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1Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
2Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110, Valparaíso, Chile

3Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, 106 91 Stockholm, Sweden

(Received 29 January 2023; accepted 16 May 2023; published 10 July 2023)

Fractional Dirac materials (FDMs) feature a fractional energy-momentum relation E (k) ∼ |k|α , where

α (< 1) is a real noninteger number, in contrast to that in conventional Dirac materials with α = 1. Here we

analyze the effects of short- and long-range Coulomb repulsions in two- and three-dimensional FDMs. Only

a strong short-range interaction causes nucleation of a correlated insulator that takes place through a quantum

critical point. The universality class of the associated quantum phase transition is determined by the correlation

length exponent ν−1 = d − α and dynamic scaling exponent z = α, set by the band curvature. On the other hand,

the fractional dispersion is protected against long-range interaction due to its nonanalytic structure. Rather,

a linear Dirac dispersion gets generated under coarse graining, and the associated Fermi velocity increases

logarithmically in the infrared regime, thereby yielding a two-fluid system. Altogether, correlated FDMs unfold

a rich landscape accommodating unconventional emergent many-body phenomena.

DOI: 10.1103/PhysRevResearch.5.L032002

Introduction. Nodal Fermi liquids harbor a rich variety of

electronic band dispersions around a few isolated points in the

Brillouin zone that are often symmetry protected. They can

display linear (α = 1), quadratic (α = 2), and cubic (α = 3)

energy-momentum dispersion E (k j ) ∼ ±|k j |
α along one or

more than one component of the spatial momentum (k), for

example. Here + (−) corresponds to the conduction (valence)

band. Momentum is measured from the band touching point

at k = 0. As such, isotropic but linear and nonlinear band

dispersions can be observed in monolayer and multilayer

graphene, respectively [1], and in three-dimensional Dirac

and Weyl semimetals [2]. Nodal Fermi liquids can also man-

ifest mixed energy-momentum relations, where integer α is

direction dependent, as in multi-Weyl semimetals [3–6] and

at the quantum critical point (QCP) when the system resides

at the brink of band insulation [7–9]. However, irrespective

of microscopic details, the symmetry class, and the dimen-

sionality of the system, α is always an integer, hindering

a large family of gapless electronic materials, where α can

take real fractional values. We name them fractional Dirac

materials (FDMs), characterized by density of states (DOS)

̺ ∼ |E |d/α−1 and frequency � dependent diagonal optical

conductivity (OC) σ ∼ �(d−2)/α in the noninteracting limit.

Here we investigate the effects of a short-range piece

as well as of the long-range tail of the repulsive Coulomb
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interactions in two-dimensional (2D) and three-dimensional

(3D) FDMs of order α < 1 for which the effective Hamilto-

nian scales as |k j |
α [Eq. (1) and Fig. 1]. Due to the vanishing

DOS in FDMs, sufficiently weak generic local or short-range

interactions are irrelevant perturbations. However, beyond a

critical threshold of interaction an FDM undergoes a con-

tinuous quantum phase transition (QPT) through a QCP and

becomes a correlated Dirac insulator. We capture the univer-

sity class of such a QPT, which is distinct from its counterpart

in conventional Dirac systems (α = 1), within the framework

of a Gross-Neveu model [10]. The associated critical expo-

nents in turn also govern the scaling of the spectral gap in the

ordered phase with the interaction strength (Fig. 1). We show

that the QPT in 2D (3D) FDMs is non-Gaussian (mean-field

or Gaussian) in nature.

In the presence of long-range Coulomb interaction, the

electronic dispersion in 2D and 3D FDMs, on the other hand,

remains invariant due to its nonanalytic structure [Eq. (1)].

Rather, under coarse graining, as the system approaches the

deep infrared regime, a linear Dirac dispersion gets generated

through the quantum many-body corrections. The effective

Fermi velocity of such emergent conventional Dirac quasi-

particles then increases logarithmically at lower energies. The

resultant system thus describes a two-component quantum

fluid at low energies, composed of (a) effectively noninteract-

ing (protected by nonanalyticity of the dispersion) fractional

and (b) marginally sharp (due to logarithmically increasing

Fermi velocity) conventional Dirac fermions.

Altogether, correlated fractional Dirac liquids unfold a

territory of rich emergent quantum phenomena, which can

be studied using quantum Monte Carlo simulation of their

lattice realizations in terms of infinitely long-ranged power-

law hopping along the principal directions [11] and possibly

in electronic fractal lattices, recently realized on designer
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FIG. 1. Constant energy contours in (a) d = 2 for α = 1 (blue)

and α = 2/3 (red) and (b) in d = 3 for α = 1 (blue) and α = 2/3

(yellow). We set vα = 1, and k is measured in units of a−1, where a is

the lattice spacing [Eq. (1)]. Self-consistent solutions of chiral sym-

metry breaking mass in (c) d = 2 and (d) d = 3 for α = 1 (black),

0.8 (blue), 0.6 (red), 0.4 (green), and 0.2 (brown), as a function

of the reduced distance from a QCP (δ). For α = 1 we recover a

conventional Dirac system with linearly dispersing quasiparticles.

Otherwise, the system describes an FDM of order α. See text for

details.

quantum materials [12,13]. Fractal lattices are promising plat-

forms to host FDMs, where the characteristic irrational fractal

dimension dfrac may give rise to noninteger α.

Model. The effective Hamiltonian for a d-dimensional

FDM of order α takes the form

HFD(k) =

d
∑

j=1

vα|k j |
α sgn(k j ) Ŵ j, (1)

where vα bears the dimension of energy × aα , such that

HFD(k) has the dimension of energy. We set the lattice spacing

a = 1. Mutually anticommuting D-dimensional Hermitian Ŵ

matrices, operating on the orbital or sublattice degrees of

freedom, satisfy the algebra {Ŵ j, Ŵk} = 2δ jkID, where j, k =

1, . . . , D and ID is a D-dimensional identity matrix. For now

we keep D arbitrary. The energy spectra of HFD are ±Eα (k),

where

Eα (k) = vα

⎡

⎣

d
∑

j=1

|k j |
2α

⎤

⎦

1
2

≡ vα|k|α

⎡

⎣

d
∑

j=1

|�̂ j |
2α

⎤

⎦

1
2

(2)

and �̂ j are the components of a d-dimensional spherical unit

vector. Noninteracting d-dimensional FDMs are characterized

by the power-law scalings of DOS and diagonal OC [14]

̺ = Dd (α)|E |
d
α
−1 and σ =

e2

h

πD

16
Cd (α)

(

�

vα

)
d−2
α

, (3)

respectively. The scalings of Dd (α) and Cd (α) are shown in

Fig. 2. Thus specific heat (Cv) and compressibility (κ) in

FDMs scale as T d/α and T d/α−1, respectively, with temper-

ature T .

FIG. 2. Scaling of two universal functions Dd [(a) and (b)] and

Cd [(c) and (d)], governing the energy and frequency dependences

of DOS and OC, respectively, in two (d = 2) and three (d = 3)

dimensions. See Eq. (3).

The imaginary time (τ ) Euclidean action associated with

HFD(k) reads

S0 =

∫

dτ

∫

dd
x{�†[∂τ + HFD(k → −i∇)]�}, (4)

where we set h̄ = 1 and � and �† are D-dimensional inde-

pendent Grassmann variables. Under coarse graining, τ →

ezℓτ and x → eℓ
x, where ℓ is the logarithm of the renor-

malization group (RG) scale and z is the dynamic scaling

exponent, measuring the relative scaling between the energy

and momentum, with z = α in noninteracting FDMs. Then

the scale invariance of the free action S0 mandates the follow-

ing scaling dimensions: [�] = [�†] = d/2 and [vα] = z − α.

Hence, in a noninteracting system vα is scale invariant or

marginal as α = z therein. Next we seek to scrutinize the

effects of interactions among fractional Dirac quasiparticles.

In what follows, we discuss the imprints of short-range and

long-range Coulomb interactions on FDMs separately.

Short-range interaction. Short-range interactions among

electronic quasiparticles in nodal Fermi liquids typically

give birth to various spontaneously broken symmetry phases.

Among them, Dirac masses are most prominent at low tem-

peratures. In the ordered phase, they give rise to isotropic

gapped quasiparticle spectra, yielding electrical or thermal

insulators, and lead to a maximal gain of the condensation

energy. A Dirac mass is represented by the fermion bilinear

� = �†M�. The D-dimensional Hermitian matrix M satis-

fies {M, Ŵ j} = 0 for j = 1, . . . , d and M2 = ID. In the ordered

phase, 〈�†M�〉 �= 0. In the spirit of the Gross-Neveu formal-

ism, such a Dirac mass can be favored by a local or momentum

independent four-fermion interaction for which the Euclidean

action is [10]

SSR
int =

∫

dτ

∫

dd
x g

m
(�†M�)2, (5)

where g
m

is the corresponding coupling constant. For sim-

plicity, here we consider a single-component microscopic

Ising-like symmetry breaking scalar Dirac mass that yields

an insulator in the ordered phase. The following discussion

can be generalized to vectorlike Dirac masses, which, on
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FIG. 3. Scaling of Sd [(a) and (b)] and Fd [(c) and (d)], appearing

in the definition of dimensionless Gross-Neveu interaction [Eq. (6)]

and the RG flow equation of Fermi velocity (v
1
) of emergent linearly

dispersing Dirac quasiparticles due to long-range Coulomb repulsion

[Eq. (12)], respectively, in two (d = 2) and three (d = 3) dimensions.

the other hand, break a continuous symmetry following the

spirit of the Nambu–Jona-Lasinio [15] model as well as for

superconducting Dirac masses [16]. Leaving these cases for

future investigations, here we focus on the nucleation of an

Ising-like Dirac mass.

The scale invariance of SSR
int leads to [g

m
] = α − d . There-

fore, when α < d , yielding a vanishing DOS in FDMs, a

sufficiently weak generic local quartic interaction is an irrel-

evant parameter. Consequently, nucleation of any Dirac mass

takes place beyond a critical threshold of interaction via a QPT

occurring through a QCP located at g
m

= g∗
m

(say). Here we

capture such an emergent quantum critical phenomenon in a

correlated FDM from a perturbative RG analysis controlled

by a small parameter ǫ = α − d . Upon accounting for the

leading order or one-loop quantum corrections, we arrive at

the RG flow equation for the dimensionless coupling constant

λm = g
m
�d−αSd (α)/vα , explicitly given by [14]

βλm
=

dλm

dℓ
= −ǫλm + (D − 2)λ2

m (6)

after integrating out fast Fourier modes with Matsubara fre-

quencies −∞ < ω < ∞ and residing within a thin Wilsonian

momentum shell �e−ℓ < |k| < �. Here, � is the ultraviolet

momentum cutoff up to which the FDMs show fractional

dispersion with power α [Eq. (1)] and

Sd (α) =

∫

d�̂

(2π )d

⎡

⎣

d
∑

j=1

|�̂ j |
2α

⎤

⎦

− 1
2

≡

∫

d�̂

(2π )d

1

[ f (�̂)]1/2
.

(7)

The scalings of Sd (α) in d = 2 and d = 3 are shown in Fig. 3.

Notice that when the Ŵ matrices are Pauli matrices (D = 2),

the perturbative corrections ∼λ2
m in Eq. (6) vanish. A simi-

lar conclusion holds for conventional Dirac fermions up to

the two-loop order [17], which, however, possibly undergo

a continuous QPT at finite coupling [18]. Whether such a

conclusion holds for FDMs remains to be investigated.

Thus let us consider D = 4, the minimal dimensional-

ity of the Ŵ matrices for which the quantum corrections

in the RG flow equation of λm [Eq. (6)] are nontrivial.

Then 2D fractional and conventional Dirac systems enjoy

a continuous global SU(2) ⊗ U(1) chiral symmetry gener-

ated by {Ŵ34, Ŵ45, Ŵ35} and Ŵ12, respectively, where Ŵ jk =

[Ŵ j, Ŵk]/(2i). The Dirac mass breaks the continuous SU(2)

chiral symmetry, unless M = Ŵ12. This is so because the

maximal number of mutually anticommuting four-component

Hermitian matrices is five. By contrast, in d = 3 the Dirac

mass breaks a continuous U(1) chiral symmetry, generated by

Ŵ45.

The QCP describing the QPT between a nodal fractional

Dirac liquid and a Dirac insulator is located at λm = λ∗
m =

ǫ/(D − 2). As the fermionic self-energy correction due to

local interactions vanishes to the leading order in the ǫ expan-

sion [14], this QCP is characterized by the correlation length

exponent ν, given by

ν−1 =
dβλm

dλm

∣

∣

∣

∣

λm=λ∗
m

= ǫ = d − α and z = α. (8)

These two exponents determine the universality class of the

fractional Dirac liquid to insulator QPT. In addition, they

determine the scaling of the mass gap, which can be demon-

strated by solving the self-consistent gap equation.

The self-consistent gap equation is obtained by performing

a Hubbard-Stratonovich decomposition of the four-fermion

term via a bosonic field � and subsequently integrating out

the fermionic fields, yielding [14]

1

g
m

=

∫ ′ dd
k

(2π )d

1
[

E2
α (k) + �2

]1/2
≡ F (�). (9)

The momentum integral is restricted up to the ultraviolet cut-

off � (denoted by the prime symbol). The right-hand side of

this gap equation scales as �d−α , and it is ultraviolet divergent

for d > α. Such an ultraviolet divergence can be regularized

by defining a critical coupling for the ordering g∗
m

= [F (0)]−1,

in terms of which we arrive at the regularized gap equation

δ =

∫ 1

0

xd−1

[

1

xα
−

∫

d�̂

(2π )d

[Sd (α)]−1

[x2α f (�̂) + m2]1/2

]

dx, (10)

where x = k/� and m = �/(vα�α ) are dimensionless, and

the reduced distance from the QCP is δ = (λm − λ∗
m)/(λmλ∗

m).

We numerically solve this gap equation in d = 2 and d = 3.

The results are shown in Fig. 1.

Notice that a nontrivial solution for the mass gap m, and

concomitantly for the order parameter, exists only when δ > 0

or λm > λ∗
m, i.e., when the interaction strength λm is above a

critical one (λ∗
m). The scaling of m with δ in FDMs is distinct

from its counterparts in conventional Dirac systems, where

the mass gap shows linear (as ν = z = 1) and square-root (as

2ν = z = 1) scaling with δ in d = 2 and d = 3, respectively,

since m ∼ δνz. In a 3D Dirac system the scaling of m with

δ displays a logarithmic correction due to the violation of

the hyperscaling hypothesis, as the system then lives at the

upper critical dimension dup = 3 [19]. The upper critical di-

mension for FDMs is dup = 2 + α, where ν = 1/2. Therefore

2D FDMs always remain below the upper critical dimension,

and the QPT is non-Gaussian in nature. By contrast, a 3D

FDM always lives above the upper critical dimension, and the

QPT is Gaussian or mean field in nature.
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Long-range Coulomb interaction. The instantaneous long-

range Coulomb interaction is known to renormalize the Fermi

velocity of linearly dispersing Dirac quasiparticles in both

d = 2 [20] and d = 3 [21–23]. This interaction is represented

by a scalar gauge field a0(τ, x) minimally coupled to the

density of the quasiparticles. The corresponding propagator

exhibits a dimensionality dependent scaling with momen-

tum ∼|k|d−1, ensuring the characteristic 1/r behavior of the

density-density Coulomb interaction in real space in any d .

The form of the Coulomb propagator, in turn, dictates that

the electric charge ed can (cannot) receive perturbative cor-

rections in d = 3 (d = 2). The Coulomb part of the Euclidean

action therefore reads as

SC =

∫

dτ

∫

dd
x

(

−ied a0�
†� + a0

1

2|∇|d−1
a0

)

. (11)

To analyze the effect of the long-range Coulomb interac-

tion on fractional Dirac fermions, we compute the one-loop

self-energy diagram. We find that the parameter vα appearing

in Eq. (1) does not renormalize when α �= 1, as a consequence

of the nonanalytic structure of the dispersion of fractional

Dirac excitations. However, the long-range Coulomb inter-

action generates linearly dispersing quasiparticles, for which

the Hamiltonian is given by Eq. (1) with α = 1. The RG

flow equation for the Fermi velocity v
1

of emergent linearly

dispersing quasiparticles in d = 2 and d = 3 reads [14]

dv
1

dℓ
=

1

Cd

Fd (α) α
FS

v
1
, (12)

where C2 = 8π , C3 = 6π2, and the function (Fig. 3)

Fd (α) = α

∫

d�̂

Nd

|�̂i|
α−1

[ f (�̂)]1/2

(

1 −
|�̂i|

2α

f (�̂)

)

, (13)

with N2 = π and N3 = 8π/3. The associated effective fine

structure constant is α
FS

= e2
d/v1

. The function f (�̂) is de-

fined in Eq. (7), and Fd (α) is independent of the choice of the

component (i = 1, . . . , d) of the d-dimensional unit vector �̂i

at least in d = 2 and 3.

Notice that the Fermi velocity v
1

grows logarithmically

as the system approaches the deep infrared regime under

coarse graining, as F2(α) and F3(α) are both positive definite.

Furthermore, as the power of the fractional dispersion in-

creases for 0 < α � 1, both functions increase monotonically,

as shown in Fig. 3. This is, indeed, consistent with the scaling

of the DOS with energy. Namely, as the DOS increases with

increasing α, the flow of the Fermi velocity of generated Dirac

quasiparticles also increases. When the bare quasiparticles are

linearly dispersing, well-known results for the flow of the

Fermi velocities in d = 2 and d = 3 are readily recovered

[20–23]. Thus long-range Coulomb interaction in FDMs gives

birth to a two-component quantum fluid constituted by (a)

effectively noninteracting fractional and (b) marginal (due to

logarithmically increasing Fermi velocity) conventional Dirac

quasiparticles.

Finally, we show that in d = 3 the long-range tail of the

Coulomb interaction is screened by fractional Dirac exci-

tations. To this end, we compute the polarization (bubble)

diagram and find that the Coulomb charge in d = 3 is

logarithmically decreasing under coarse graining, with the RG

flow equation of the form

de2
d

dℓ
= −α

(α)
FS e2

d F (α) or
dα

(α)
FS

dℓ
= −

[

α
(α)
FS

]2
F (α). (14)

Here, α
(α)
FS = e2

d/(vα�α−1) is the effective dimensionless fine

structure constant of the FDM, and the function

F (α) =
α

4
[(1 − 3α)I (α) + 2αJ (α)], (15)

for 1/2 < α � 1, with I (α) and J (α) defined in terms of the

components of the three-dimensional unit vector

Iρσ (α) =

∫

d�̂

(2π )3

|�̂ρ |
2α−2|�̂σ |2α−2�̂ρ�̂σ

[ f (�̂)]5/2
≡ I (α)δρσ ,

Jρ (α) =

∫

d�̂

(2π )3

|�̂ρ |
2α−2

[ f (�̂)]3/2
≡ J (α). (16)

The function F (α) is strictly positive, implying that the charge

ed and fine structure constant α
(α)
FS of the FDM decrease

during the RG flow. Furthermore, the fine structure con-

stant of generated Dirac quasiparticles α
FS

also decreases, but

even faster than in a conventional relativistic Dirac material

due to additional screening by microscopic fractional Dirac

excitations.

Summary and discussion. Here we explore the emer-

gent quantum critical behavior of correlated fractional Dirac

liquids in two and three dimensions in the presence of

short-range and long-range Coulomb interactions. Strong

short-range interactions can give rise to spontaneous sym-

metry breaking. By contrast, the long-range component of

Coulomb interaction gives birth to linear Dirac dispersion

through a spectral reconstruction, while leaving the origi-

nal fractional Dirac dispersion unaffected, thereby yielding

a two-component quantum fluid in the infrared regime. In

future, we will develop a quantum critical description for the

spontaneous symmetry breaking in terms of strongly coupled

boson-fermion Mott-Yukawa theory [24], which will allow us

to capture hallmarks of the emergent non-Fermi liquid near

the associated QCP and the role of retarded boson-fermion

Yukawa interaction in possible restoration of the Lorentz

symmetry in correlated FDMs [25]. Furthermore, by incorpo-

rating the retarded current-current interaction, accompanying

the instantaneous density-density Coulomb repulsion, we will

develop quantum electrodynamics for FDMs.

Our field-theoretic predictions on spontaneous symme-

try breaking and associated quantum critical phenomena in

FDMs subject to short-range Coulomb or Hubbard-like in-

teractions can be tested, for example, using quantum Monte

Carlo simulations of the lattice regularized tight-binding mod-

els for FDMs in terms of infinitely long-ranged power-law

hopping [14], given that such a study exists for similar models

of conventional Dirac fermions with linear dispersion, subject

to the on-site Hubbard repulsion [26]. Effects of long-range

Coulomb interactions and the resulting two-component quan-

tum fluid can also be demonstrated from quantum Monte

Carlo simulations as similar computations have already been

performed on graphene’s honeycomb lattice harboring con-

ventional Dirac quasiparticles [27]. Besides designer fractal

materials [12,13], quantum circuits constituted by arrays of

superconducting qubits stand as a promising platform for the
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realization of quantum FDMs and proposed quantum phe-

nomena therein, where the Sachdev-Ye-Kitaev model [28] and

a number of quantum hyperbolic lattices [29] have already

been engineered to showcase their exotic quantum many-body

phenomena in tabletop experiments.
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Phases, phase transitions, and global phase diagram, Phys. Rev.

B 95, 201102(R) (2017).

[9] B. Roy and M. P. Foster, Quantum Multicriticality near the

Dirac-Semimetal to Band-Insulator Critical Point in Two Di-

mensions: A Controlled Ascent from One Dimension, Phys.

Rev. X 8, 011049 (2018).

[10] D. J. Gross and A. Neveu, Dynamical symmetry breaking in

asymptotically free field theories, Phys. Rev. D 10, 3235 (1974).

[11] M. Gärttner, S. V. Syzranov, A. M. Rey, V. Gurarie, and L.

Radzihovsky, and M. Garttner, Disorder-driven transition in a

chain with power-law hopping, Phys. Rev. B 92, 041406(R)

(2015).

[12] S. N. Kempkes, M. R. Slot, S. E. Freeney, S. J. M. Zevenhuizen,

D. Vanmaekelbergh, I. Swart, and C. M. Smith, Design and

characterization of electrons in a fractal geometry, Nat. Phys.

15, 127 (2019).

[13] J. Shang, Y. Wang, M. Chen, J. Dai, X. Zhou, J. Kuttner, G. Hilt,

X. Shao, J. M. Gottfried, and K. Wu, Assembling molecular
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