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Emergent metallicity at the grain
boundaries of higher-order
topological insulators

Daniel J. Salib?, Vladimir Juri¢i¢%3* & Bitan Roy**

Topological lattice defects, such as dislocations and grain boundaries (GBs), are ubiquitously present
in the bulk of quantum materials and externally tunable in metamaterials. In terms of robust modes,
localized near the defect cores, they are instrumental in identifying topological crystals, featuring the
hallmark band inversion at a finite momentum (translationally active type). Here we show that the GB
superlattices in both two-dimensional and three-dimensional translationally active higher-order
topological insulators harbor a myriad of dispersive modes that are typically placed at finite energies,
but always well-separated from the bulk states. However, when the Burgers vector of the constituting
edge dislocations points toward the gapless corners or hinges, both second-order and third-order
topological insulators accommodate self-organized emergent topological metals near the zero energy
(half-filling) in the GB mini Brillouin zone. We discuss possible material platforms where our proposed
scenarios can be realized through the band-structure and defect engineering.

Topological lattice defects are ubiquitous in crystalline materials and are of central importance for their structural
properties. In the last decade, they have emerged as viable platforms for probing topological phases of matter
through a subtle interplay of the topology of the electronic wavefunctions and lattice geometry. In particular,
dislocations, the defects associated with lattice translations, can probe a wide range of topological crystals fea-
turing the band-inversion at a finite momentum directly in the bulk via the symmetry and topology protected
localized defect modes either at zero'™' or finite!’ energy. As such, these modes are immune to interface con-
tamination and surface termination, and have been experimentally observed in both topological crystals'*!* and
their metamaterial analogues'®'.

These developments boosted the exploration of extended lattice defects on topological platforms, among which
grain boundaries (GBs) are the most prominent ones. A GB develops at the interface between two misoriented
crystalline grains due to the accumulated elastic stress, and at low angles, it consists of an array of dislocations'®".
See Fig. 1. In turn, by virtue of the hybridization between the localized zero-energy dislocation modes, the GBs
can host a wide range of quantum phases in both static**?! and dynamic?? settings, when a parent topological
insulator (TI) is first-order in nature, featuring gapless modes on the edges or surfaces.

In higher-order topological insulators (HOTIs), accommodating localized states on lower-dimensional
boundaries, such as hinges and corners?*-*, the dislocation modes on the other hand typically move to finite
energies, controlled by the relative orientation between its Burgers vector (b) and the axis of inversion (domain
wall) of the discrete symmetry breaking Wilson-Dirac (WD) mass, responsible for the higher-order topology™’.
Such a nontrivial interplay between the real-space geometry of lattice defects and the momentum-space topol-
ogy of WD mass propels the current pursuit to unveil its signatures on the emergent electronic bands along the
GBs in HOTIs.

Key results. We show that the GB superlattice in both two-dimensional (2D) and three-dimensional (3D)
HOTTs harbors a variety of dispersive bands, which are typically placed at finite energies. However, as the Burg-
ers vector of the constituting edge dislocations and the domain wall directions of the WD mass approach each
other these dispersive bands come closer, hybridize and finally touch when the b-vector points toward gapless
corners or hinges. The GB then fosters an emergent self-organized metallicity near the zero energy, stemming
from an interplay of lattice geometry and momentum space topology. These outcomes are anchored from the
Fourier transformation of the defect modes in the GB mini Brillouin zone (BZ), their local density of states
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Figure 1. Grain boundary of edge dislocations with Burgers vector b = ae, in (a) two and (b) three
dimensions, where a is the lattice spacing. The center of individual dislocation cores are shown in orange and
the missing sites are shown by open blue circles in (a). The distance between successive dislocation core is 2d.
See text for additional details.

(LDOS) in real space lattice with GB defects and the spectral flow of the defect modes with varying WD mass
domain wall in 2D (Fig. 2) and 3D (Fig. 3) second-order TIs, and 3D third-order TI (Fig. 4). Our results are
thus consequential for the quantum crystals ubiquitously hosting GB defects*, and metamaterials, where such
extended defects can be engineered externally*>-.

Lattice model. The universal Bloch Hamiltonian for HOTIs in two (D = 2) and three (D = 3) dimensions
can be split as hyorr = h1 + ha. The Hamiltonian for the parent first-order TIs takes the form

D

=" &) + M) pyy, M
j=1

where d;(k) = t sin(k;a), t is the hopping amplitude set to be unity, and a is the lattice spacing. The first-order
WD mass, preserving all non-spatial and crystal symmetries, and featuring band inversion (and thus TIs) within
the parameter regime 0 < A;/B < 4D, reads

D
M) = A, — 2B [D - Z cos(kja)} . @)
=1

A tower of HOTIs can now be constructed by adding discrete symmetry breaking WD masses (ha) to hy, which
can be decomposed as hp = hy + h3. The second-order WD mass in D = 2and D = 3 takes the general form"?
hy = Az{ cos® d¥  +sind d};,t}l‘p_‘_z, (3)

x2—y

where 0 < 6 < /2 (about which more in a moment), d}cazt

2 = cos(kya) — cos(kya), d}fyt = sin(kya) sin(kya).
The third-order WD mass (only in D > 3) reads as® g

fz3 = Aj [2 cos(kya) — cos(kya) — cos(kya)} I'pys. (4)

Herel';,. .., 'pt2, 'p43are mutually anticommuting Hermitian matrices each of which squares to unity. Results
are independent of their explicit representation, which are shown in the Supplementary Information.

The Bloch Hamiltonian h; + h; describes a second-order TI in both D = 2 and 3, since h;, gaps out the
topological edge (surface) states accommodated by the first-order phase, and leaves only four corners (four
z-directional hinges and two xy surfaces) gapless in D=2 (D=3). As such, for each value of the parameter 6,
h; features a domain wall, which lies along the principal axes k, = 0 and k, = 0 (the diagonals k;, = £k, ) for
0 = /2 (0 = 0). Sharp corner or hinge modes then appear only when they lie on the axes of inversion (domain
wall) for the WD mass. For additional details on the role of 6, see Ref.13.

Since hy + h; involves four (five) mutually anticommuting I" matrices in D = 2 (D = 3), their dimensional-
ity is four. Consequently, the corner modes are pinned at zero energy due to a unitary (generated by I's) and
an antiunitary particle-hole (PH) symmetry in D = 2, while in D = 3 only an antiunitary PH symmetry pins
hinge modes to zero energy"’, as the maximal number of mutually anticommuting four-dimensional Hermitian
I" matrices is five. Notice that h; + h also enjoys the antiunitary composite C47 symmetry, a product of the
four-fold rotation about the z-axis (Cy), generated by iI"'; I"; and under which (ky, k,) — (—k;, kx), and the time-
reversal (7) in both D = 2 and D = 3. The explicit forms of the antiunitary PH and 7 symmetry generators
however depend on the I' matrix representation. The model Hamiltonian /; + h; also breaks the unitary parity
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Figure 2. Grain boundary (GB) in a 2D second-order topological insulator. (a) Evolution of the GB band
structure for the defect (blue) and a few bulk (black) modes as a function of 6 [Eq. (3)], measuring the relative
orientation between the Wilson-Dirac mass domain wall and the dislocation Burgers vector for A, = 0.5.

(b) Band gap (G) between the two closest to zero energy modes, showing that G — 0as@ — /2, indicating
emergent GB metallicity near the zero energy, or half-filling. (c) Energy spectra showing GB modes (blue) and
a few bulk modes (black) at & = /2. (d) Corresponding local density of states of all the GB modes (left) and
two zero-energy modes (right), respectively showing their delocalization along the entire GB and near its ends.
Results are obtained for a pair of GB (lower part) and anti-GB (upper part), separated by 104, each containing
30 (anti)dislocations, with periodic boundaries in all directions.

(inversion) symmetry (P) under which k — —k. But, its explicit form is dimension and I" matrix representation
dependent. Therefore, 2D and 3D second-order T1Is additionally preserve composite C4P and P7 symmetries.

When we turn on the mass term h3, the Hamiltonian h; + hy + h3 (with finite A, and A3) describes a third-
order topological insulator in D = 3. Since it requires six mutually anticommuting I' matrices, they must therefore
be at least eight-dimensional. The additional mass term (h3) gaps out otherwise gapless hinge and xy (top and
bottom) surface states, yielding the eight zero-energy corner-localized modes in the cubic geometry. For the sharp
corner localization, eight corners of the cubic lattice must coincide with the directions along which i, = 0 = h3
41 The corner modes in a third-order T1 are pinned at zero energy due to a unitary (generated by I'7) as well as
an antiunitary PH symmetry. The 3D third-order TI also breaks the individual 7', C4, and P symmetries, and
preserves the composite C47, C4P, and P7 symmetries.

Since HOTIs are obtained as descendants of the first-order TIs upon systematically switching on the dis-
crete symmetry breaking WD masses (h, and h3), in what follows, we consider the translationally active M and
R phases of the 2D and 3D first-order TIs, respectively, featuring band inversion at finite momentum (Kjpy)
M = (1,1)w/aand R = (1,1, 1)7r/a points in the corresponding BZ of the parent square and cubic lattices. For
numerical calculations in D = 2and D = 3, we throughout set A; /B = 6 and A; /B = 11, respectively [Eq. (2)].

GB: construction. When introduced in a TI, the elementary building block of a GB defect, a single dislo-
cation, sources an effective hopping phase across the defect ®4is = Kiny - b (mod 27)". Therefore, electrons
encircling the defect can pick up a nontrivial hopping phase ®4;; = 7 in the M (R) phase on the square (cubic)
lattice, while ®4;; = 0 always in the I" phase as Kj,y = 0 therein. As a result, in a translationally-active first-order
phase, a single dislocation hosts localized modes at zero energy. By contrast, in HOTIs the additional higher-
order WD masses typically gap out the dislocation modes and place them at finite energies, unless the Burgers
vector pierces a gapless lower-dimensional boundary, while throughout retaining their topological and sym-
metry protection'.

When a GB is immersed in a parent translationally-active first-order TI, the localized zero modes at indi-
vidual dislocations hybridize, giving rise to an emergent topological metal near the half-filling, or zero energy,
along the GB superlattice?”. The emergence of such a self-organized topological metal can be corroborated from
the Fourier transform of the GB modes with respect to the superlattice periodicity d, yielding a band structure
in the superlattice mini BZ. When the dislocation modes hybridize, they also develop a comparable weight at
the middle of two successive defect cores. Thus, we denote the distance between them by 2d (Fig. 1). Next, we
report the nature of emergent metallic states in the GB defect consisting of edge dislocations in both 2D (Fig. 2)
and 3D (Fig. 3) second-order TIs, and 3D third-order TI (Fig. 4), showcasing an intriguing interplay between
the defect geometry and the topology of discrete symmetry breaking WD masses (h; and h3). For concreteness,
throughout the Burgers vector of constituting dislocation in the GB is taken to be b = ae,. Here we consider
only small angle GBs, characterized by ¢ = sin~(a/(2d)) ~ 14.47° (< 15°) for d = 2a.

GB in 2D second-orderTl. The evolution of the GB band structure as the orientation (8) of the WD mass
domain wall is varied with respect to b is shown in Fig. 2a. When 6 = 0, the axes of inversion for the second-order
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Figure 3. Grain boundary (GB) in a 3D second-order topological insulator. (a) Evolution of the GB band
structure for the defect (blue) and a few bulk (black) modes as a function of 6 [Eq. (3)] for Ay = 0.5, with the
spectral weight of the two closest to zero energy modes localized at momenta (£ /(2d), 7w /a) for any 6. (b)
Scaling of the gap (G) between two closest to zero energy modes with 6. It vanishes at 0 = /2, indicating
emergent GB metallicity near the zero energy, or half-filling. (c) Energy spectra showing gapless GB modes
(blue) and gapped bulk modes (black). (d) Local density of states for the GB states displaying confinement to the
GB plane, on which they are completely delocalized within the 3D bulk, thus yielding a 2D topological metal.
Results are obtained for a pair of GB (lower part) and anti-GB (upper part), separated by 104, each containing
15 (anti)dislocations, with periodic boundaries in all directions.

WD mass (h,) is perpendicular to b, and a single dislocation features PH symmetric localized modes at finite
energies'’. Hybridization among them then yields isolated dispersive bands centered at finite energies along the
GB superlattice, separated by a gap G (Fig. 2b). It measures the energy difference between the bottom and top
of such dispersive bands living within the conduction and valence bands, respectively. As6 — /2, these bands
come close to each other and start to hybridize. For 8 ~ 7 /2, when the domain wall of hyis parallel to b, this gap
eventually closes, yielding an emergent metal around the zero energy. For any 6, the dispersive or metallic states
are always separated from the bulk states, like their parent dislocation modes. For 6 = /2, besides the disper-
sive metallic states a pair of zero-energy modes also appear in the spectra (Fig. 2a and c). All of them are delocal-
ized along the GB, but confined in its close vicinity, as shown from their LDOS in Fig. 2d. The near-zero energy
modes, as well as the rest of the GB modes, do not show any spectral weight in the region between the GB and
anti-GB, separated by a large distance of 104, such that the modes bound to them do not overlap with each other.

GB in 3D second-order Tl. In D = 3, a GB consists of an array of edge dislocations, which forms a plane
spanned by the directions of the dislocation line and the dislocation array, respectively in the z-axis and y-axis
for b = ae,. Each dislocation line then hosts localized modes along the z direction, which are typically at finite
energies for 6 # /2, unless b points toward gapless hinges (9 = 7/2), when the dislocation modes become
gapless'®. These modes, when hybridize, yield a plethora of 2D dispersive bands along the GB defect, manifest-
ing a gap depending on the parameter 6, as shown in the upper panel of Fig. 3a, with the metallic band structure
centered around the zero energy emerging for 6 = 7 /2. Furthermore, as shown in the lower panel of Fig. 3a,
the closest to zero-energy modes feature almost the entire spectral weight at momenta (£ /(2d), w/a), which is
independent of the parameter 6. The emergent metallicity around the zero energy is further corroborated from
the 6-dependence of the gap (G) between bottom and top of the dispersive bands respectively residing within the
conduction and valence bands, showing that G goes to zero as — /2 (Fig. 3b). The GB modes are always well
separated from the bulk states for any 6 (Fig. 3a), which we also explicitly show for 6 = 7 /2 in Fig. 3c. Finally,
these modes are highly localized in the yz-plane constituted by the GB (for any 6), as explicitly shown from their
LDOS for 8 = 7 /2 in Fig. 3d. Appearance of two gapless Dirac points at (£7/(2d), 7 /a) when § = 7 /2in a 2D
GB mini BZ conforms to the Nielsen-Ninomiya Fermion doubling theorem*.

GB in 3D third-orderTl. An edge dislocation in a 3D third-order TT harbors modes localized near its ends
on the top and bottom surfaces, for example, when b = ae,, which are at finite energies, unless the Burgers vec-
tor points toward eight gapless corners, when they become gapless'®. Consequently, a GB in a 3D third-orderTI
is expected to host gapped dispersive bands localized near the top and the bottom edges of the defect, which
become gapless only when 6 = 7/2. Indeed Fig. 4a confirms it, showing that the gap between the dispersive
GB bands decreases as the WD mass domain wall approaches the principal crystallographic axes (6 — 7/2),
when it should become gapless. A small residual gap between these dispersive modes at = 7/2 is purely due
to a finite thickness of the system in the z-direction (L;), which approaches zero as L, — oc. See Fig. 4b. The
GB modes (gapped dispersive or gapless metallic about the half-filling) are always well-separated from the bulk
states (Fig. 4a), as explicitly shown in Fig. 4c and localized near the top and bottom surfaces, as shown in Fig. 4d
for & = /2. The fact that these modes are maximally localized just below (above) the top (bottom) surfaces pos-
sibly stems from their parent corner modes, also localized slightly away from the terminal surfaces.
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Figure 4. Grain boundary (GB) in a 3D third-order topological insulator. (a) Evolution of the band-structure
on the top and the bottom edges of the GB plane as the orientation of the second-order mass domain wall moves
towards principal crystalline axes 6 = 7 /2 [Eq. (3)] for A; = A3 = 0.5. (b) The gap (G) between the closest to
zero energy states as a function of 6 for two choices of the Wilson-Dirac mass amplitudes (A and A3), showing
that G — 0as# — m/2 (indicating emerging metallicity near the zero energy, or half-filling), but only when the
system thickness in the z direction L, — oc. For @ = /2, we show the (c) energy spectra supporting the GB
modes (blue) and a few bulk modes (black) and (d) local density of states of the GB modes, showing its strong
localization near the top and bottom edges of the GB. Results are obtained for a pair of GB (lower part) and
anti-GB (upper part), separated by 104, each containing 13 (anti)dislocations, with open (periodic) boundary
condition(s) in the z (x and y) direction(s).

Discussion and outlook

Here we show that 2D and 3D HOTIs foster a variety of dispersive bands within the conduction and valence
bands of the emergent BZ constituted by the GB superlattice, with the gap between them tunable by the relative
orientation of the WD mass domain wall and the Burgers vector of individual dislocations. Especially, when the
Burgers vector pierces gapless corners or hinges, these dispersive bands touch each other at zero energy, giving
birth to self-organized topological metals around zero energy confined to the GB defect. See Figs. 2, 3, 4. The GB
modes (dispersive and metallic) are robust against weak on-site disorder, the dominant source of elastic scattering
in any real material. Explicit results are shown in the Supplementary Information.

Note that the bulk gap is determined by the first-order [Eq. (2)] and higher-order [Egs. (3) and (4)] masses,
while the energy scale of the GB modes is set by the latter ones and 6 [Eq. (3)]. As all the I matrices appearing in
the universal model Hamiltonian for HOTIs mutually anticommute with each other, there exists a finite energy
separation between the bulk and GB modes (Apyx—gp). However, as A, and/or Az become sufficiently large,
the higher-order mass overwhelms the first-order mass, and Apyx_gg — 0, but it never vanishes. The explicit
dependence of Apyk—gp on the amplitude of higher-order masses is shown in the Supplementary Information.

While here we focus on small angle GBs, described by an array of dislocations (Fig. 1), at large opening angles
(¢ > 15°) a GB defect may be described as an array of elementary disclination defects*® or in terms of a lattice
of partial dislocations with stacking faults**. As a single disclination***¢ and a partial dislocation*” defect can
also harbor localized topological modes, the possibility of emergent metallicity on high-angle GBs stands as a
fascinating avenue for future investigation.

The prerequisite for the realization of the proposed emergent metallicity along the GB in HOTIs is a band-
inversion at a finite momentum in the BZ (translationally active®®) such that Kipy - b = 7 (modulo 27), as GB
defects are rather ubiquitous in quantum crystals. We emphasize that a metallic behavior has been recently
observed at GBs in 1T’-MoTe,**, while some of the realized HOTIs are of translationally-active type***°, which
should motivate further investigation of the materials prospects for the realization of our proposal. On the other
hand, in metamaterials the predicted GB band structures can be engineered by artificially tuning the tunneling
processes and manipulating defects therein. Among them designer metamaterials®, topolectric circuits®*7,
photonic®® and mechanical® lattices are the most promising platforms. While the metallic nature of the GB modes
can be probed via electronic transport measurements in quantum and designer crystals, classical metamaterials
can only reveal their dispersive nature from the energy-conserved momentum relation of the associated classi-
cal modes, such as the vibrational ones in mechanical lattices. By contrast, the local density of states of the GB
modes can be probed in quantum and designer crystals via scanning tunneling spectroscopy, as well as in classical
metamaterials, through the measurements of local electric (in topolectric circuits) or mechanical (in mechanical
lattice) impedance or two-point pump-probe spectroscopy (in photonic lattices). Our findings should therefore
motivate experimental efforts for the realization of the defect-based emergent band structures in a wide range
of both quantum and classical topological materials.
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Data availability

The datasets used and/or analysed during the current study available from the corresponding authors on reason-
able request. Main codes and the data for generating the figures presented in the main text and Supplementary
Information are already available at https://doi.org/10.5281/zenodo.8341312.
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