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Linearly dispersing Rarita-Schwinger-Weyl (RSW) fermions featuring two Fermi velocities are the key

constituents of itinerant spin-3/2 quantum materials. When doped, RSW metals sustain two Fermi surfaces

(FSs), around which one fully gapped s wave and five mixed-parity local pairings can take place. The intraband

components of four mixed-parity pairings support point nodes at the poles of two FSs, only around which

long-lived quasiparticles live. For weak (strong) pairing amplitudes (�), gapless north and south poles belonging

to the same (different) FS(s) get connected by polar hairs, one-dimensional line nodes occupying the region

between two FSs. The remaining one, by contrast, supports four nodal rings in between two FSs, symmetrically

placed about their equators, but only when � is small. For large �, this paired state becomes fully gapped. The

transition temperature and pairing amplitudes follow the BCS scaling. We explicitly showcase these outcomes

for a rotationally symmetric RSW metal and contrast our findings when the system possesses an enlarged Lorentz

symmetry and with those in spin-3/2 Luttinger materials.

DOI: 10.1103/PhysRevB.107.L180502

Introduction. Emergent phenomena lead to peculiar out-

comes in quantum solids [1]. Electron and hole quasiparticle

excitations, respectively characterized by positive and neg-

ative effective mass and charge, stand as its paradigmatic

examples [2]. More intriguingly, spin-1/2 electrons hopping

under specific crystal environments can give rise to effec-

tive spin-3/2 excitations, as is the case in 227 pyrochlore

iridates [3–5], half-Heuslers [6,7], HgTe [8], and gray tin

[9,10]. In these materials spin-3/2 Luttinger fermions display

a biquadratic touching between Kramers degenerate va-

lence and conduction bands, with respective spin projections

j = ±3/2 and ±1/2 [11]. Spin-3/2 Rarita-Schwinger-Weyl

(RSW) fermions [12], by contrast, display linear band touch-

ing, featuring two Fermi velocities ±v/2 and ±3v/2. In

RSW materials the valence (conduction) band is composed

of j = −3/2,−1/2 (3/2, 1/2) spin projections. While an-

tiperovskites harbor massive RSW fermions [13], PdGa [14],

PdBiSe [15], AlPt [16], PtGa [17], CoSi [18–20], and RhSi

[18] accommodate their gapless counterpart. Altogether, these

electronic materials create an exciting opportunity to study

exotic Cooper pairings among spin-3/2 fermions. While the

Cooper avenue has been explored in Luttinger materials

[21–33], due to experimental pertinence in superconducting

half-Heuslers [34–37], pairing among RSW fermions is still

in its infancy [38–42].

Key results. In crystals, RSW fermions are accompa-

nied by a doubler (generalized Nielsen-Ninomiya theorem

[43,44]). Here, for simplicity we consider a single irreducible

copy of four-component RSW fermions. Such gapless exci-

tations, nonetheless, can be found on the three-dimensional

hypersurface of a four-dimensional bulk topological insula-

tor of massive spin-3/2 fermions [45]. When doped, RSW

metals typically sustain two Fermi surfaces (FSs) (Fig. 1).

Around them exotic local mixed-parity nodal superconduc-

tors can nucleate (Table I). Their intraband components often

feature gapless polar hairs (Fig. 2), one-dimensional line

nodes connecting the poles of the FSs through its interior, in

the presence of an effective attraction within a characteristic

Debye frequency (weak-coupling BCS mechanism). These

outcomes are contrasted with those when the RSW materials

enjoy enlarged Lorentz symmetry and in Luttinger materials,

featuring a single FS. In both cases, nodal pairings host simple

line nodes on the FS (Fig. 3).

Model. The Hamiltonian describing RSW fermions is

HRSW = v(J · k − αJ
3 · k) − μ, (1)

where v bears the dimension of the Fermi velocity

[39–41,46,47]. Momentum k and chemical potential μ are

measured from the band-touching RSW node, J = (Jx, Jy, Jz )

is the vector spin-3/2 matrix with Jz = diag(3, 1,−1,−3)/2,

J
3 = (J3

x , J3
y , J3

z ), and α is a tuning parameter. Spin-3/2

matrices satisfy the SU(2) algebra [Jp, Jq] = iǫpqrJr , where

p, q, r = x, y, z and ǫpqr is the antisymmetric tensor. For

α = 0 the system possesses a rotational symmetry, yield-

ing two isotropic FSs with Fermi momenta kF, j = μ/( jv)

with j = 1/2, 3/2. By contrast, a Lorentz symmetry emerges

when α = 4/7 and the system supports a doubly degener-

ate FS with Fermi momentum kF = 7μ/(3v). Then matrices

appearing in HRSW, J − 4J
3/7 = 3{Ŵ23, Ŵ31, Ŵ12}/7 besides

the SU(2) algebra also satisfy the mutually anticommuting

Clifford algebra. Here Ŵ jk = [Ŵ j, Ŵk]/(2i) and five mutually

FIG. 1. Topology of Fermi surfaces for various α. See Eq. (1).
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FIG. 2. Evolution of polar hairs (top) and nodal rings (bottom) with pairing amplitude (� j/μ) for α = 0. Polar hairs (nodal rings) are

shown for �3 (�5) pairing. (a), (b) Different segments of polar hairs (color coded) connecting the north and south poles (red dots) of the same

FS, (c) touch each other at a critical amplitude, (d) beyond which they connect same poles of different FSs. (e), (f) Nodal rings, symmetrically

placed about the equators, get closer with increasing �5. (g) They touch each other for a critical amplitude. (h) The paired state then becomes

fully gapped. Momentum k is measured in units of μ/v.

anticommuting Hermitian matrices are Ŵ1 = κ3σ2, Ŵ2 = κ3σ1,

Ŵ3 = κ2σ0, Ŵ4 = κ1σ0, and Ŵ5 = κ3σ3. Two sets of Pauli

matrices {κν} and {σν} operate on the sign (±) and magni-

tude (3/2, 1/2) of the spin projections, respectively [48,49].

Nodal topology of RSW fermions changes at α = 4/9 and 4

[40,46,47] at which two FSs touch along the principal axes

[Fig. 1].

Nambu doubling. To capture superconductivity in RSW

materials, we Nambu double HRSW. After absorbing a

unitary matrix Ŵ13 in the hole part of the Nambu spinor,

the normal-state Hamiltonian reads HNam
RSW = η3HRSW. Newly

introduced Pauli matrices {ην} operate on the Nambu indices.

The antisymmetric nature of the effective single-particle

Bogoliubov–de Gennes (BdG) Hamiltonian, manifesting the

Pauli exclusion principle [50], in the presence of all the lo-

cal or on-site or momentum-independent pairings restricts its

form to

HBdG = (η1 cos φ + η2 sin φ)

5
∑

ν=0

�νŴν, (2)

where Ŵ0 = κ0σ0 and �ν are the pairing amplitudes for ν =
0, . . . , 5. Without any loss of generality, we set the U(1) su-

perconducting phase φ = 0. To unveil the emergent topology

of the pairings near the FSs, next we project HBdG onto the

valence or conduction bands and consider only their intraband

pieces. This procedure is justified within the framework of

weak-coupling BCS picture, in which attractive pairing inter-

action persists only around the FSs within a shell set by the

Debye frequency. The reduced BCS Hamiltonian then reads

HRSW
BCS = η3[v|k|ĥ0(α) − μσ0] + η1

5
∑

ν=1

�ν

3
∑

ρ=0

σρaν
ρ, (3)

FIG. 3. (a) Nodal loops for �1 (red), �2 (blue), and �3 (ma-

genta) pairings in a Lorentz symmetric RSW metal with a single FS

of Fermi momentum kF = 7μ/(3v). We set μ/v = 3/7. (b) Nodal

loops for �4 (red) and �5 (blue) pairings in a Luttinger metal. Here

momenta k are measured in units of kF =
√

2m±μ. Nodal loops for

�1, �2, and �3 pairings are obtained from those for �4 pairing after

suitable rotation [28].
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TABLE I. Symmetry classification and emergent nodal topology of six local pairings appearing in Eqs. (2) and (3) for RSW fermions

around the FSs for α = 0 and 4/7. The even-parity s-wave pairing �0 is always fully gapped. The �1, �2, �3, and �4 pairings are always

gapless when α = 0. By contrast, the �5 pairing is gapless up to a critical pairing amplitude δ∗
5 = 1/

√
2, beyond which it becomes fully

gapped. See Fig. 2. These five non-s-wave pairings are mixed-parity in nature for α = 0. Here + (−) corresponds to even (odd) under the parity

(θ → π − θ and φ → π + φ). By contrast, �4 (�1, �2, �3, and �5) pairing(s) is (are) odd (even) under parity when α = 4/7. Then only

�1, �2, and �3 pairings are gapless. See Fig. 3(a). The equations for the polar hairs and nodal rings are in terms of dimensionless momenta

q j = vk j/μ and pairing amplitude δν = �ν/μ, where q2 = q2
x + q2

y + q2
z , f (q) = [q2 − 4(q − 1)2]/4, and q± = 2[2 ± (1 − 2δ2)1/2]/3. For

spin-3/2 Luttinger fermions (displaying biquadratic band touching in the normal state), the angular dependence of �ν pairings is solely

captured by aν
3 for α = 0, which can be expressed in terms of cubic d-wave harmonics (even under parity). Each of them supports two nodal

loops [Fig. 3(b)]. Missing aν
ρs are trivial.

Pairing near Fermi surfaces and emergent topology in RSW metals

α = 0 (Rotational symmetry) α = 4/7 (Lorentz symmetry)

Pairing matrix

(amplitude) Angular functions Parity Nodal lines Angular functions Parity Nodal lines

Ŵ0(�0 ) a0
0 = 1 + × a0

0 = 1 + ×

Ŵ1(�1)

a1
1 = cos(2θ ) sin(φ)

a1
2 = cos(θ ) cos(φ)

a1
3 =

√
3

2
sin(2θ ) sin(φ)

−
+
+

qy = 0, δ2
1q2

z = f (q)q2

qz = 0, δ2
1q2

y = f (q)q2

a1
1 = 1

2
sin(θ ) sin(2φ)

a1
2 = sin(θ ) cos2(φ)

+
+

qx = 0

q2
y + q2

z = ( 7

3
)2

Ŵ2(�2)

a2
1 = cos(2θ ) cos(φ)

a2
2 = cos(θ ) sin(φ)

a2
3 =

√
3

2
sin(2θ ) cos(φ)

−
+
+

qz = 0, δ2
2q2

x = f (q)q2

qx = 0, δ2
2q2

z = f (q)q2

a2
1 = sin(θ ) sin2(φ)

a2
2 = 1

2
sin(θ ) sin(2φ)

+
+

qy = 0

q2
z + q2

x = ( 7

3
)2

Ŵ3(�3)

a3
1 = 1

2
sin(2θ ) sin(2φ)

a3
2 = sin(θ ) cos(2φ)

a3
3 =

√
3

2
sin2(θ ) sin(2φ)

−
+
+

qx = 0, δ2
3q2

y = f (q)q2

qy = 0, δ2
3q2

x = f (q)q2

a3
1 = cos(θ ) sin(φ)

a3
2 = cos(θ ) cos(φ)

+
+

qz = 0

q2
x + q2

y = ( 7

3
)2

Ŵ4(�4)

a4
1 = 1

2
sin(2θ ) cos(2φ)

a4
2 = sin(θ ) sin(2φ)

a4
3 =

√
3

2
sin2(θ ) cos(2φ)

−
+
+

qx = ±qy

δ2
4q2

z = [δ2
4 − f (q)]q2

a4
1 = cos(φ)

a4
2 = sin(φ)

−
−

×

Ŵ5(�5)
a5

1 =
√

3

2
sin(2θ )

a5
3 = 1

4
[3 cos2(φ) + 1]

−
+

q2
x + q2

y = 8

9
q2

±

q2
z = ± 1

9
q2

±
a5

3 = 1 + ×

where ĥ0(0) = diag(3, 1)/2 and ĥ0(4/7) = (3/7)σ0. The

angular dependence of the pairing terms aν
ρ ≡ aν

ρ (�̂, α)

for α = 0 and 4/7 are shown in Table I, where

�̂ ≡ (θ, φ) with θ (φ) as the polar (azimuthal) angle.

A detailed derivation is shown in the Supplemental

Materials [51].

Parity. The angular functions aν
ρ allow us to pin the parity

P of each paired state, under which θ → π − θ , φ → π + φ

[Table I]. For any α, the s-wave �0 pairing is even under P .

The remaining five paired states correspond to mixed-parity

pairings when α = 0, as aν
1 (aν

2,3) is (are) odd (even) under

parity for ν = 1, . . . , 5. For α = 4/7, parity eigenstates frag-

ment into two sectors, and �4 (�1, �2. �3, and �5) pairing(s)

is (are) even (odd) under P . The parity mixing or fragmen-

tation of the paired states stems solely from the linear band

dispersion of RSW quasiparticles, captured by k linear terms

[Eq. (1)] that are odd under P . Therefore, paired states inherit

parity from the normal state [52,53], which we further justify

from their even-parity counterparts in Luttinger materials,

where the normal-state Hamiltonian is described in terms of

even-parity d-wave harmonics [Eq. (5)] and consequently all

the six local pairings are even under parity (s-wave or d-wave)

[Eq. (6)].

BdG bands. The energy eigenvalues ±E ν
j (α) of HRSW

BCS are

E ν
j (0) =

{

�2
ν

[

(

aν
0

)2 +
(

aν
3

)2
]

+
(

(−1) j+1/2
v|k|/2

+
√

(v|k| − μ)2 + �2
ν

[

(

aν
1

)2 +
(

aν
2

)2
]

)2}1/2

,

E ν
j (4/7) =

⎡

⎣

(

3

7
v|k| − μ

)2

+ �2
ν

3
∑

ρ=0

(

aν
ρ

)2

⎤

⎦

1/2

, (4)

for j = 1/2, 3/2. The independence of E ν
j (4/7) on j confirms

the double degeneracy of each eigenvalue. Emergent nodal

topology inside the paired states is computed from the zeros

of E ν
j (α), which we discuss next.

Nodal topology. The even-parity �0 pairing always rep-

resents a fully gapped trivial s-wave superconductor. For

α = 0, the �1, �2, �3, and �4 pairings are always gapless

and support polar hairs, one-dimensional line nodes con-

necting the opposite (same) poles belonging to the same

(different) FS(s) below (above) a critical amplitude � j/μ =
1/

√
3 [51]. They interpolate through the region between
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FIG. 4. Self-consistent solutions of (a) pairing amplitude �ν and (b) transition temperature Tc with the pairing interaction strength λ

for various Debye frequencies ωD when α = 0. Here, �ν , tc, λ, and ωD are dimensionless (see text for definitions). (c) Scaling of �ν with

temperature (t/tc) for λ = 1 and ωD = 0.01, showing that despite possessing different amplitudes for t < tc, all the pairing channels have

identical transition temperature. Results match the BCS scaling theory [Eq. (8)].

two FSs. The evolution of the polar hairs for the �3

pairing is shown in Fig. 2(top) and its analytical equa-

tions are given in Table I. The structures of the polar

hairs for �1 (�2) and �4 pairings can be obtained from

those for the �3 pairing after π/2 (π/2) and π/4 rota-

tions about x (y) and z axes, respectively. The �5 pairing,

on the other hand, supports four nodal rings, symmetri-

cally placed about the equators of the FSs and in the

region in between them, but only up to a critical amplitude

�5/μ = 1/
√

2 [Fig. 2(bottom)]. Above this threshold am-

plitude, the �5 pairing is fully gapped. For α = 4/7, two

nodal loops residing on a doubly degenerate FS for �1, �2,

and �3 pairings can be rotated into each other [Fig. 3(a)].

By contrast, �4 and �5 pairings are then fully gapped.

See Table I.

Luttinger metal. The normal-state Hamiltonian for

isotropic spin-3/2 Luttinger materials reads [11]

HLutt =

(

k
2

2m0

− μ

)

Ŵ0 −
k

2

2m

5
∑

j=1

Ŵ j d̂ j (�̂). (5)

Here m0 and m bear the dimension of mass, and d̂ j (�̂) is

a five-dimensional unit vector that transforms in the l = 2

(“d-wave”) representation under orbital SO(3) rotations. Its

components are given by the cubic harmonics, linear com-

binations of the spherical harmonics Y m
l=2(�̂) [51]. The BdG

Hamiltonian for local pairings in this system is also given by

HBdG [Eq. (2)]. After the projection onto the valence (−) or

conduction (+) band, the reduced BCS Hamiltonian takes the

form

HLutt
BCS =

[

±
k

2

2m±
− μ

]

η3 + η1

⎡

⎣�0 +
5

∑

j=1

� ja
j

3(�̂, 0)

⎤

⎦,

(6)

where m± = m0m/|m0 ± m| [28]. As a3(�̂, 0) ≡ d̂(�̂), be-

sides the trivial s-wave pairing �0, this system supports five

even-parity d-wave pairings. Each of them hosts two nodal

loops on the FS [Fig. 3(b)] [28]. The d-wave nature of the

local pairings stems from the biquadratic normal-state band

dispersion, also expressed in terms of d-wave harmonics.

Thus, local paired states inherit the normal-state band parity,

justifying our attribution of the parity mixing or fragmentation

in the paired states of RSW materials to its linear normal-state

band structure.

Gap equation. Finally, we compute the pairing amplitudes

and transition temperatures Tc for all non-s-wave pairings in

a RSW metal within the BCS formalism. We assume that the

Debye frequency �D over which RSW fermions experience

effective attraction is same near two FSs. At finite temperature

T , the self-consistent gap equation is obtained by minimizing

the free energy

Fν =
�2

ν

2g
− 2ℓ3kBT

∫

d3k

(2π )3

∑

j=1/2,3/2

ln

[

cosh

(

E ν
j (α)

2kBT

)]

(7)

with respect to �ν . Here, ℓ is the lattice constant and

g is the coupling strength. We numerically solve the gap

equation in terms of the dimensionless quantities: �ν/μ →
�ν , T/μ → t , �D/μ → ωD, and gℓ3μ2/(2π2

v
3) → λ [51].

Results shown in Fig. 4 conform to the universal BCS scaling

forms [54]

�ν

ωD

= aν exp

[

−
bν

λ

]

,
kBtc

ωD

= c exp

[

−
bν

λ

]

,
�ν

kBtc
= dν .

(8)

For α = 0, a j ≈ 3.22, and d j = 2.84 for j = 1, . . . , 4, a5 ≈
3.36, d5 ≈ 2.96, and bν ≈ 0.301 for all ν. For α = 4/7, a j ≈
2.79(2), b j = 3/2(1/2) and d j = 2.46(1.76) for j = 1, 2, 3

(4,5). But, c ≈ 1.13 always [51,55].

Discussion and outlook. Considering a minimal irreducible

four-component continuum model for RSW fermions, here

we show that they harbor a plethora of exotic mixed-parity

or parity fragmented topological superconductors, featuring

polar hairs or nodal rings that reside in between the FSs,

showcasing intriguing evolutions with changing pairing am-

plitude as they then move, collide, and reconnect or disappear.

Topological nature of these paired states gives rise to surface-

localized drumhead-shaped Majorana Fermi pockets, images

of the bulk polar hairs or nodal loops on the surfaces,

schematically shown in Fig. 5. Polar hairs or nodal rings

manifest in specific heat Cv ∼ T 2 [56], T -linear penetration

depth [57], and inverse nuclear magnetic resonance relax-

ation time 1/T1 ∼ T 3 (Korringa’s relation), for example. Due

to the |E |-linear density of states in the presence of polar
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FIG. 5. Schematic structure of the drumhead flat Majorana sur-

face states (shaded regions) for the �3 (top) and �5 (bottom)

pairings, shown in the surface Brillouin zones for (a) �3/μ = 0.567,

(b) �3/μ = 0.587, (c) �5/μ = 0.628, and (d) �5/μ = 0.707. Note

that the perimeters of the drumhead states are determined by the

projections of the bulk polar hairs or the nodal loops, which are

shown in Fig. 2, and here color coded accordingly.

hairs or nodal loops, the paired states become a diffusive

thermal metal of BdG fermions at lowest temperature even

for infinitesimal disorder, yielding Cv ∼ T and 1/T1 ∼ T .

Nonetheless, in sufficiently clean systems the aforementioned

scaling of physical observables due to polar hairs and nodal

loops remains operative over a large temperature window

below Tc.

In real materials, RSW nodes often appear at finite time-

reversal invariant momentum points [13–20], at K (say). Then

intra RSW node pairings stand as examples of Fulde-Farrell-

Larkin-Ovchinikov superconductors for spin-3/2 fermions

[58,59], with center of mass momentum 2K of Cooper

pairs, displaying spatial modulation with periodicity 2K,

as in graphene heterostructures [60,61] and spin-1/2 Weyl

semimetals [62]. These exciting possibilities should open new

avenues in the rich landscape of unconventional superconduc-

tors, triggering a search for their microscopic Cooper glue

(electronic repulsion or phononic attraction) and the role of

a material-dependent parameter α [Eq. (1)] in determining

the paired state at the lowest temperature in RSW materials.

Tabulation of α in different candidate RSW materials will

thus be crucial to theoretically predict the nature of the paired

states and their competition in these materials. Nonetheless,

given that spin-3/2 Luttinger material YPtBi supports nodal

pairing [37], it is natural to expect that at least some RSW

materials can accommodate the nodal pairings, discussed in

this work.
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