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Immersed in external magnetic fields (B), buckled graphene constitutes an ideal tabletop setup, manifesting a
confluence of time-reversal symmetry (7°) breaking Abelian (B) and T -preserving strain-induced internal axial
(b) magnetic fields. In such a system, here we numerically compute two-terminal conductance (G), and four-
as well as six-terminal Hall conductivity (oy,) for spinless fermions. On a flat graphene (b = 0), the B field
produces quantized plateaus at G = =%|oy,| = (2n + 1)e?/h, where n = 0, 1, 2, . ... The strain-induced b field
lifts the twofold valley degeneracy of higher Landau levels and leads to the formation of additional even-integer
plateaus at G = +|o,,| = (2,4, ...)e*/h, when B > b. While the same sequence of plateaus is observed for G
when b > B, the numerical computation of o, in Hall bar geometries in this regime becomes unstable. A plateau
at G = o,, = 0 always appears with the onset of a charge-density-wave order, causing a staggered pattern of
fermionic density between two sublattices of the honeycomb lattice.

DOI: 10.1103/PhysRevB.108.155426

I. INTRODUCTION

The interplay of Abelian (B) and axial (b) magnetic fields
gives birth to a unique sequence of quantum Hall states
and competing length scales of topological defect modes
in two-dimensional Dirac materials [1-3]. In this regard, a
honeycomb membrane of carbon atoms, i.e., graphene, con-
stitutes a tabletop platform where such a confluence can
be experimentally studied. When buckled, the electrome-
chanical coupling in a graphene flake produces time-reversal
symmetric axial magnetic fields [4—6]. Just like its Abelian
counterpart, uniform axial magnetic fields produce valley
degenerate Landau levels (LLs). While the time-reversal sym-
metry (7) breaking external real magnetic field (also named
here Abelian) points in the same direction near two inequiv-
alent valleys of the erstwhile hexagonal Brillouin zone (BZ),
harboring massless Dirac fermions, its axial cousin points in
the opposite direction near the complementary valleys. As
the strain-induced internal magnetic field (b) couples two
flavors of massless Dirac fermions residing near the oppo-
site valleys with opposite signs (see Supplemental Material
[7]), it is called axial [8] and it preserves the 7 symmetry.
Therefore, the net effective magnetic fields near two valleys
are of different magnitude in the simultaneous presence of
Abelian and axial fields. Moreover, their directions depend on
the relative strengths of these two fields. Despite tremendous
experimental activities exploring the quantum Hall physics in
graphene over the past several years [9—14], the confluence of
Abelian and axial magnetic fields has gained little experimen-
tal attention so far [15,16].

Here we present a comprehensive numerical study of a
mesoscopic graphene sample, subject to Abelian and/or axial
magnetic fields in multiterminal arrangements using KWANT
[18]. Specifically, we compute two-terminal conductance (G)

and transverse Hall conductivity (o,,) in four- and six-
terminal setups (Fig. 1). Throughout, G and oy, are measured
in units of e?/h. As the competition between the B and b fields
is insensitive to electronic spin (leaving aside the Zeeman
coupling of the former), here we consider a collection of
spinless fermions.

II. KEY RESULTS

A flat graphene flake, subject to a real magnetic field
(B), displays well-known quantized plateaus at G = %|o,y| =
2n 4 1, manifesting the twofold valley degeneracy of each
LL, where n =0, 1,... [19] (Fig. 2). A strain-induced ax-
ial magnetic field (b) lifts the valley degeneracy of all the
LLs, except the topologically protected zeroth one [1,2]. As
a result, when B > b, additional plateaus are observed at
G = *lo,y| =2,4,... (Fig. 3). In the opposite limit when
b > B, the higher LLs remain valley nondegenerate and we
find plateaus at G = n 4 1. Once the real magnetic field is
switched off in an otherwise strained graphene, valley degen-
erate axial LLs lead to a plateau formation at G = 2n + 1,
while o,, = 0. See Fig. 4. However, when the axial field domi-
nates over a finite B field, the numerical procedure in four- and
six-terminal geometries becomes unstable in KWANT, and we
fail to capture any conclusive quantization of oy,. The forma-
tion of a charge-density-wave (CDW) order in all these cases
gaps out the zeroth LL and, in turn, produces a G = oy, =0
plateau (Figs. 2—4).

III. MODEL

The tight-binding Hamiltonian in graphene with only
nearest-neighbor (NN) hopping (¢;;) reads

I‘I() = — thk a;bk + H.c. +8 Za;aj - Zb;ﬂbk
(J.k) J k
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FIG. 1. Schematic (a) two- (b) four- and (c) six-terminal setups.
Semi-infinite (red) hexagons are the leads, attached to the scattering
region of length L and width W, where the uniform hopping (¢) is
denoted by the black lines. The axial (b) [Abelian (B)] magnetic
fields are shown by red [blue] arrows. Strain in graphene (yielding
b) is produced by modified hopping, #[1 4 (w/W )y], along colored
vertical bonds, where y, is the y coordinate of the site living at the
bottom of the corresponding colored bond, with y, € [-W/2, W/2]
and y; = 0 at the center of the scattering region in the y direction, and
w sets the strength of the b field [Eq. (2)]. Sites from two sublattices
are shown by red and blue filled circles.

The summation in the first term is restricted over three NN
sites, the second term represents a sublattice resolved stag-
gered potential (discussed below), and a; and a; (b; and b;)
are the fermionic creation and annihilation operators on
a (b) sublattices, respectively, constructed from the linear
combinations of the Bravais vectors a; = (1,0)d and a, =
(1, +/3)d /2. Throughout, we set the lattice spacing d = 1.
A Fourier transformation of Hy with ¢; =t reveals linearly
dispersing massless Dirac fermions near two inequivalent
corners of the hexagonal BZ, suitably chosen at +K =
27 (v/3, 1)/(+/3d) [20]. The above model with only NN hop-
ping (8 = 0) belongs to class BDI and the zigzag edge of
graphene hosts localized zero-energy topological modes [21].

The orbital effect of an external B field is incorporated
via a Peierls substitution, t;; — t; exp[2mi¢ ] [22]. The flux

phase ¢ji is given by the line integral ¢ = f}k A - dl from
site j to site k. To introduce a uniform Abelian magnetic field
B = Bz, we choose a Landau gauge for the magnetic vector

potential A = (—By, 0, 0), such that V x A = B. It results in
tjx = texp[—im ®(x — x;)(y; + y)], with & = Beﬁz/h be-
ing the flux threading a unit cell of area £2. Here, (x j,y;j) are
the real-space coordinates of the site j (see Supplemental Ma-
terial [7]). Application of an external magnetic field quenches
the conical Dirac dispersion into a set of highly degenerate
LLs, as shown in Fig. 2(al).

The axial or pseudo-magnetic field in a graphene flake
originates from a particular class of strain. For example, it can
be modeled via a uniform modulation of one of the three NN
bonds, here chosen to be the one perpendicular to the zigzag
edge, from one end of the scattering region of width W to
the other [23-25] (or by a Gaussian bump [26]). The hopping
amplitude along such bonds between the jth and kth sites,
respectively, located at (x;, y;) and (xx, y¢) in the presence of
Abelian and axial magnetic fields is [2]

= 11+ 0 2 Jepl-im @0 —x0; +30l. @

where y, € [-W, W]/2, and the hopping along two other NN
bonds retains its original strength . Here, ® measures the
strength of the strain, yielding an axial magnetic field b ~ w.
Due to the strain gradient, the axial LLs acquire slightly inho-
mogeneous Fermi velocity, and hence they are not perfectly
flat. Compare Figs. 4(a) and 2(al).

In half-filled graphene, the average fermionic density on
any site is 1/2 when § = 0. Maintaining the overall fill-
ing unchanged, the system can develop a staggered pattern
of fermionic density between two sublattices, resulting in a
CDW order or staggered potential § [Eq. (1)]. In the presence
of Abelian and/or axial magnetic fields, it can be supported
by sufficiently weak NN Coulomb repulsion, following the
spirit of magnetic catalysis [27-30]. Here, however, we add
such an order from the outset, yielding average fermionic
densities 1/2 4§ on a and b sublattices, respectively, as long
as § < 0.5. The quantity § measures the strength of the CDW
order. Next we discuss two-, four-, and six-terminal setups to
compute quantum transport in all these systems using KWANT
[18].

A. Two-terminal transport

In a two-terminal setup, both the left and the right sides
of a square-shaped scattering region, made of graphene lat-
tices, are connected to leads [Fig. 1(a)]. But we arrive at the
same sequence of two-terminal conductance (G), and four-
and six-terminal Hall conductivity (oy,) when computed with
a rectangular scattering region, as shown schematically in
Fig. 1. These symmetric leads are semi-infinite in the sense
that they are connected to the system on one side and extend
to infinity on the other side, preserving the translational invari-
ance. In all our calculations, the leads and the scattering region
have an identical Hamiltonian, as then the energy eigenstates
in these two regions match at their interfaces, resulting in the
smooth propagation of waves in the latter region, in turn sta-
bilizing the numerical analyses [18]. Nonetheless, we verify
that if the lead Hamiltonian corresponds to a pristine graphene
Hamiltonian, our results do not change qualitatively. The leads
are attached to the entire last set of sites of the scattering
region. The corresponding unitary scattering matrix is given
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FIG. 2. Band structure of a zigzag graphene nanoribbon (lead Hamiltonian), containing 120 sites in the y direction and with translational
invariance in the x direction, fort =1, B=2 x 1073, w = 0.0, and (al) § = 0.0 and (b1) § = 0.1. The magnetic field induces flat twofold
valley degenerate electronlike and holelike LLs with energies ~./n, where n € Z is the LL index. In (al) and (bl), red dashed vertical lines
indicate the locations of two Dirac points along the momentum axis. Modes that are living near the top (T) and bottom (B) edges (dispersive
ones [17]) and localized near the middle (M) of the system are color coded (see the color bars). Two-terminal conductance G, computed in a
system of L = W = 120, shows quantized plateaus at 2n + 1 in (a2) and (b2). The CDW order () gives birth to the G = 0 conductance plateau
in (b2), as it gaps out the zeroth LL. (a3) Four-terminal and (a4) six-terminal Hall conductivities in a L = W = 400 system show quantized
Hall plateaus at oy, = +=(2n + 1) when é = 0. A finite § resolves the o,, = 0 Hall plateau in (b3) four- and (b4) six-terminal measurements.
Here, G and o,, are computed within the energy range (—0.35, 0.35), containing 400 grid points.

by

5= (j ﬁ) 3)

preserving the total probability of the incoming and outgoing
modes. Here, r and 7' (¢ and t’) are the reflection (transmis-
sion) parts of S. We compute the conductance G = Tr(¢7t) of
the system from the transmission channels. The trace (Tr) is
taken over the conducting channels. Notice that there is no
bias voltage in the system, and we compute G in two-terminal
setup, and oy, in four- and six-terminal setups, as a function
of varying energy E that take into account the number of filled
LLs and associated chiral edge modes below a certain energy
E. Alternatively, one can compute G and oy, at fixed energy
E =0 by varying the bias voltage in the scattering region,
which leads to identical outcomes.

B. Four-terminal transport

To capture the Hall response, one needs to go beyond the
two-terminal arrangement and consider a multiterminal setup.
Here we compute the four-terminal conductance in graphene,
subject to real and/or pseudo magnetic fields. A current j
flows between Lead 1 and Lead 3, and the Hall voltage de-
velops between the vertical Lead 2 and Lead 4, acting as
the Hall probes [Fig. 1(b)]. Upon solving the current-voltage
linear equation j = GV, where G is the 4 x 4 conductance
matrix, we obtain the Hall voltage V, — V4, where V, is the
voltage in the pth lead. The Hall conductivity in terms of
E,=V5—=V))/Land E, = (V, — V4)/W, where L (W) is the

length (width) of the scattering region, is
ijy

= L 4
= @)

C. Six-terminal transport

Since the six-terminal Hall bar geometry is most com-
monly employed in experiments to measure the Hall re-
sponses, here we also compute oy, in this setup [Fig. 1(c)]. It
allows us to compute the transverse Hall voltage between two
vertical leads [Lead 2 (3) and Lead 6 (5)] and a longitudinal
voltage between Lead 5 (3) and Lead 6 (2). We consider a
current j flowing only between lead 1 and lead 4 under the
influence of an electric field E. In the same spirit of the four-
terminal calculation, here we have E, = (V, — V3)/L,3 and
E, = (V3 — Vs5)/W. Here, Ly; is the distance between Lead
2 and Lead 3, which we set to be L/5. Then, oy, can be
computed from Eq. (4). While computing oy, in KWANT, it
is important to employ a fine energy mesh to observe its sharp
quantized plateaus.

IV. RESULTS

To set the stage, we first consider a flat graphene, subject to
Abelian magnetic fields (B). The system then supports twofold
valley degenerate flat LLs, resulting from bulk cyclotron
orbits, at energies £+/2nB. The two-terminal conductance
then shows monotonically increasing odd integer quantized
plateaus at G = 2n + 1, as the chemical potential is grad-
ually tuned away from the half filling, thereby enhancing
the number of occupied unidirectional quantized transmission
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FIG. 3. Band structure of a zigzag graphene nanoribbon (lead Hamiltonian) containing 400 sites in the y direction and with translational
invariance in the x direction for B = 1073, @ = 0.2, such that B > b, and (al) § = 0.0 and (b1) § = 0.1, for which two-terminal conductance
is shown in (a2) and (b2), respectively. The Hall conductivity oy, in the four- [six-]terminal setup is, respectively, shown in (a3) and (b3) [(a4)

and (b4)]. Due to the valley degeneracy lifting of the higher LLs, additional even-integer plateaus at G = £|o,,| = 2,4, ...

are formed (see

Fig. 2), while the plateau at G = o, = 0 appears only in the presence of the CDW order. Insets in (b4) show the narrow plateaus for o, = £2.
Numerical calculations are performed in a system with L = W = 600, and with 400 grid points in the energy window (—0.25, 0.25). In (al)
and (b1), red dashed vertical lines indicate the locations of two Dirac points along the momentum axis. Modes that are living near the top (T)
and bottom (B) edges (dispersive ones) and localized near the middle (M) of the system are color coded (see the color bars).

channels. However, this setup is insensitive to the direction
of the transmission channels and the nature of the carriers
(electron or hole). This information unfolds in four- and six-
terminal setups, both featuring quantized Hall conductivity
plateaus at o, = £(2n + 1), respectively, in the electron- and
hole-doped regimes. The zeroth LLs near the opposite val-
leys live on complementary sublattices of graphene. Thus, the
formation of a CDW order gaps out the zeroth LL, thereby
forming an insulator at half filling. Then an additional plateau
at G = o,y = 0 develops. These results are summarized in
Fig. 2.

Once buckled, the resulting axial magnetic field (b) lifts
the valley degeneracy of all the LLs, as the effective magnetic
fields are now Beiff = (B % D) near the valleys at =K, respec-
tively. Two sets of particle-hole symmetric LLs then appear
at energies :|:[2n|Beiff|]1/ 2 with the respective areal degen-
eracies Dy = |B§f| /(27). But, zeroth LLs remain pinned at
zero energy, reflecting their topological protections [1,2,31].
Although it is challenging to extract b directly in terms of
o from Eq. (2), notice that when B = b, only one valley
with B:ff = 2B = 2b hosts LLs, while the other one remains
gapless as B; = 0 therein. This is a quantum critical point,
separating the field-dominated regime (B > b) from the strain-
dominated one (b > B). We first consider the former one (see
Supplemental Material [7]).

When B > b, the edge modes for two copies of nondegen-
erate LLs propagate in the same direction, as the effective
magnetic fields B > 0 point in the same direction near two
valleys. Consequently, the two-terminal conductance shows
plateaus at all integers. The Hall conductivity in such a system
can be computed from the Stfeda formula, oy, = (dN/3B),
[32]. Here, N is the bulk electronic density and the derivative
is taken at a fixed chemical potential (x). Under a small
change of the magnetic field §B, the change in the number of

states below (for electron doping) or above (for hole doping)
the chemical potential is 6N = Q(ny + n_)B, where Q is
the area of the graphene sample and ny is the number of
filled LLs with areal degeneracies D, respectively, yielding
Oxy = n4 + n_ = n. Therefore, in the field-dominated regime,
the Hall conductivity only counts the number (n) of filled
LLs at a fixed chemical potential, measured from the half
filling. Concomitantly, we find oy, = &(n 4 1) in both four-
and six-terminal Hall bar geometries. In this regime, zeroth
LLs near two valleys continue to reside on complementary
sublattices [1]. Thus, the formation of a CDW order resolves
an additional plateau at G = o,, = 0. These findings are dis-
played in Fig. 3.

Finally, we focus on the strain-dominated regime, as
pseudo- or axial magnetic fields in buckled graphene can,
in principle, be extremely large (a few-hundred Tesla) [4-6].
When B = 0, the system supports valley degenerate axial LLs,
which are, however, slightly dispersive, possibly stemming
from a spatially modulated Fermi velocity of Dirac fermions
[33]. The edge modes, residing near the £K valleys, propa-
gate in the opposite directions, manifesting the time-reversal
symmetry, and are thus helical. In such a system, we find
G =2n+1 in a two-terminal setup as it only counts the
number of conducting edge modes, while being insensitive to
their helicity. This observation strongly promotes the topolog-
ical nature of the helical edge modes, leading to quantized
transport (Fig. 4). But, oy, = 0 in both four- and six-terminal
arrangements due to the time-reversal symmetry (see Supple-
mental Material [7]).

Application of a weak external magnetic field (B < b)
lifts the valley degeneracy of all the axial LLs, except
the zeroth ones. We then find G =n+ 1 (Fig. 4). In this
regime, the Stieda formula implies o,, = ny — n_, suggest-
ing an oscillatory behavior of the Hall conductivity as the
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FIG. 4. Band structure of a zigzag graphene nanoribbon (lead
Hamiltonian) with 400 sites in the y direction and translational in-
variance in the x direction for w = 0.3, B=0[(a)]or B =2 x 107>
[(c) and (e)], and § = 0.0 [(a) and (c)] or § = 0.1 [(e)], such that
b > B (always), presented over a part of the BZ containing well-
separated LLs, realized by conveniently setting ¢+ = 10. We compute
two-terminal conductance (G) in a system with L =W = 400.
(b) With B =0, axial magnetic field (b) produces G =2n+1
plateaus, while additional even-integer plateaus at G = 2,4, ... ap-
pear with a finite but weak B field in (d). (f) The CDW stabilizes the
G = 0 plateau. In (a), (c), and (e), the Dirac points (see Figs. 2 and
3) fall outside the displayed region of k,, and modes that are living
near the top (T) and bottom (B) edges (dispersive ones) and localized
near the middle (M) of the system are color coded (see color bars).

chemical potential sweeps through the sea of electronlike or
holelike LLs [2]. Unfortunately, the KWANT-based numerical
procedure in Hall bar geometries then becomes extremely
unstable (see Supplemental Material [7]), possibly due to its
gauge dependence in multiterminal computation. And we fail
to reach any conclusion on the quantization of oy, in the
strain-dominated regime. When b > B, the zeroth LL wave

functions are localized on one sublattice near both valleys in
the bulk of the system, while they live on the complemen-
tary sublattice near its boundary. Therefore, a CDW order
can be developed by creating a density imbalance between
the bulk and the boundary of the system [30], which gaps
out the zeroth LL and in turn stabilizes a plateau at G =0
(Fig. 4).

V. SUMMARY AND DISCUSSIONS

Here we present a lattice-based extensive numerical analy-
ses of quantum transport in strained graphene, immersed in
external magnetic fields using KWANT [18], in two-, four-,
and six-terminal arrangements, capturing hallmarks of the
interplay between Abelian (B) and axial (b) magnetic fields
(Fig. 1). Our findings are consistent with theoretical pre-
dictions from the continuum model in various limits, which
include (a) flat graphene in ordinary magnetic fields (b = 0)
(Fig. 2) [19], (b) field-dominated regime (B > b) (Fig. 3) [1],
and (c) strain-dominated regime (with only finite b as well as
b > B) (Fig. 4) [2]. Possibly due to the gauge dependence in
the numerical procedure in KWANT, we failed to underpin the
expected oscillatory behavior of o, in the strain-dominated
regime [2]. Neither different gauge choices, A = (0, Bx, 0)
and A = (—By, Bx, 0)/2, nor the change in relative position
of the voltage and current leads in comparison to the one
shown in Fig. 1 resolves this issue. To circumvent this limi-
tation, in the future we will reinvestigate this problem using
the nonequilibrium Green’s function method [34,35]. Fur-
thermore, given that the thermal Hall conductivity (x,,) has
been computed [36] and measured [37] in a flat graphene
with B fields, we will also compute quantized «,, featuring
the interplay of B and b fields. Our theoretical investigation
should stimulate future experiments to showcase the intrigu-
ing confluence of magnetic fields in two-dimensional Dirac
materials, which is still in its infancy [15,16].
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