

View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  DECEMBER 19 2022

Effect of dissolved gas on the tensile strength of water 
Special Collection: Cavitation

Saikat Mukherjee   ; Hector Gomez

Physics of Fluids 34, 126112 (2022)
https://doi.org/10.1063/5.0131165

 27 D
ecem

ber 2023 22:18:16

https://pubs.aip.org/aip/pof/article/34/12/126112/2845144/Effect-of-dissolved-gas-on-the-tensile-strength-of
https://pubs.aip.org/aip/pof/article/34/12/126112/2845144/Effect-of-dissolved-gas-on-the-tensile-strength-of?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/pof/article/34/12/126112/2845144/Effect-of-dissolved-gas-on-the-tensile-strength-of?pdfCoverIconEvent=crossmark
https://pubs.aip.org/pof/collection/1517/Cavitation
javascript:;
https://orcid.org/0000-0002-4662-7242
javascript:;
javascript:;
https://doi.org/10.1063/5.0131165
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2100974&setID=592934&channelID=0&CID=768787&banID=521069223&PID=0&textadID=0&tc=1&scheduleID=2025884&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fpof%22%5D&mt=1703715496562579&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fpof%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0131165%2F16615675%2F126112_1_online.pdf&hc=a12ed6ba88c767c17bc5d1d06353f6c74dc544e5&location=


Effect of dissolved gas on the tensile strength
of water

Cite as: Phys. Fluids 34, 126112 (2022); doi: 10.1063/5.0131165
Submitted: 18 October 2022 . Accepted: 30 November 2022 .
Published Online: 19 December 2022

Saikat Mukherjeea) and Hector Gomez

AFFILIATIONS

School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, USA

Note: This paper is part of the special topic, Cavitation.
a)Author to whom correspondence should be addressed: mukher32@purdue.edu

ABSTRACT

While theoretical estimates suggest that cavitation of water should occur when pressure falls much below �25MPa at room temperature, in
experiments, we commonly observe conversion to vapor at pressures of the order of 3 kPa. The commonly accepted explanation for this
discrepancy is that water usually contains nanometer-sized cavitation nuclei. When the pressure decreases, these nuclei expand and become
visible to the naked eye. However, the origin of these cavitation nuclei is not well understood. An earlier work in this field has mainly focused
on the inception of nuclei which are purely composed of water vapor, whereas experimental data suggest that these nuclei are mainly com-
posed of air. In this Letter, we develop a theoretical approach to study the inception of cavitation nuclei in water with uniformly dissolved
air, using a diffuse interface approach. We derive equations which govern the transition of water with uniformly dissolved air to a critical
state. Our results show that the dissolved air decreases the free energy barrier from the initial to the critical state, thereby aiding the forma-
tion of cavitation nuclei. This study opens up possibilities to explore cavitation inception in fluids containing dissolved gases.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0131165

I. INTRODUCTION

Cavitation is the formation of small vapor-filled bubbles in a liq-
uid due to local depressurization. These bubbles are ubiquitous and
play an important role in diverse phenomena such as soil erosion,1

swift movements of the fern sporangia,2 and accelerated food produc-
tion.3 While the growth and collapse dynamics of these bubbles are
well characterized,4,5 the extent of depressurization required for their
formation remains controversial.6,7 Although different theoretical esti-
mates yield different values for the depressurization required to
observe vapor bubbles at room temperature (300K), ranging from
�200MPa using estimates based on molecular dynamics simulations8

to �120MPa using the modified IAPWS-95 equation of state for
water,9 it is generally accepted that cavitation pressure is much less
than �25MPa.7 However, experimentally we observe vapor-filled
bubbles at much higher pressures (�3 kPa at room temperature). The
widely prevalent explanation is that liquids contain microscopic cavi-
ties that are filled with non-condensable gases (NCGs), also referred to
as cavitation nuclei. These nuclei are nanometer sized and can persist
in the liquid for time intervals of the order of 100 h.10 When the pres-
sure drops below a threshold pressure, which is commonly taken as
the vapor pressure of the liquid (pv), these nuclei expand and become
visible to the naked eye. While the presence of these nuclei can explain

the lower depressurization required to generate bubbles which can be
seen with the naked eye, the inception of these nuclei remains an open
problem.

Classically, the inception of vapor nuclei in pure liquids has been
studied using the nucleation theory.11 When the pressure in a liquid
decreases, a cloud of vapor-filled nuclei is formed. However, the nucle-
ation rate (number of vapor nuclei formed per unit time per unit vol-
ume) is very small at high pressures. For instance, at a temperature of
50 �C and a pressure of �70MPa, it would take 30 � 109 years to
observe a single water vapor nucleus in a volume corresponding to the
total volume of the earth’s oceans.12 Therefore, cavitation pressure
(pcav) is defined as the ambient pressure at which the rate of nucleation
(J) of at least one vapor-filled nucleus in a volume Vs within a time
interval 0 � t � s is sufficiently large (of the order of 1010 or higher).
Using this theory, the cavitation pressure of pure water at room tem-
perature was estimated to be of the order of �120MPa,9 a value that
has been validated with experiments on pure water found as quartz
crystal inclusions.13,14

When a liquid is depressurized, we observe a local reduction in
the density of the liquid. However, this system, which consists of a
region of smaller density surrounded by liquid with higher density, is
not in thermodynamic equilibrium. While transitioning from this
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depressurized liquid state to the thermodynamically stable state, where
we have a vaporous nucleus in a pool of depressurized liquid, the fluid
has to pass through a critical state where we have a critical nucleus in
depressurized liquid. Transitioning to this critical state poses a free
energy barrier, in which the system needs to overcome. The critical
nucleation rate (J�) strongly depends on this critical free energy barrier
(DX�). Therefore, DX� must be evaluated accurately to predict the
critical nucleation rate, which in turn determines the cavitation pres-
sure. The earliest efforts to determine DX� were based on classical
nucleation theory (CNT). This theory assumes a state of uniform pres-
sure inside the nucleus up to the surface which divides the nucleus
from the surrounding liquid. An interface of zero thickness separates
the liquid and the nucleus, and surface tension (r�) is used to deter-
mine the critical free energy barrier through the formula
DX� ¼ 16pr�3=ð3Dp2Þ, where Dp is the pressure difference between
the interior of the nucleus and the surrounding liquid.15 While this
model can successfully predict the free energy barrier for the inception
of large vaporous nuclei, it overestimates its value for smaller nuclei
where the thickness of the dividing interface is of the order of the
radius of the nuclei. Therefore, an additional parameter called the
Tolman length was introduced to improve the prediction of CNT for
small nuclei.16 An alternative approach to estimate DX� is based on
diffuse interface (DI) models, which naturally account for the thick-
ness of the liquid–nucleus interface.17 These methods rely on an
Equation of State (EoS) to describe the properties of the fluid, which
can be derived from a free energy per unit volume of the fluid
(W).18,19 DI models based on the IAPWS-95 EoS have been used to
theoretically estimate pcav for pure water as observed in experiments.12

However, these theories consider the formation of pure vapor
nuclei in pure liquid water, whereas cavitation nuclei in water are pri-
marily composed of air,10 which is a NCG primarily composed of
nitrogen. Recent experimental evidence also suggests that local NCG
supersaturation is responsible for the nucleation of cavitation bub-
bles.20 Therefore, accounting for the effect of NCGs in theoretical stud-
ies is imperative to bridge the gap between experiments and theory
with respect to inception of cavitation nuclei. NCGs in liquids exist
either in uniformly dissolved form or in the form of nanometer-sized
nuclei. In this paper, we develop a theoretical framework to study
inception of NCG–vapor nuclei in a pool of liquid with uniformly dis-
solved NCG. We develop a theoretical approach based on the diffuse
interface (DI) theory to describe the properties of a fluid–NCG mix-
ture, thereby taking into account the finite thickness of the interfaces
separating liquid–vapor and liquid–NCG and generalizing the predic-
tions from classical nucleation theory (CNT).

II. MODEL DEVELOPMENT AND VALIDATION

In this section, we describe our model for two-phase flows
containing dissolved NCG. We also present validation cases for
our model and derive relationships to relate physical properties in
the DI and sharp interface descriptions of fluids. Throughout the
paper, we have used the properties of nitrogen to understand the
behavior of air as it is the predominant component. The super-
scripts a and w have been used to represent the properties of air
and water, respectively, unless stated otherwise. The mass fraction
(c) of air in an air–water mixture is

c ¼ ma

ma þmw
; (1)

where ma and mw represent the mass of air and water, respectively.
The mole fraction of air (x) can be represented as

x ¼ ma=Ma

ma=Ma þmw=Mw
; (2)

where Ma andMw are the molar masses of air and water, respectively.
The mole fraction and mass fraction of NCG in the mixture are related
as

x ¼ c

cþ Ma

Mw
1� cð Þ

: (3)

The molar mass of the mixture (M) can be written as

M ¼ xMa þ 1� xð ÞMw: (4)

A. Free energy of the mixture

We propose an expression for the free energy per unit volume
(w) to describe the properties of a mixture of water and NCG as
follows:

w ¼ W q; c; hð Þ þ k hð Þ
2

jrqj2 þ e2 hð Þ
2

jrcj2: (5)

Here, c is the mass fraction of NCG, q is the density of the mix-
ture, and h is the temperature of the mixture. The temperature-
dependent positive parameters kðhÞ and e2ðhÞ account for
interfacial energies and are responsible for surface tension at the
liquid–vapor and liquid–NCG interfaces, respectively. The func-
tion Wðq; c; hÞ describes the free energy per unit volume of the
mixture in the regions away from the interfaces. It is based on the
Peng–Robinson EoS21 and ideal mixing rules and can naturally
account for phase transitions from liquid phase to vapor phase
and vice versa. Mathematically,

W ¼ Rhq ln
q

b� q

� �
� abq

2
ffiffiffi
2

p ln

���� q� b 1�
ffiffiffi
2

p� �
q� b 1þ

ffiffiffi
2

p� � ����
þRhq c ln cð Þ þ 1� cð Þ ln 1� cð Þ

� 	
; (6)

where R(c) is the specific gas constant of the mixture; a ¼ aðh; cÞ and
b ¼ bðcÞ are EoS specific parameters that depend on the temperature,
the properties of the constituent fluids, and the composition of the
mixture. Let us consider the specific case of an air–water mixture.
Then, we have five parameters: R, aw, and bw are the parameters for
water; whereas aa and ba are the parameters for air. The specific gas
constant of the mixture can be written as

R ¼ Ru

M
; (7)

where Ru ¼ 8314 J mol�1 K�1 is the universal gas constant. The spe-
cific gas constants for water and air are equal to Rw ¼ 461:6 and
Ra ¼ 296:8 J kg�1 K�1, respectively. The parameters bw and ba are
constants and depend on the critical properties of water and air,
respectively, and have the following functional dependence:
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bw;a ¼ 12:8538
pw;ac

Rw;ahw;ac
; (8)

where hw;ac and pw;ac are the critical temperature and critical pressure of
water and air, respectively, whose values are given in Table I. Using
these pure substance values, the parameter b for the mixture can be
determined as follows:

b ¼ bwba

xbw þ ð1� xÞba : (9)

The parameters aw and aa also depend on the temperature of the mix-
ture in addition to the critical properties of the constituent fluid, and
this relationship can be expressed in the functional form as

aw;a ¼ aw;ac aw;a hð Þ; (10)

where the constants awc and aac can be expressed in terms of the critical
properties of the respective fluid as

aw;ac ¼ 0:457235
Rw;ahw;ac

� �2
pw;ac

: (11)

The function awðhÞ is taken from the work of Li et al.22 It has the
following functional form:

awðhÞ ¼
"
w1 þ w2 1� h

hwc


 �
� w3 1� h

hwc

� ��1
( )

þw4 1� h
hwc

� ��2
( )#2

; (12)

where w1¼1:00095;w2¼0:39222;w3¼0:07294, and w4¼0:00706
are constants. The function aaðhÞ is also taken from Li et al.22 and has
the following form:

aaðhÞ ¼ exp

"
a1 � a2x

a þ a3x
a2

� �
1� h

hac

� �

þ a4 ln

(
1þ a5 þ a6x

a � a7x
a2

� � 
1�

ffiffiffiffiffi
h
hac

s !)#
; (13)

where a1 ¼ 0:132 80; a2 ¼ 0:050 52; a3 ¼ 0:259 48; a4 ¼ 0:817 69;
a5 ¼ 0:313 55; a6 ¼ 1:867 45, and a7 ¼ 0:526 04 are constants. The
constant xa is the acentric factor of air whose value is tabulated in
Table I. The parameter a for the mixture can be determined as
follows:

a ¼ x2aa þ ð1� xÞ2aw þ 2xð1� xÞ
ffiffiffiffiffiffiffiffiffiffi
aaaw

p
ð1� dawÞ; (14)

where daw is the binary interaction parameter between air and water.
Its value varies with temperature as follows:23

dawðhÞ ¼ �1:702 35þ 0:443 38
h
hac

: (15)

B. Validation

As we are investigating the effect of uniformly dissolved air on
the cavitation pressure of water, the EoS should accurately predict the
solubility of air in water and the total pressure of the mixture. We
compare the predictions of the above EoS to experimental results on
solubility of air in liquid water and saturation vapor pressure of pure
water, respectively.

1. Solubility of NCG in liquid

In this section, we will describe the general procedure of finding
the phase equilibrium solutions; i.e., the equilibrium density and NCG
concentration in the liquid state (ql and cl, respectively) and the vapor
state (qv and cv, respectively). Before proceeding further, we define the
chemical potential of a species (l) in a mixture as the rate of change of
free energy of a thermodynamic system with respect to the change in
the number of molecules of the species that are added to the system.
Chemical potential is used to define the conditions for phase equilib-
rium of a binary mixture24 at constant temperature using the following
conditions:

lav ¼ lal ; lwv ¼ lwl ; pv ¼ pl; (16)

where the subscripts v and l represent the vapor and liquid phases,
respectively. Now, we determine expressions for chemical potential of
water and air, respectively, using the definition from above. Let us con-
sider a system with volume VT, which contains Na being the air mole-
cules and Nw being the water molecules. Then, the density of the
mixture and mass fraction of air can be written as

q ¼ NaMa þ NwMw

VT
; c ¼ NaMa

NaMa þ NwMw
: (17)

From the definition of chemical potential of a component in a mixture,
we have

la ¼ @ VTWð Þ
@Na

� 

h;VT ;Nw

; lw ¼ @ VTWð Þ
@Nw

� 

h;VT ;Na

: (18)

Writing the chemical potentials in terms of q and c, we get

la ¼ VT
@W
@q

@q
@Na

þ @W
@c

@c
@Na

� 

h;VT ;Nw

;

lw ¼ VT
@W
@q

@q
@Nw

þ @W
@c

@c
@Nw

� 

h;VT ;Na

:

(19)

Taking the partial derivative of Eq. (17) with respect to Na and Nw, we
get

TABLE I. Physical and critical properties of nitrogen and water and their corresponding symbols in the manuscript.

Substance Molar mass (g mol�1) Critical temperature (K) Critical pressure (MPa) Acentric factor

Air 14.0067 (Ma) 126.03 (hac ) 3.395 (pac ) 0.039 (xa)
Water 18.0152 (Mw) 647.10 (hwc ) 22.064 (pwc ) 0.344 (xw)
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@q
@Na

¼Ma

VT
;

@q
@Nw

¼Mw

VT
;

@c
@Na

¼ NwMaMw

NaMa þNwMwð Þ2
;

@c
@Nw

¼ � NaMaMw

NaMa þNwMwð Þ2
:

(20)

Substituting the expressions from Eq. (20) into Eq. (19) and simplify-
ing, we get

la

Ma
¼ @W

@q
þ 1� cð Þ

q
@W
@c

� 

;

lw

Mw
¼ @W

@q
� c
q
@W
@c

� 

: (21)

These are the required expressions for the chemical potential of air
and water in an air–water mixture. These are required in addition to
the pressure to get the phase equilibrium conditions. The pressure in
defined directly from the Helmholtz free energy per unit volume as
follows:

p ¼ q
@W
@q

�W: (22)

Therefore, for a given ambient pressure pa, the four equations required
to determine ql, qv, cl, and cv are as follows:

@W
@q

qv; cvð Þ þ
1� cvð Þ
qv

@W
@c

qv; cvð Þ

¼ @W
@q

ql; clð Þ þ
1� clð Þ
ql

@W
@c

ql; clð Þ; (23a)

@W
@q

qv; cvð Þ �
cv
qv

@W
@c

qv; cvð Þ

¼ @W
@q

ql; clð Þ �
cl
ql

@W
@c

ql; clð Þ; (23b)

pa ¼ ql
@W
@q

ql; clð Þ �W ql; clð Þ; (23c)

pa ¼ qv
@W
@q

qv; cvð Þ �W qv; cvð Þ: (23d)

We repeat this procedure for different values of h to get the equilib-
rium concentration of air in liquid water (cl) for different ambient
pressures (pa) and plot in Fig. 1. Our model predictions show excellent
agreement with experimental results.

2. Saturation vapor pressure of water

In this section, we will describe the procedure to calculate the sat-
uration vapor pressure of pure water from mixture the free energy in
Eq. (6). Here, c¼ 0, and the free energy of the fluid per unit volume
from Eq. (6) reduces to

W ¼ Rwhq ln
q

bw � q

� �
� awbwq

2
ffiffiffi
2

p ln

����q� bw 1�
ffiffiffi
2

p� �
q� bw 1þ

ffiffiffi
2

p� � ����: (24)

Here, we wish to obtain the equilibrium densities qwl and qwv in the liq-
uid and vapor phases, respectively, corresponding to a given tempera-
ture h. Similar to Eq. (16), our equilibrium conditions are derived
from the equality of chemical potential and pressure of both phases.
Substituting the expressions developed in Sec. II B 1 and simplifying,
we obtain the required set of two equations that can be solved to
obtain qwl and qwv . These are as follows:

@W
@q

qwl
� �

¼ @W
@q

qwv
� �

;

qwl
@W
@q

qwl
� �

�W qwl
� �

¼ qwv
@W
@q

qwv
� �

�W qwv
� �

:
(25)

After solving Eq. (25), we obtain qv, from which we can obtain the sat-
uration vapor pressure as the pressure corresponding to that density
value using the following formula:

psat ¼ qwv
@W
@q

qwv
� �

�W qwv
� �

: (26)

We repeat this procedure for different values of h to obtain the satura-
tion vapor pressure curve as shown in Fig. 2. Again, we see excellent
agreement with experimental results.

C. Equations to relate physical properties in the DI
and sharp-interface models

In this paper, we are studying the problem of nucleation of a sin-
gle NCG–vapor nucleus in a pool of liquid using the diffuse interface

FIG. 1. Comparison of solubility of nitrogen in liquid water obtained using the EoS
from Eq. (6) with experimental results25 for h 2 ½280; 580� K for ambient pressures
of 1, 25, 50, and 100 atm. The dots show experimental results, whereas the solid
lines show predictions from the EoS.

FIG. 2. Comparison of saturation vapor pressure for pure water obtained using the
EoS from Eq. (6) with experimental results26 for h 2 ½277; 647� K.
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(DI) approach. We are interested in the equilibrium transformation of
a fluid with uniform density qsl , with uniformly dissolved NCG csl , into
a spherical bubble with density qsv and concentration of dissolved
NCG csv at the center (r¼ 0) which is surrounded by liquid with uni-
form density qsl and uniformly dissolved NCG csl . As both of these are
equilibrium configurations, they can be obtained by minimizing the
free energy functional

JL ¼
ð
X

W þ k
2
jrqj2 þ e2

2
jrcj2 � L1q� L2qc

� �
dX; (27)

where X is our domain of interest, and L1 and L2 are constant
Lagrange multipliers to enforce the conservation of total mass and
conservation of mass of NCG, respectively. The Euler–Lagrange equa-
tions associated with the minimization of JL are as follows:

@W
@q

� kDq� L1 � L2c ¼ 0; (28a)

@W
@c

� e2Dc� L2q ¼ 0: (28b)

As we are interested in obtaining the density and concentration profile
of a spherical bubble, we express Eqs. (28a) and (28b) in spherical
coordinates

@W
@q

¼ k q;rr þ
2
r
q;r

� �
þ L1 þ L2c; (29a)

@W
@c

¼ e2 c;rr þ
2
r
c;r

� �
þ L2q: (29b)

Here, ðÞ;r represents the derivative along the radial direction.
Multiplying Eq. (29a) by q;r and Eq. (29b) by c;r and adding

@W
@q

q;r þ
@W
@c

c;r ¼ k q;rr þ
2
r
q;r

� �
q;r þ e2 c;rr þ

2
r
c;r

� �
c;r

þ L1q;r þ L2 cq;r þ qc;rð Þ; (30)

which can be further simplified as

W;r ¼
k
2

q2;r
� �

;r
þ 2k

r
q2;r þ

e2

2
c2;r
� �

;r
þ 2e

r
c2;r þ L1q;r þ L2 qcð Þ;r :

(31)

Integrating between the limits 0 to r, we get

W q; cð Þ�W qsv; c
s
v

� �
¼ k
2
q2;r þ 2k

ðr
0

1
r
q2;rdrþ

e2

2
c2;r

þ2e2
ðr
0

1
r
c2;rdrþL1 q�qsv

� �
þL2 qc�qsvc

s
v

� �
:

(32)

Multiplying both sides of Eq. (32) by r3=3 and evaluating the resulting
expression as r ! 1, we get

lim
r!1

�
r3

3
W qsl ; c

s
l

� �
�W qsv; c

s
v

� �
� L1 qsl � qsv

� ��
�L2 qsl c

s
l � qsvc

s
v

� �
g


¼ lim

r!1

2
3
kr3
ðr
0

1
r
q2;rdrþ

2
3
e2r3

ðr
0

1
r
c2;rdr

� 

:

(33)

Multiplying both sides of Eq. (32) by r2 and integrating from 0 to 1,
we getð1
0
fW q; cð Þ �W qsv; c

s
v

� �
� L1 q� qsv

� �
� L2 qc� qsvc

s
v

� �
gr2dr

¼ k
2

ð1
0
r2q2;rdr þ

e2

2

ð1
0
r2c2;rdr þ 2k

ð1
0
r2
ðr
0

1
z
q2;zdz

� �
dr

þ2e2
ð1
0
r2
ðr
0

1
z
c2;zdz

� �
dr: (34)

Rearranging terms on the left hand side of Eq. (34) and integrating the
terms on right hand side by parts, we getð1
0
fW q; cð Þ �W qsl ; c

s
l

� �
� L1 q� qsl

� �
�L2 qc� qsl c

s
l

� �
gr2dr þ

ð1
0
fW qsl ; c

s
l

� �
�W qsv; c

s
v

� �
�L1 qsl � qsv

� �
� L2 qsl c

s
l � qsvc

s
v

� �
gr2dr

¼ k
2

ð1
0
r2q2;rdr þ

e2

2

ð1
0
r2c2;rdr � 2k

ð1
0

1
3
r2q2;rdr

�2e2
ð1
0

1
3
r2c2;rdr þ lim

r!1

2k
3
r3
ðr
0

1
z
q2;zdz þ

2e2

3
r3
ðr
0

1
z
c2;zdz


 �

� 2k
3
r3
ðr
0

1
z
q2;zdz þ
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: (35)

Using Eq. (33), we can writeð1
0
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Simplifying Eq. (36) further, we getð1
0
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Multiplying both sides of Eq. (37) by 4p, we get

4p
ð1
0
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� L1 q� qsl
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fkq2;r þ e2c2;rgr2dr: (38)
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Here, the integral on the left hand side is the excess free energy
when we have a NCG–vapor bubble surrounded by liquid as com-
pared to the case where we only have liquid. On the right hand
side of the equation, we have a third of the energy required to
create the interface between the two phases. Therefore, Eq. (38)
indicates that the excess free energy required to create a
NCG–vapor bubble in a pool of liquid is equal to one-third of the
energy required to create the liquid–vapor interface. This result is
consistent with results from sharp-interface theories. Now, our
objective is to find equivalent expressions for the bubble
radius (R), the excess pressure in the interior of the bubble (Dp),
the excess free energy (DX), and surface tension (r) for the
DI model. Classically, they are related using the following
relationships:

Dp ¼ 2r
R
; DX ¼ 4

3
pR2r; (39)

where we have already shown that for DI models

DX ¼ 4
3
p
ð1
0

kq2;r þ e2c2;r
� �

r2dr: (40)

Here, we invoke the concept of nonlocal pressure (pnl), which is a true
indicator of the pressure in DI models. The thermodynamic pressure,
as defined in Eq. (22), is non-monotonic along the radial direction for
an equilibrium solution (spherical NCG–vapor bubble in a pool of liq-
uid), whereas the nonlocal pressure remains monotonic for an equilib-
rium solution in a DI model. It is related to the thermodynamic
pressure as follows:

pnl q; c;rq;rcð Þ ¼ p q; cð Þ þ
k
2
jrqj2 � kqDqþ e2

2
jrcj2: (41)

At r¼ 0, we have nucleation of a vapor bubble, so we have q ¼ qsv .
Furthermore, from symmetry, it follows that q;r ¼ 0; c;r ¼ 0.
Therefore, we use Eq. (28a) to calculate the nonlocal pressure inside
the bubble (pnlv )

pnlv ¼ q
@W
@q

�W � kqDq


 �
qsv ;c

s
vð Þ
¼ �W qsv; c

s
vð Þ þ L1qsv þ L2qsvc

s
v:

(42)

Away from the bubble, we have q ¼ qsl ; q;r ¼ 0; c;r ¼ 0. Therefore,
the nonlocal pressure sufficiently away from the bubble (pnll ) can be
written as

pnll ¼ q
@W
@q

�W � kqDq


 �
qsl ;c

s
lð Þ
¼ �W qsl ; c

s
lð Þ þ L1qsl þ L2qsl c

s
l :

(43)

Therefore, the difference in pressure (Dp) can be written as

Dp ¼ pnlv � pnll ¼ W qsl ; c
s
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s
l

� �
: (44)

Comparing the DI expressions from Eqs. (44) and (40) to the cor-
responding sharp interface classical expressions from Eq. (39), we
get
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(45)

The set of relations proposed in Eq. (45) can be used to determine the
radius of the bubble, the free energy excess and the surface tension for any
equilibrium bubble with density and concentration profile qðrÞ and c(r).

III. RESULTS

We employ the EoS to determine the cavitation pressure. We are
interested in the inception of nuclei composed of a mixture of air and
water in a pool of liquid water with uniformly dissolved air due to
depressurization, for which we employ numerical simulations. Our
initial condition is depressurized liquid water with uniform density q�L
and uniformly dissolved NCG c�L, where the liquid pressure is given as
p�L ¼ q�L@W=@qðq�L; c�LÞ �Wðq�L; c�LÞ. We are interested in the equi-
librium transformation of this initial state to the critical state, where
we have a spherical vapor–air nucleus in a pool of liquid water with
uniformly dissolved air. This critical state also represents the state of
maximum free energy, which must be surmounted before this thermo-
dynamic system can transition into an equilibrium solution. From the
Euler–Lagrange equations (29a) and (29b), we can write

@W
@q

q�L; c
�
L

� �
¼ L�1 þ L�2c

�
L; (46a)

@W
@c

q�L; c
�
L

� �
¼ L�2q

�
L; (46b)

where L�1 and L�2 are constant Lagrange multipliers to enforce the con-
servation of total mass and conservation of mass of NCG. Algebraic
manipulation of Eqs. (46a) and (46b) gives

L�2 ¼
1
q�L

@W
@c

q�L; c
�
L

� �
; (47a)

L�1 ¼
@W
@q

q�L; c
�
L

� �
� c�L
q�L

@W
@c

q�L; c
�
L

� �
: (47b)

We are interested in obtaining the critical (albeit unstable) configura-
tion, which has the same chemical potential as the initial condition
described above. To obtain this configuration, we solve the equations
below to obtain the sequence of density and concentration configura-
tions along the minimum energy path (MEP) from the initial state to
the critical state27
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(48)

Here, qkðr;~tÞ and ckðr;~tÞ represent the density and NCG concentra-
tion configurations, respectively, and ~t is the pseudo time along the
MEP; L�2 ¼ 1=q�L@W=@cðq�L; c�LÞ and L�1 ¼ @W=@qðq�L; c�LÞ � L�2c

�
L are

the difference in chemical potential of NCG and water, and the chemical
potential of water, respectively. We solve Eq. (48) using a centered
second-order accurate finite difference scheme in space and the forward
Euler scheme in time. For every solution (qk; ck), we calculate the corre-
sponding free energy barrier [DXkð~tÞ] using

DXkð~tÞ ¼ 4p
ð1
0

W qk; ck
� �

�W q�L; c
�
L

� �n o
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� 4p
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þ 4p
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0

k
2

qk;r

� �2
þ e2

2
ck;r

� �2
 �
r2dr: (49)

Denoting t� ¼ argmax~tDX
kð~tÞ, the critical nucleus profile is defined

as [qcðrÞ; ccðrÞ� ¼ ½qkðr; t�Þ; ckðr; t�Þ], and the critical free energy bar-
rier is DX� ¼ DXkðt�Þ. We use the critical profile to obtain the surface
tension of the critical nucleus and the pressure difference between the
critical nucleus and the ambient liquid, which are used to calculate the
critical nucleation rate using Eq. (45) as follows:
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� 	

;

(50)

whereM is the molar mass of the mixture, g is the viscosity of the mix-
ture, and kB is the Boltzmann constant. In Fig. 3, we plot J� vs the
ambient liquid pressure p�L. We observe that the rate of nucleation
increases exponentially with a decrease in ambient pressure, which is
consistent with DI calculations for pure water.12 As the temperature
increases, the rate of nucleation corresponding to a given p�L increases.
Finally, as we increase the value of c�L at a given temperature, the nucle-
ation rate increases. Cavitation occurs when the critical nucleation rate
exceeds a threshold value. In this work, we choose a threshold value
equal to 1010, which corresponds to the formation of 1010 nuclei in a
volume of 1mm3 every ns (cavitation pressure is not strongly affected
by this choice12 as the variation of nucleation rate with pressure is
exponential). In Fig. 4, we plot the pressure corresponding to the
threshold nucleation rate of 1010 vs temperature. There is a large scat-
ter in experimental observations for cavitation pressure in pure water
at small temperatures (<500K), but the values converge at higher
temperatures. Our approach can capture the experimental data cor-
rectly at higher temperatures. Dissolution of air in water increases the
cavitation pressure, and the increase is higher at high temperatures.
The difference in cavitation pressure between c¼ 0 and c¼ 0.01 is of
the order of 1MPa at room temperatures (yellow inset in Fig. 4) and
increases to about 10MPa at 580K (green inset in Fig. 4). The differ-
ence produced due to uniformly dissolved air in liquid water is consis-
tent with experimental observations for acoustically induced cavitation
in liquid water containing dissolved oxygen and nitrogen,28 which is
also shown in Fig. 4.

In conclusion, we propose a methodology to determine the cavi-
tation pressure of liquids containing uniformly dissolved NCGs using
the DI approach. We use an EoS based on the Peng–Robinson EoS
and present validation cases to show that it can predict the saturation
vapor pressure of pure water and solubility of air in liquid water over a
large temperature range. The cavitation pressure plots show that disso-
lution of NCG increases the cavitation pressure. The difference is 	1
MPa at room temperature and becomes 	10 MPa as the temperature
is increased to 600K when we consider water with uniformly dissolved
air with mass fraction c¼ 0.01. Recent experiments show that locally
accumulated NCG in liquids lowers the threshold for inception of cav-
itation nuclei due to a reduction in the strength of hydrogen bonds
between water molecules and reduction of surface tension.20 Our pre-
vious work also shows that NCG bubbles in liquids enhance the rate of

FIG. 3. Nucleation rate of critical bubble
vs liquid pressure at h ¼ 303; 373; 423,
and 473 K for different amounts of uni-
formly dissolved NCG (c�l ). The horizontal
orange line represents the critical nucle-
ation rate.
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transformation of a fluid from liquid phase to vapor phase through a
mass transfer mechanism primarily governed by diffusion of
NCG.29,30 This work opens avenues to theoretically understand phe-
nomena related to cavitation inception, such as the formation of addi-
tional cavitation bubbles when some cavitation bubbles are already
present, from a thermodynamic perspective, in much more detail.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support from the U.S.
Department of Defense under the DEPSCoR program (Award No.
FA9550-20-1-0165) and the National Science Foundation (Award
No. CBET 1805817). The opinions, findings, and conclusions or
recommendations expressed are those of the authors and do not
necessarily reflect the views of the funding agencies.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Saikat Mukherjee: Writing – original draft (equal). Hector Gomez:
Supervision (equal).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1Y. Zhang, Z. Qian, B. Ji, and Y. Wu, “A review of microscopic interactions
between cavitation bubbles and particles in silt-laden flow,” Renewable
Sustainable Energy Rev. 56, 303–318 (2016).
2M. Bruning, M. Costalonga, J. Snoeijer, and A. Marin, “Turning drops into
bubbles: Cavitation by vapor diffusion through elastic networks,” Phys. Rev.
Lett. 123, 214501 (2019).

3S. Tursunbayeva, A. Iztayev, A. Mynbayeva, M. Alimardanova, B. Iztayev, and
M. Yakiyayeva, “Development of a highly efficient ion-ozone cavitation tech-
nology for accelerated bread production,” Sci. Rep. 11, 19129 (2021).

4M. S. Plesset and A. Prosperetti, “Bubble dynamics and cavitation,” Annu. Rev.
Fluid Mech. 9, 145–185 (1977).

5L. van Wijngaarden, “Mechanics of collapsing cavitation bubbles,” Ultrason.
Sonochem. 29, 524–527 (2016).

6L. A. Crum, “Tensile strength of water,” Nature 278, 148–149 (1979).
7E. Herbert, S. Balibar, and F. Caupin, “Cavitation pressure in water,” Phys.
Rev. E 74, 041603 (2006).

8Y. Zhou, B. Li, Y. Gu, and M. Chen, “A molecular dynamics simulation study
on the cavitation inception of water with dissolved gases,” Mol. Phys. 117,
1894–1902 (2019).

9G. Menzl, M. A. Gonzalez, P. Geiger, F. Caupin, J. L. Abascal, C. Valeriani, and
C. Dellago, “Molecular mechanism for cavitation in water under tension,”
Proc. Natl. Acad. Sci. 113, 13582–13587 (2016).

10K. A. Mørch, “Cavitation inception from bubble nuclei,” Interface Focus 5,
20150006 (2015).

11A. Aasen, D. Reguera, and Ø. Wilhelmsen, “Curvature corrections remove the
inconsistencies of binary classical nucleation theory,” Phys. Rev. Lett. 124,
045701 (2020).

12F. Magaletti, M. Gallo, and C. M. Casciola, “Water cavitation from ambient to
high temperatures,” Sci. Rep. 11, 20801 (2021).

13Q. Zheng, D. Durben, G. Wolf, and C. Angell, “Liquids at large negative pres-
sures: Water at the homogeneous nucleation limit,” Science 254, 829–832
(1991).

14P. Pavlov and V. Skripov, “Kinetics of spontaneous nucleation in strongly
heated liquids,” High Temp. 8, 540–545 (1970).

15D. W. Oxtoby, “Homogeneous nucleation: Theory and experiment,” J. Phys.:
Condens. Matter 4, 7627 (1992).

16K. K. Tanaka, H. Tanaka, R. Ang�elil, and J. Diemand, “Simple improve-
ments to classical bubble nucleation models,” Phys. Rev. E 92, 022401
(2015).

17L. Gr�an�asy, “Fundamentals of the diffuse interface theory of nucleation,”
J. Phys. Chem. 100, 10768–10770 (1996).

18M. Gallo, F. Magaletti, and C. M. Casciola, “Thermally activated vapor bubble
nucleation: The Landau-Lifshitz–Van der Waals approach,” Phys. Rev. Fluids
3, 053604 (2018).

19M. Gallo, F. Magaletti, D. Cocco, and C. M. Casciola, “Nucleation and growth
dynamics of vapour bubbles,” J. Fluid Mech. 883, A14 (2020).

20P. Pfeiffer, J. Eisener, H. Reese, M. Li, X. Ma, C. Sun, and C.-D. Ohl,
“Thermally assisted heterogeneous cavitation through gas supersaturation,”
Phys. Rev. Lett. 128, 194501 (2022).

21D.-Y. Peng and D. B. Robinson, “A new two-constant equation of state,” Ind.
Eng. Chem. Fundam. 15, 59–64 (1976).

22X. Li and D. Yang, “Determination of mutual solubility between CO2 and water
by using the Peng–Robinson equation of state with modified alpha function
and binary interaction parameter,” Ind. Eng. Chem. Res. 52, 13829–13838
(2013).

23I. Søreide and C. H. Whitson, “Peng-Robinson predictions for hydrocarbons,
CO2, N2, and H2 S with pure water and NaCI brine,” Fluid Phase Equilib. 77,
217–240 (1992).

24I. H. Bell and U. K. Deiters, “On the construction of binary mixture p-x and
t-x diagrams from isochoric thermodynamics,” AIChE J. 64, 2745–2757
(2018).

25R. Battino, T. R. Rettich, and T. Tominaga, “The solubility of nitrogen and air
in liquids,” J. Phys. Chem. Ref. Data 13, 563–600 (1984).

26N. S. Osborne, H. F. Stimson, E. F. Fiock, and D. C. Ginnings, “Properties of
water,” J. Res. Natl. Bur. Stand. 10, 1 (1933).

FIG. 4. Variation of cavitation pressure in the temperature range h 2 ½280; 630� K
for different mass fractions of uniformly dissolved air in liquid water. The red
squares correspond to the experimental observations for pure water found as
quartz crystal inclusions,13 whereas the orange rhombi represent data from experi-
ments on pulsed heating of water.14 The inverted brown triangles correspond to
acoustically induced cavitation experiments in pure water.28 The magenta circle
shows acoustic cavitation experiments on pure water with dissolved oxygen,28

whereas the blue triangle represents the theoretical estimate at room temperature
using molecular dynamics.8

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 126112 (2022); doi: 10.1063/5.0131165 34, 126112-8

Published under an exclusive license by AIP Publishing

 27 D
ecem

ber 2023 22:18:16

https://doi.org/10.1016/j.rser.2015.11.052
https://doi.org/10.1016/j.rser.2015.11.052
https://doi.org/10.1103/PhysRevLett.123.214501
https://doi.org/10.1103/PhysRevLett.123.214501
https://doi.org/10.1038/s41598-021-98341-w
https://doi.org/10.1146/annurev.fl.09.010177.001045
https://doi.org/10.1146/annurev.fl.09.010177.001045
https://doi.org/10.1016/j.ultsonch.2015.04.006
https://doi.org/10.1016/j.ultsonch.2015.04.006
https://doi.org/10.1038/278148a0
https://doi.org/10.1103/PhysRevE.74.041603
https://doi.org/10.1103/PhysRevE.74.041603
https://doi.org/10.1080/00268976.2018.1559371
https://doi.org/10.1073/pnas.1608421113
https://doi.org/10.1098/rsfs.2015.0006
https://doi.org/10.1103/PhysRevLett.124.045701
https://doi.org/10.1038/s41598-021-99863-z
https://doi.org/10.1126/science.254.5033.829
https://doi.org/10.1088/0953-8984/4/38/001
https://doi.org/10.1088/0953-8984/4/38/001
https://doi.org/10.1103/PhysRevE.92.022401
https://doi.org/10.1021/jp953695c
https://doi.org/10.1103/PhysRevFluids.3.053604
https://doi.org/10.1017/jfm.2019.844
https://doi.org/10.1103/PhysRevLett.128.194501
https://doi.org/10.1021/i160057a011
https://doi.org/10.1021/i160057a011
https://doi.org/10.1021/ie401365n
https://doi.org/10.1016/0378-3812(92)85105-H
https://doi.org/10.1002/aic.16074
https://doi.org/10.1063/1.555713
https://scitation.org/journal/phf


27D. Sheppard, R. Terrell, and G. Henkelman, “Optimization methods
for finding minimum energy paths,” J. Chem. Phys. 128, 134106
(2008).

28B. Li, Y. Gu, and M. Chen, “An experimental study on the cavitation of water
with dissolved gases,” Exp. Fluids 58, 164 (2017).

29S. Mukherjee and H. Gomez, “Understanding how non-condensable gases
modify cavitation mass transfer through the van der Waals theory of capil-
larity,” Appl. Phys. Lett. 117, 204102 (2020).

30S. Mukherjee and H. Gomez, “Flow and mixing dynamics of phase-
transforming multicomponent fluids,” Appl. Phys. Lett. 115, 104101 (2019).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 126112 (2022); doi: 10.1063/5.0131165 34, 126112-9

Published under an exclusive license by AIP Publishing

 27 D
ecem

ber 2023 22:18:16

https://doi.org/10.1063/1.2841941
https://doi.org/10.1007/s00348-017-2449-0
https://doi.org/10.1063/5.0021697
https://doi.org/10.1063/1.5109889
https://scitation.org/journal/phf

