓,k

x,i
✓ �✓,k

x
the subset of �✓,k

x
beginning at input node i, and

• by �✓,k

x,⇤ ✓ �✓,k

x
the subset of �✓,k

x
beginning at one of the distinguished vertices.

The following lemma is well-known to the experts (e.g. Lemma 8 of Hanin & Rolnick (2019)).
Lemma D.9. Let ✓ 2 ⌦ be a generic, supertransversal parameter, and let x = (x1, . . . , xn0) 2 R

n0 be any point in the
domain. For k = 1, . . . , nd, the polynomial associated to the kth output component of F✓ at x is given by

Fk(✓, x) =
X

�2�✓,k
x,⇤

m(�) +
n0X

i=1

xi

X

�2�✓,k
x,i

m(�).

Remark D.10. Fix ✓ and any ternary labeling s. Define

(Rn0
s

⇥ ⌦)s := {(x, ✓) 2 R
n0 ⇥ ⌦ | the ternary labeling of x with respect to ✓ is s}.

Then F restricted to (Rn0
s

⇥ ⌦)s is a vector of polynomial functions. In the proof of the Lemma below, we will use the
notation Fs for this vector of polynomial functions.

In the Lemma below, recall from Section A that Ĥ`

i
denotes the bent hyperplane in the domain R

n0 associated to the ith
neuron of the `th layer map.
Lemma D.11. There exists an algebraic, measure 0 set B ⇢ ⌦ such that for any generic, supertransversal parameter
✓ 2 ⌦ \B and any point x 2 Ĥ

`�1
i

\ Ĥ
`

j
(for parameter ✓), if �x \�x,⇤ is non-empty, then the LRA is satisfied on the union,

T
`

ij
, of the closures of the four ±-activation regions adjacent to x = p

`

ij
.

Proof. Fix i, j. Fix a ternary labeling s 2 {�1, 0, 1}n1 ⇥ . . .⇥ {�1, 0, 1}nd . Suppose there exists a point x 2 Ĥ
`�1
i

\ Ĥ
`

j

with ternary labeling s = sx.

By supertransversality, every non-empty bent hyperplane besides Ĥ
`�1
1 and Ĥ

`

1 has positive minimal distance to x. It
follows that a sufficiently small neighborhood of x contains points only in the closures of the four ±-activation regions
adjacent to x. By permuting neurons in layers ` � 1 and ` if necessary, we may assume without loss of generality that
i = j = 1. It follows that the first component of each of the ternary labels s

`�1
x

and s
`

x
is 0. Accordingly, the ternary

labelings of the four ±-activation regions adjacent to x agree with those of x except at the first coordinates of s`�1
, s

` . It is
therefore natural to label the adjacent ±-activation regions by ++, +�, �+, �� according to whether the 1st coordinate
of s`�1

, s
` is ±1. Let x++, x+�, x�+, x�� be points in the corresponding ±-activation regions adjacent to x, and let

s++, s+�, s�+, s�� be the corresponding ternary labelings.

The assumption that �x \ �x,⇤ is non-empty tells us that there is at least one open, complete path at x, which implies that
each of the ternary labelings s1

x
, . . . , s

d

x
has at least one +1 component. In other words, there is at least one neuron active in

each layer at the input x = p
`

ij
.

Let Fs++ ,Fs+� ,Fs�+ ,Fs�� be the vector of polynomials as in Remark D.10. Lemma D.9 tells us how to compute these
four polynomials. We will show that the vectors of polynomials Fs++ ,Fs+� ,Fs�+ ,Fs�� are pairwise distinct. I.e., viewing
the summands of the polynomial components as consisting of a coefficient that is an algebraic expression in ✓ and a variable
xi, we will show that different polynomials have different coefficients. Then we let Bi,j,s denote the set of parameters ✓ such
that two or more of the restrictions Fs++(✓, ·),Fs+�(✓, ·),Fs�+(✓, ·),Fs��(✓, ·) coincide. The set Bi,j,s is an algebraic set
(a finite union of solutions to polynomials) and hence has measure 0. It follows that the set B :=

S
i,j,s

Bi,j,s is an algebraic
set of 0 measure that has the desired properties.

Thus, we turn to proving that Fs++ ,Fs+� ,Fs�+ ,Fs�� are pairwise distinct polynomials. Explicitly, let v`�1
1 (resp., v`1) be

the first ordinary vertex in layer ` � 1 (resp., in layer `). Consider the set of paths in �x++ passing through an ordinary
vertex from layer `� 1 and an ordinary vertex from layer `. It is immediate that this set can be decomposed into the disjoint
union of:

• the set of paths through both v
`�1
1 and v

`

1, which we will denote by �11

• the set of paths through v
`�1
1 and not v`1, which we will denote by �1⇤
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• the set of paths through v
`

1 and not v`�1
1 , which we will denote by �⇤1

• the set of paths through neither v`�1
1 nor v`1, which we will denote by �⇤⇤

Now note that �x�� = �x. Since �x is non-empty each of �x�+ ,�x+� ,�x++ is non-empty as well, which implies that the
polynomial in (✓, x) associated to each of these sets is nonzero.

Next, note that �x+� = �x�� [�1⇤. Since there is at least one neuron in each layer active at x+�, the set �1⇤ is non-empty,
and hence the polynomial X

�2�1⇤

m(�)

is nonzero. This tells us that the polynomials Fs�� and Fs+� associated to �x�� and �x+� are distinct (as functions of two
variables ✓ and x, and affine-linear in x). Similarly, the polynomial associated to �x�+ is distinct from that associated to
�x�� .

Indeed, the fact that each of �11,�1⇤,�⇤1, and �⇤⇤ contains a path (and hence a monomial containing a distinct weight) not
present in the others implies, by an analogous argument, that the polynomials associated to �x++ ,�x+� ,�x�+ ,�x�� are all
pairwise distinct.

In Masden (2022), it is proved that for a generic, supertransversal parameter ✓, the map

s : C(F✓) ! {�1, 0,+1}n1+...+nd

that assigns to each cell C of the polyhedral complex, C(F✓), its ternary activation pattern, sC , is well-defined, injective,
and has the property that C is a k-cell of C(F ) if and only if s(C) has exactly n0 � k entries which are 0.

That is, there is no ambiguity in defining a ternary activation pattern for a cell C of C(F✓), each possible ternary activation
pattern s 2 {�1, 0,+1}n1+...+nd is in the image of at most one polyhedral set C in C(F✓), and the dimension of C as a
polyhedral set is n0 � k, where k is the number of 0’s in sC .

Moreover, we state the following additional result (implicit in Masden (2022)), which tells us that the presence of a ternary
activation pattern is stable under (almost all) sufficiently small perturbations of the parameter:5

Proposition D.12. Let ✓0 2 ⌦ be a generic, supertransversal parameter, C 0
2 C(F✓0) a cell in the corresponding polyhedral

complex and sC0 its associated ternary activation pattern. There exists an open neighborhood N of ✓0 2 ⌦ such that for
each ✓ 2 N , ✓ is generic, supertransversal, and there exists a non-empty cell C in C(F✓) with ternary activation pattern
sC = sC0 .

Proof. The assumption that ✓0 is generic and supertransversal tells us that the ternary activation pattern of a cell C 0 in
C(F✓0) gives us a precise recipe for realizing C

0 as the intersection of bent hyperplanes and “bent” half-spaces.6 Moreover,
if C 0 has dimension (n0 � k), sC0 will have k 0’s (corresponding to k intersecting bent hyperplanes) and (n0 � k) ±1’s
(corresponding to (n0 � k) intersecting bent half-spaces). We also note (cf. Lem. 12 of Masden (2022) and Lemma C.6 that
the set of generic, supertransversal parameters is full measure in parameter space.

Now suppose that C 0 is a non-empty cell in C(F✓0), and p
0 is a point in int(C 0). Let H0 (resp., H±) denote the set of bent

hyperplanes of F✓0 associated to ternary label 0 (resp., ternary labels ±1) in sC0 .

By transversality on cells, there is an open neighborhood N0 of the subset of the parameters defining the bent hyperplanes in
H0 for which every parameter ✓ 2 N0 defines a collection of |H0| bent hyperplanes with intersection that is both transverse
on cells and non-empty.

Moreover, since p
0 has positive minimal distance to every bent hyperplane in H±, and every such bent hyperplane is closed

(though not necessarily compact), there is some positive � for which a neighborhood of p0 of radius � contains only the bent
5Note that the absence of a ternary activation pattern is not necessarily stable in this way. See the definition of combinatorial stability

and related discussion in (Grigsby et al., 2022b).
6The complement of a bent hyperplane is the union of at most two open connected components. These are what we mean by bent

half-spaces. Note that a bent hyperplane may be empty, in which case exactly one of the two bent half-spaces is also empty.
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hyperplanes in H0. This implies that there is a sufficiently small open neighborhood N± of the parameters defining the bent
hyperplanes in H± for which C

0 is in the same bent half-space for the bent hyperplanes in H± for every parameter in N±.

Letting N = N0 \N± and further restricting to a neighborhood with generic parameters (Lemma C.6) if necessary, we
obtain a neighborhood of ✓0 2 ⌦ for which every ✓ 2 N is generic, supertransversal, and contains a non-empty cell C with
sC = s

0
C

, as desired.

Recall (Definition B.9 that a generic, supertransversal parameter ✓ satisfies TPIC if every pair of bent hyperplanes in adjacent
layers has non-empty transverse intersection.
Corollary D.13. For any architecture, TPIC is an open condition. That is, if ✓ 2 ⌦ is a generic, supertransversal parameter
satisfying TPIC, then there exists an open neighborhood of ✓ 2 ⌦ on which all parameters satisfy TPIC.

The proof of Lemma D.11 showed that for a parameter ✓ and point x in the intersection of two bent hyperplanes, the
polynomials for the four associated sign sequences are distinct. However, it did not show that there is a neighborhood
N ⇢ ⌦ of ✓ such that all four sign sequences are actually realized on R

n0 near x for all ✓0 2 N . The next Lemma combines
the persistence of cells realizing sign sequences given by Proposition D.12 with Lemma D.11.
Lemma D.14. Suppose ✓

0
2 ⌦ is a generic, supertransversal parameter, let x = p

`

ij
be a point in Ĥ

`�1
i

\ Ĥ
`

j
, and let

T
`

ij
be the union of the closures of the four ±-activation regions adjacent to x = p

`

ij
(as in Lemma D.11). If �x \ �x,⇤

is non-empty, then there is an open neighborhood N of ✓0 2 ⌦ and an algebraic, measure 0 set S ⇢ N for which every
✓ 2 N \ S satisfies:

(i) There are four non-empty ±-activation regions of F✓ with the same ternary labelings as those in T
`

ij

(ii) Letting T
`

ij
(✓) denote the (non-empty) closure of these four ± activation regions, LRA is satisfied on T

`

ij
(✓).

Proof. Proposition D.12 tells us that there is an open neighborhood of ✓0 for which each ✓ in the neighborhood satisfies
(i). Moreover Lemma 14 of Masden (2022) and Lemmas C.6 and D.11 tell us that away from a closed (algebraic) set of
measure 0, the parameters ✓ in this open neighborhood satisfy LRA on T

`

ij
(✓), as desired.

Lemma D.15 (Rolnick & Kording (2020), Thm. 2). Let ✓ 2 ⌦ be a generic, supertransversal parameter satisfying TPIC.
For each i, j, `, choose a point p`

ij
2 Ĥ

(`�1)
i

\ Ĥ
`

j
. Let T `

i,j
denote the union of the closures of the four ±–activation regions

adjacent to p
`

ij
, and let T =

S
i,j,`

T
`

i,j
. If F✓ satisfies LRA on T , then ✓ can be recovered from F✓ up to permutation and

positive-rescaling.

Proof. The proof of Theorem 2 and associated algorithm in Rolnick & Kording (2020) require only that the LRA is satisfied
in the (closures of) the four adjacent ±-activation regions for one point in each relevant transverse pairwise intersection.

Remark D.16. Lemma D.15 tells us that in order for a parameter satisfying TPIC to admit no hidden symmetries, it need not
satisfy LRA everywhere but only on the union of the closures of all activation regions near the intersection points (the set T
in the statement of Lemma D.15. Accordingly, we will say that a parameter ✓ 2 ⌦ satisfying the assumptions of Lemma
D.15 satisfies TPIC and LRA on a neighborhood of the pairwise intersections.

E. Main Theorem and Proof

Theorem E.1. Let (n0, . . . , nd) be a neural network architecture satisfying (n0 = k)  n` for all `, and let ⌦ = R
D

denote its parameter space. There exists a positive measure subset Y ⇢ ⌦ for which each ✓ 2 Y satisfies TPIC and LRA on
a neighborhood of the pairwise intersections, hence has no hidden symmetries.

Proof of Theorem E.1. In the course of the proof we will need the following additional notation. Let A` = {H
`

1, . . . , Hn`}

be a hyperplane arrangement in R
n`�1 . If the initial coordinate k–plane R

n`
k

is transverse to H
`

i
, then the intersection,

H
`

i
\ R

n`�1

k
, is a hyperplane in R

n`�1

k
. In this case we will use:

K
`

i
:= H

`

i
t R

n`�1

k
(7)
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to denote this hyperplane in R
n`�1

k
. If A` tc R

n`�1

k
, then this implies that all of the hyperplanes in A

` intersect Rn`�1

k

transversely, and we will use K
` to denote the corresponding hyperplane arrangement in R

n`�1

k
.

We now proceed to prove the theorem by construction. Our strategy will be to find a particular generic, supertransversal
parameter ✓0 2 ⌦ satisfying TPIC and LRA on a neighborhood of the intersections. It will then follow by Lemmas D.14
and D.15 that every parameter ✓ away from a measure zero set in a neighborhood of ✓0 satisfies TPIC and LRA on a
neighborhood of the intersections. The conclusion of the theorem will then follow.

Our construction will be by induction on d. We will find it convenient to prove the following strictly stronger (and unavoidably
technical) conclusion, since it helps with the inductive construction: There exists a generic, supertransversal choice of
parameters whose associated sequence of polyhedral refinements C(F1 = F(1)) ⌫ . . . ⌫ C(F = F(d)) contains a nested
sequence of unbounded k–cells S1 ◆ . . . ◆ Sd for which the `-th ternary labeling on S` is s` = (+1, . . . ,+1| {z }

k

,�1, . . .� 1| {z }
n`�k

)

for all `  d and which satisfies the additional conditions that

(i) S` tc (Ĥ
`+1
i

tc Ĥ
`+2
j

) 6= ; for all i, j when `  d� 2, and

(ii) R
n`
k

tc C(A`+1), and the preimage of the bounded subcomplex of C(K`+1) under the map F(`) is contained in the
interior of S` for all `  d� 1.

Note that condition (i) above implies TPIC, and the assumption that the `th ternary labeling on S` has k +1’s for all ` is
enough to guarantee that for each pairwise intersection x = p

`

ij
the set �x \ �x,⇤ referenced in Lemma D.11 is non-empty,

hence LRA will be satisfied in a neighborhood of the intersections.

When d = 1, choose A
1 = {H

1
1 , . . . , H

1
n1
} to be any generic arrangement of hyperplanes. Choose any unbounded k–cell

of C
�
A

1
�

and call it S1. Note that we can alter the ordering and co-orientations on the hyperplanes of A1 (without affecting
the arrangement) to ensure that the first k neurons of F 1 are active on S1 and the remainder are inactive. That is, the ternary
labeling on S1 is s1 = (+1, . . . ,+1| {z }

k

,�1, . . .� 1| {z }
n1�k

). The rest of the conditions are vacuously true.

Now suppose d = 2. By Corollary C.2, we know that F 1 restricted to the interior of S1 is a homeomorphism onto the interior
of the k–dimensional polyhedral set F 1(S1) in O

�0
k

✓ R
n1 . Moreover, F 1(S1) is unbounded by Proposition C.1. Lemma

C.4 then tells us that there exists a positive-axis sufficiently high-bias hyperplane H ⇢ R
n1 for which F

1(S1) tc H 6= ;.

Proposition C.3 ensures we can choose sufficiently small perturbations H2
1 , . . . , H

2
n2

of H so that all of the hyperplanes
in A

2 are transverse to S1 ✓ R
n1 , the parameters associated to A

1
,A

2 are generic and supertransversal, and the bounded
subcomplex of the restricted hyperplane arrangement K2 = A

2
\ R

n1
k

is contained in int(F 1(S1)). Another application of
Corollary C.2 allows us to conclude that the preimage of the bounded subcomplex of C(K2) is contained in the interior
of S1, and hence the technical inductive conclusion (ii) is satisfied. Since d = 2, the technical inductive conclusion (i) is
vacuous, so the d = 2 case is proven.

Now assume d > 2. By the inductive assumption, there exists a generic, supertransversal choice of parameters for
F

1
, . . . , F

d�1 for which the technical inductive conditions above are satisfied for all ` up through d � 1. Therefore, we
need only choose generic parameters for F d that are supertransversal to all previous choices of parameters and for which
in the polyhedral refinement C(F(d�1)) of C(F(d�2)) we have identified an unbounded k–cell Sd�1 ✓ Sd�2 with ternary
labeling s

d�1 = (+, . . . ,+| {z }
k

,�, . . .�| {z }
nd�1�k

),

i. Sd�2 tc (Ĥ
d�1
i

tc Ĥ
d

j
) 6= ; for all i, j, and

ii. R
nd�1

k
tc C(Ad), and the preimage of the bounded subcomplex of C(Kd) under the map F(d�1) is contained in the

interior of Sd�1.

Proceed by choosing any unbounded k–cell contained in Sd�2 in the polyhedral refinement C(F(d�1)) and call it Sd�1. As
before, we are free to choose the ordering and co-orientations on the hyperplanes of Ad�1 without altering Â

d�1 or the
polyhedral refinement C(F(d�1)). So we can arrange for Sd�1 to have the desired ternary labeling.
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By Corollary C.2 we know that F(d�1) restricted to the interior of Sd�1 is a homeomorphism onto the interior of an
unbounded k–dimensional polyhedral set in O

�0
k

✓ R
nd�1 , and we can therefore choose a sufficiently high bias positive-

axis hyperplane H in R
nd�1 so that F(d�1)(Sd�1) tc H 6= ;. By Proposition C.3 we can find small perturbations

H
d

1 , . . . , H
d

nd
such that the preimage of the bounded subcomplex of the restricted generic hyperplane arrangement is

contained in F(d�1)(Sd�1), which we may assume is unbounded by Proposition C.1.

Moreover, Lemma C.4 tells us that since H ✓ R
nd�1 is a sufficiently high bias positive-axis hyperplane,

F
d�1(Hd�1

i
) t H 6= ;

for all i. Since non-empty transverse intersection is an open condition, we also know that

F
d�1(Hd�1

i
) tc H

d

j
6= ;

for all i, j. An application of Lemma B.6 then tells us that

H
d�1
i

t H̀
d

j
6= ;

for all i, j.

We would now like to conclude that condition (i) is satisfied for ` = d� 2, but although we know that F(d�1)(Sd�2) tc

H
d�1
i

6= ; and H
d�1
i

tc H̀
d

j
6= ; we don’t yet know that Hd�1

i
\ H̀

d

j
are contained in the unbounded polyhedral set

F(d�2)(Sd�2), so we cannot yet conclude that the three-fold intersections Sd�2 tc (Ĥ
d�1
i

tc Ĥ
d

j
) are non-empty.

To arrange for this, choose one point of intersection from H
d�1
i

\ H̀
d

j
for each i, j. This is a finite, hence bounded, set. Call

it B.

We now appeal to Lemma C.5, which tells us that there is some vector v 2 Cone(F(d�2)(Sd�2)) that can be added to B so
that B + v 2 Cone(F(d�2)(Sd�2)). Since we can achieve this translation by altering just the biases of F d and F

d�1, we
have now arranged that condition (i) is satisfied. The inductive proof that our construction satisfies TPIC is now complete,
and hence a positive measure subset of ⌦ has no hidden symmetries, as desired.

F. Functional dimension, Fibers, and Symmetries

Roughly speaking, the functional dimension of a parameter ✓ 2 ⌦n0,...,nd is the dimension of the space of functions F✓

realizable by infinitesimally perturbing ✓. We will now make this more precise. Suppose Z = {z1, . . . , zk} is a finite
collection of points in the domain R

n0 of F✓. For any ✓, we may record the result of evaluating the map F✓ at all k points of
Z as a single “unrolled” vector, i.e.

EZ(✓) := (F✓(z1), . . . , F✓(zk)) 2 R
knd .

We can then measure how many degrees of freedom we have to vary this data locally at ✓ by considering the rank of the
total (Jacobian) derivative of the map ✓ 7! EZ(✓), rank(JEz(✓)).

Of course, because ReLU is not differentiable at 0, there is a (Lebesgue) measure 0 set of pairs (✓, x) in ⌦n0,...,nd ⇥ R
n0 at

which the total derivative does not exist. Consequently, we will wish to restrict our attention to pairs (✓, x) at which all
relevant partial derivatives exist.

Definition F.1 (Grigsby et al. (2022b)). A point x 2 R
n0 is parametrically smooth for a parameter ✓ 2 ⌦n0,...,nd if

(✓, x) is a smooth point for the parameterized family F : ⌦n0,...,nd ⇥ R
n0 ! R

nd defined by F(✓, x) = F✓(x), where
F✓ : Rn0 ! R

nd is the neural network map determined by the parameter ✓.

Definition F.2. The functional dimension of a parameter ✓ 2 ⌦n0,...,nd is

dimfun(✓) := sup {rank(JEZ(✓)) | Z ⇢ R
n0 is a finite set of parametrically smooth points for ✓}

where the supremum is taken over all sets Z consisting of finitely many points in R
n0 .
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In practice, in experiments such as those in §6, we ignore the issue of differentiability, assuming that all points in a randomly
selected set Z ⇢ R

n0 are parameterically smooth for the parameter; the assumption is supported by the fact that F is smooth
except on a set of 0 measure,

Definition F.3. The fiber (with respect to the realization map) of a parameter ✓ 2 ⌦ is the set {✓̃ 2 ⌦ | F
✓̃
= F✓}.

Recall that elements of (P), the set of permutations, and elements of (S), the scalings, act on ⌦. Moreover, these actions
commute, so the semigroup generated by (P) and (P) equals {p � s | p 2 (P), s 2 (S)}. The following definition formalizes
the notion that a hidden symmetry describes two parameters that define the same function, but do not differ by elements of
(P) and (S).

Definition F.4. A parameter ✓ 2 ⌦ has no hidden symmetries if the semigroup generated by (P) and (S) acts transitively on
the fiber of ✓.

In other words, ✓ has no hidden symmetries if, given any two parameters ✓1 and ✓2 such that F✓1 = F✓2 = F✓, there exists
p 2 (P) and s 2 (S) such that p � s(✓1) = ✓2.

Definition F.5.

i. A pointwise symmetry of ✓ is a permutation (i.e a bijection, not necessarily continuous) of the fiber of ✓.

ii. A local symmetry of ✓ is a homeomorphism of the fiber of ✓ equipped with the subspace topology (as a subset of ⌦).

iii. A global symmetry of ⌦ is a homeomorphism T : ⌦ ! ⌦ such that FT (✓) = F✓ for all ✓ 2 ⌦.

As shown in Grigsby et al. (2022b), there exists a fiber and a permutation of that fiber that cannot be extended to a
homeomorphism of an open neighborhood of that fiber. This is because it is possible for a fiber to contain two parameters ✓1
and ✓2 (of the same architecture) such that any arbitrarily small neighborhood of ✓1 gives rise to functions that cannot be
realized by parameters in arbitrarily small neighborhoods of ✓2. Said otherwise, there exist pointwise symmetries that cannot
be extended to local symmetries. Our definition of no hidden symmetries (Definition F.4) is a statement about pointwise
symmetries – that every pointwise symmetry of ✓ is the restriction to the fiber of ✓ of an element p � s of the group of global
symmetries generated by (P) and (S).

The theoretical upper bound on functional dimension ((Grigsby et al., 2022b)) comes from taking account of (only) the
well-known global symmetries (P) and (S). The intuition is that the set of functions realizable by parameters in a small
neighborhood U of ✓ should be modeled by the quotient of U by the equivalence relation defined by (P) and (S).

Lemma F.6. Let U be an open ball in ⌦ such that if any two points u1, u2 2 U satisfy Fu1 = Fu2 if and only if u2 = p�s(u1)
for some p 2 (P) and s 2 (S). Then the functional dimension of any parameter ✓ 2 U attains the theoretical upper bound.

Proof. Denote by ⇠ the equivalence relation on U defined by the semigroup generated by (P) and (S). Denote by F|U the
set of functions realizable by parameters in U , equipped with the compact-open topology. The condition that Fu1 = Fu2

if and only if u2 = p � s(u1) for some p 2 (P) and s 2 (S) is equivalent to the statement that the quotient space U/ ⇠ is
homeomorphic to FU . It follows that for any parameter ✓ 2 U , dimfun(✓) is the Euclidean dimension of the quotient space
U/ ⇠. The result follows.

F.1. Proof of Proposition 5.1

The following Lemma will be used to prove Proposition 5.1.

Lemma F.7. Let S be a hyperplane in R
n. Let A : Rn

! R
1 be an affine-linear map given by

A(~x) = ~x · ~nH � bH .

Let ~o 2 R
n be a vector orthogonal to S (i.e. if ~s1,~s2 are two points in S, then (~s2 � ~s1) · ~o = 0). For each t 2 R, define the

affine-linear map At : Rn
! R by

At(~x) = ~x · (~nH + t~o)� bH � t~sH · ~o

for any fixed point ~sH 2 S \ {x | A(x) = 0}. Then A and At coincide on S.
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Proof. Since A,At are affine-linear maps, it suffices to show that they agree at a point (in particular, at the point ~sH ) and
that

A(~s1)�A(~s2) = At(~s1)�At(~s2)

for all ~s1,~s2 2 S. First, observe that
A(~sH) = ~sH · ~nH � bH = 0

by definition, and

At(~sH) = ~sH · (~nH + t~o)� bH � t~sH · ~o = ( ~sH · ~nH � bH) + sH · t~o� t~sH · ~o = 0.

Next, for any points s1, s2 2 S,
A(~s1)�A(~s2) = (~s1 � ~s2) · ~nH

and
At(~s1)�At(~s2) = (~s1 � ~s2) · ~nH + (~s1 � ~s2) · ~ot = (~s1 � ~s2) · ~nH

since ~o is perpendicular to (~s1 � ~s2).

Proof of Proposition 5.1. Fix a nonzero vector ~o that is orthogonal to the hyperplane S. For t 2 R, let At be the map
constructed in Lemma F.7, set fHt

:= ��At, and denote the co-oriented hyperplane associated to At by Ht. By construction,
fHt and ⌘ coincide on S.

Denote by H
+
t

(resp. H+) the closed nonnegative half-spaces associated to At (resp. A). It suffices to show that there exists
✏ > 0 such that |t| < ✏ implies

H
+
t
\ Im(k) = H

+
\ Im(k). (8)

(The desired one-parameter family is then the family parametrized by t with |t| < ✏).

For convenience, define Gk := F
k
� . . . � F

1. Consider the complex

M := Gk(C(Gk)) \H
�
.

(Here C(Gk) denotes the canonical polyhedral complex for Gk; we take the image (in R
nk ) of this complex under Gk,

which is itself a polyhedral complex, and then intersect it with the closed half-space H
�.) By condition (iva),

Im(k) \ {x | ⌘(x) = 0} = Im(k) \H ✓ S.

Consequently, each cell of M either contains a cell in H \ S as a face, or is a positive distance away from H . Consequently,
there exists ✏1 > 0 such that |t| < ✏1 implies the intersection of any bounded cell of M with H

+
t

is contained in S \H or is
empty. By condition (ivc), |M | does not contain any unbounded geometric rays parallel to H . Consequently, there exists ✏2
such that |t| < ✏2 implies the intersection of any unbounded bounded cell of M with H

+
t

is empty. Set ✏ = min{✏1, ✏2}.
Then when |t| < ✏, H+

t
\ Im(k) = H

+
\ Im(k).

G. Supplementary Experiments

In this appendix, we consider the effect of varying the number m of sample points when approximating the functional
dimension. For a fixed network architecture of depth 4 and width 5, Figure 9 shows the fraction of networks attaining
the maximum possible value for dimfun(✓), as a fraction of m, where m is shown as a multiple of the maximum possible
functional dimension. We observe that the curve is very flat in the region of x = 100 (the value used in Section 6), suggesting
that further increasing m would likely not change the results meaningfully.

Figures 10 and 11 below consider the effect of choosing a much smaller value of m. These figures are analogous to
Figures 6 and 7, but with m equal to twice instead of 100 times the maximum possible value for dimfun(✓). Each figure
aggregates results for 20,000 different choices of ✓ 2 ⌦. We note that the bounds obtained on the functional dimension are
unsurprisingly somewhat weaker for this very low value of m, but the distributions of approximate function dimension still
show the same patterns as observed in Section 6, indicating the robustness of our conclusions.
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Figure 9. This figure shows the fraction of networks attaining the maximum possible value for dimfun(✓), as a fraction of the number of
sample points m, where m is shown as a multiple of the maximum possible functional dimension, according to the upper bound given in
Grigsby et al. (2022b).

Figure 10. For each of various network architectures, we approximate the distribution of functional dimensions as the parameter ✓ 2 ⌦
varies. Different plots show networks of different depths, while different colors in a plot correspond to varying the input dimension and
width n0 = n1 = · · · = nd�1. Black dots show the fraction of networks with full functional dimension (no hidden symmetries). We
observe as in Figure 6 that the proportion of networks with full functional dimension increases with width and decreases with depth.
Insets in the figure zoom in on certain multimodal distributions, showing that modes are again spaced apart by approximately the width of
the network.
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Figure 11. This figure shows similar experiments as in Figure 10, but with input dimension fixed at 5 instead of equal to the width of
hidden layers. We observe as in Figure 7 that the proportion of networks with full functional dimension decreases with depth, while
slightly decreasing with width.
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