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Transport in strained graphene: Interplay of Abelian and axial magnetic fields
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Immersed in external magnetic fields (B), buckled graphene constitutes an ideal tabletop setup, manifesting a

confluence of time-reversal symmetry (T ) breaking Abelian (B) and T -preserving strain-induced internal axial

(b) magnetic fields. In such a system, here we numerically compute two-terminal conductance (G), and four-

as well as six-terminal Hall conductivity (σxy) for spinless fermions. On a flat graphene (b = 0), the B field

produces quantized plateaus at G = ±|σxy| = (2n + 1)e2/h, where n = 0, 1, 2, . . . . The strain-induced b field

lifts the twofold valley degeneracy of higher Landau levels and leads to the formation of additional even-integer

plateaus at G = ±|σxy| = (2, 4, . . . )e2/h, when B > b. While the same sequence of plateaus is observed for G

when b > B, the numerical computation of σxy in Hall bar geometries in this regime becomes unstable. A plateau

at G = σxy = 0 always appears with the onset of a charge-density-wave order, causing a staggered pattern of

fermionic density between two sublattices of the honeycomb lattice.

DOI: 10.1103/PhysRevB.108.155426

I. INTRODUCTION

The interplay of Abelian (B) and axial (b) magnetic fields
gives birth to a unique sequence of quantum Hall states
and competing length scales of topological defect modes
in two-dimensional Dirac materials [1–3]. In this regard, a
honeycomb membrane of carbon atoms, i.e., graphene, con-
stitutes a tabletop platform where such a confluence can
be experimentally studied. When buckled, the electrome-
chanical coupling in a graphene flake produces time-reversal
symmetric axial magnetic fields [4–6]. Just like its Abelian
counterpart, uniform axial magnetic fields produce valley
degenerate Landau levels (LLs). While the time-reversal sym-
metry (T ) breaking external real magnetic field (also named
here Abelian) points in the same direction near two inequiv-
alent valleys of the erstwhile hexagonal Brillouin zone (BZ),
harboring massless Dirac fermions, its axial cousin points in
the opposite direction near the complementary valleys. As
the strain-induced internal magnetic field (b) couples two
flavors of massless Dirac fermions residing near the oppo-
site valleys with opposite signs (see Supplemental Material
[7]), it is called axial [8] and it preserves the T symmetry.
Therefore, the net effective magnetic fields near two valleys
are of different magnitude in the simultaneous presence of
Abelian and axial fields. Moreover, their directions depend on
the relative strengths of these two fields. Despite tremendous
experimental activities exploring the quantum Hall physics in
graphene over the past several years [9–14], the confluence of
Abelian and axial magnetic fields has gained little experimen-
tal attention so far [15,16].

Here we present a comprehensive numerical study of a

mesoscopic graphene sample, subject to Abelian and/or axial

magnetic fields in multiterminal arrangements using KWANT

[18]. Specifically, we compute two-terminal conductance (G)

*These authors contributed equally to this work.

and transverse Hall conductivity (σxy) in four- and six-

terminal setups (Fig. 1). Throughout, G and σxy are measured

in units of e2/h. As the competition between the B and b fields

is insensitive to electronic spin (leaving aside the Zeeman

coupling of the former), here we consider a collection of

spinless fermions.

II. KEY RESULTS

A flat graphene flake, subject to a real magnetic field

(B), displays well-known quantized plateaus at G = ±|σxy| =
2n + 1, manifesting the twofold valley degeneracy of each

LL, where n = 0, 1, . . . [19] (Fig. 2). A strain-induced ax-

ial magnetic field (b) lifts the valley degeneracy of all the

LLs, except the topologically protected zeroth one [1,2]. As

a result, when B > b, additional plateaus are observed at

G = ±|σxy| = 2, 4, . . . (Fig. 3). In the opposite limit when

b > B, the higher LLs remain valley nondegenerate and we

find plateaus at G = n + 1. Once the real magnetic field is

switched off in an otherwise strained graphene, valley degen-

erate axial LLs lead to a plateau formation at G = 2n + 1,

while σxy = 0. See Fig. 4. However, when the axial field domi-

nates over a finite B field, the numerical procedure in four- and

six-terminal geometries becomes unstable in KWANT, and we

fail to capture any conclusive quantization of σxy. The forma-

tion of a charge-density-wave (CDW) order in all these cases

gaps out the zeroth LL and, in turn, produces a G = σxy = 0

plateau (Figs. 2–4).

III. MODEL

The tight-binding Hamiltonian in graphene with only

nearest-neighbor (NN) hopping (t jk) reads

H0 =

⎛

⎝−
∑
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t jk a
†
j bk + H.c.

⎞
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FIG. 1. Schematic (a) two- (b) four- and (c) six-terminal setups.

Semi-infinite (red) hexagons are the leads, attached to the scattering

region of length L and width W , where the uniform hopping (t) is

denoted by the black lines. The axial (b) [Abelian (B)] magnetic

fields are shown by red [blue] arrows. Strain in graphene (yielding

b) is produced by modified hopping, t[1 + (ω/W )yk], along colored

vertical bonds, where yk is the y coordinate of the site living at the

bottom of the corresponding colored bond, with yk ∈ [−W/2,W/2]

and yk = 0 at the center of the scattering region in the y direction, and

ω sets the strength of the b field [Eq. (2)]. Sites from two sublattices

are shown by red and blue filled circles.

The summation in the first term is restricted over three NN

sites, the second term represents a sublattice resolved stag-

gered potential (discussed below), and a
†
j and a j (b†

j and b j)

are the fermionic creation and annihilation operators on

a (b) sublattices, respectively, constructed from the linear

combinations of the Bravais vectors a1 = (1, 0)d and a2 =
(1,

√
3)d/2. Throughout, we set the lattice spacing d = 1.

A Fourier transformation of H0 with t jk = t reveals linearly

dispersing massless Dirac fermions near two inequivalent

corners of the hexagonal BZ, suitably chosen at ±K =
2π (

√
3, 1)/(

√
3d ) [20]. The above model with only NN hop-

ping (δ = 0) belongs to class BDI and the zigzag edge of

graphene hosts localized zero-energy topological modes [21].

The orbital effect of an external B field is incorporated

via a Peierls substitution, t jk → t jk exp[2π iφ jk] [22]. The flux

phase φ jk is given by the line integral φ jk =
∫ k

j
A · dl from

site j to site k. To introduce a uniform Abelian magnetic field

B = Bẑ, we choose a Landau gauge for the magnetic vector

potential A = (−By, 0, 0), such that ∇ × A = B. It results in

t jk → t exp[−iπ�(xk − x j )(y j + yk )], with � = Beℓ2/h be-

ing the flux threading a unit cell of area ℓ2. Here, (x j, y j ) are

the real-space coordinates of the site j (see Supplemental Ma-

terial [7]). Application of an external magnetic field quenches

the conical Dirac dispersion into a set of highly degenerate

LLs, as shown in Fig. 2(a1).

The axial or pseudo-magnetic field in a graphene flake

originates from a particular class of strain. For example, it can

be modeled via a uniform modulation of one of the three NN

bonds, here chosen to be the one perpendicular to the zigzag

edge, from one end of the scattering region of width W to

the other [23–25] (or by a Gaussian bump [26]). The hopping

amplitude along such bonds between the jth and kth sites,

respectively, located at (x j, y j ) and (xk, yk ) in the presence of

Abelian and axial magnetic fields is [2]

t jk → t
[

1 + ω
yk

W

]

exp[−iπ�(xk − x j )(y j + yk )], (2)

where yk ∈ [−W,W ]/2, and the hopping along two other NN

bonds retains its original strength t . Here, ω measures the

strength of the strain, yielding an axial magnetic field b ∼ ω.

Due to the strain gradient, the axial LLs acquire slightly inho-

mogeneous Fermi velocity, and hence they are not perfectly

flat. Compare Figs. 4(a) and 2(a1).

In half-filled graphene, the average fermionic density on

any site is 1/2 when δ = 0. Maintaining the overall fill-

ing unchanged, the system can develop a staggered pattern

of fermionic density between two sublattices, resulting in a

CDW order or staggered potential δ [Eq. (1)]. In the presence

of Abelian and/or axial magnetic fields, it can be supported

by sufficiently weak NN Coulomb repulsion, following the

spirit of magnetic catalysis [27–30]. Here, however, we add

such an order from the outset, yielding average fermionic

densities 1/2 ± δ on a and b sublattices, respectively, as long

as δ � 0.5. The quantity δ measures the strength of the CDW

order. Next we discuss two-, four-, and six-terminal setups to

compute quantum transport in all these systems using KWANT

[18].

A. Two-terminal transport

In a two-terminal setup, both the left and the right sides

of a square-shaped scattering region, made of graphene lat-

tices, are connected to leads [Fig. 1(a)]. But we arrive at the

same sequence of two-terminal conductance (G), and four-

and six-terminal Hall conductivity (σxy) when computed with

a rectangular scattering region, as shown schematically in

Fig. 1. These symmetric leads are semi-infinite in the sense

that they are connected to the system on one side and extend

to infinity on the other side, preserving the translational invari-

ance. In all our calculations, the leads and the scattering region

have an identical Hamiltonian, as then the energy eigenstates

in these two regions match at their interfaces, resulting in the

smooth propagation of waves in the latter region, in turn sta-

bilizing the numerical analyses [18]. Nonetheless, we verify

that if the lead Hamiltonian corresponds to a pristine graphene

Hamiltonian, our results do not change qualitatively. The leads

are attached to the entire last set of sites of the scattering

region. The corresponding unitary scattering matrix is given
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FIG. 2. Band structure of a zigzag graphene nanoribbon (lead Hamiltonian), containing 120 sites in the y direction and with translational

invariance in the x direction, for t = 1, B = 2 × 10−3, ω = 0.0, and (a1) δ = 0.0 and (b1) δ = 0.1. The magnetic field induces flat twofold

valley degenerate electronlike and holelike LLs with energies ∼
√

n, where n ∈ Z is the LL index. In (a1) and (b1), red dashed vertical lines

indicate the locations of two Dirac points along the momentum axis. Modes that are living near the top (T) and bottom (B) edges (dispersive

ones [17]) and localized near the middle (M) of the system are color coded (see the color bars). Two-terminal conductance G, computed in a

system of L = W = 120, shows quantized plateaus at 2n + 1 in (a2) and (b2). The CDW order (δ) gives birth to the G = 0 conductance plateau

in (b2), as it gaps out the zeroth LL. (a3) Four-terminal and (a4) six-terminal Hall conductivities in a L = W = 400 system show quantized

Hall plateaus at σxy = ±(2n + 1) when δ = 0. A finite δ resolves the σxy = 0 Hall plateau in (b3) four- and (b4) six-terminal measurements.

Here, G and σxy are computed within the energy range (−0.35, 0.35), containing 400 grid points.

by

S =
(

r t ′

t r′

)

, (3)

preserving the total probability of the incoming and outgoing

modes. Here, r and r′ (t and t ′) are the reflection (transmis-

sion) parts of S. We compute the conductance G = Tr(t†t ) of

the system from the transmission channels. The trace (Tr) is

taken over the conducting channels. Notice that there is no

bias voltage in the system, and we compute G in two-terminal

setup, and σxy in four- and six-terminal setups, as a function

of varying energy E that take into account the number of filled

LLs and associated chiral edge modes below a certain energy

E . Alternatively, one can compute G and σxy at fixed energy

E = 0 by varying the bias voltage in the scattering region,

which leads to identical outcomes.

B. Four-terminal transport

To capture the Hall response, one needs to go beyond the

two-terminal arrangement and consider a multiterminal setup.

Here we compute the four-terminal conductance in graphene,

subject to real and/or pseudo magnetic fields. A current j

flows between Lead 1 and Lead 3, and the Hall voltage de-

velops between the vertical Lead 2 and Lead 4, acting as

the Hall probes [Fig. 1(b)]. Upon solving the current-voltage

linear equation j = GV, where G is the 4 × 4 conductance

matrix, we obtain the Hall voltage V2 − V4, where Vp is the

voltage in the pth lead. The Hall conductivity in terms of

Ex = (V3 − V1)/L and Ey = (V2 − V4)/W , where L (W ) is the

length (width) of the scattering region, is

σxy =
jxEy

E2
x + E2

y

. (4)

C. Six-terminal transport

Since the six-terminal Hall bar geometry is most com-

monly employed in experiments to measure the Hall re-

sponses, here we also compute σxy in this setup [Fig. 1(c)]. It

allows us to compute the transverse Hall voltage between two

vertical leads [Lead 2 (3) and Lead 6 (5)] and a longitudinal

voltage between Lead 5 (3) and Lead 6 (2). We consider a

current j flowing only between lead 1 and lead 4 under the

influence of an electric field E. In the same spirit of the four-

terminal calculation, here we have Ex = (V2 − V3)/L23 and

Ey = (V3 − V5)/W . Here, L23 is the distance between Lead

2 and Lead 3, which we set to be L/5. Then, σxy can be

computed from Eq. (4). While computing σxy in KWANT, it

is important to employ a fine energy mesh to observe its sharp

quantized plateaus.

IV. RESULTS

To set the stage, we first consider a flat graphene, subject to

Abelian magnetic fields (B). The system then supports twofold

valley degenerate flat LLs, resulting from bulk cyclotron

orbits, at energies ±
√

2nB. The two-terminal conductance

then shows monotonically increasing odd integer quantized

plateaus at G = 2n + 1, as the chemical potential is grad-

ually tuned away from the half filling, thereby enhancing

the number of occupied unidirectional quantized transmission

155426-3
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FIG. 3. Band structure of a zigzag graphene nanoribbon (lead Hamiltonian) containing 400 sites in the y direction and with translational

invariance in the x direction for B = 10−3, ω = 0.2, such that B > b, and (a1) δ = 0.0 and (b1) δ = 0.1, for which two-terminal conductance

is shown in (a2) and (b2), respectively. The Hall conductivity σxy in the four- [six-]terminal setup is, respectively, shown in (a3) and (b3) [(a4)

and (b4)]. Due to the valley degeneracy lifting of the higher LLs, additional even-integer plateaus at G = ±|σxy| = 2, 4, . . . are formed (see

Fig. 2), while the plateau at G = σxy = 0 appears only in the presence of the CDW order. Insets in (b4) show the narrow plateaus for σxy = ±2.

Numerical calculations are performed in a system with L = W = 600, and with 400 grid points in the energy window (−0.25, 0.25). In (a1)

and (b1), red dashed vertical lines indicate the locations of two Dirac points along the momentum axis. Modes that are living near the top (T)

and bottom (B) edges (dispersive ones) and localized near the middle (M) of the system are color coded (see the color bars).

channels. However, this setup is insensitive to the direction

of the transmission channels and the nature of the carriers

(electron or hole). This information unfolds in four- and six-

terminal setups, both featuring quantized Hall conductivity

plateaus at σxy = ±(2n + 1), respectively, in the electron- and

hole-doped regimes. The zeroth LLs near the opposite val-

leys live on complementary sublattices of graphene. Thus, the

formation of a CDW order gaps out the zeroth LL, thereby

forming an insulator at half filling. Then an additional plateau

at G = σxy = 0 develops. These results are summarized in

Fig. 2.

Once buckled, the resulting axial magnetic field (b) lifts

the valley degeneracy of all the LLs, as the effective magnetic

fields are now B
±
eff = (B ± b) near the valleys at ±K, respec-

tively. Two sets of particle-hole symmetric LLs then appear

at energies ±[2n|B±
eff |]1/2 with the respective areal degen-

eracies D± = |B±
eff |/(2π ). But, zeroth LLs remain pinned at

zero energy, reflecting their topological protections [1,2,31].

Although it is challenging to extract b directly in terms of

ω from Eq. (2), notice that when B = b, only one valley

with B
+
eff = 2B = 2b hosts LLs, while the other one remains

gapless as B
−
eff = 0 therein. This is a quantum critical point,

separating the field-dominated regime (B > b) from the strain-

dominated one (b > B). We first consider the former one (see

Supplemental Material [7]).

When B > b, the edge modes for two copies of nondegen-

erate LLs propagate in the same direction, as the effective

magnetic fields B±
eff > 0 point in the same direction near two

valleys. Consequently, the two-terminal conductance shows

plateaus at all integers. The Hall conductivity in such a system

can be computed from the Středa formula, σxy = (∂N/∂B)μ
[32]. Here, N is the bulk electronic density and the derivative

is taken at a fixed chemical potential (μ). Under a small

change of the magnetic field δB, the change in the number of

states below (for electron doping) or above (for hole doping)

the chemical potential is δN = 
(n+ + n−)δB, where 
 is

the area of the graphene sample and n± is the number of

filled LLs with areal degeneracies D±, respectively, yielding

σxy = n+ + n− = n. Therefore, in the field-dominated regime,

the Hall conductivity only counts the number (n) of filled

LLs at a fixed chemical potential, measured from the half

filling. Concomitantly, we find σxy = ±(n + 1) in both four-

and six-terminal Hall bar geometries. In this regime, zeroth

LLs near two valleys continue to reside on complementary

sublattices [1]. Thus, the formation of a CDW order resolves

an additional plateau at G = σxy = 0. These findings are dis-

played in Fig. 3.

Finally, we focus on the strain-dominated regime, as

pseudo- or axial magnetic fields in buckled graphene can,

in principle, be extremely large (a few-hundred Tesla) [4–6].

When B = 0, the system supports valley degenerate axial LLs,

which are, however, slightly dispersive, possibly stemming

from a spatially modulated Fermi velocity of Dirac fermions

[33]. The edge modes, residing near the ±K valleys, propa-

gate in the opposite directions, manifesting the time-reversal

symmetry, and are thus helical. In such a system, we find

G = 2n + 1 in a two-terminal setup as it only counts the

number of conducting edge modes, while being insensitive to

their helicity. This observation strongly promotes the topolog-

ical nature of the helical edge modes, leading to quantized

transport (Fig. 4). But, σxy = 0 in both four- and six-terminal

arrangements due to the time-reversal symmetry (see Supple-

mental Material [7]).

Application of a weak external magnetic field (B < b)

lifts the valley degeneracy of all the axial LLs, except

the zeroth ones. We then find G = n + 1 (Fig. 4). In this

regime, the Středa formula implies σxy = n+ − n−, suggest-

ing an oscillatory behavior of the Hall conductivity as the
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FIG. 4. Band structure of a zigzag graphene nanoribbon (lead

Hamiltonian) with 400 sites in the y direction and translational in-

variance in the x direction for ω = 0.3, B = 0 [(a)] or B = 2 × 10−5

[(c) and (e)], and δ = 0.0 [(a) and (c)] or δ = 0.1 [(e)], such that

b > B (always), presented over a part of the BZ containing well-

separated LLs, realized by conveniently setting t = 10. We compute

two-terminal conductance (G) in a system with L = W = 400.

(b) With B = 0, axial magnetic field (b) produces G = 2n + 1

plateaus, while additional even-integer plateaus at G = 2, 4, . . . ap-

pear with a finite but weak B field in (d). (f) The CDW stabilizes the

G = 0 plateau. In (a), (c), and (e), the Dirac points (see Figs. 2 and

3) fall outside the displayed region of kx , and modes that are living

near the top (T) and bottom (B) edges (dispersive ones) and localized

near the middle (M) of the system are color coded (see color bars).

chemical potential sweeps through the sea of electronlike or

holelike LLs [2]. Unfortunately, the KWANT-based numerical

procedure in Hall bar geometries then becomes extremely

unstable (see Supplemental Material [7]), possibly due to its

gauge dependence in multiterminal computation. And we fail

to reach any conclusion on the quantization of σxy in the

strain-dominated regime. When b > B, the zeroth LL wave

functions are localized on one sublattice near both valleys in

the bulk of the system, while they live on the complemen-

tary sublattice near its boundary. Therefore, a CDW order

can be developed by creating a density imbalance between

the bulk and the boundary of the system [30], which gaps

out the zeroth LL and in turn stabilizes a plateau at G = 0

(Fig. 4).

V. SUMMARY AND DISCUSSIONS

Here we present a lattice-based extensive numerical analy-

ses of quantum transport in strained graphene, immersed in

external magnetic fields using KWANT [18], in two-, four-,

and six-terminal arrangements, capturing hallmarks of the

interplay between Abelian (B) and axial (b) magnetic fields

(Fig. 1). Our findings are consistent with theoretical pre-

dictions from the continuum model in various limits, which

include (a) flat graphene in ordinary magnetic fields (b = 0)

(Fig. 2) [19], (b) field-dominated regime (B > b) (Fig. 3) [1],

and (c) strain-dominated regime (with only finite b as well as

b > B) (Fig. 4) [2]. Possibly due to the gauge dependence in

the numerical procedure in KWANT, we failed to underpin the

expected oscillatory behavior of σxy in the strain-dominated

regime [2]. Neither different gauge choices, A = (0, Bx, 0)

and A = (−By, Bx, 0)/2, nor the change in relative position

of the voltage and current leads in comparison to the one

shown in Fig. 1 resolves this issue. To circumvent this limi-

tation, in the future we will reinvestigate this problem using

the nonequilibrium Green’s function method [34,35]. Fur-

thermore, given that the thermal Hall conductivity (κxy) has

been computed [36] and measured [37] in a flat graphene

with B fields, we will also compute quantized κxy, featuring

the interplay of B and b fields. Our theoretical investigation

should stimulate future experiments to showcase the intrigu-

ing confluence of magnetic fields in two-dimensional Dirac

materials, which is still in its infancy [15,16].
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