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Topological classification of quantum solids often (if not always) groups all trivial atomic or normal insulators

(NIs) into the same featureless family. As we argue here, this is not necessarily the case always. In particular,

when the global phase diagram of electronic crystals harbors topological insulators with the band inversion

at various time-reversal invariant momenta KTI
inv in the Brillouin zone, their proximal NIs display noninverted

band-gap minima at KNI
min = KTI

inv. In such systems, once topological superconductors nucleate from NIs, the

inversion of the Bogoliubov de Gennes bands takes place at KBdG
inv = KNI

min, inheriting from the parent state.

We showcase this (possibly general) proposal for two-dimensional time-reversal symmetry-breaking insulators.

Then, distinct quantized thermal Hall conductivity and responses to dislocation lattice defects inside the paired

states (tied with KBdG
inv or KNI

min), in turn, unambiguously identify different parent atomic NIs.

DOI: 10.1103/PhysRevB.108.L041301

Introduction. The world of insulators fragments into two

sectors according to the topology and geometry of the bulk

electronic wave function in quantum crystals: topological

insulators (TIs) and normal insulators (NIs) [1,2]. TIs mani-

fest bulk-boundary correspondence, featuring robust gapless

modes at crystal interfaces, such as edge, surface, corner, and

hinge, for example. When combined with the crystal sym-

metry, the family of TIs hosts a rich fair showcasing strong,

weak, crystalline, higher-order, and atomically obstructed TIs

[3–23]. By contrast, atomic or normal insulators, although

abundant in nature, do not accommodate any gapless topo-

logical boundary modes. Naturally, within the topological

classification scheme of quantum materials, NIs are grouped

into a single featureless family. A question, therefore, can

be raised. Can we topologically distinguish such NIs? leav-

ing aside their nontopological spectroscopic characterization

based on the band-gap minima momenta (KNI
min).

Here, we provide an indirect affirmative answer to this

question by considering a paradigmatic toy square lattice

model for two-dimensional (2D) time-reversal symmetry-

(T -) breaking insulators [24]. We show if the global phase

diagram of quantum materials supports TIs featuring the

hallmark band inversion at different time-reversal invariant

momenta KTI
inv in the Brillouin zone (BZ), then, their respec-

tive proximal NIs display a band-gap minima at KNI
min=KTI

inv

(Fig. 1). In such systems, when topological superconductors

(TSCs) nucleate from NIs [Fig. 2(a)], the inversion of the

Bogoliubov de Gennes (BdG) bands takes place at KBdG
inv =

KNI
min (Fig. 3). Although half-quantized thermal Hall con-

ductivity (κxy) reveals the topological nature of the paired

states [Fig. 2(b)], dislocation lattice defects, sensitive to KBdG
inv ,

in turn, underpins KNI
min (Fig. 4). Therefore, responses of

TSCs allow us to identify and distinguish their parent NIs.

Specifically, when a TSC, characterized by a half-quantized

κxy, stems from a NI with the band-gap minima at a finite

momentum, only then robust zero-energy localized Majorana

modes appear near the dislocation core. We present a simple

mathematical proof to generalize this proposal to arbitrary

dimensions (larger than one) and symmetry class to classify

FIG. 1. (a) Phase diagram of the normal-state Hamiltonian

[Eq. (1)] in terms of the Chern number C [Eq. (2)] for t = t0 = 1. In

each insulating phase, the band structure displays parity polarization

of the eigenvectors in red (+) and blue (−) for (i) m0 = −2.25, (ii)

m0 = −0.75, (iii) m0 = 0.75, and (iv) m0 = 2.25. Bands are nonin-

verted (inverted) in NIs (TIs). Here, we follow the path Ŵ → X →

M → Ŵ in the BZ. (b) The six-terminal electrical (σxy) and thermal

(κxy) Hall conductivities as a function of m0, computed in a rectan-

gular system (see the insets) of length L = 200 and width W = 100.

In TIs, both σxy = C and κxy = C [in units of κ0 = π 2k2
BT/(3h)] at

T = 0.01. Dotted lines are guide to the eye.
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FIG. 2. (a) Phase diagram of HBdG(k) [Eq. (4)]. Phases are col-

ored according to the total Chern number (Ctot) and “weak TSC”

possesses a weak invariant, the Zak phase. Circled phases with sin-

gle (double) dot(s) support one (two) pair(s) of dislocation modes

(Fig. 4). (b) Thermal Hall conductivity (κxy) and longitudinal thermal

conductance (Gth) as a function of m0 for � = 0.5, computed in a

system of L = 2W = 80 [Fig. 1(inset)] at T = 0.01. In units of κ0,

κxy = Ctot/2 and Gth = |kxy|. But, in the weak TSC phase Gth = 1 (in

units of κ0). Arrows show two TSCs resulting from two NIs, distin-

guished from the paired state responses [(b) and Fig. 4], confirming

KBdG
inv = KNI

min (Fig. 3).

NIs from the responses of their proximal TSCs, operative

under the only assumption that a half-filled system always

describes an insulator.

Normal state. The Hamiltonian for 2D T -breaking insu-

lators on a square lattice reads H =
∑

k
�

†
k
H(k)�k, where

�⊤
k

= [c+
k
, c−

k
], and cτ

k
is the fermionic annihilation operator

with momentum k and parity τ = ± [24]. The k-dependent

operator is given by H(k) = τ · d(k) with

d(k) =

⎛

⎝t sin(kxa), t sin(kya), m0 − t0
∑

j=x,y

cos(k ja)

⎞

⎠. (1)

Vector Pauli matrix τ = (τx, τy, τz ) operates on the parity

indices (±). Throughout, we set t = t0 = 1, and the lattice

constant a = 1. Then, this model hosts TIs in the regime

−2 < m0 < 2, and NIs otherwise. Each TI supports one chiral

edge mode, encoding the first Chern number C = ±1, defined

within the first BZ as [25]

C =

∫

BZ

d2
k

4π
[∂kx

d̂(k) × ∂ky
d̂(k)] · d̂(k), (2)

FIG. 3. Band structure of HBdG(k) [Eq. (4)] in a semi-infinite

system with k j , where j = x or y and 120 unit cells in the y or x

direction for � = 0.5. The values of m0 are (a) 3.0, (b) 0.0, (c) 2.0,

(d) −2.0, (e) 1.0, and (f) −1.0. The total Chern number (Ctot) is

quoted in each panel [Fig. 2(a)]. In (b), counterpropagating edge

modes result from a weak invariant (Zak phase). To display doubly

degenerate edge modes in (e) and (f), we plot one of them for odd

and the other one for even momentum grids. Red (blue) and green

colors indicate states that are localized on the left (right) edge and in

the bulk of the system, respectively.

manifesting the bulk-boundary correspondence, where

d̂(k) = d(k)/|d(k)|. In NIs, C = 0. The nontrivial Chern

number gives rise to quantized electrical and thermal Hall

conductivities, which we discuss shortly. This model breaks

the sublattice symmetry (S) as there exists no unitary operator

that anticommutes with H(k) and the T symmetry [8,9]. A

charge-conjugation symmetry (C), generated by τ1K where

K is the complex conjugation [26], arises solely because

we neglect the particle-hole asymmetry for simplicity as it

does not play any role in determining the topology of the

insulators.

Various phases of this model Hamiltonian in terms of the

Chern number and the associated band structures are shown

in Fig. 1(a). The topological regime fragments into two sec-

tors depending on the band inversion momentum in the BZ

(KTI
inv). Specifically, KTI

inv = (0, 0) (Ŵ point) for 0 < m0 < 2,

and KTI
inv = (π, π ) (M point) for −2 < m0 < 0. In these two

phases, C = +1 and −1, respectively. The transition between

them takes place through a band gap closing at the X = (π, 0)

or Y = (0, π ) point when m0 = 0. Two NIs are born from

these TIs via bulk gap closings at the M and Ŵ points when

m0 = −2 and +2, respectively. Even though the bands are

noninverted in NIs, the parity-polarized conduction (valence)
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FIG. 4. Energy spectra of HBdG(k) [Eq. (4)] in the presence of an edge dislocation-antidislocation pair with Burgers vectors b = ±aêx ,

placed symmetrically in a periodic system with linear dimensions L = 24 in the x and y directions, for � = 0.5, and (a) m0 = −1.0, (b) m0 =

−2.0, and (c) m0 = 0.0, yielding Ctot = +2, +1, and 0 (with nontrivial Zak phase) [Fig. 2(a)], respectively. The insets show near-zero-energy

states, whose local density of states is highly localized around the defect cores.

band displays band minima (maxima) near the Ŵ and M

points, respectively, for m0 > 2 and m0 < −2. In this respect,

the band-gap minima in NIs occurs at KNI
min = KTI

inv of their

proximal parent TIs. Although plays no role in topological

classification, H(k) enjoys an emergent inversion symmetry

τzH(k)τz = H(−k), resulting from the opposite parities of

two involved orbitals that also pins KTI
inv and, thus, KNI

min at

the high-symmetry points of the BZ [27], typically the case

in topological materials and models [8,9]. Throughout, we as-

sume that there is no translational symmetry breaking causing

doubling of unit cell or folding of the BZ. Before address-

ing the proposal to distinguish NIs with different KNI
min’s, we

characterize the normal state in terms of the electrical (σxy)

and thermal (κxy) Hall responses to facilitate the forthcoming

discussion.

Electrical Hall conductivity. We compute σxy in a

six-terminal geometry at zero temperature [27]. Since

mesoscopic details of the device or scattering region and

leads play a pivotal role in obtaining meaningful transport

responses, here, we briefly discuss their geometry used

for the calculations [Fig. 1(b)]. A rectangular scattering

region containing the system is maintained at a voltage

V . It is connected to six terminals. All of them are

kept at different voltages with the help of reservoirs.

To generate transverse electrical response, we apply

a voltage gradient between lead 1 (V1 = −�V/2) and

lead 4 (V4 = �V/2), resulting in a longitudinal electrical

current (Iel) between them. No current is flowing between

the transverse leads. They serve as the voltage probes.

This setup allows us to calculate σxy, generated between

the transverse leads by extracting the scattering matrix

using Kwant [28]. The current-voltage relation is given

by Iel = GelV, with I⊤
el = (Iel, 0, 0,−Iel, 0, 0) and V⊤ =

(−�V/2,V2,V3,�V/2,V5,V6). The conductance matrix Gel

contains only the transmission blocks of the scattering matrix.

Upon finding Gel, we extract different voltages from the

current-voltage relation. Subsequently, we compute the

transverse electrical resistance Rel
xy = (V2 + V3 − V5 −

V6)/(2Iel) [29–31]. In units of e2/h, we find σxy = 1/Rel
xy = C

[Fig. 1(b)].

Thermal Hall conductivity. The same six-terminal geome-

try can be used to compute κxy. The scattering region is now

maintained at a temperature T . All six terminals are kept

at different temperatures. We apply a temperature gradient

between lead 1 (T1 = −�T/2) and lead 4 (T4 = �T/2). It

results in a longitudinal thermal current (Ith) from lead 1 to

lead 4. The current-temperature relation is captured by the ma-

trix equation Ith = AthT, where I⊤
th = (Ith, 0, 0,−Ith, 0, 0) and

T⊤ = (−�T/2, T2, T3,�T/2, T5, T6). The matrix elements

of Ath are given by [32,33]

Ath,i j =

∫ ∞

0

E2

T

(

−
∂ f (E , T )

∂E

)

[δi jμ j − Tr(t†
i jti j )]dE , (3)

where μ j denotes the number of propagating modes in the jth

lead, f (E , T ) = 1/{1 + exp [E/(kBT )]} is the Fermi-Dirac

distribution function, ti j is the transmission part of the scat-

tering matrix between the leads i and j, and the trace (Tr) is

taken over the conducting channels. Upon obtaining Ath, we

calculate the temperature at various leads from the current-

temperature relation. The transverse thermal resistance is

Rth
xy = (T2 + T3 − T5 − T6)/(2Ith ). For both electrical and

thermal Hall resistances, the average over different terminals

is taken to avoid contact resistance effects, giving rise to ro-

bust quantized values. Inverting Rth
xy, we obtain κxy = (Rth

xy)−1

[32–35]. Note that the integrand in Eq. (3) depends on the

derivative of the Fermi-Dirac function, which is valid in the

limit T → 0 [27]. We compute κxy for T = 0.01 (in the energy

unit). In units of κ0, we find kxy = C [Fig. 1(b)].

Superconductivity. Therefore, NIs with distinct KNI
min’s can-

not be distinguished from any response of charged fermions.

Such a goal can nevertheless be accomplished when the sys-

tem is conducive to Cooper pairing. The charge-conjugation

symmetry allows this system to support only one local pair-

ing [36]. The effective single-particle BdG Hamiltonian then

reads HBdG = 1
2

∑

k
(�Nam

k
)†HBdG(k)�Nam

k
, where �Nam

k
=

[�k, τ1�
⋆
−k

]⊤ is the Nambu-doubled spinor and

HBdG(k) = d1(k)Ŵ01 + d2(k)Ŵ02 + d3(k)Ŵ03 + �Ŵ13. (4)

The 4 × 4 Dirac matrices are Ŵab = ηa ⊗ τb. The new set of

Pauli matrices {ηa} act on the Nambu space. The factor of 1/2

in HBdG stems from the Nambu doubling.

Computation of the phase diagram of HBdG(k) is

greatly simplified by noting that a unitary rotation by

U = exp[−iπŴ20/4] brings it to a block-diagonal form

U †HBdG(k)U = H
+
BdG(k) ⊕ H

−
BdG(k), where H

±
BdG(k) = τ ·

d
±(k) with d

±(k) = (d1, d2, d±
3 )(k) and

d±
3 (k) = m0 ± � − t0[cos(kxa) + cos(kya)]. (5)
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The global phase diagram of HBdG(k) can now be constructed

in terms of the total Chern number Ctot = C+ + C− as shown

in Fig. 2(a), where C± are the Chern numbers for H±
BdG(k),

computed from Eq. (2). It features TSCs with Ctot = ±1 and

±2, besides the ones with Ctot = 0. The Ctot = 0 sector frag-

ments into two classes, which can be distinguished in terms of

a weak topological invariant, namely, the Zak phase [37–40].

The one with a nontrivial Zak phase is named weak TSC [27].

Thermal Hall effect. We now compute responses of the

paired states from Fig. 2(a), capturing the signatures of their

nontrivial topological invariants. At this point, we should note

that once superconductivity develops in the system, electri-

cal charge responses become ill defined as Cooper pairs do

not obey the charge conservation. However, as the energy of

the system is conserved, κxy serves as a bona fide topologi-

cal response to characterize the paired states. Details of the

computation of κxy in a six-terminal geometry has already

been discussed. So, here we only quote the final results. We

find that κxy is nonvanishing only when Ctot is nonzero and

half-integer quantized, namely, κxy/κ0 = −Ctot/2 [32–34].

Therefore, TSCs with Ctot = ±1 and ±2, give κxy/κ0 = ∓0.5

and ∓1, respectively, as shown in Fig. 2(b). However, κxy = 0

whenever Ctot = 0, irrespective of whether the superconduct-

ing phase possesses a nontrivial Zak phase or not. It should

be noted that the sign of κxy can be changed without altering

the nature of the TSC, namely, the BdG band inversion mo-

mentum (KBdG
inv ), by taking τ → −τ, for example. Thus, a full

characterization of TSCs also demands a smoking gun probe

of KBdG
inv .

In addition, we compute the longitudinal thermal con-

ductance Gth = (Rth
xx )−1, where Rth

xx = (T3 − T2)/Ith in the

six-terminal setup. In TSCs with nontrivial Ctot, Gth = |kxy|,

whereas, Gth = 0 in the trivial paired state. Most importantly,

in the weak TSC phase Gth/κ0 = 1. Therefore, Gth always

measures the number of edge modes equals to 2(G/κ0). Both

(half)-quantized Gth and κxy are robust against random charge

impurities of moderate strengths, except in the weak TSC

phase where Gth = κ0 survives only in the weak disorder

regime [27].

Edge band structure. The topological nature of the super-

conductors and the associated KBdG
inv can be established from

the band structure of HBdG(k) in a semi-infinite system with

only kx or ky as a good quantum number. One-dimensional

|Ctot|-fold degenerate edge modes then appear as dispersive

states along kx or ky, separated from the bulk states. See Fig. 3.

Furthermore, the edge modes cross the zero energy exactly at

KBdG
inv . We find that TSC with Ctot = −2 (+2) supports doubly

degenerate edge states with the BdG band inversion at the

Ŵ (M) point. The Ctot = ±1 TSCs replicate this outcome.

But the edge modes are, then, nondegenerate. The paired

state with Ctot = 0 supports counterpropagating edge modes,

crossing the zero energy at kx or ky = 0 and π , only when it

possesses a nontrivial Zak phase. Next we show that disloca-

tion lattice defects probe KBdG
inv .

Edge dislocation. Two-dimensional edge dislocations are

constructed from the so-called Volterra cut-glue procedure.

The main idea is to cut a line of atoms up to a site, called the

dislocation core as a first step. Subsequently, the sites across

the cut are glued. This way, the system regains translational

symmetry everywhere except near the dislocation core where

the missing translation characterizes the defect in terms of the

Burgers vector (b). Due to this, when a BdG fermion encir-

cles the defect core, it picks up a hopping phase exp[i
dis],

governed by the K · b rule [12,41–51], where 
dis = KBdG
inv · b

(modulo 2π ). Following this principle, we find that TSCs

with Ctot = −1 (−2) support one (two) pair(s) of zero-energy

dislocation modes. Furthermore, the TCS with Ctot = 0, but a

nontrivial Zak phase features two zero-energy defect modes.

See Fig. 4. In all these phases 
dis = π (nontrivial) when

b = aêx or aêy as KBdG
inv = (π, π ) therein, resulting in edge

modes crossing the zero energy at kx or ky = π (Fig. 3). For

all the other paired states 
dis = 0 (trivial). None of them,

thus, hosts any zero-energy dislocation mode.

These observations can be supported from an alternative

explanation. Note that two edges, introduced during the cut

procedure, support counterpropagating edge modes. Once

these two edges are glued, the associated edge modes hy-

bridize and suffer level repulsion. When n number of edge

modes cross the zero energy at momentum π or 0, such a

level repulsion can be modeled by a domain wall or uniform

Dirac mass, acting on the edge subspace. Then, the Jackiw-

Rebbi mechanism applies [52], and in the former situation,

the dislocation core supports n pairs of localized Majorana

zero modes.

Discussions. From a paradigmatic toy square lattice model,

featuring T -breaking TIs with distinct topological invariant

(C) and KTI
inv, here, we argue that their proximal NIs with

band-gap minima at KNI
min = KTI

inv can be distinguished, but

only when TSCs develop in the system. In particular, κxy and

the response to the dislocation lattice defects inside the paired

states (governed by KBdG
inv = KNI

min) unambiguously distinguish

parent NIs with different KNI
min’s. A generalization of this pro-

posal possibly rests on the answer to the following question.

Can two NIs realized in the limits m0 → ±∞ be

adiabatically connected? In these two limits, the kinetic

energy becomes unimportant and NIs can be modeled by

a simple Hamiltonian HNI = m0Ŵ2N , where Ŵ2N is a 2N-

dimensional traceless Hermitian matrix and 2N is the total

number of bands in the system, with N = 1 in our model. The

mass term HNI is always accompanied by a single Hermitian

matrix as it does not break any fundamental or discrete lattice

symmetry and, thus, transforms under the trivial singlet A1g

representation under the crystallographic space group [8,9].

At half-filling, there are N-filled valence and N empty conduc-

tion bands with a band-gap 2m0 between them. Irrespective

of the representation, eigenvalues of Ŵ2N are +1 and −1

(named generalized parity eigenvalues), and each of them

is N-fold degenerate. The corresponding wave functions are

parity eigenstates. When m0 → ∞, the conduction (valence)

band is constituted by positive (negative) parity eigenstates.

In the m0 → −∞ limit, the situation is exactly the opposite.

See, for example, Fig. 1(a). As the parity eigenstates are

orthogonal to each other, two atomic insulators realized in the

limits m0 → ±∞, therefore, cannot be smoothly deformed

into each other. This proof allows us to, at least, conjecture

that our proposal to distinguish trivial atomic insulators by

inducing TSCs should be applicable to systems of arbitrary

dimensionality (above one) belonging to arbitrary symmetry

class as long as it can support distinct TIs with different KTI
inv’s.

A further rigorous mathematical proof of this statement (if it
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exists) is beyond the scope of the present Letter. See, however,

Refs. [16,17].

Outlook. Nature harbors a plethora of TIs with the hallmark

band inversion at various points in the BZ [3–23]. In these

systems, TI-NI quantum phase transitions can be triggered

by changing the quantum well width [53] or via chemical

substitutions [54–58] or by applying a hydrostatic pressure

[59,60]. When doped, these quantum materials typically ac-

commodate TSCs [61]. Here, only for the sake of simplicity,

we set the chemical potential to zero. Our proposal holds even

when the insulators are doped, which favors nucleation of

TSCs by forming a Fermi surface. Most importantly, doping

lowers the threshold pairing amplitude to realize TSC and

when the attractive pairing interaction resides only in the

close proximity to the Fermi surface (the BCS pairing mech-

anism), realized within the valence or conduction band upon

doping the insulators, TSCs appear for an infinitesimal pair-

ing amplitude [27,62], making our proposal operative even

away from the TI-NI critical point. Inclusion of longer-range

hopping in the normal state often accommodates crystalline

topological phases [12] without removing the NIs with the

band minima near the Ŵ and M points nor the candidate TSC,

promoting our proposal beyond the paradigm of toy models.

Therefore, the task is to induce TSCs in doped topological

materials with different KNI
inv’s after driving the system into

a NI. Although the thermal Hall conductivity is intimately

tied with the breaking of the T in the paired state (class D),

responses to dislocation lattice defects are applicable across

all symmetry classes. Although challenging, κxy nowadays is

routinely measured with extremely high accuracy [63–68],

and Majorana dislocation modes can be detected via scanning

tunneling microscope [69–71]. Therefore, our proposal to dis-

tinguish NIs from the responses of their proximal TSCs can

be tested in well-characterized topological quantum materials

with existing experimental tools. Despite abundance of topo-

logical materials with the inversion symmetry in nature, which

is only an emergent symmetry in our Letter, it will be worth an

attempt to extend the jurisdiction of our proposal to systems

where the inversion symmetry is broken at the microscopic

level.
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