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Abstract: Ground-level ozone (O3) is a key atmospheric gas that controls the oxidizing capacity of
the atmosphere and has significant health and environmental implications. Due to ongoing reduc-
tions in the concentrations of O3 precursors, it is important to assess the variables influencing base-
line O3 to inform pollution control strategies. This study uses a statistical model to characterize daily
peak 8 h O3 concentrations at the Mount Bachelor Observatory (MBO), a rural mountaintop research
station in central Oregon, from 2006–2020. The model was constrained by seven predictive variables:
year, day-of-year, relative humidity (RH), aerosol scattering, carbon monoxide (CO), water vapor
(WV) mixing ratio, and tropopause pressure. RH, aerosol scattering, CO, and WV mixing ratio were
measured at MBO, and tropopause pressure was measured via satellite. For the full 15-year period, the
model represents 61% of the variance in daily peak 8 h O3, and all predictive variables have a
statistically significant (p < 0.05) impact on daily peak 8 h O3 concentrations. Our results show that daily
peak 8 h O3 concentrations at MBO are well-predicted by the model, thereby providing insight into what
affects baseline O3 levels at a rural site on the west coast of North America.

Keywords: ozone; baseline ozone; statistical model; generalized additive model

1. Introduction
Ground-level ozone (O3) production occurs due to photochemical reactions between

oxides of nitrogen (NOx = nitric oxide (NO) + nitrogen dioxide (NO2)) and volatile organic
compounds (VOCs). High concentrations of O3 are harmful to human and ecosystem
health [1–3]. Consequently, O3 is subject to regulatory action by the U.S. Environmental
Protection Agency (EPA). Compliance with the O3 National Ambient Air Quality Stand-
ard (NAAQS) set by the U.S. EPA is achieved when the annual fourth-highest maximum
daily 8 h average (MDA8) O3 concentration is no more than 70 parts per billion (ppb),
averaged over a three-year period [4]. Numerous studies have highlighted the successes
and challenges of meeting this standard across the U.S. [5–8]. Due to the health and regu-
latory implications of surface O3, it is important to have a comprehensive understanding
of the factors controlling O3 levels.

One factor that affects ambient O3 concentrations at surface U.S. sites is the amount
of U.S. background O3 (USBO), defined as the O3 that would be present in the absence of
U.S. anthropogenic emissions. However, since USBO cannot be observed directly, we in-
stead refer to baseline O3, which is the O3 concentration observed at a rural or remote site
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that has not been influenced by recent, local emissions [9]. Previous work has investigated
baseline O3 concentrations throughout the U.S. [9–26]. For example, Ambrose et al. [25]
found that baseline O3 at the Mount Bachelor Observatory (MBO)—a rural mountaintop
research station in central Oregon—was strongly influenced by long-range transport and
upper tropospheric/lower stratospheric intrusions. In addition, Zhang and Jaffe [26] iden-
tified smoke and precursor emissions from wildfires as a source of baseline O3 at MBO.

Baseline O3 levels can have major implications for air quality management, especially
in the western U.S. (WUS). In many parts of the WUS, mean seasonal baseline O3 concen-
trations comprise up to 70% of the national O3 standard [24,27,28], making it challenging
for those areas to attain the O3 NAAQS. These high baseline O3 values are due in part to
stratospheric intrusions [6,16], intercontinental transport of O3 [17], and increased wildfire
activity over the past two decades [9,29].

Although many previous studies have assessed baseline O3 concentrations in the
U.S., little has been done to examine the effect of individual meteorological and chemical
parameters on baseline O3 at rural high-elevation sites in the WUS. This is noteworthy for
three reasons. First, such locations are far from major anthropogenic pollution sources.
Second, such sites are frequently impacted by free tropospheric air. These characteristics
make rural high-elevation sites well-suited for investigating what influences baseline O3

concentrations. Third, as discussed above, baseline O3 is a large fraction of the ambient O3

for much of the WUS. Therefore, knowing which meteorological and chemical variables
exert the greatest influence on baseline O3 in the WUS is essential for creating pollution
control strategies aimed at lowering O3 levels in the region.

In the present study, we investigated the impact of several meteorological and chem-
ical parameters on O3 concentrations at MBO from 2006–2020 by using a machine learn-
ing/statistical model that is described in the next section. The goal of this work is to gain
a better understanding of what affects baseline O3 in the WUS.

2. Materials and Methods
The Mount Bachelor Observatory (MBO; 43.98° N, 121.69° W, 2764 m a.s.l.) is a rural

mountaintop research station located in central Oregon that was established in 2004 [30].
Continuous measurements of O3, carbon monoxide (CO), air temperature (Tair), baromet-
ric pressure (BP), relative humidity (RH), and other chemical and meteorological param-
eters have been made at MBO since its inception [25,31]. The MBO data have been used
previously in a number of trend and model assessments [9,26,32–35]. Since MBO is a high-
elevation site located far from major urban areas, it is an ideal site for examining the var-
iables that affect baseline O3 in the WUS.

In this study, hourly averaged data for several meteorological and chemical variables
were used to investigate what influenced O3 concentrations at MBO from 2006–2020. O3

was measured using a Dasibi 1008-RS analyzer (Dasibi Environmental Corporation, Glen-
dale, CA, USA) from 2006–2014 and an EcoTech Serinus 10 analyzer (EcoTech, Warren,
RI, USA) from 2014–2020 [25,32,36]. CO was measured using a Thermo 48C-Trace Level
Enhanced analyzer (Thermo Fisher Scientific, Waltham, MA, USA) from 2006–2012 and a
Picarro G2502 Cavity Ring-Down Spectrometer (Picarro, Santa Clara, CA, USA) from
2012–2020 [25,32,37]. Aerosol scattering was measured using a TSI nephelometer (TSI In-
corporated, Shoreview, MN, USA) [38–40]. Water vapor (WV) mixing ratios were calcu-
lated following the methodology of Bolton [41]. RH measurements were also included.

Figure 1 shows the diurnal variability in median O3 concentrations for each season.
Consistent with previous studies conducted at MBO [25,36,42], we generally see a daytime
minimum and nighttime maximum in O3 due to upslope flow during the day and
downslope flow at night. This influenced how we chose to average the data, as discussed
below.
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Figure 1. Diurnal variability in the median O3 concentration at MBO for spring (MAM), summer
(JJA), fall (SON), and winter (DJF) 2006–2020.

For this work, all hourly data were converted to running 8 h averages. Only 8 h av-
erages calculated using at least six valid data points were included in the analysis. The 8
h averaged O3 data were used to calculate the daily peak 8 h O3 (hereafter referred to as
peak 8 h O3). To determine peak 8 h O3, we considered a 24 h period starting at 12:00 LST.
This was because O3 concentrations at MBO typically exhibit a nighttime maximum and
a daytime minimum (see Figure 1), consistent with other high-elevation sites [43–48]. As
a result, we selected the 24 h window to start at 12:00 LST to allow for more variability in
the timing of peak 8 h O3. This 24 h window was also used to calculate the 8 h averages of
all other hourly data. The 8 h averages of the other hourly data for the middle hour of the
8 h period when peak 8 h O3 concentrations occurred were used in our analysis.

The 8 h averaged CO, aerosol scattering, RH, and WV mixing ratio data were used to
help constrain a Generalized Additive Model (GAM), which was run using the “mgcv”
package in R [49]. CO and aerosol scattering were used as model constraints because
higher CO and aerosol scattering values correspond to more polluted airmasses, which
likely contain higher concentrations of O3 and its precursors. RH and WV mixing ratio
were used to constrain the GAM because both are anticorrelated with O3 in rural, low-
NOx environments [50,51]. Daily, 1° × 1° tropopause pressure data from the Atmospheric
Infrared Sounder (AIRS) were used to further constrain the GAM [52]. Data were obtained
for the ascending orbits, which move from south-to-north across the Equator at 13:30 local
time [52]. Due to the 1° spatial resolution, the data are regionally representative. Daily
regional tropopause pressure was included as a model constraint because peak 8 h O3 at
MBO is likely more influenced by lower-O3 air originating from the boundary layer when
the daily regional tropopause pressure is higher. In contrast, when the daily regional trop-
opause pressure is lower, peak 8 h O3 at MBO is likely more influenced by higher-O3 air
originating from the free troposphere.

We also tested other variables as model inputs, but they were not part of the final
model configuration. Specifically, we ran the Hybrid Single-Particle Lagrangian Inte-
grated Trajectory (HYSPLIT) model for each day using 1° × 1° Global Data Assimilation
System (GDAS) meteorological data to calculate 24 h back trajectories for MBO. These
were used to compute the direct transport distance and transport quadrant of airmasses.
Even though these two variables help characterize the airmasses affecting MBO, they were
not retained as model inputs because they were poorly correlated with peak 8 h O3 (result
not shown). Additionally, we tested observed, 8 h averaged Tair and BP as model con-
straints because high temperatures and stagnant conditions are often conducive to O3
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formation. However, neither Tair nor BP were retained as model inputs because we found
that peak 8 h O3 concentrations at MBO are weakly dependent on both parameters (results
not shown).

GAMs are statistical models that use a sum of smooth functions of predictive varia-
bles to model a response variable [29,49,53,54]. Previous studies have used GAMs and
other statistical models to meteorologically adjust trends in urban O3 [55], examine the
effect of wildfire smoke on urban O3 concentrations [29,54], predict high-O3 events in the
Houston metropolitan area [56], and predict the impact of O3 on net ecosystem production
at a forested site in the Czech Republic [57]. However, to our knowledge, this is the first
study to use a GAM to investigate what influences baseline O3 levels in the WUS.

In this analysis, peak 8 h O3 was the response variable, and the predictors are listed
in Table 1. In addition to the model constraints discussed previously, “Year” and “day-of-
year” were included as predictive variables due to the interannual and seasonal variability
in the meteorological conditions impacting O3 concentrations. One GAM simulation was
done for the full 2006–2020 time period to assess the impact of each predictor on peak 8 h
O3 concentrations at MBO. Our approach for configuring the GAM was similar to the one
used by Gong et al. [29]. For the smoothing function associated with each predictor, we
used penalized cubic regression splines (CRSs) with 10 degrees of freedom to account for
the complex, nonlinear relationship between peak 8 h O3 and the predictive variables.
Then, the seven selected predictors were added into the model one at a time to determine
whether they decreased the Akaike information criterion (AIC) and increased the adjusted
coefficient of determination (R2) [49,58,59]. Figure 2 shows that the AIC and adjusted R2

decreased and increased, respectively, when the predictors were included in the model.
Since the AIC continuously declined as each predictor was added, it is unlikely that our
model is overfit.

Data
Source *

1
1
2
2
2
2

3

Table 1. List of parameters used to constrain the Generalized Additive Model (GAM) for this study.

Parameter Number Parameter Name Description

1 Year (unitless) Year
2 DOY (unitless) Day-of-year
3 RH_8h (%) 8 h average relative humidity
4                                     Scattering_8h (Mm−1) 8 h average aerosol scattering
5                                             CO_8h (ppb) 8 h average carbon monoxide
6 WV_8h (g kg−1) 8 h average water vapor mixing ratio

7                                   Tropopause_Pres (hPa)                      Daily, satellite-derived regional tropo-

* (1) Calculation, (2) MBO data archive, and (3) ascending orbit of the Atmospheric Infrared Sounder
(AIRS).
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Figure 2. (a) Magnitude of adjusted R2 and AIC with additional variables for MBO from 2006–2020.
(b) Changes in adjusted R2 and AIC with additional variables for MBO from 2006–2020. See Table 1
for the parameter names corresponding to the parameter numbers.

We further investigated baseline O3 concentrations in the WUS from 2006–2020 by
examining the seasonal variability in hourly and peak 8 h O3 at MBO and O3 measured
via ozonesonde at Trinidad Head (THD), CA. THD is a rural coastal site in northern Cal-
ifornia; therefore, its O3 profile measurements are characteristic of baseline O3 values [21].
Since the average ambient pressure at MBO is approximately 730 hPa, THD O3 profile data
collected at the 680–780 hPa level during 798 balloon flights were included in our analysis
so that the seasonality in O3 at the two sites could be compared.

3. Results and Discussion
The seasonal variability in O3 concentrations at MBO and THD (680–780 hPa) is

shown in Figure 3. Median O3 levels at MBO using all data ranged from 43 ppb in fall to
49 ppb in spring, median peak 8 h O3 levels at MBO ranged from 46 ppb in winter to 53
ppb in spring, and median O3 levels at THD ranged from 48 ppb in winter to 55 ppb in
summer. These values are (1) in line with mean baseline O3 concentrations of approxi-
mately 50 ppb reported for 15 other high-elevation sites in the WUS [16] and (2) about 61–
79% of the 70 ppb O3 NAAQS. The slightly lower seasonal concentrations of hourly O3 at
MBO were likely attributable to daytime upslope flow of boundary-layer air containing
more moisture and less O3 compared to free tropospheric air. Meanwhile, the comparable
seasonal values of peak 8 h O3 at MBO and O3 at THD suggest that the two sites are af-
fected by similar airmasses.
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Figure 3. Seasonal O3 concentrations at MBO and THD from 2006–2020. Hourly O3 data were used
to generate the MBO boxplots, and 680–780 hPa O3 data collected via ozonesonde were used to
generate the THD boxplots. The bottom and top whiskers denote the 10th and 90th percentile val-
ues, respectively, the central rectangles span the 25th percentile to the 75th percentile, and the hori-
zontal lines within the central rectangles represent the median values.

Figure 4 compares the observed versus GAM-predicted peak 8 h O3 at MBO from
2006–2020. Our model effectively predicted peak 8 h O3, with an adjusted R2 of 0.61. All
seven predictive variables had a statistically significant impact on peak 8 h O3 levels (p <
0.05). The effects of RH, WV mixing ratio, aerosol scattering, CO, and daily regional trop-
opause pressure on peak 8 h O3 are shown in Figures 5–9. Peak 8 h O3 generally decreased
with increasing RH and WV mixing ratio (Figures 5 and 6). Since MBO is in a rural, NOx-
sensitive environment, these relationships are likely due to increased removal of O3 by
hydrogen oxide radicals (HOx = hydroxyl radical (OH) + hydroperoxyl radical (HO2)) at
higher RH and WV mixing ratios [51]. Aerosol scattering and CO values up to approxi-
mately 30 Mm−1 and 300 ppb, respectively, had a positive relationship with peak 8 h O3

(Figures 7 and 8). This is consistent with higher levels of aerosol scattering, CO, O3, and
O3 precursors in more polluted airmasses. The response of peak 8 h O3 to aerosol scattering
and CO values greater than about 30 Mm−1 and 300 ppb, respectively, is less clear because
such high values are infrequently observed at MBO (see x-axes for Figures 7b and 8b).
This led to the large model uncertainty at very high aerosol scattering and CO values. As
shown in Figure 9, peak 8 h O3 concentrations at MBO slightly decreased with increasing
daily regional tropopause pressure. This is likely due to the lesser influence of free tropo-
spheric air containing less moisture and more O3 when daily regional tropopause pressure
is higher.
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Figure 4. Observed versus GAM-predicted peak 8 h O3 at MBO from 2006–2020. The solid red line
and the dashed blue line are the trendline and 1:1 line, respectively.

Figure 5. (a) Observed peak 8 h O3 (ppb) versus observed 8 h average RH (%) at MBO from 2006–
2020. The black dots show the individual data points, and the connected red squares show the me-
dian peak 8 h O3 concentration, binned by 8 h average RH. The red squares are centered on the
median 8 h average RH and the median peak 8 h O3 concentration for each bin. (b) Partial response
plot showing the effect of 8 h average RH (%) on model-predicted peak 8 h O3 at MBO from 2006–
2020. The tick marks on the x-axis denote the density of observed 8 h average RH values. The spline
smoothing function for 8 h average RH is on the y-axis, with the label including its degrees of free-
dom (4.66). The solid line shows the smooth curve, and the dashed lines indicate 2 standard error
bounds.

Figure 6. (a) Observed peak 8 h O3 (ppb) versus observed 8 h average WV mixing ratio (g kg−1) at
MBO from 2006–2020. The black dots show the individual data points, and the connected red
squares show the median peak 8 h O3 concentration, binned by 8 h average WV mixing ratio. The
red squares are centered on the median 8 h average WV mixing ratio and the median peak 8 h O3

concentration for each bin. (b) Partial response plot showing the effect of 8 h average WV mixing
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ratio (g kg−1) on model-predicted peak 8 h O3 at MBO from 2006–2020. The tick marks on the x-axis
denote the density of observed 8 h average WV mixing ratios. The spline smoothing function for 8
h average WV mixing ratio is on the y-axis, with the label including its degrees of freedom (4.86).
The solid line shows the smooth curve, and the dashed lines indicate 2 standard error bounds.

Figure 7. (a) Observed peak 8 h O3 (ppb) versus observed 8 h average aerosol scattering (Mm−1) at
MBO from 2006–2020. The black dots show the individual data points, and the connected red
squares show the median peak 8 h O3 concentration, binned by 8 h average aerosol scattering. The
red squares are centered on the median 8 h average aerosol scattering value and the median peak 8
h O3 concentration for each bin. (b) Partial response plot showing the effect of 8 h average aerosol
scattering (Mm−1) on model-predicted peak 8 h O3 at MBO from 2006–2020. The tick marks on the x-
axis denote the density of observed 8 h average aerosol scattering values. The spline smoothing
function for 8 h average aerosol scattering is on the y-axis, with the label including its degrees of
freedom (7.58). The solid line shows the smooth curve, and the dashed lines indicate 2 standard
error bounds. Note that the x-axes for panels (a) and (b) are plotted on a logarithmic scale.

Figure 8. (a) Observed peak 8 h O3 (ppb) versus observed 8 h average CO (ppb) at MBO from 2006–
2020. The black dots show the individual data points, and the connected red squares show the me-
dian peak 8 h O3 concentration, binned by 8 h average CO. The red squares are centered on the
median 8 h average CO concentration and the median peak 8 h O3 concentration for each bin. (b)
Partial response plot showing the effect of 8 h average CO (ppb) on model-predicted peak 8 h O3 at
MBO from 2006–2020. The tick marks on the x-axis denote the density of observed 8 h average CO
concentrations. The spline smoothing function for 8 h average CO is on the y-axis, with the label
including its degrees of freedom (6.74). The solid line shows the smooth curve, and the dashed lines
indicate 2 standard error bounds. Note that the x-axes for panels (a) and (b) are plotted on a loga-
rithmic scale.
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Figure 9. (a) Observed peak 8 h O3 (ppb) versus observed daily regional tropopause pressure (hPa)
for MBO from 2006–2020. The black dots show the individual data points, and the connected red
squares show the median peak 8 h O3 concentration, binned by daily regional tropopause pressure.
The red squares are centered on the median daily regional tropopause pressure and the median
peak 8 h O3 concentration for each bin. (b) Partial response plot showing the effect of daily regional
tropopause pressure (hPa) on model-predicted peak 8 h O3 at MBO from 2006–2020. The tick marks
on the x-axis denote the density of observed daily regional tropopause pressure values. The spline
smoothing function for daily regional tropopause pressure is on the y-axis, with the label including
its degrees of freedom (3.81). The solid line shows the smooth curve, and the dashed lines indicate
2 standard error bounds.

Figure 10 shows the residuals (observed peak 8 h O3—GAM-predicted peak 8 h O3)
for the full 15-year period, binned by GAM-predicted peak 8 h O3 concentrations. Median
residuals for all bins were close to 0 ppb, indicating that the seven-parameter model was
unbiased across the O3 distribution. This further demonstrates that our model was suc-
cessful in predicting peak 8 h O3 concentrations at MBO.

Figure 10. Residuals (observed peak 8 h O3 − GAM-predicted peak 8 h O3) at MBO from 2006–2020,
binned by GAM-predicted peak 8 h O3 concentrations. The dashed red line denotes 100% agreement
between observed and GAM-predicted peak 8 h O3 (i.e., residuals = 0 ppb). The components of each
boxplot have the same meanings as in Figure 3.

It needs to be noted that ongoing climate change will impact the parameters affecting
baseline O3 in the WUS. For example, U.S. wildland fires have burned more than 3.2 mil-
lion ha y−1 in 10 of the past 18 years, and this increase in wildfire activity has primarily
taken place in the WUS [60]. Climate-related factors such as higher summertime temper-
atures and drought have contributed to the increasing wildfire activity [61,62]. At MBO,
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more wildfires have led to higher aerosol optical thickness (AOT) values over the past
decade, especially during summer and fall (Figure 11). Specifically, monthly AOT values
were approximately 0.4 in August and September 2017, August 2018, and September 2020.
Since wildfires are expected to increase in the future [63–65], such high monthly AOT
values at MBO may become more common. This may lead to increased suppression of O3

at MBO because high aerosol concentrations reduce solar radiation, which is not condu-
cive to high O3 levels [66]. However, increased O3 suppression due to wildfires will only
occur if MBO is increasingly impacted by fresh smoke plumes with very high aerosol
loading. If increasing wildfires instead lead to an increase in the number of aged smoke
plumes affecting MBO, then an increase in the number of high-O3 days at MBO will likely
occur. This is because aged smoke plumes have lower aerosol loading, and O3 and aerosol
scattering have a positive relationship at MBO, particularly at lower aerosol scattering
values (Figure 7). Furthermore, higher temperatures and drier conditions during non-
smoky periods in the WUS will likely lead to more high-O3 days at MBO. This is because
WV mixing ratios and O3 are anticorrelated, and O3 production and temperature are pos-
itively correlated [26,67]. Overall, due to (1) the effects of climate change on O3 and (2) the
impact of O3 levels at MBO on downwind O3 concentrations [68,69], future studies should
consider reinvestigating the variables influencing O3 concentrations at this rural site.

Figure 11. Monthly aerosol optical thickness (AOT) at MBO from 2006–2020. AOT data with 1° res-
olution were taken from the MODIS Aqua satellite.

Two other items should also be the focus of future studies. First, future work should
use a GAM to predict hourly O3 concentrations at MBO. This will likely lead to an under-
standing of which variables have the greatest impact on the diurnal cycle of O3 at MBO.
Second, future studies should use a GAM constrained with surface observations of daily
maximum O3 and satellite observations of free tropospheric O3 to predict daily maximum
O3 concentrations for MBO. For this analysis, the smoothing functions associated with the
two predictive variables listed above will need to be penalized CRSs with two degrees of
freedom. If this work is undertaken by future studies, the results may show how much
daily maximum O3 concentrations at MBO are affected by transport of free tropospheric
O3. Such findings would further improve our understanding of what influences baseline
O3 concentrations in the WUS.

4. Conclusions
This study examined the effects of several meteorological and chemical variables on

peak 8 h O3 at the Mount Bachelor Observatory (MBO) from 2006–2020. The analysis was
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completed using a Generalized Additive Model (GAM) constrained by seven parameters
(Table 1). Over the 15-year period, our model successfully predicted the observed peak 8
h O3, with an adjusted R2 of 0.61. All predictive variables—year, day-of-year, daily re-
gional tropopause pressure, and 8 h averaged relative humidity (RH), aerosol scattering,
carbon monoxide (CO), and water vapor (WV) mixing ratio—significantly affected peak
8 h O3 concentrations (p < 0.05). Our results show that peak 8 h O3 levels at MBO were
well-captured by the seven-parameter model. Therefore, since meeting the national O3

standard continues to be challenging for much of the western U.S. (WUS), future work
should consider using this study’s methodology to assess what influences baseline O3 con-
centrations at other rural or remote sites in the region. This will help inform pollution
control strategies aimed at reducing O3 levels in the WUS.
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