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Abstract

Microcrystal electron diffraction, commonly referred to as
MicroED, has become a powerful tool for high-resolution
structure determination. The method makes use of cryogenic
transmission electron microscopes to collect electron diffrac-
tion data from crystals that are several orders of magnitude
smaller than those used by other conventional diffraction
techniques. MicroED has been used on a variety of samples
including soluble proteins, membrane proteins, small organic
molecules, and materials. Here we will review the MicroED
method and highlight recent advancements to the methodol-
ogy, as well as describe applications of MicroED within the
fields of structural biology and chemical crystallography.
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Introduction

Crystallography has been, and to this day remains an
incredibly successful method for the determination of
high-resolution macromolecular and small molecule
structures. While the vast majority of diffraction exper-
iments in crystallography make use of X-rays, there is a
key bottleneck associated with X-ray diffraction, namely
the requirement of large well-ordered crystals. In many
cases, the difficulty associated with growing relatively
large high-quality crystals for X-ray experiments can set

back the study of those target systems. Therefore,
methods that can make use of smaller, and in many cases
easier to obtain, crystals promise to be powerful tools for
the structural biology and chemical crystallog-
raphy communities.

The electron crystallographic method of microcrystal
electron diffraction (MicroED) is one such method that
is able to bypass the requirement of large crystals by
making use of the strong interaction of electrons, which
relative to X-rays is less damaging per useful elastic
scattering event [1]. Since the early work on MicroED
in 2013 and 2014 [2,3], the method has been used to
determine a wide variety of structures including mem-
brane proteins, soluble proteins, peptides, organic mol-
ecules, and materials [4,5]. Here we will describe the
MicroED technique and recent advances to the meth-
odology, and highlight recent applications of MicroED to
various fields of structural research.

MicroED methodology and recent advancements

The MicroED workflow is a combination of cryo-EM
and crystallography, with sample preparation and data
collection being familiar to those in the cryo-EM field,
and data processing and structure solution being familiar
to researchers with a crystallography background.
MicroED and electron crystallography details and pro-
cedures have been published in detail elsewhere and
readers are encouraged to refer to these more detailed
works [6—13]; however, here we will only briefly
describe the MicroED workflow (Figure 1). The work-
flow for biomolecular crystals begins by depositing the
sample on a carbon-coated EM grid, followed by the
removal of excess sample solution by blotting and rapid
plunge freezing into liquid ethane. This method is
analogous to what is commonly performed for single-
particle cryo-EM. For small molecule samples, the
sample can be added to the surface of the grid by
directly applying powdered sample, adding a crystalline
slurry followed by solvent evaporation or blotting, or by
direct crystallization on the surface of the grid [14—20].
Once the samples are loaded into the cryo-TEM,
diffraction data are collected from the microcrystals on
the grid surface. The initial MicroED data collection
strategies were inspired by decades of work performed
on 2D protein crystals. In 2D electron crystallography,
cach crystal, consisting of a single or double layer of
protein, produces a single diffraction pattern, and
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Figure 1
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The MicroED workflow. The workflow for macromolecular crystals begins by transferring the crystals from crystallization experiments (e.g. hanging drop,
sitting drop, batch crystallization) to the surface of a carbon-coated EM grid. The samples are then blotted and vitrified using manual or automatic plunge
freezing setups. At this point, the microcrystals may be loaded into the cryo-TEM for MicroED data collection, or can be further processed using cryo-FIB
milling (green arrows) prior to transfer into the cryo-TEM. For small molecule samples, the microcrystals are transferred to the grid by different approaches
depending on the form of the sample. Dried powder can be directly applied to the surface of the grids. Microcrystals in suspension are applied to the grids
and the solvent is then blotted away or allowed to evaporate from the surface. Finally, samples may be crystallized directly on the grid by applying the
sample in solution and allowing evaporation to occur. For both macromolecular and small molecule crystals, data are collected by continuous-rotation
MicroED data collection. The resulting data are processed, and structures are determined and refined, using standard crystallographic programs.

multiple crystals are then collected at various stage tilt
angles and merged together to provide a complete 3D
structure of the protein [21]. In MicroED, rather than
each crystal providing a single diffraction pattern, ultra-
low doses are used to collect multiple diffraction pat-
terns as the stage is rotated in the electron beam. When
this is performed using a continuous rotation of the
stage and continuous readout of the camera, data sets
are collected that are analogous to those collected by
single crystal X-ray diffraction experiments. This
method of continuous-rotation data collection is
currently the default mode of MicroED data collection
[3,22]. This same approach of continuous electron
diffraction data collection and stage rotation has also
been analogously referred to as continuous rotation

electron diffraction (cRED) [23] or 3D electron
diffraction (3DED) [24,25]. With minor modification,
MicroED data are processed using standard X-ray data
processing programs, and the resulting structures are
refined using standard X-ray crystallography refinement
packages. Using these data collection and processing
procedures, MicroED has determined many high-
resolution structures from extremely small microcrys-
tals. However, continued method development is still
key to drive MicroED forward. Past improvements have
greatly improved the throughput and quality of
MicroED structures (Figure 2), and there are several
recent advancements to the procedures, hardware, and
software that promise to continue to advance
the method.
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Figure 2
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MicroED methods advancement has greatly improved structure quality. (a) The first structure determined by MicroED was of tetragonal hen egg-
white lysozyme in 2013. Data was collected using discrete tilts of the stage and the structure was determined to 2.90 A. A short time later in 2014,

continuous-rotation MicroED data collection was introduced, which improved data quality and allowed data processing to be performed using standard
crystallographic programs. This advancement led the lysozyme structure to now be determined to 2.50 A. Following continued MicroED methodology
improvements, the structure of lysozyme was determined to 1.80 A in 2017. (b) Recently, the powerful combined effect of several new MicroED method
improvements, including cryo-FIB milling and data collection with direct electron detectors, was used on triclinic lysozyme crystals, which are known to
diffract to higher resolution. The use of improved methodology and very high-quality crystals facilitated the structure determination of triclinic lysozyme to
0.87 A resolution. Together these lysozyme studies show how critical methods development has been, and will continue to be, for MicroED. The structures

displayed in (A) are of lysozyme residues 19 to 37 and residues 58 to 70 in (B), and the potential maps have been contoured to 1.5¢6.

One recent area of methods advancement for MicroED
has been in sample handling and preparation, especially
when working with microcrystals in viscous solutions. As
many crystallization conditions contain viscous compo-
nents (e.g. high-molecular weight PEGs), it makes
blotting the excess solution away very difficult. Often it
isn’t possible to simply dilute the crystallization solu-
tion, so working with hard-to-blot samples is a common
difficulty in MicroED. One recently described approach
for overcoming this barrier is to use a pressure-assisted
device for removing excess buffer from the grid [26].
This setup, called Preassis, is better equipped for
viscous samples by controlling the sample thickness on
the grid, and can be used on a range of crystallization
buffers. Additionally, because the excess solution is
removed in a controlled manner through the grid, it can
increase the quantity of crystals that are found on the
surface of the grid following sample preparation.

Another major development in sample preparation for
MicroED analysis has been the implementation of cryo-
focused ion beam/scanning electron microscope (cryo-
FIB/SEM) instruments to the MicroED workflow. A
cryo-FIB/SEM can be used to mill unwanted material
from the sample using the FIB and leave the remaining
crystalline material relatively undamaged for subse-
quent MicroED data collection. Cryo-FIB milling has
been used to create thin crystalline lamella within the
cryo-FIB/SEM that are then transferred to a cryo-TEM
for high-resolution MicroED data collection and

structure determination [8,10,27—29]. One benefit of
cryo-FIB milling for MicroED is it reduces the need for
blotting the excess sample buffer from the EM grid. In
standard MicroED sample preparation, to identify the
location of crystals on the grid, the surrounding buffer
must be removed such that the electron beam in the
cryo-T'EM is able to penetrate the sample, which is on
the order of tens of nanometers. In contrast, when using
cryo-FIB instruments, the thickness of the crystalliza-
tion buffer must only be reduced to a level that allows
the clear outlines of the crystals to be seen by the SEM
and FIB within the cryo-FIB instrument. The FIB is
then used to remove any excess material prior to
MicroED data collection. The major advantage of cryo-
FIB milling of microcrystals is that it allows MicroED
analysis of crystals that are too thick for MicroED
(greater than approximately 500 nm) yet are still too
small (less than approximately 2—10 pum) for analysis by
conventional X-ray crystallography. Even when used on
crystals that are already thin enough for MicroED, cryo-
FIB milling can improve data quality by removing excess
material above and below the crystal, thereby setting the
crystal thickness to an optimal value. Recently, crystal-
line lamella of varying thicknesses were tested at
different cryo-T'EM accelerating voltages to investigate
the ideal thickness for MicroED experiments [30]. It
was found that lamella up to twice the inelastic mean
free path of the electron beam produced high-quality
diffraction data, which serves as a guide for the crea-
tion of lamella from new samples.
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Another area of recent methods improvement for
MicroED has been the implementation of new cameras
for data collection. The collection of continuous-
rotation data requires a camera with high frame rate
and the nature of diffraction data requires that the
camera also have a high dynamic range. Early MicroED
work was performed on high-speed CMOS-based cam-
eras, and these cameras are still standard for MicroED
work. Recently, the use of direct electron detectors and
hybrid pixel detectors have been tested and used for the
collection of MicroED data on macromolecular crystals
[31—35]. In the case of direct electron detectors
commonly used for single-particle cryo-EM, it has been
shown that the data collected by these detectors is su-
perior to MicroED data collected by standard CMOS-
based cameras, and they can be operated in counting
mode at very high speeds [32,33,36].

In addition to the areas described above, electron
diffraction provides unique opportunities and chal-
lenges that are being studied and implemented for
MicroED studies. Electron crystallography and electron
microscopy produce maps of the electrostatic potential
of the sample, rather than the electron density produced
in X-ray crystallography. Therefore, electron diffraction
data is more sensitive to charge and hydrogens [37—40],
and the accurate modeling and application of these ef-
fects is an area of active development. The analysis of
dynamic scattering effects is an additional area of open
investigation in the electron crystallography community.
While the dynamical effects have been shown to be low
and not preclude structure determination with
MicroED, modeling dynamic scattering for small mole-
cules has been shown to improve structure quality from
electron diffraction data sets [41,42], and very excitingly
can be used to determine absolute stereochemis-
try [42,43].

Applications of MicroED

The continued development of MicroED has been
essential to driving the method forward and has facili-
tated its use in several new areas of structural research.
MicroED was initially developed using model crystals of
proteins with known structure, but recent years have
seen the method applied to new protein samples that
had resisted other structure determination methods. In
2019, MicroED was used to determine the structure of a
novel R2-like ligand-binding oxidase from Sw/folobus
acidocaldarius from microcrystals that were too small for
conventional X-ray diffraction [31]. In 2022, MicroED
was used to determine the structure of an engineered
protoglobin variant from Aeropyrum pernix that is capable
of enzymatic carbene transfer. Crystals of the A. pernix
protoglobin variant had resisted structure determination
by other methods until MicroED was employed on the
sample [44]. The novel structure was determined by
MicroED to 2.1 A, which shed light on the conformation
of the active site and the mechanism of this novel

engineered enzyme. More recently, MicroED was
employed on this same system to solve the structure of a
bound reactive intermediate, and this new structure
shed further light on the mechanism of the engineered
enzyme [45].

An area of focus for MicroED methods development is
the application of the technique to membrane proteins.
Membrane proteins often form very small crystals,
which makes MicroED a promising tool for membrane
protein structural biology. In 2020, MicroED was used to
determine the structure of a mutant voltage-dependent
anion channel from crystals that were grown in bicelles
[46]. In this work, the use of cryo-FIB milling was
essential to the preparation of high-quality crystalline
samples for MicroED data collection. An important class
of membrane proteins are the G-Protein coupled re-
ceptors (GPCRs). Many GPCRs are crystallized in the
gel-like lipidic cubic phase (LLCP); however, the high
viscosity of the LCP matrix makes microcrystals
embedded in LCP very difficult to work with. Recent
work has demonstrated that the LCP can be converted
to less viscous phases that are compatible with MicroED
analysis, and when coupled with cryo-FIB milling, high-
resolution structures of GPCRs can be obtained [47,48].

Another exciting area of MicroED application is in the
field of chemical crystallography. As with macromolec-
ular crystals, electron crystallography has been shown to
be capable of accurate structure determination from
very small crystals of organic molecules and materials,
and electron diffraction methods have been developed
and employed for structural studies
[14—16,19,25,49—55]. The application of MicroED to
small molecule crystallography allows rapid structure
determination, often directly from the as-synthesized
material, without the need for additional crystalliza-
tion trials. This greatly enhances the structure deter-
mination throughput of novel small molecule samples.
Recently, electron diffraction has been successfully used
to determine the structures of a variety of organic mol-
ecules, including, but not limited to, pharmaceuticals
[11,16,56], enzymatic and natural products [57—59],
organic semiconductors [18,60], crystalline polymers
[61,62], and framework materials [17,20,63—66]. The
use of electron diffraction on very small nanocrystals has
also been shown to be capable of determining multiple
structures from chemical mixtures as well as deter-
mining the structure of distinct crystal polymorphs
within a sample [60,67].

MicroED has also been shown to be highly comple-
mentary to other structural analysis techniques. In one
example, grazing-incidence wide-angle X-ray scattering
(GIWAXS) was used alongside MicroED to determine
both the crystal structure and the orientation of organic
semiconductors in thin films [18]. In this work, crystals
were grown directly on the surface of the carbon-coated
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TEM grid using conditions analogous to what was used
to grow the thin films for GIWAXS, helping to ensure
consistency between the crystal forms analyzed by
MicroED and those seen in the films.

Conclusions

MicroED is emerging as a powerful tool for the fields of
structural biology and chemical crystallography. This has
been due in large part to the constant improvements made
to the MicroED methodology since its initial develop-
ment. In the future, as the community of researchers
making use of MicroED grows, and with continued
focused method development, the MicroED method will
see further improvements that will ultimately enhance
the method’s throughput and final high-resolution struc-
ture quality. These continued applications and advances
will further establish MicroED as an essential tool for
high-resolution structure determination.
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